A SYNCHRONIZATION SCHEME FOR DISTRIBUTED
INFORMATION SYSTEMS WITH REPLICATED DATA

Sang Hyuk Son

Computer Science Report No. TR-87-14
Yune 24, 1987

o

A Synchronization Scheme for Distributed Information Systems
with Replicated Data

Sang Hyuk Son
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

Replication is the key factor in improving the availability of data in distributed information systems.
Replicated data is stored at multiple sites so that it can be used by the user even when some of the copies
are not available due to site failures. In this paper a synchronization scheme for distributed information
systems is described. The scheme increases the reliability as well as the degree of concurrency of the sys-
tem. A token is used to designate a read-write copy. The scheme allows transactions to operate on a data
object if more than one token copies are available. The availability of replicated data and the recovery

mechanisms associated with the scheme are discussed.

Index Terms - distributed system, consistency, synchronization, transaction, replication

This work was pantially supported by the Office of Navat Research under contract no. NOO014-86-K-0245 1o the Department of Computer
Science, University of Virginis.

1. Introduction

A distributed information system consists of multiple autonomous computer systems (called sites)
that are connected via a communication network. One of the advantages of distributed information sys-
tems over centralized information systems is that replicated copies of critical déta can be stored at multi-
ple sites. The main goal of having replicated data is to enhance the availability of data. By storing data at
multiple sites, the system can access the data in the presence of failures, even though some of the redun-
dant copies are not available. In addition to improved availability, replication also increases the reliability
of data by reconstructing accidently destroyed copy frqm other copies. Replication can enhance perfor-
mance by allowing queries initiated at sites where the data are stored to be processed locally without
incurring communication delays, and by distributing the workload of queries to several sites where the
subtasks of a query can be processed concurrently, These benefits of replicated data must be balanced

against the additional cost and complexities introduced for replication control.

Correctness and availability appear to be conflicting goals in distributed information systems. A
major restriction in using replication is that replicated copies must behave like a single copy, i.e., mutual
consistency of a replicated data must be preserved. By mutual consistency, we mean that all copies con-
verge to the same value and would be identical if all update activities cease. The inherent communication
delay between sites that store and maintain copies of a replicated data makes it impossible to ensure that
all copies are identical at all times when updates are processed in the system. The principal goal of a
replication control mechanism is to guarantee that all updates are applied to copies of replicated data in a

way that assures the mutual consistency.

Considerable research effort has been focused in recent years in developing techniques for storing
and retrieving data reliably through replication, and most of them seem to focus on correctness of the
database by guaranteeing global serializability while allowing only a limited amount of availability for
partitioned operation. These include [BER84, EAGS83, HERS86, MIN82, THO79]. On the other extreme,

there are methods that provide practically unlimited availability during partitions at the expense of aban-

e

doning global serializability as a correctness criterion. These include [SARSS, DAVS4].

To illustrate the basic differences between the conservative methods (which allow at most one parti-
tion 1o process transactions) and optimistic methods, we consider a simple banking détabase. Suppose
that the information on the balances of funds in different accounts are replicated and stored at two sites,
which are connected by a communication link. Let us assume that two independent withdrawal transac-
tions are submitted at each sites when two sites are partitioned by the link failure. If a conservative
method is used, only one site will accept a user transaction for the withdrawal, although the consistency
can be maintained even with the execution at the other site. In an optimistic method, both withdrawal
transactions will be executed. However, after communications are restored, the inconsistency {overdrawn)
will be detected, and a corrective action will be necessary. Therefore, the basic difference between these
two methods is the trade-off between availability and correctness; conservative methods resulted in the
loss of service availability while preventing inconsistent execution, and optimistic metlmdé insured the

operability of both sites while allowing an account to be overdrawn,

Conservative methods are quite satisfactory for the applications where high availability is not of pri-
mary concem. However, if availability is critical, optimistic methods seem to make more sense. Each of
the optimistic methods has unique advantages and shomomings, but it appears that there are problems
common to all of them: computation and communiqan‘on overhead. Each site must exchange the informa-
tion about transactions executed during partition, and determine which transactions must be executed
locally and which transactions must be backed out for the database consistency. Therefore, one of the
issues that need further study in optimistic approach for replication control in distributed information sys-

tems is the overhead control: reducing overhead while maintaining high availability,

In this paper, we propose a synchronization scheme for distributed information systems with repli-
cated data objects. Our objective is to permit each site to process transactions as much as possible, while
reducing the possibility of conflicts among committed transactions by restricting the number of copies

that can be used for updating data objects. The replication method used here masks failures as long as one

special copy (token copy) remains available. Similar approach has been taken in existing replication
methods such as the primary copy method{ALS76, STO79], true-copy token method[MINS82], and avail-
ablel copy method{BERS4]. In our scheme, there are predetermined number of tokens for each data object.
Tokens are used to designate a read-write copy, and a token copy is a single version representing the
current value of the data object. The scheme is designed to support a distributed information system in

increasing the availability of data and the degree of concurrency without incurring too much overhead.

In contrast to true-copy token method, not all the copies are token copies, and only one type of
token is used instead of separate exclusive-copy token and shared-copy token as in [MIN 82]. Our scheme
achieves higher availability of data objects than the true-copy scheme because a data object can be

accessed and updated even if some of the token copies are not available.

In the primary copy method[ALS76], each data object is associated with a known primary site, also
called as master site, to which all updates in the system for that data object are first directed, Distributed
INGRES [STO79] follows this approach. Different data objects méy have different primary sites. Basi-
calIy, updates can be executed only if the primary copy of a data object is available. Update requests will
be sent to non-primary copies either before or on the commitment of the update transaction. Its main

drawback is its vulnerability to failures of primary copy sites.

The available copy scheme{BERS4] is a descendent of primary copy algorithms. In this scheme, the
System is dynamically reconfigured by removing failed sites and integrating recovered sites with the
operational sites. There is no primary copy of a data objects; all copies are treated equally. It is based on
read-onelwrite-all strategy, in which transactions may read from any copy, and must write to all available
copies.

The replication method of our scheme might be considered as a generalization of those primary‘
copy or availablé copy methods. If only one token for each data object exists, it is similar to primary.copy
method. If all the copies are token copies, then it is similar to the available copy method. Our scheme is

different from them in that it exploits the before-values in increasing the degree of concurrency of the

3.

System. In addition, the scheme does not require special status transactions as in the available copy

method, in which they are executed to keep the configuration information up-to-date as sites fail and
recover,

The paper is organized as follows. Section 2 presénts a model of computation used in the paper.
Section 3 introduces the important notions used in the scheme. Section 4 describes the execution of logi-
cal operations by corresponding physical operations. Section § presents the synchronization scheme for
distributed information systems with replicated data. Section 6 presents a recovery procedure that can be
used for replicated data objects, and Section 7 discusses the availability of replicated data objects. Section

8 concludes the paper,

2. Model of Computation

To present our synchronization scheme, we need to introduce first the organization of distributed
information systems. In this section We present a simplified model of a distributed information system,

and describe how the system processes transactions,

2.1. Distributed System Environment

A distributed information system is a collection of sites, each of which maintains a local database
system. Each site is able to process local transactions, those transactions that access data only in that sin-
gle site. In addition, a site may participate in the execution of global transactions, those transactions that
access data in several sites, The execution of a global transaction requires communication among partici-
pating sites. Each site runs processes called the fransaction managers which supervise interactions
between users and the system, and the dara manager which manages the local database. Since a transac-
tion must be executed atomically in any circumstances, one of the most important functions of the tran-

saction manager is to ensure that the execution of a global transaction preserves atomicity.

The smallest unit of data accessible to the user is called data object. In distributed information Sys-

tems with replicated data objects, a logical data object is represented by a set of one or more replicated

physical data objects. Two types of logical operations that can be performed on a logical data object are
read and write. A logical operation requested at one site is implemented by exécuting physical operations

on one or more copies of physical data objects in question.

2.2. Transactions

Users interact with the system by submitting transactions. Each transaction represents a complete

and correct computation, i.e., if a transaction is executed alone on an initially consistent database, it
* would terminate in a finite time and produce correct results, leaving the database consistent. A transaction
consists of different types of operations such as read, write, and local computations. Read and write
operations are used to access data objects, and local computations are used to determine the value of the
data object for a write operation. Algorithms for replication control and synchronization pay no attention
to the local computations; they make scheduling decisions on the basis of the data objects a transaction

reads and writes.

The transaction managers that have been involved in the execution of a transaction are called the
participants of the transaction. The coordinator is one of the participants which initiates and terminates

the transaction by controlling all other participants.

When a transaction commits, all the updates it made must be written permanently into the database.
All participants must commit unanimously, implying that the updates performed by the transaction are
made visible to other transactions in an “‘all or none”’ fashion. We assume that the system runs a correct

commit algorithm (e.g., [SKE81]), and hence assures the atomic commitment of transactions.

A time-stamp is a number that is assigned to a transaction when initiated, and is kept by the transac-
tion. Each site generates a unique local time-stamp, and a globally unique time-stamp can.be obtained by
concatenating the local time-stamp with the identifier of the site. In this method, a time-stamp consists of
a pair (t,n) where t is the value of the local clock of the site, and n is the unique identifier of the site. In
order to ensure that no local clock gets far ahead or behind another clock, local clocks are synchronized

through message communication in the following way:

-5-

() Each site increments its local clock by one between any two successive events.
(2) Every message contains the current clock value of the sender site.

(3) On receiving a message with a clock value t which is greater than the current local clock value,

the local clock is set to the value t+1,
A detailed discussion of time-stamp generation can be found in [LAM78].

~ The important properties of time-stamp are (1) no two transactions have the same time-stamp, and
(2) only a finite number of transactions can have a time-stamp less than that of a given transaction, For
any two time-stamps TS1=(t;, ny) and TS2=(ty, np), TS1 is smaller than TS2 if either {t; <tp) or (t;=t,
and n; < my). If a transaction T has a smaller time-stamp than T, we say that T, is the older transaction

and T, the younger.

2.3. Failure Assumptions

A distributed information system can fail in many different ways, and it is almost impossible to
make an algorithm which can tolerate all possible failures. In general, failures in distributed information
Systems can be classified as failures of omission or commission depending on whether some action
required by the system specification was not taken Or some action not specified was taken[MOHS83]. Tﬁe
simplest failures of omission are simple crashes in which a site simply stops running when it fails. The
hardest failures are malicious runs in which a site continues to run, but performs incorrect actions, Most

real failures lie between these two extremes.

In this paper, we do not consider failures of commission such as the "malicious runs” type of failure,
When a site fails, it simply stops running (fail-stop). When the failed site recovers, the fact that it has
failed is recognized, and a recovery procedure is initiated. We assume that site failures are detectable by
other sites. This can be achieved either by network protocols or by high-level time-out mechanisms in the

application layer[BER84).

3. Token Copy and Before-Value

A token designates read-write copy. Each logical data object has a predetermined number of tokens,
and each token copy is the latest version of the data object. The site which has a token copy of a logical
data object is called a roken site, with respect to the logical data object. In order to control the access to
data objects, the system uses time-stamps. Copies without tokens (read-only copies) go through the copy

actualization phase, if necessary, in order to satisfy the consistency constraints of the system,

When a transaction performs a write operation o a data object, there are two values that are associ-
ated with the data object; after-value (the new version) and before-value (the old version). The system
remembers the before-value for the duration of the transaction so that it can be restored if the transaction

is rolled back. Some systems even have a permanent copy of old versions for better availability[REES3).

Because the before-value is available during the transaction processing, it is natural to ask if con-
currency can be improved by giving out this value(STES1). For example, if the transaction T; has been
given a permission to write the new value of a data object and the transaction T, requests to read the same
data object, then it is possible to give T; the before-value of the data object, instead of making Ty wait
until Ty is finished. However, an appropriate control must be exercised in doing so, otherwise the data-
base consistency might be violated. In the example above, assmﬁe that T; has written a new value for two
data objects X and Y, and T has read the before-value of X, T2 wants to read Y also. If T, gets the after-
value of Y created by T, there is no serial execution of Ty and T, having the same effect because in
mading the before-value of X, T, sees the database in a state before the execution of Ty, and in reading

the after-value of Y, T, sees the database in a state after the execution of T,.

4. Execution of Logical Operations

In a distributed information system with replicated data, the System must provide the same effect in
executing logical operations as if data objects were nonreplicated. We use R;i(X) to denote a logical read
operation on X issued by the transaction T;. Similarly, W;(X) denotes a logical write operation on X by

Ti. We use lower case letters to represent physical operations, Thus, r;{X) represents a physical read

oy

operation on X resulting from a logical operation Ri(X), and w;(X) denotes a physilcal write operation on
X resulting from W;(X).

‘To read the data object X, the coordinator sends a request to a read-only copy site of X, For now, we
assume that an appropriate decision is made in selecting a read-only copy, and a logical read operation is

implemented by a physical read of that copy.

Execution of logical write operations is not as simple as read operations. In a straightforward imple-
mentation of logical writes, the value to be written is broadcast to all token sites where a token copy of
the data object resides. A physical write operation occurs at each copy site, and then a confinmation mes-
sage has to be returned to the site where the logical write was requested. The logical write operation is
considered completed only when all the confirmation messages are returned. This solution is unsatisfac-
tory because every write operation incurs waiting for responses before the next operation of the transac-

tion can proceed.

In the next section, we present an implementation of logical write operations that permits an opera-
tion after a write to proceed as in a nonreplicated System, with the physical write operations being exe-
cuted concurrently at other copy sites. The level of synchronization between logical and physical write
operations is relaxed by allowing physical write operations to be completed by the commit time of the
transaction. A logical write operation is considered completed when the required update messages are
sent. This eliminates the delay caused by waiting for confirmation messages before the next operation can

proceed.

5. The Synchronization Scheme

Operations of transactions are executed differently, depending on whether the System is partitioned
or not. In normal mode when there is no partition failure, a transaction reads from any copy and writes to
all token copies. In partitioned mode, any partition that has a token Copy can process transactions which

need the data object. We first present normal mode of operation.

_ 5.1. Normal Operation

We use time-stamp ordering for concurrency control. Each read and write carries the time-stamp of
the transaction that issued it, and each data object carries the time-stamp of the transaction that wrote it.
Read and write operations are executed in their ume-stamp order with two exceptions; older transaction
are allowed to read before-values of data objects being updated by younger transactions, and younger
transactions are allowed to write after-values of data objects being read by older transactions on the con-

dition that younger transactions canmot commit before the termination of older transactions.,

Because updates of data objects occur at token sites first, it is possible that at some time instant, the
latest version of a data object may not exist in a read-only copy. A copy of a data object X is said to be
actual if the value of it reflects the latest update made to X. For a read operation R;(X), if the read-only
copy of X has time-stamp > time-stamp(T;), then the value is used for £;(X). Otherwise, an Actualization
Requgst Message (ARM) s sent 1o any available token site to actualize the read-only copy. At the token
site, an ARM is treated as the same as a r;(X), and the current version of the data object will be returmed.
The latest version can be determined at the read-only copy site by comparing the time-stamp of the read-

only copy and that of the token copy.

Since we use token copies and before-values in transaction processing, simple two-phase commit in
which unanimous Precommit Messages from all the participants are enough, is not sufficient for the com-
mument of transactions. The coordinator of a transaction T decides to commit when the following condi-

tions are satisfied:
(C1) Al the available token sites of each data object in the write-set have precommitted T.
(C2) One copy of each data object in the read-set is available and has precommitted T.

(C3) There is no active transaction which has seen before-values of any data object in the write-set of

T.

The condition C3 is required to prevent nonserializable execution sequences to occur. When an

update transaction T, working on a data object X is committed, the coordinator sends Remote Update

9.

Messages (RUM) to read-only copy sites of X. On receiving a RUM, a new version of the data object, X;,

is created and tagged with the time-stamp of T;, and used to replace the old-value of X,

5.2. Partitioned dperation

In partitioned mode, each partition can process transactions only if it has token copies of all data
objects the transaction needs to access. At any given time, a partition’s database must reflect those
updates that it has seen, executed in time-stamp order. Since each partition cannot receive updates of

other partitions, the states of each replicated data copy may diverge during partitioned operation.

When two partitions are merged, each site determines the actions it must take to construct a globally
consistent state. Conceptually, these actions include undoing each transaction with higher time-stamp,
executing new updates, and then rerunning some of the transactions which were undone. Undoing and
redoing transactions are usually expensive, but this merge process can be made more efficient by exploit-
ing simple semantic properties of transactions. For example, two transactions with nonintersecting sets of
data objects to be accessed can always be executed in any order, i.e., cohimutative. Another example of
exploiting semantic information for the commutativity is the transactions to withdraw from and to deposit
to the same bank account. Sites can use this information to reduce the number of actions necessary for the
merge, without compromising correctness of the database. When one or more transactions must be
integrated with already committed transactions, an initial log is composed by placing them in their time-
stamp order, and then optimization rules are applied to remove some of the merging actions based on
commutativity and other semantic information, For this process, optimization methods for merge opera-

tion similar to one developed in [BLASS » SAR85] can be used.

5.3. Correctness

A synchronization scheme is said to be correct if the same state results as if the transactions were
processed in a serial fashion. In distributed systems with replicated data, one-serializability has been used

as the correctness criterion for transaction executions{fBHAS6]. The correctness proof of our synchroniza-

-10-

tion scheme is based on the facts that the set of transactions which read before-values of data objects of a
given transaction will become empty in a finite time, and that there is no cycle in the one-serialization

graph generated by the scheme. A detailed proof is given in [SONS6],

6. Site Recovery

Sites of a distributed information system may fail and recover from time to time during the life-time
of the system. In a distributed information system with replication, transactions should be allowed to exe-
cute even if some of the copies of data objects are not available due to failures, in order to increase the

‘avallablhty of the system. When a failed site recovers, the consistency of the entire system might be
threatened if proper recovery mechanisms are not exercised. The recovering site must perform local
recovery using the transaction log to bring the non-replicated data objects at the site to a most recent com-
mitted state. Global recovery needs 1o be executed to bring the replicated data objects up-to-date with
respect to the rest of the system. A task of integrating a site into the rest of the System when the site
recovers from a failure is called the site recovery. In order to bring the system into a consistent state, site
recovery must perform local as well as giobal recovery. In this section we discuss only the global

recovery of replicated data objects. A more detailed discussion on site recovery is given in [SONS86b].

There are two main approaches to this problem. The first is to perform all missed updates in a
correct order at the recovering site. Multiple message spoolers used in SDD-1 [HAMBSO0] is one practical
solution using this approach. All update messages addressed to an unavailable site are saved in muitiple
spoolers so that they can be delivered when the site recovers unless all the spoolers fail. The recovering
site executes all the missed updates before resuming normal operation. We do not discuss this approach
further in this paper because (1) it is difficult to determine a correct schedule for all the missed operations,

and (2) it is not suitable for Systems in which some sites may not be operational for a long period of time.,

The second approach is to use other replicated copies by reading the current values at operational
sites and refresh out-of-date values at the recovering site. An advantage of this approach is that the recov-

ering site can start normal operation on the data objects as soon as they are refreshed, without waiting for

.11-

the completion of the recovery procedure for other data objects, resulting in the increase of the availabil-
ity of the system. Algorithms using this approach have been studied in [BERS4, BHAS6]. In this section
We present two recovery procedures, that belong to the class of the second approach. We also discuss the

trade-offs between two recovery procedures.

6.1. Updating Directories

Our first recovery procedure is based on updating directories. Each data object is associated with a
directory that keeps the status of each copy, i.e., the availability of each copy of the data object. User tran-
sactions read the directories of the data objects in its read-set and write-set to determine the participants
of the transaction. Directories are replicated at each copy site and updated by the processing of a Update
Directory Message (UDM) which contains information of the status change of other sites. A UDM is used

to include a copy as well as to exclude a copy.

To exclude a copy, a UDM is broadcast by the network protocol which detects site failures. In this
case, a UDM contains only the identifier of the crashed site. On receiving a UDM of this type, the
Tecovery manager of each site checks directories of all the data objects at the site and removes the site

from the available copy lists.

From the viewpoint of data objects, there are two types of the system failures: a partial failure and a
total failure. They are distinguished by the availability of token copies of a logical data object. In a partial
failure, one or more token copies are available; in a total failﬁre. none of them is available. To recover
from a total failure, the site which failed last must be determined. This task can be achieved by executing

an algorithm similar to the algorithms proposed in [SKE85].

During a total failure of the data object, no transaction using the data object can be processed.
Therefore, if the token-copy removed was the only one available, then the transaction currently using that
data object must be aborted. If the read-only copy removed was used for the processing of a transaction,
the transaction must find another copy for read operation, and can‘be continued only when the substity-

tion is successfully completed.

-12.

To recover from a partial failure, the recovering token copy must be updated to the current value of
the logical data object before being included in the list of available token copies. A read-only copy can be
included in the available list simply by appending the identifier of the recovered site, without being

updated on recovery,

6.2. Updating Site Status

Our second recovery procedure is based on keeping track of the status of sites instead of maintain-
ing the status information for each data object. In this approach, each site maintains the site status table,
in which each site is represented in one of three distinguishable states: up, down, and recovering. A site is
down if no activity is going on at the site. A site is up if it executes user transactions normaily. A site is

recovering if it performs recovery actions but no user transactions.

When a site recovers from a failure, the first action it should take is to change its own state to recov-
ering state so that no user transactions can be accepted. It then performs local recovery for non-replicated
data objects; Finally, it marks all replicated copies at the site unreadable, If there is a method to find out
the replicated copies that have actually missed updates since the site failed, only those copies are marked
unreadable. The site then becomes up, and broadcasts its state change to other operational sites. During
normal operation after the site becomes up, unreadable mark of a replicated copy will be removed by a
write operation of a committed transaction, or by a read operation which is performed through the copy

actualization procedure.

6.3. Trade-offs in Recovery

There is a trade-off between the processing time during normal operation and the time required to
perform recovery procedures. In the second approéch, the participants of a transaction is not determined
simply by looking at the directories as in the first approach. Each transaction should read the local copy of
the site status table prior to any other operations. The transaction can use this table in deciding which

sites to include (up sites) and which not (down siies) in the participant list. This requires the transaction

.13.

processing time Ionger than that in the first approach during normai operation.

The second approach performs better than the first approach in the storage requirement and the cost
of recovery processing, According to the second appmach the storage necessary for maintaining the avai-
lability information of data objects can be reduced by the factor of the product of the number of replicated
data ob;ects and the number of copies used in the replication. Consider an extreme case in which almost
all data objects are replicated at each site, In the first approach, the number of updates to be made is pro-
portional to the number of replicated data objects when a site status changes, while only a single table
needs updating in the second approach. Although a straightforward method to reduce the number of
updates is possible in this case, the first approach remains more expensive than the second approach in

these regards.

7. Discussion

One of the important properties of our scheme is the flexibility. By manipulating the number of
tokens for each logical data object, a system administrator can alter the performance and the reliability

characteristics of the system.

There are two interesting extremes out of a spectrum of possible token numbers: a situation where
all copies are token copies, and a situation where there is only one token copy for each logical data object.
In the first case, there is no need to have tokens and any copy can be used for read-write purposes, The
copy actualization procedure can be omitted, resulting in a simpler scheme at the expense of increased

number of sites involved in updating a data object,

The second case is similar to primary copy algorithms. As pointed out in [GIF79], primary copy
algorithms are inflexible even though they are relatively simple, It is simple in the sense that 3 transaction
needs only one copy to update a data object, However, primary site algorithms are not reliable in that
transactions cannot be executed if the token site is crashed. Although we can make the system robust
through the regeneration of the token when the token is lost, the detection and the regeneration of a

unique token may bring the complexity to the system, spoiling the simplicity of the original scheme.

-14.

There are applications in which the database inconsistency during partition cannot be allowed, i.c.,
the database must remain consistent at all times. To adapt our scheme to the system for those applica-

tions, we need to use different commit rules as the following:
(CI") Majority of the token sites of each data object in the write-set have precommitted,

(C2’) One copy of each data object in the read-set is actualized from the majority of token copies and

is precommitted.

In order to make this modified scheme to work, tl_:e number of original token copies must be stored
with the directory of a data object. This modified scheme is able to handle the network partitioning, but
reduces the a\;ail‘ability of data objects of the original scheme because now the system cannot process
transactions if majority of the token sites are not available (original scheme is able to process a transac-

tion with one token copy available).

No matter how many token copies exist, it is always possible to enter a state in which no token copy
is available. We call a data object state unavailable if any update operation cannot be performed by any
transaction. Since unavailable states of data objects reduce the system availability (i.e., some transactions
must be rejected because they cannot update unavailable data objects), it is obviously desirable to reduce

the probability of unavailable states,

For a given number of copies, we can evaluate the probability that the data object is available, given
the failure probabilities of each component of the system., These probabilities represent the expected frac-
tion of time each component is not able to provide service correctly. Network topology plays a critical
role in determining the availability of data objects when partitioning can occur. For the same set of cont-
ponent availability, a fully connected topology provides higher probability of operative system than Eth-
ernet or ring topologies. However, full connectivity is expensive to support, and it may not be feasible to
have a full connectivity in a system with a large number of sites. A more detailed discussion on the avai-

lability of replicated data objects is given in [SONS§7].

-15-

8. Concluding Remarks

Replication is the key factor in making distributed Systems more reliable than centralized systems.
However, if replication is used without proper control mechanisms, consistency of the system might be
violated. In this regard, the copies of each logical data object must behave like a single copy from the

viewpoint of logical correctness.

We have presented a synchronization scheme for distributed information sfstems with replicated
data. Two recovery mechanisms associated with the scheme are presented, and the availability of repli-
cated data objects are discussed. The scheme reduces the time required to execute physical operﬁtions
when updates are to be made on replicated data objects, by relaxing the level of synchronization between
logical and physical write operations. At the same time, the consistency of the replicated data is not

violated, and the atomicity of transactions is maintained,

The scheme extends primary copy algorithms such that 2 transaction can be executed provided at
least one token copy of each logical data object in the write set is available. The mumber of tokens for
each data object can be used as a tuning parameter to adjust the robustness of the system. It also exploits

the old version of a data object in increasing the degree of concurrency.

Reliability does not come for free, There is a cost associated with the replication of data: storage
requirement and complicated control in synchronization. In some applications of distributed information
Systems, this cost of replication may not be justifiable. However, for certain applications in which high
reliability and availability of the information system is critical (e.g., ballistic missile defense or air traffic
control system), it is worthwhile 10 use replication techniques with an appropriate synchronization

scheme.

-16+

References

ALS76

BARSS

BERS4

BHAS6

BLASS

DAVSE4

EAGS3

ESW76

GIF79

HAMS0

HERS86

LAM78

MINS2

MOHS3

REES83

SARSS5

SKES81

SKES85

SON86

SONS86b

Alsberg, P.A., Day, J.D., A Principle for Resilient Sharing of Distributed Resources, Proc.
Second International Conf. on Software Engineering, Oct. 1976, pp 562-570. -

Barbara, D., and Garcia-Molina, H., Evaluating Vote Assignments with A Probabilistic
Metric, Digest of Papers FTCS-15: Fifteenth International Symposium on Fault-Tolerant
Computing, Ann Arbor, Michigan, June 1985, pp 72-77.

Bemstein, P., Goodman, N., An Algorithm for Concurrency Control and Recovery in Repli-
cated Distributed Databases, ACM Trans. on Database Systems, Dec. 1984, pp 596-615,

Bhargava, B., Ruan, Z,, Site Recovery in Replicated Distributed Database Systems, Proc. 6th
Intemnational Conference on Distributed Computing Systems, Cambridge, Massachusetts, May
1986, pp 621-627..

Blaustein, B. and Kaufman, C., Updating Replicated Data during Communications Failures,
Proc. of 11th VLDB, 1985, pp 1-10.

Davidson, S., Optimism and Consistency in Partitioned Database Systems, ACM Trans, on
Database Systems, Sept. 1984, pp 456-482.

Eager, D. and Sevcik, K., Achieving Robustness in Distributed Database Operations, ACM
Trans. on Database Systems, September 1983, pp 354-381.

Eswaran, K.P. et al, The Notion of Consistency and Predicate Locks in a Database System,
CACM 19, Nov. 1976, pp 624-633.

Gifford, D., Weighted Voting for Replicated Data, Operating Systems Review 13, December
1979, pp 150-162.

Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distributed
Databases, ACM Trans. on Database Systems, December 1980, pp 431-466.

Herlihy, M., A Quorum-Consensus Replication Method for Abstract Data Types, ACM Trans.
on Computer Systems, February 1986, pp 32-53. '

Lamport, L., Time, Clocks and Ordering of Events in Distributed Systems, CACM, July 1978,
pp 558-565.

Minoura, T. and Wiederhold, G., Resilient Extended True-Copy Token Scheme for a Distri-
buted Database System, IEEE Trans. on Software Engineering, May 1982, pp 173-189.

Mohan, C., Strong, R., and Finkelstein, S., Method for Distributed Transaction Commit and
Recovery Using Byzantine Agreement Within Clusters of Processors, Proc. 2nd ACM Sympo-
sium on Principles of Distributed Computing, August 1983,

Reed, D., Implementing Atomic Actions on Decentralized Data, ACM Trans. on Computer
Systems, Feb. 1983, pp 3-23.

Sarin, S., Blaustein, B., Kaufman, C,, System Architecture for Partition-Tolerant Distributed
Databases, IEEE Trans. on Software Engineering, Dec. 1985, pp 1158-1163,

Skeen, D., Nonblocking Commit Protocols, Proc. ACM SIGMOD International Conference on
Management of Data, 1981, pp 133-142.

Skeen, D., Determining The Last Process 0 Fail, ACM Trans. on Computer Systems, Feb.
1985, pp 15-30.

Son, S. H., On Reliability Mechanisms in Distributed Database Systems, Technical Report
-1614, Dept. of Computer Science, University of Maryland, January 1986

Son, S. H. and Agrawala, A. K., An Algorithm for Database Reconstruction in Distributed
Environments, 6th International Conference on Distributed Computing Systems, Cambridge,

A7

SONS87
STES1
STO79

THO79

Massachusetts, May 1986, pp 532-539.

Son, 8. H., Synchronization of Replicated Data in Distributed Systems, Information Systems,
Vol. 12, No. 2, 1987,

Stearns R, E., Rosenkrantz, D. J., Distributed Database Concurrency Controls Using Before-
Values, ACM SIGMOD Conf. Proc. 1981, pp 74-83. ‘
Stonebraker, M., Concurrency Control and Consistency of Multiple Copies in Distributed
INGRES, IEEE Trans. on Software Engineering, May 1979, pp 188-194,

Thomas, R. H., A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases, ACM Trans. on Database Systems, June 1979, pp 180- 209.

.18-

