
BLP: Applying ILP Techniques to Bytecode Execution
Univ. of Virginia Dept. of Computer Science Technical Report

CS-2000-05
February 2000

Kevin Scott, Kevin Skadron

Dept. of Computer Science
University of Virginia

Charlottesville, VA 22911

Abstract. The popularity of Java has resulted in a flurry of engineering and research activity to improve per-
formance of Java Virtual Machine (JVM) implementations. This paper introduces the concept of bytecode-level
parallelism (BLP)—data- and control- independent bytecodes that can be executed concurrently—as a vehicle for
achieving substantial performance improvements in implementations of JVMs, and describes a JVM architecture—
JVM-BLP—that uses threads to exploit BLP. Measurements for several large Java programs show levels of BLP can
be as high as 14.564 independent instructions, with an average of 6.768.

1 Introduction

Bytecode representations are portable formats that allow programs–whether small “applets” or large desktop applications–
to run on different platforms. No source code modification or recompilation is necessary. Many web-based applications
are already distributed this way, and bytecode representations could soon become a standard medium for distributing
most applications. Unfortunately, current bytecode execution environments often exhibit poor performance, even on
small applets. This poor performance is perhaps the greatest technical impediment to widespread use of bytecode
representations.

The problem is that most bytecode execution environments, like implementations of the Java Virtual Machine
(JVM), do not exploit parallelism in bytecode programs. Current approaches instead merely focus on speeding up the
interpreted, but still serial, execution of bytecodes, or on improving the efficiency of just-in-time compilers (JITs).
Because current interpreters still serialize bytecode execution, events like memory-reference delays entirely stall the
interpreter, and bytecodes that are independent are unable to execute in parallel. JITs also suffer drawbacks. They usu-
ally only perform limited optimizations because time for more sophisticated analysis is not available. Furthermore, JIT
systems often optimize only selected sections of code, leaving many segments to continue executing in the interpreter.
JITs also stall on memory reference delays.

Regardless of how often the JIT is engaged, programmers may wish to disable it while developing or debugging
code, just as C programmers typically turn off compiler optimization under these circumstances. Unfortunately, this
removes all optimization, and performance reverts to that of a basic, interpreted JVM. Furthermore, some users may
never enable the JIT under any circumstances, just as some C programmers never enable optimization. In such cases,
the presence of the JIT offers no benefit.

A New Approach to Java Execution. An interpreter is really an instruction-execution engine implemented in software.
Computer architects have developed a wealth of techniques to exploit parallelism among machine-level instructions—
instruction-level parallelism or ILP—in hardware instruction-execution engines, namely CPUs. This paper describes
a JVM architecture—JVM-BLP—that applies ILP techniques to bytecode execution to exploit bytecode-level paral-
lelism, or BLP.

Our results show that bytecode programs indeed exhibit BLP, and that for the SPECjvm98 programs, the aver-
age degree of BLP can be as high as 11.883 bytecodes and averages 5.794. The potential for speedup is therefore
staggering: if these independent bytecodes can indeed be executed in parallel, a JVM system that exploits BLP offers
speedups as large as the degree of BLP. This is an upper bound: the goal of this research is to extract as much of this
speedup as possible.

The JVM architecture we propose here can be implemented in a hardware-independent fashion, but best perfor-
mance will come on platforms that can exploit thread-level parallelism and particularly on platforms that support
simultaneous multithreading (SMT) [16]. This is because SMT can execute multiple threads simultaneously, each and
every processor clock cycle.

Related Work. A great deal of work has explored ways to optimize the performance of bytecode interpreters [3, 4,
11, 12, 14] and to augment them with JITs [1, 5, 10, 18]. However, we have been unable to find any work describing
the idea of bytecode-level parallelism or an architecture to execute multiple bytecodes concurrently. Instead, in order
to motivate JVM-BLP, the next section describes the current state of the art in Java Virtual Machines, just-in-time
compilers, and dynamic recompilation systems.

Copyright c
�

1999, Kevin Scott and Kevin Skadron, all rights reserved.



The next section describes some relevant aspects of JVM implementations. Section 3 describes a new JVM ar-
chitecture that exploits BLP. Section 4 describes the experimental framework that we used to measure BLP and the
benchmark programs that we selected. Section 5 presents our results and Section 6 presents our conclusions and
suggestions for future work.

2 Java Virtual Machines

The Java Virtual Machine (JVM) is a stack-oriented abstract machine that executes Java bytecode programs [15].
Using bytecodes to encode instructions and an intermediate operand stack during execution allows for small object
(class) files. The JVM and class file format together provide a platform-independent execution environment for mobile
code.

In addition to target platform independence, the JVM is source-language independent. Even though the JVM was
designed to run compiled Java programs and includes some features that facilitate the implementation of Java-like1

languages, nothing prevents it from running bytecodes generated by compiling other languages. The JVM’s well-
defined semantics and interfaces, platform independence and ubiquity have led many language implementors to target
the JVM [3, 4, 11, 12, 14].

2.1 JVM Interpreted Performance

From the start, Java has suffered from poor performance compared to traditional languages like C. Not all the perfor-
mance issues are related to the JVM itself. For instance, a recent study has shown that excessive synchronization in
the Java core libraries is one major component of poor performance [9]. Nevertheless, the JVM typically remains the
biggest performance bottleneck. Early JVMs were implemented as pure bytecode interpreters and used old mark-and-
sweep garbage collection technology.

A pure bytecode interpreter can be implemented entirely in a high level language. Bytecodes are stored in an
array and indexed by a program counter. Each bytecode has an arm in a switch statement. Each arm contains the high
level language code that implements the bytecode’s semantics. A typical bytecode interpreter’s main loop might look
something like this.

for(;;) {
switch(code[pc]) {

case iadd:
s1 = pop(); s2 = pop(); push(s1+s2);
break;

case iconst_0:
push(0); break;

case iconst_1:
push(1); break;

...
}
pc++;

}

Implementing the JVM as a pure bytecode interpreter has two advantages. First, the implementation is quite
straightforward. This technique has been employed for decades in the implementation of programming languages
and is well understood. Second, since the whole interpreter can be written in a high level language, the JVM becomes
as portable as the implementation language.

The drawback of pure bytecode interpreters is their poor performance relative to native machine code. This is
particularly pronounced for bytecode languages that have many primitive operations like the JVM. With primitive
operations, the overhead of looking up the next bytecode and dispatching to the arm that implements it is large with
respect to the operation’s actual computation.

There are two solutions to this problem. The first and most popular is to implement the JVM as a threaded bytecode
interpreter [8]. Threaded bytecode interpreters eliminate the for loop and switch statement of the pure bytecode inter-
preter. The code array becomes an array of pointers to labels marking the code that implements individual bytecodes.
At the end of each bytecode an indirect jump is made to the next bytecode’s label. Here’s how the threaded interpreter
might look.

1 By Java-like, we mean strongly typed, object oriented languages with exceptions and automatic storage management.

2



iadd:
s1 = pop(); s2 = pop(); push(s1+s2);
goto *pc++;

iconst_0:
push(0);
goto *pc++;

iconst_1:
push(1);
goto *pc++;

...

Threaded bytecode interpreters do reduce the amount of overhead per computation. Although ANSI C does not
allow the programmer to take the address of a label or to goto a location specified in a program variable, gcc has both
of these features, and portability can still be preserved across any platform for which gcc is available.

Another technique that can reduce the amount of overhead per computation is the superoperator [19]. Superop-
erators merge together primitive operators that occur together frequently in real programs, implementing them as a
single block of code. Superoperators can be used with or without threaded bytecode. The obvious disadvantage of su-
peroperators is the increase in the number of operators that must be implemented in the virtual machine. Also, unless
superoperator inference is done dynamically, the virtual machine instruction set would have to be changed. We are
unaware of any JVM employing this technique.

Perhaps the most serious disadvantage of bytecode interpreters, pure or threaded, is that they do not make effective
use of the underlying machine’s hardware registers. The lack of global register allocation can be the largest single
factor contributing to poor JVM performance [1, 10].

2.2 JVM JIT Performance

The research community and Java vendors have attacked the shortcomings of bytecode interpreters through the de-
velopment of JIT compilers. In a JIT compiler, compilation occurs when a method is first invoked; its bytecodes are
translated to machine code and then cached for later use. The JIT compiler is in complete control of how to use the
processor’s resources to effectively implement the semantics of the method’s bytecodes. It is important to note that
in many JVMs, the JIT only operates on portions of code that it deems worth optimizing, and remaining segments of
code continue to be interpreted. The JIT may also be turned off by the user for easier debugging.

For some Java methods, JIT compilation is a huge win over bytecode interpretation. Yet in some instances it yields
no benefits, and in other instances it actually hurts program performance. The bulk of current JIT compiler research
focuses on how to decide when to dynamically compile a method and how much optimization to apply when compiling
bytecodes to native machine code [1, 5, 10, 18].

JIT compilers, by necessity, have machine-dependent components. Minimally, a JIT compiler must have a machine
dependent code generator that maps bytecodes onto native machine code. Although code generation can be factored
and driven by formal descriptions of the bytecode mapping, there is still a non-trivial amount of software that must be
rewritten for every platform to which the JVM is ported. In the case of aggressive optimizers, there may be additional
non-portable code that performs machine specific optimizations.

An alternative compiler-based approach is to implement a dynamic compiler in the JVM, as in Sun’s HotSpot
system [21] or TransMeta’s Code Morphing system [13]. Like a JIT, HotSpot performs compilation on the fly. The
important difference is that HotSpot is a thread running in the background of the JVM, identifying code segments
that are candidates for optimization, and optimizing these “hot spots”. Although HotSpot may be a superior approach
to on-the-fly compilation and optimization, it shares the same drawbacks as JITs, namely large volumes of machine-
dependent code.

3 Proposed JVM Architecture

A faster interpreted-execution environment is desirable, because current bytecode interpreters are simple and portable,
but execute bytecodes serially and are therefore slow. JIT compilers (JITs) are faster, but complex and not portable.
Furthermore, JITs must sometimes leave sections of code unoptimized, and these code segments continue to be in-
terpreted. In addition to these considerations, speeding up interpreted execution is attractive because interpreters have
other uses, like verifying operational semantics and code safety, for which JIT compilers are not an option but for
which the interpreter’s performance remains important.

3



As mentioned in the introduction, an interpreter is really an instruction-execution engine implemented in software.
Computer architects have already developed a wealth of techniques to exploit parallelism among machine-level in-
structions (instruction-level parallelism or ILP). This section describes an architecture for a JVM interpreter that that
breaks the serial-execution bottleneck by exploiting bytecode-level parallelism, or BLP.

Figure 1 shows a diagram of the proposed JVM architecture. We call this system the JVM-BLP: a JVM that exploits
BLP. Our first implementation will be a JVM, but this same architecture can easily be generalized to most interpreted
languages.

Stack Renaming

Branch Prediction

Execute Execute Execute

Bytecodes

Unit
Control

Fig. 1. JVM-BLP Organization

The principal ideas are remarkably similar to those pervading computer architecture research. The diagram shows
a control unit that reads bytecodes from the method currently executing.

When processing a new bytecode, the control unit maps stack locations to virtual registers using the stack renam-
ing unit. For example a JVM ������� operation might get translated to ���	��
������������������������� . This means that ������� now
gets its operands from virtual registers ����� and ����� and produces a result in ����� . This step is crucial since there is very
little parallelism if bytecodes are forced to communicate operands to one another strictly through the operand stack.

The stack renaming unit keeps track of the next available virtual destination register. No virtual destination
register is written twice. This effectively eliminates register WAW and WAR hazards. The stack renaming unit also
maintains a stack of virtual registers that are the sources of bytecodes not yet processed. In the ������� example, the
renaming stack would be popped twice to get the virtual source registers, ����� and ����� . The destination register, ����� ,
would be pushed onto the renaming stack.

If the bytecode being read by the control unit may change the flow of control of the program, then the branch
prediction unit is consulted. If the branch predictor indicates a taken branch, the control unit would begin executing
along the new flow of control. We expect that the branch prediction unit would be similar to those employed in modern
CPUs. Fortunately, this branch predictor is more constrained than those implemented in hardware for CPUs. This
means that the bytecode branch predictor can potentially be much more aggressive, and could even be a background
thread [6] that continuously tracks the bytecode program’s control flow. As in ILP processors, branch mispredictions
require squashing mis-speculated work. The control unit tracks the program order of bytecodes, and commits or
squashes their results as appropriate once the outcome of preceding branches has been verified. In-order commit also
maintains precise exceptions.

The control unit next schedules independent bytecodes for execution by one of the execution units. Figure 1 shows
three execution units, but there may be more or less. Bytecodes are placed into the execution queues so that load is
distributed evenly among execution units. The control unit will probably have to perform all address calculations itself
so that it can detect and properly handle dependences carried through memory.

The control unit and execution units are implemented as threads. In order for this JVM architecture to be effective,
the implementation hardware must have support for thread-level parallelism. A likely candidate is a simultaneous-

4



multithreading (SMT) architecture. Unlike common superscalar processors which are restricted to issuing the instruc-
tions of a single thread, an SMT processor may choose from the instructions of several threads to fill issue slots. When
instructions of these threads are independent of one another, i.e., they exhibit TLP, research has shown SMT to be an
effective CPU organization [16].

No SMT processors are commercially available at the time, so experiments on this proposed architecture will
have to be carried out using a simulator. Fortunately, Compaq has announced that the Alpha 21464, to be introduced in
2003, will be an SMT system [7]. We expect that the JVM-BLP system would also perform well on other multithreaded
systems that have the ability to switch among threads with very low overhead.

This SMT-BLP approach has numerous advantages. The proposed JVM architecture can be implemented purely in
a high level language. Even if this approach is no less complex than JVM + JIT, it affords speedups when users disable
the JIT and for sections of code that the JIT does not or cannot compile and optimize. It is also code that is platform
independent. Porting to a new platform involves only recompilation and possibly a port to a new thread interface. No
changes to the JVM’s internals are necessary, and from a portability standpoint this is an important advantage.

More importantly, the proposed architecture exploits BLP, especially when implemented on an SMT processor.
This offers the potential for substantial speedup over conventional, serialized interpreted execution and even over
execution using a JIT. The upper bound on speedup is the lesser of the BLP and the thread capacity of the host
processor. Observed levels of BLP are sufficiently high, and in the short term, the the upper bound on speedup will
most likely be the thread capacity of the host processor and not BLP. This still offers the potential for profound
speedups, speedups that will grow as processor thread capacities expand. The goal of this research is to extract as
much of this speedup as possible.

Several requirements must be met in order for the JVM-BLP to realize these speedups. The control unit must
proceed fast enough so that it is not out paced by the execution units, and the bytecodes being processed must exhibit
substantial BLP. Furthermore, the overhead of stack renaming, of identifying independent bytecodes, of assigning
bytecodes to threads, and of maintaining the precise exception model must be kept low enough to avoid overwhelming
the benefits of parallelized execution. These are areas which will require significant study, and which constitute a
substantial portion of our proposed work.

Exposing BLP opens new opportunities for research in compilers and computer architecture. Among the questions
raised are:

1. How can the overhead of finding independent bytecodes and assigning them to threads be minimized?
2. How can a JVM-BLP system look past control-flow in order to expose as much BLP as possible, while minimizing

the overhead of this branch prediction?
3. How can the JVM maximize BLP past memory references? This involves both looking past memory disambigua-

tion and maximizing the overall JVM-BLP system’s memory-hierarchy performance.
4. How does the ability to exploit BLP affect the role of a JIT in a JVM system? Efficient interpreted execution may

allow the JIT to focus on doing a better job of optimizing a smaller number of more critical sections of code.
5. What transformations can a Java compiler perform to expose more BLP? For example, if control flow restrictions

hamper BLP in other benchmarks, it may be necessary to do loop unrolling or software pipelining on bytecodes
to expose parallelism beyond normal control flow boundaries.

6. How can hardware more directly support the ability to exploit BLP?

These questions are beyond the scope of this paper. Our goal here is to describe a general architecture for exploiting
BLP, and quantify the intrinsic levels of BLP that Java programs exhibit. The next step—future work—will be to
implement an SMT-based JVM that successfully exploits BLP to improve the performance of bytecode programs.

4 Experimental Framework

The previous section described a multi-threaded virtual-machine architecture that exploits BLP to speed up execution
of bytecode programs. In order to determine the potential speedup of such an architecture, this paper measures the
BLP exhibited by the SPECjvm98 programs [22] and other popular benchmark programs.

4.1 Bytecode-Program Analysis

Our measurements have been obtained by modifying the x86-Linux port of Kaffe. Kaffe is an open source JVM with a
modular JIT compiler. Kaffe consists of about 110,000 lines of C code, and has been ported to a dozen or so platforms.

With the JIT disabled, Kaffe implements the JVM using a pure bytecode interpreter. We modified this bytecode
interpreter to collect traces of bytecodes as executed by the JVM. We translate these bytecodes to an intermediate
form similar to RTLs [2] that we call JRTLs. In JRTLs, stack-relative operands are mapped onto virtual registers, and
memory addresses are fully resolved. The mapping from stack locations to virtual registers is accomplished in much
the same fashion as described in Section 3. This register-renaming scheme is typical of code generation for stack-based
intermediate languages.

5



The user is able to choose a method or set of methods for which trace statistics should be gathered. When one of
these methods is encountered, trace data is captured until the method completes. Trace data is captured for all methods
called by one of the specified methods, including recursive calls to itself.

As bytecodes are captured, the JRTLs to which they are mapped are placed into a 1 K-entry buffer. When the buffer
is filled, or the capture conditions are no longer satisfied, the JRTLs stored in the buffer are analyzed for BLP.

Our system collects statistics on a per thread basis. Each thread of execution has its own BLP-statistics context
that includes cumulative BLP, number of bytecodes issued, stack renaming information, and a JRTL buffer. When a
thread terminates, the information stored in this context is written to a disk file. Note that only one of the benchmarks
that we studied in SPECjvm98, raytrace, was explicitly multithreaded.

Calculating BLP is done by simulating instruction issue. Starting from the oldest instruction in the buffer, each
instruction is considered for issue if it is not RAW dependent on prior instructions. Once the end of the buffer is
reached, all instructions marked ready have been determined to be independent of one another. These instructions are
issued and removed from the buffer. This process is repeated until the buffer is empty. BLP is calculated as the average
number of bytecodes issued per pass through the buffer (per “cycle”). Our metric for BLP is BPC: bytecodes issued
per cycle.

4.2 Benchmarks

Choosing a set of benchmark programs is always a difficult task. While there are a great many GUI java applications
and applets, we chose not include any in our study of BLP. Our intuition was that the performance of these programs
would be most affected by user reaction time, and not the JVM implementation. Instead, we chose to concentrate on
non-GUI Java applications such as compilers, parser generators, renderers and audio format decoding.

Our benchmark set consists of 8 of the 9 SPECjvm98 benchmark applications and the Java port of Linpack. The
SPECjvm98 programs that we studied were:

– check - A simple JVM validation tool
– compress - A java port of the ubiquitous Unix compress utility.
– jess - An expert system shell.
– raytrace - An off-line raytracer.
– db - A Java database manager.
– javac - The Java language compiler.
– mpegaudio - A Java MP3 decoder.
– jack - A parser generator.

Gathering BLP data proved to be quite expensive in terms of CPU time required. As a result we elected to terminate
simulations before program completion and report BLP among the first several hundred million bytecodes executed.
One of the SPECjvm98 benchmarks, mtrt, was omitted altogether due to time constraints.

5 Results

Our measure of BLP assumes that no branches are predicted correctly. This only measures BLP within individual
basic blocks. While it provides an interesting view of the Java programs’ characteristics, it is a pessimistic indicator
of how much BLP can actually be extracted from Java programs. It would be quite easy for a JVM-BLP system to
implement accurate branch prediction. Today’s microprocessors implement hardware branch predictors that achieve
prediction accuracies of 90–97% [17] for the SPECint95 benchmarks [20], and these hardware-based techniques use
simple table-driven approaches that can be easily implemented in a software JVM. The JVM-BLP might even augment
these techniques with algorithms that take advantage of the flexibility of a software execution environment.

The numbers we report are therefore low compared to the levels of BLP that can be realized with a JVM-BLP
system that employs software branch prediction.

Table 1 presents our results. Both check and linpack were run to completion. From these numbers, we conclude
that there is a significant amount of BLP present even in non-numeric control bound codes such as compilers (javac)
and parser generators (jack). Even higher levels of BLP are found in loop bound codes like compress, mpegaudio, and
linpack.

6 Conclusions and Future Work

In this paper we have introduced the notion of bytecode-level parallelism (BLP)—independent Java bytecodes that
can be executed in parallel. Given sufficient amounts of BLP in Java programs, an appropriately implemented Java

6



Benchmark Bytecodes Simulated BLP
check 621,361 4.171
compress 201,288,705 8.599
jess 279,102,465 3.765
raytrace 222,370,817 3.497
db 464,251,905 5.518
javac 150,559,745 5.015
mpegaudio 114,443,265 11.883
jack 209,347,585 3.901
linpack 9,421,825 14.564

Table 1. Results. Bytecodes simulated denotes the number of bytecodes run before the simulation was terminated.
BLP numbers are based entirely on these bytecodes.

Virtual Machine (JVM) may find profit in parallel bytecode execution. We have proposed one such JVM and under-
taken a study of BLP to justify further investigation. Our experiments show average BLP levels of 6.768 among the
benchmarks chosen, and that BLP levels are as high as 14.564 for one of them.

The observation that Java programs exhibit substantial levels of BLP suggests that a parallelized Java execution
environment can realize substantial speedups. Microprocessor designers already employ a wealth of effective tech-
niques to expose parallelism among machine-level instructions and to exploit this to speed up program execution.
This proposal describes a JVM architecture—JVM-BLP—that takes advantage of the simultaneous multithreading to
appear in the Alpha 21464 to employ ILP-style techniques in the JVM.

Speeding up a JVM interpreter allows users to realize substantially better Java performance, without the need for
a just-in-time compiler (JIT), for code that the JIT cannot optimize, and under circumstances in which the JIT must
be disabled. The interaction between the BLP engine and the JIT is an interesting area for future research, and in fact
this new execution paradigm raises a wealth of other interesting avenues for research, some of which we describe in
Section 3.

References

1. Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and James M. Stichnoth. Fast and effective
code generation in a just-in-time Java compiler. ACM SIGPLAN Notices, 33(5):280–290, May 1998.

2. Manuel E. Benitez and Jack W. Davidson. The advantages of machine-dependent global optimization. In Jürg Gutknecht,
editor, Programming Languages and System Architectures, volume 782 of Lecture Notes in Computer Science, pages 105–124.
Springer Verlag, March 1994.

3. Nick Benton and Andrew Kennedy. Interlanguage working without tears: Blending SML with Java. ACM SIGPLAN Notices,
34(9):126–137, September 1999. Proceedings of the ACM SIGPLAN International Conference on Functional Programming
(ICFP ’99).

4. Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java bytecodes. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN Notices, pages
129–140. ACM, June 1999.

5. Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V.C.
Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeño dynamic optimizing compiler for Java. In Proceedings of the
ACM 1999 conference on Java Grande, pages 129–141, New York, 1999. ACM Press.

6. R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simultaneous subordinate microthreading (SSMT). In
Proc. of the 26th International Symposium on Computer Architecture, pages 186–95, May 1999.

7. K. Diefendorff. Compaq chooses smt for alpha. Microprocessor Report, pages 1, 6–11, Dec. 6 1999.
8. M. Anton Ertl. Stack caching for interpreters. ACM SIGPLAN Notices, 30(6):315–327, June 1995.
9. Allan Heydon and Marc Najork. Performance limitations of the Java core libraries. In Proceedings of the ACM 1999 conference

on Java Grande, pages 35–41, New York, 1999. ACM Press.
10. C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu. Java bytecode to native code translation: the Caffeine prototype and

preliminary results. In IEEE, editor, Proceedings of the 29th annual IEEE/ACM International Symposium on Microarchitecture,
December 2–4, 1996, Paris, France, pages ??–??, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE
Computer Society Press.

11. JPython. see http://www.jpython.org.
12. Thomas Kistler and Hannes Marais. WebL — a programming language for the Web. Computer Networks and ISDN Systems,

30(1–7):259–270, April 1998.

7



13. Alexander Klaiber. The technology behind crusoe processors. Whitepaper; see
http://www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf, Jan. 2000.

14. Ioi K. Lam and Brian C. Smith. Jacl: A Tcl implementation in Java. In Proceedings of the 5th Annual Tcl/Tk Workshop, pages
31–36, July 14–17 1997.

15. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series. Addison Wesley Longman, Inc.,
second edition, April 1999.

16. Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, and Dean M. Tullsen. Converting thread-
level parallelism to instruction-level parallelism via simultaneous multithreading. ACM Transactions on Computer Systems,
15(3):322–354, August 1997.

17. S. McFarling. Combining branch predictors. Tech. Note TN-36, DEC WRL, June 1993.
18. Tia Newhall and Barton P. Miller. Performance measurement of dynamically compiled java executions. In Proceedings of the

ACM 1999 conference on Java Grande, pages 42–50, New York, 1999. ACM Press.
19. Todd A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In ACM, editor, Conference record of POPL ’95,

22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers presented at the Symposium: San
Francisco, California, January 22–25, 1995, pages 322–332, New York, NY, USA, 1995. ACM Press.

20. Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks. WWW site: http://www.specbench.org/osg/cpu95,
December 1999.

21. Sun Microsystems, Inc. The Java Hotspot performance engine architecture. Whitepaper; see
http://java.sun.com/products/hotspot/whitepaper.html, Apr. 1999.

22. The Standard Performance Evaluation Corporation. SPEC JVM98 benchmarks. see http://www.specbench.org/osg/jvm98,
December 1999.

8


