
1

Draft - submitted for publication

A Two-Stage Simulated Annealing Methodology

James M. Varanelli and James P. Cohoon

Department of Computer Science

University of Virginia

Charlottesville, VA 22903

USA

Corresponding Author:

James P. Cohoon

Department of Computer Science

Thornton Hall

University of Virginia

Charlottesville, VA 22903-2442

E-mail: cohoon@cs.virginia.edu

Phone: (804) 982-2210

Fax: (804) 982-2214

Abstract

We propose a two-stage simulated annealing method. While most previous work has focused on

ad hoc experimentally-derived constant starting temperatures for the low temperature annealing

phase, this paper instead presents a more formal method for generalized starting temperature deter-

mination in two-stage simulated annealing systems. We have tested our method on three NP-hard

optimization problems using both classic and logarithmic cooling schedules. The experimental

results have been consistently very good—on average the running time is halved when using a log-

arithmic cooling schedule and reduced by a third in the case of the classic schedule—with no loss

in solution quality. We also present results for an alternative stop criterion used with the classic

schedule that further reduces the two-stage running time by an additional five to ten percent in our

problem suite.

Keywords: combinatorial optimization, operations research, simulated annealing, two-stage sim-

ulated annealing, VLSI design automation.

2

Draft - submitted for publication

1 INTRODUCTION

The simulated annealing (SA) algorithm has proven to be an effective optimization tool in such

diverse fields as VLSI computer-aided design, image processing, and operations research [1, 4, 9,

11, 14, 19, 21, 25, 30, 32]. This stems from both its general applicability to a wide range of NP-hard

combinatorial optimization problems and that it consistently produces high quality approximate

solutions for these problems. SA has only one significant disadvantage—its typically very long

computation time.

There has been considerable effort aimed at speeding up SA. Most of this work has concen-

trated on the development of faster cooling schedules [2, 8, 13, 19, 20, 25]. Another approach is

two-stage simulated annealing (TSSA) [9, 10, 14, 28, 29]. For TSSA, a faster heuristic algorithm

is used to replace the SA actions occurring at the highest temperatures in the cooling schedule. The

heuristic is then followed by a conventional SA approach initiated at a lower temperature in an

attempt to improve the heuristic solution.

The principal consideration in the design of a TSSA system is the determination of the starting

temperature for the SA phase. If the chosen temperature is too low, TSSA will become prema-

turely trapped in some local optimum resulting in lower solution quality than standard SA. If the

chosen temperature is too high, some of the structure of the solution generated by the first-stage

heuristic may be wasted because of too much algorithmic hill-climbing. Earlier TSSA approaches

[9, 10, 14, 28] are based on finding a reasonable constant starting temperature for the SA phase.

This requires a significant amount of experimentation with both the chosen heuristic and the spe-

cific SA implementation being used. The primary advantage of a constant starting temperature is

that once the temperature has been determined and incorporated into the TSSA system, computa-

tional cost is very low. The obvious disadvantage is that if any of the heuristic, the SA implemen-

tation, or the problem itself changes, a new starting temperature must be found.

Rose, Klebsch, and Wolf [29] present a more generalized method for determining the starting

temperature. Their method is based on Markov equilibrium dynamics. An approximate probability

distribution for the change in cost function is found by generating a large number of random moves

from the first-stage heuristic solution. This approximation is then used in a binary-search procedure

to locate the corresponding SA temperature. At each trial temperature, the approximate distribution

is used to calculate the total expected cost of all uphill moves and the total expected cost of all

downhill moves. When the magnitudes of the two values are found to be equal, the corresponding

temperature is returned as the starting temperature for the SA phase. The method is shown to pro-

3

Draft - submitted for publication

duce good results for the standard cell placement problem. However, there is no attempt to apply

the method to other problems. Additionally, there are both problem- and formulation-dependent

constraints on the choice of first-stage heuristic and a high computational cost that have discour-

aged its widespread adoption.

Analysis of these previous methods for starting temperature determination does offer insight

into desirable properties for a new method. The method should be generally applicable with respect

to problems and SA implementations; it should be relatively insensitive to the given starting solu-

tion so as to avoid constraints on the choice of the first-stage heuristic; and it should be as compu-

tationally inexpensive as possible. This paper presents a method for starting temperature

determination in TSSA systems that meets these goals. Background information is given in Section

2. Section 3 presents the derivation of the method. Section 4 gives our experimental results, and

Section 5 describes our results for an alternative stop criterion used with the classic schedule. The

new stop criterion was formulated due to the observation that a significant amount of computation

was being performed after the classic schedule had already converged to its final solution.

2 BACKGROUND INFORMATION

In this section we first describe the SA algorithm. We then present behavior characteristics of the

SA algorithm that will be used in the derivation of our method of starting temperature determina-

tion for TSSA systems given in Section 3.

 2.1 The SA Algorithm

The SA algorithm was first introduced by Kirkpatrick, Gelatt, and Vecchi [17] and independently

by Cerny [4] as a problem-independent combinatorial optimization technique. It is a generalization

of the Metropolis Monte Carlo simulation [23]. It combines the advantages of iterative improve-

ment techniques with randomizing techniques to yield a powerful optimization engine.

The SA process typically starts with a random solution to the optimization problem in question

and a highinitial temperature. Through the use of somegeneration mechanism, a copy of the cur-

rent solution is randomly perturbed to form a new solution. The new solution is subjected to the

Metropolis acceptance criterion [17, 23]. The Metropolis criterion always accepts the perturbed

solution as the next current solution if its cost—as defined by the given problem’scost function—is

lower than that of the current solution (assuming minimization). It also allows for the probabilistic

acceptance of higher-cost perturbed solutions as the next solution, enabling the SA algorithm to

4

Draft - submitted for publication

climb out of local optima. This probabilistic acceptance is a function of the current temperature and

the difference in cost of the current and perturbed solutions. The sequence of solutions generated

at a fixed temperature can be mathematically modelled as a Markov chain, due to the fact that the

outcome of any given Metropolis trial depends only upon the outcome of the previous Metropolis

trial [27]. After a large number of Metropolis trials, the distribution of the solutions will approach

the stationary distribution for the current Markov chain, known as the Boltzmann distribution. At

this point, called quasi-equilibrium, the temperature is lowered according to some decrement rule.

This process continues until some stop criterion is met, at which point the algorithm is terminated.

Pseudo-code for the SA algorithm using the Metropolis acceptance criterion is given in Figure 1.

More in-depth analyses of the SA algorithm are available in the literature [1, 11, 14, 19, 25, 27, 31,

32].

There are five items that must be specified for any SA implementation—the initial temperature

value, the acceptance function, the length of the Markov chain at each temperature, the temperature

decrement rule, and the stopping conditions. Collectively these implementation parameters are

known as the cooling schedule [16]. There are many proposed cooling schedules present in the lit-

erature [2, 4, 8, 13, 17, 19, 20, 25, 30]. For the purpose of this paper, we concern ourselves with

traditional cooling schedules that conform to the Markov chain model described above. The reason

Simulated_Annealing()
{

initialize(i, t);
ibest = i;
do {

do {
j = perturb(i);
∆cij = c(j) - c(i);
if ((∆cij ≤ 0) || (random() < exp(-∆cij/t))) {

i = newstate(j);
if (c(i) < c(ibest)) ibest = i;

}
} while (equilibrium has not been reached);
decrement(t);

} while (stop criterion has not been met);
return(ibest);

}

Figure 1: Pseudo-code for the SA algorithm using the Metropolis acceptance criterion.

5

Draft - submitted for publication

for this lies in the fact that only the Markov-based SA model has been shown to converge asymp-

totically to the global optimum [27], implying good heuristic approximations for most NP-hard

problems when given a reasonable SA implementation. In addition, the model is relatively prob-

lem-independent. However, the Markov-based SA paradigm is computationally expensive.

Traditional SA cooling schedules tend to fall into one of two classes depending upon the

employed decrement rule—exponential or logarithmic. Exponential schedules have decrement

rules of the form

(1)

where 0 < α < 1, with α usually in the 0.90-0.99 range. Logarithmic schedules have decrement

rules of the form

(2)

where Γk-1 is some function of one or more of the aggregate statistics from the k-1th Markov chain.

The seminal papers [4, 17] introduced exponential schedules, so we tend to refer to this type of

schedule as the classic schedule. Logarithmic schedules tend to produce better solutions than do

classic schedules at the expense of increased computation time. The majority of SA applications

present in the literature use some variation of the classic schedule.

For the purpose of testing our proposed TSSA method, we chose to implement one classic and

one logarithmic schedule for each of the problems in our test suite. The classic schedule is the one

proposed by Kirkpatrick, Gelatt, and Vecchi [17]. The logarithmic schedule is that of Aarts and van

Laarhoven [2]. Results for the six problem/schedule combinations are presented in Section 4, in an

attempt to show that our proposed method of starting temperature determination for TSSA systems

is problem- and formulation-insensitive, assuming the chosen SA cooling schedule conforms to the

basic Markov chain model. Section 2.2 presents SA behavior characteristics used in the derivation

of our TSSA method.

 2.2 Characteristic Behavior of SA

One way of ensuring general applicability of the proposed TSSA methodology is to base the deter-

mination of the starting temperature on some characteristic behavior of the SA algorithm. We

choose the behavior of the cost c(ibest) of the variate best-seen solution so far ibest to serve as the

basis for our method. The reason for this choice lies in the fact that the cost of the solution returned

tk t0 αk⋅=

tk tk 1– Γk 1–log() 1–⋅∼

6

Draft - submitted for publication

by the heuristic, i.e. the best-seen solution, is the only piece of information available at the begin-

ning of the SA phase in a TSSA system.

Since both absolute cost and temperature are problem-dependent, a normalization scheme is

required for consistency across different problems. Let E∞ and σ∞ respectively represent the

expected cost and the standard deviation of the cost over all solutions in the state space. We can

normalize the cost cnorm(i) of a solution i by measuring it in standard deviation units σ∞ away from

the expected cost E∞. We can normalize the temperature tnorm by dividing it with respect to initial

SA temperature t0. Explicitly, this leads to the following normalizations:

(3)

and

(4)

where c(i) is the cost of the current solution i and tk is the kth temperature value. Figure 2 illustrates

the characteristic SA solution curve that results from plotting normalized best-seen cost against

normalized temperature. Plots from actual SA runs can be seen in Figures 4 and 5.

Given the above normalizations, we can use a well-known behavior of the expected cost Ek and

standard deviation σk with respect to temperature tk can serve as the basis for a starting temperature

determination scheme. In particular, large-scale numerical studies have been conducted for differ-

cnorm i() E∞ c i()–() σ∞⁄=

tnorm tk t0⁄=

Figure 2: Normalized SA best-seen cost cnorm(ibest) vs. normalized SA temperature tnorm.

t n
or

m

cnorm(ibest)

1.0

7

Draft - submitted for publication

ent pseudo-random combinatorial problems examining solution densities at varying SA tempera-

tures by three different sets of authors [1, 11, 24]. All three independently present evidence that

supports a typical behavior of the expected cost and standard deviation with respect to temperature,

given a traditional Markov-based SA cooling schedule. Specifically, the investigations conclude

that at all temperatures except those very close to the temperature corresponding to the optimal

value of the cost function, the following behaviors can be noted:

(5)

and

(6)

Additionally, the investigations independently show that for this same range of temperatures, the

probability distribution of the cost values can be closely approximated by a normal distribution.

These observations are used in the derivation of the proposed method for starting temperature

determination presented in the next section.

3 DERIVATIONS

Given the background information in the previous section, we now present the following two prop-

ositions that describe the derivation our methodology.

Proposition 1: Given a solution i for some combinatorial optimization problem, the following

function can be used to closely approximate the SA temperature tk(i) at which i would be found as

the best-seen solution:

(7)

Proof: It should be clear that the absolute cost c(ibest) of the best-seen solution ibest is proportional

to SA temperature tk—the best-seen cost decreases as the temperature is decreased. This along with

Equation 3 implies that normalized best-seen cost is inversely proportional to normalized temper-

ature:

(8)

As the temperature decreases, the difference between the best-seen cost and the expected cost over

Ek E∞ σ∞
2 tk⁄

 –≈

σk σ∞≈

tk i()
σ∞

2

E∞ c i() γ∞σ∞––
--≈

tnorm ibest()
σ∞

E∞ c ibest()–
-----------------------------------∼

8

Draft - submitted for publication

all solutions (E∞ - c(ibest)) becomes greater. This relation can be seen graphically in Figures 2, 4,

and 5. If t0 is set equal to σ∞ as proposed by White [31], replacing tnorm with Equation 4 leads to

the following proportionality relation for absolute temperature tk:

(9)

We now convert this proportion into a usable function. Solving Equation 5 with respect to absolute

temperature tk gives:

(10)

This relation is quite similar to Equation 7. A function relating Ek and c(ibest) would nearly com-

plete the proof. If ikmin is the minimum-cost solution found during the kth Markov chain executing

at temperature tk, then we know that the following relation holds:

(11)

This implies that the expected cost at temperature tk is some number of standard deviation units σk

greater than the minimum-cost solution over the kth Markov chain ikmin. We call this number the

offset and denote it by the symbol γ. In this context, Equation 11 can be expressed as:

(12)

If we replace the σk term in Equation 12 with Equation 6 and approximate ikmin with the global

best-seen solution ibest, we get:

(13)

Using the behavior of the standard deviation σk described by Equation 6 combined with the

assumption that the configuration density is nearly normally distributed, we expect the offset γk to

remain approximately constant at the higher temperatures while converging quickly towards zero

close to the temperature corresponding to the optimal value of the cost function. Our experimental

evidence indeed supports this behavior. This can be seen graphically in Figures 3 and 7, showing

the evolution of the offset over the course of the SA algorithm for a number of runs. This behavior

allows us to closely approximate the γk term in Equation 13 with γ∞. Also, replacing the Ek term in

Equation 10 by Equation 13 gives us the following:

tk ibest()
σ∞

2

E∞ c ibest()–
-----------------------------------∼

tk

σ∞
2

E∞ Ek–
--------------------≈

Ek c ikmin()≥

Ek c ikmin() γkσk+=

Ek c ibest() γkσ
∞

+≈

9

Draft - submitted for publication

(14)

Finally, instantiating Equation 14 with the first-stage heuristic solution i for ibest gives Equation 7.

■

Equation 7 serves as the basis for our proposed method of starting temperature determination.

However, the offset γ∞ is still an unknown. It is important to note that without the offset term, Equa-

tion 7 generates temperature approximations that are too low, resulting in TSSA solution quality

less than that of standard SA. The following proposition describes the calculation of γ∞.

Proposition 2: Given a SA formulation for some combinatorial optimization problem with

Markov chain length LM, the offset γ∞ can be calculated probabilistically with the equation:

(15)

Proof: As discussed in the previous section, we make use of the observation that we can use a nor-

mal distribution to closely approximate the probability distribution of the cost values over each

Markov chain. Using this assumption, the cost values seen over the course of a Markov chain can

be represented by a normally distributed random variable X with probability distribution function:

tk ibest()
σ∞

2

E∞ c ibest() γ∞σ∞––
--≈

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

o
f
f
s
e
t

T/T0

simulated annealing offset

Figure 3: Evolution of the offset γk for the 16-terminal RSMT instance.

P E∞ γ∞σ∞– X E∞ γ∞σ∞+< <[] 1 LM
1–

–≈

10

Draft - submitted for publication

(16)

A simple change in variable leads to the following cumulative distribution function (CDF):

(17)

where t = (x - µ)/σ and dx = σ dt. This CDF can then be used in such a way as to determine the

probability of generating a solution with a given cost. Explicitly, this can be written as

(18)

If we let z = (x - µ)/σ, the term zρ/2 determines the percentile ρ of the normal distribution, Φ(zρ/2)

= ρ, to which X = x is likely to belong. For our purposes, it is useful to consider these normal prob-

abilities in terms of standard deviation units away from the mean. In this context, zρ/2 can be used

in the following manner:

(19)

It should be clear that the zρ/2 term in the above equation corresponds to the offset γ used in our

starting temperature determination method. The problem remains to calculate appropriate ρ values

and their corresponding zρ/2 values to be used in determining the expected value for γ∞. Using the

behavior characteristics presented in Section 2.2, we can use the offset value γ1 for the first Markov

chain to obtain a reasonable approximation for γ∞. We need now only determine the expected offset

γ1 for the first Markov chain.

Since virtually all LM transitions will be accepted during the first Markov chain of the SA cool-

ing schedule, the stationary distribution of this chain is uniform over the state space [1, 11, 24].

This implies that the mean and standard deviation of the cost values seen over the first Markov

chain will approach E∞ and σ∞ respectively. Using this fact, we can assume that each generated

solution has a probability very close to |LM|-1 of having the minimum cost value seen over the

course of the first Markov chain. This will serve as the value for ρ. Conversely, each generated

solution will have a probability very close to 1 - ρ of having a cost greater than that of the minimum

cost value seen over the course of the first Markov chain. Using these values, we can now deter-

mine zρ/2, and hence our offset γ∞. Since we are considering the first Markov chain, we can substi-

f x µ σ,;() 1

σ 2π
-------------- e

x µ–
σ

2

2⁄–
=

Φ z() 1

2π
---------- e t2 2⁄– dt

∞–

z
∫=

P X x≤[] Φ x µ–
σ

 =

P µ zρ 2⁄ σ– X µ zρ 2⁄ σ+< <[] 1 ρ–=

11

Draft - submitted for publication

tute E∞ for µ and σ∞ for σ in Equation 19, giving us Equation 15.

■

Given the appropriate value for ρ, the corresponding zρ/2 value can be calculated via numerical

methods or by a table lookup. If both of these methods are infeasible for the given TSSA system,

cells LM 1 − ρ zρ/2
computed

γ∞
observed

100 100 0.9900 2.58 2.76

500 500 0.9980 3.09 3.02

833 833 0.9988 3.22 3.11

1500 1500 0.9993 3.36 3.18

3014 3014 0.9995 3.52 3.34

10000 10000 0.9998 3.86 3.88

Table 1: Experimental results for approximating the offset for several VLSI-NPP instances.

terminals LM 1 − ρ zρ/2
computed

γ∞
observed

9 39 0.9744 2.23 1.87

11 77 0.9870 2.48 2.27

13 47 0.9787 2.30 2.18

16 83 0.9880 2.51 2.87

20 380 0.9974 3.00 2.90

30 695 0.9986 3.18 3.08

Table 2: Experimental results for approximating the offset for several RSMT instances.

cities LM 1 − ρ zρ/2
computed

γ ∞
observed

20 190 0.9947 2.78 2.68

42 861 0.9988 3.22 3.33

50 1225 0.9992 3.32 3.31

57 1596 0.9994 3.38 3.62

100 4950 0.9998 3.61 3.55

318 50403 0.9999 4.26 4.31

Table 3: Experimental results for approximating the offset for several TSP instances.

12

Draft - submitted for publication

anotherγ∞ approximation method can be employed at the expense of increased computation time.

A single Markov chain can be executed from a randomly generated solution such that allLM tran-

sitions are accepted. The observedµ andσ for the chain will approximateE∞ andσ∞. If c(imin) is

the minimum-cost value seen over the course of the Markov chain,γ∞ can be approximated by:

(20)

Tables 1-3 show results for approximating the offset of each problem instance in our test suite

using table values [3]. Results for each instance are averaged over 20 runs. As can be seen in the

table, computedzρ/2 values match very closely with observed offsets. The variance seen in the off-

set values generated for any particular problem instance is generally quite high. However, in prac-

tice, this did not affect the ability of the TSSA systems to converge to the same quality solutions

as the corresponding standard SA algorithms for the same problem. This can be seen in the TSSA

results presented in Section 4.

Based on the above discussion, our method can be summarized in the following steps:

• Execute the heuristic to obtainc(ibest).

• Obtain values forE∞, σ∞, andγ.

• Usec(ibest), E∞, σ∞, andγ in Equation 7 to obtain the starting temperature approximation

tapp.

• Sett = tapp and begin the SA phase.

As can be seen in Figures 4 and 5, our method produces approximations that are quite close to

actual SA temperatures associated with the best-seen solution for different problem/schedule com-

binations. Figure 4 shows our approximation curve plotted against actual SA solution curves for

the Primary1 VLSI-NPP instance. Figure 5 shows our approximation curve plotted against actual

SA solution curves for the 318-city TSP instance. For both figures, plots (a) and (b) concern respec-

tively the logarithmic and classic schedules. The experimental results presented in the next section

indicate that in practice there is a significant time reduction seen for TSSA systems incorporating

the above methodology over standard SA with no loss in solution quality.

4 TSSA EXPERIMENTAL RESULTS

Results are presented for three different NP-hard combinatorial optimization problems, namely the

VLSI network partitioning (VLSI-NPP), rectilinear Steiner minimal tree (RSMT), and traveling

salesperson (TSP) problems. A short description of each problem is given in the corresponding

γ∞

µchain c imin()–

σchain
---≈

13

Draft - submitted for publication

subsection. Each problem is solved with two different cooling schedules—a classic schedule [17]

and a logarithmic schedule [2]. All TSSA systems discussed here are implemented in the C/C++

programming language using the Gnu g++™ compiler. All test runs were executed on a Sun Sparc-

Server™ 10/51operating under SunOS™ 4.1.3 (UNIX™)with 128 MB of RAM. All results are

averaged over 10 runs.

 4.1 VLSI Network Partitioning Problem

The VLSI-NPP is a graph partitioning problem (GPP) [14, 16]. The input to the VLSI-NPP consists

of a set of VLSI circuit elements, orcells, connected by a set ofnets. Each cell has an associated

positive-valued area. A net is a set of at least two cells that is to be electrically interconnected. The

goal of the VLSI-NPP is to divide the cells into two blocks so as to minimize the number of nets

that have cells in both blocks under the constraint that the sums of the areas of the cells in each

block are approximately equal. The difference in area between the two blocks is used as a penalty

term. Hence, the objective function to be minimized for the VLSI-NPP is

(21)

Figure 4: Starting temperature approximation curve vs. actual SA runs for Primary1 VLSI-NPP
instance concerning (a) the logarithmic schedule; and (b) the classic schedule.

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
/
T
0

std deviations

simulated annealing solution
starting temperature approximation curve

(b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
/
T
0

std deviations

simulated annealing solution
starting temperature approximation curve

c i() Ecut λ area ai()
ai A∈
∑ area bi()

bi B∈
∑–

 ⋅

2
+=

14

Draft - submitted for publication

where Ecut is the number of nets with cells in both blocks and λ is a weighting constant. For our

VLSI-NPP implementation, λ = 0.02.

The TSSA VLSI-NPP system incorporates the Fiduccia and Mattheyses (F-M) heuristic [7].

The F-M heuristic is a generalization of the Kernighan-Lin graph bipartitioning heuristic [16]. The

heuristic was selected due to its fast running times and quality of solution. The complexity of the

algorithm is linear in the total number of pins, where a pin is an interconnection point on a cell for

a particular net. We chose to only use one pass of the algorithm, since the majority of improvement

takes place during the first pass. Experimental results show that SA improves solutions generated

by one pass of F-M by an average of 15% relative to E∞ in terms of standard deviation units σ∞.

Experimental data used for evaluating the TSSA VLSI-NPP system is made up of SIGDA stan-

dard cell benchmark circuits Primary1 (833 cells, 904 nets) and Primary2 (3014 cells, 3029 nets)

[26] as well as four randomly generated networks with average edge degrees similar to the bench-

mark circuits. The randomly generated networks range in size from 100 nets with 100 cells to

10000 nets with 10000 cells. The results are given in Tables 4 and 5 respectively for the logarithmic

and classic schedules. As can be seen from the tables, significant speedup is observed in the TSSA

systems incorporating our method of starting temperature determination over standard SA with a

minimal difference in solution quality. The average speed-up was approximately 56% and 33%

Figure 5: Starting temperature approximation curve vs. actual SA runs for 318-city TSP instance
concerning (a) the logarithmic schedule; and (b) the classic schedule.

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
/
T
0

std deviations

simulated annealing solution
starting temperature approximation curve

(b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

T
/
T
0

std deviations

simulated annealing solution
starting temperature approximation curve

15

Draft - submitted for publication

respectively for the logarithmic and classic schedules.

 4.2 Rectilinear Steiner Minimal Tree Problem

The input to the RSMT problem consists of a set ofn points in a plane, calledterminals. The goal

of the RSMT problem is to connect the terminals with horizontal and vertical line segments such

that the sum of the lengths of the segments is minimized. The connected terminals should form an

acyclic tree such that all of the terminals serve as endpoints to various segments. Additional points,

calledSteiner points, can also be used to connect the terminals. Using a result of Hanan [12], we

can restrict a search for an optimal solution to Steiner point locations that lie on a grid imposed by

the terminals. This grid defines at most O(n2) possible Steiner locations. Hanan’s result also allows

us to limit the actual number of Steiner points to at mostn-1. The objective function is simply

(22)

Data
instance
 (cells)

SA
CPU
time
(sec)

SA nets
cut

TSSA
CPU
time
(sec)

TSSA
nets cut

% CPU
time

decrease

100 0.69 18.8 0.44 18.8 36.2

500 7.30 118.0 3.84 119.3 47.4

833 18.97 82.1 6.52 82.6 65.6

1500 39.56 328.8 15.91 327.2 59.8

3014 145.41 222.6 48.67 228.3 66.5

10000 984.57 2066.9 386.83 2060.4 60.7

Table 4: Results for the TSSA VLSI-NPP system using a logarithmic schedule.

Data
instance
 (cells)

SA
CPU
time
(sec)

SA tour
length

TSSA
CPU
time
(sec)

TSSA
tour

length

% CPU
time

decrease

100 0.43 23.2 0.33 20.1 23.2

500 3.18 140.7 2.27 141.3 28.6

833 5.92 108.4 4.05 107.5 31.6

1500 12.91 398.0 7.91 400.4 38.5

3014 29.59 381.1 21.03 381.0 35.5

10000 140.06 2611.2 84.48 2616.4 39.7

Table 5: Results for a TSSA VLSI-NPP system using a classic schedule.

c i() length ei()
ei E∈
∑=

16

Draft - submitted for publication

whereE is the set of all edges in the tree.

The heuristic chosen for the first phase of the TSSA RSMT system is based on Kruskal’s min-

imum-spanning tree algorithm [18]. Kruskal’s algorithm is first run to obtain the minimum-span-

ning tree for then terminals using no Steiner points. Then up ton - 1 Steiner points are added in a

greedy fashion from the set of possible Steiner locations to form the initial solution for the SA

phase. SA improves solutions produced by our variation of Kruskal’s algorithm by an average of

10% relative toE∞ in terms of standard deviation unitsσ∞. A graphical example of the evolution

(a) temperature = 225.76; cost = 4512 (b) temperature = 60.74; cost = 3929

(c) temperature = 0.91; cost = 3584

Figure 6: Evolution of TSSA best-seen solution for 20-terminal RSMT instance. (a) random initial
solution; (b) solution after first-stage heuristic; and (c) solution after SA phase.

17

Draft - submitted for publication

of a best-seen solution for the TSSA RSMT system is shown in Figure 6.

Experimental data used for evaluating the TSSA RSMT system consists of four of the larger

nets from the SIGDA benchmark circuits Primary2 as well as randomly generated 20 and 30 ter-

minal networks. The nets taken from Primary2 range in size from 9 terminals to 16 terminals. The

placements of the nets from Primary2 are intermediate solutions generated by a local placement

and routing package. The results are shown in Tables 6 and 7. As is the case with the previous two

problems, significant speedup is noted for the TSSA RSMT system over standard SA with no loss

in solution quality The average speedup was approximately 40% and 30% respectively for the log-

arithmic and classic schedules.

 4.3 Traveling Salesperson Problem

The input to the TSP consists of a symmetric n × n distance matrix d, representing distances

between n cities. The goal is to find a minimum-length tour that visits each city exactly once while

Data
instance
(terminals)

SA
CPU
time
(sec)

SA tree
length

TSSA
CPU
time
(sec)

TSSA
tree

length

% CPU
time

decrease

9 4.81 1554.4 3.82 1554.4 20.6

11 19.57 2822.0 12.37 2822.0 36.8

13 11.40 1950.6 4.33 1949.6 62.0

16 47.36 3008.4 19.42 3002.4 59.0

20 782.82 304.9 543.87 304.5 30.5

30 5155.76 359.3 3691.14 359.3 28.4

Table 6: Results for a TSSA RSMT system using a logarithmic schedule.

Data
instance
(terminals)

SA
CPU
time
(sec)

SA tree
length

TSSA
CPU
time
(sec)

TSSA
tree

length

% CPU
time

decrease

9 5.20 1554.2 4.13 1554.0 20.6

11 13.31 2822.0 9.20 2822.0 30.9

13 9.91 1946.8 6.63 1942.6 33.1

16 31.45 2999.6 20.43 2998.8 35.0

20 251.69 305.4 175.79 304.7 30.2

30 1276.37 360.2 898.23 359.9 29.6

Table 7: Results for a TSSA RSMT system using a classic schedule.

18

Draft - submitted for publication

terminating at the city of origin. The objective function to be minimized is

(23)

For the heuristic phase of the TSSA TSP system, the Croes heuristic [5] is used. Our experi-

mental results show that solutions produced by our variation of the Croes algorithm are on average

10% closer to E∞ in terms of standard deviation units σ∞ than final SA solutions.

Experimental data used for evaluating the TSSA TSP system consists of the following

instances: the 20 city problem of Croes [5]; the 42 city problem of Dantzig, Fulkerson, and Johnson

[6]; a randomly generated 50 city problem; the 57 city problem of Karg and Thompson [18]; a ran-

domly generated 100 city problem; and the 318 city problem of Lin and Kernighan [22]. The

results are given in Tables 8 and 9. Again, significant speedup is noted over standard SA with no

loss in solution quality. The average speedup was approximately 51% and 44% respectively for the

c i() dj j 1+,
j

n 1–

∑ dn 1,+=

Data
instance
 (cities)

SA
CPU
time
(sec)

SA tour
length

TSSA
CPU
time
(sec)

TSSA
tour

length

% CPU
time

decrease

20 0.53 258.6 0.33 254.3 37.7

42 4.58 704.6 2.43 703.7 46.9

50 6.15 240.3 2.98 236.4 51.5

57 10.21 13075.3 4.73 13133.0 53.7

100 47.74 316.0 21.53 307.3 54.9

318 1715.18 42943.7 703.22 42835.0 59.0

Table 8: Results for the TSSA TSP system using a logarithmic schedule.

Data
instance
 (cities)

SA
CPU
time
(sec)

SA tour
length

TSSA
CPU
time
(sec)

TSSA
tour

length

% CPU
time

decrease

20 0.21 256.6 0.16 255.1 23.8

42 1.26 705.4 0.81 704.8 35.7

50 1.59 236.3 0.97 238.0 39.0

57 2.30 13164.6 1.29 13106.5 43.9

100 7.43 326.8 3.69 320.8 50.3

318 123.11 43347.7 41.00 43360.8 66.7

Table 9: Results for a TSSA TSP system using a classic schedule.

19

Draft - submitted for publication

logarithmic and classic schedules.

In summary, the average running time speedup for TSSA over SA for all problem instances in

the test suite is approximately 50% when using a logarithmic cooling schedule and approximately

35% when using a classic cooling schedule. Both figures are clearly significant.

5 AN ALTERNATIVE STOP CRITERION

During the initial testing of our methodology, it became apparent that the classic schedule was per-

forming a significant percentage of its total Boltzmann trials after the algorithm had already con-

verged to its final solution. However, this proved not to be the case for the logarithmic schedule.

This prompted the examination of possible new stop criteria for the classic schedule. The standard

stop criterion for the classic schedule specifies to terminate the algorithm when three consecutive

Markov chains end in the same value for the cost function. Since this stop criterion presents little

overhead to the algorithm, one of the goals for any new stop criterion was to similarly keep any

additional overhead to a minimum. We chose to focus on the behavior of the offset, as specified by

Equation 12, to serve as the basis for a new stop criterion.

As discussed in Section 3, the offset remains essentially constant over the majority of the algo-

rithm, converging quickly to zero at temperatures close to that which corresponds to the optimal

value for the cost function. This behavior is shown graphically in Figure 7. The figure shows the

evolution of the offset for a number of SA runs on the 100-city TSP instance. The above mentioned

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

o
f
f
s
e
t

T/T0

simulated annealing offset

Figure 7: Evolution of the offset γk for the 100-city TSP instance.

20

Draft - submitted for publication

behavior is clearly exhibited. This behavior remains consistent across all problem/formulation

combinations in our test suite.

Incorporating the offset into a new stop criterion introduces very little overhead. The average

cost over each Markov chain as well as the minimum-cost value seen over each Markov chain must

be tracked. This adds a single assignment statement and a single conditional statement to the inner

loop of the SA algorithm. We chose a parameterized approach—specifically, the new stop criterion

dictates that the algorithm be terminated at some temperature tk when the following relation holds:

(24)

where Θ is a small user-defined constant. Θ can be optimized for the problem being solved. How-

ever, for our tests we chose a value that worked well for all three problems, specifically Θ = 0.0001.

Results for the classic schedule incorporating the new stop criterion are given in Tables 10-12.

As can be seen in the tables, there is generally a significant reduction in the number of Boltzmann

trials performed after the final solution is found for all three of the test problems. This translated

into an average 5-10% further reduction in computation time as compared to TSSA using the orig-

inal stop criterion. The length of the Markov chains at each temperature and the computational cost

of each Boltzmann trial determine the absolute reduction in CPU time. The VLSI-NPP system

showed the least improvement due to its having by far the least computationally expensive Boltz-

mann trials. The RSMT system showed the greatest improvement due to its very computationally

expensive Boltzmann trials, despite the fact that it has the shortest Markov chain length.

6 CONCLUSIONS

We propose a TSSA method with a more formal basis for determining the temperature at which to

begin the low temperature SA phase. We have tested our method on three important optimization

problems using both classic and logarithmic schedules. The results have been consistently very

good. On average for a SA algorithm using a logarithmic cooling schedule the running time is cut

in half; while for a SA algorithm using a classic schedule, the running time is reduced by one-third.

Equally important is that there is on average no loss in solution quality. An alternative stop criterion

for the classic schedule is also presented that further decreases the running times by another 5-10%.

7 ACKNOWLEDGEMENTS

The authors’ work has been supported in part through National Science Foundation grants

µk c ikmin()–

σk
----------------------------------- Θ<

21

Draft - submitted for publication

cells
old s.c.
trials

final
solution
 trial #

new s.c.
trials

final
solution
 trial #

%
waste

reduced

% time
reduced

100 4060 1456 2920 1525 53.6 2.7

500 42950 14132 26875 16330 63.4 7.6

833 89131 37941 87633 37167 1.4 0.3

1500 170025 65021 160526 63540 7.6 2.2

3014 346305 169226 334855 181062 13.2 3.1

10000 1246500 497268 1176000 495963 9.2 3.3

Table 10: Comparison of classic and newly proposed stop criteria for VLSI-NPP TSSA system.

terminals
old s.c.
trials

final
solution
 trial #

new s.c.
trials

final
solution
 trial #

%
waste

reduced

% time
reduced

9 3229 2233 2751 2087 33.3 11.9

11 5548 2240 5167 2547 20.8 8.6

13 2094 1230 1470 1132 60.9 12.8

16 3872 1943 3013 1831 38.7 13.9

20 32870 27653 30856 27207 30.1 5.9

30 52264 48197 50239 48487 10.2 3.4

Table 11: Comparison of classic and newly proposed stop criteria for RSMT TSSA system.

cities
old s.c.
trials

final
solution
 trial #

new s.c.
trials

final
solution
 trial #

%
waste

reduced

% time
reduced

20 12873 11040 11895 10976 49.9 4.4

42 66748 50880 57610 51216 59.7 8.8

50 76328 67011 74845 67728 23.6 3.3

57 131890 95595 109838 94883 58.8 11.0

100 398475 365822 390699 378412 62.4 7.1

318 5611534 4744012 5264806 4693109 34.1 4.7

Table 12: Comparison of classic and newly proposed stop criteria for RSMT TSSA system.

22

Draft - submitted for publication

MIP-9107717 and CDA-8922545. Their support is greatly appreciated.

8 REFERENCES

[1] E.H.L. Aarts, J.H.M. Korst, and P.J.M. van Laarhoven, “Solving Traveling Salesman Prob-

lems by Simulated Annealing,”J. Stat. Phys., vol. 50, 187-206, 1988.

[2] E.H.L. Aarts and P.J.M. van Laarhoven, “A New Polynomial-Time Cooling Schedule,”Proc.

IEEE ICCAD-85, Santa Clara, CA, 206-208, 1985.

[3] W.H. Beyer, Ed., CRC Standard Mathematical Tables and Formulae, CRC Press, Boca

Raton, FL, 1991.

[4] V. Cerny, “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient

Simulation Algorithm,”J. Optimization Thry. and Appl., vol. 45, 41-51, 1985.

[5] G.A. Croes, “A Method for Solving Traveling-Salesman Problems,”Operations Research,

vol. 5, 791-812, 1958.

[6] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, “Solution of a Large Scale Travel-

ing-Salesman Problem,”Operations Research, vol. 2, 393-410, 1954.

[7] C.M. Fiduccia and R.M. Mattheyses, “A Linear-Time Heuristic for Improving Network Par-

titions,” Proc. 19th ACM/IEEE DAC, Las Vegas, NV, 241-247, 1985.

[8] J.W. Greene and K.J. Supowit, “Simulated Annealing Without Rejected Moves,”IEEE

Trans. CADICS, vol. 5, 221-228, 1986.

[9] L.K. Grover, “A New Simulated Annealing Algorithm for Standard Cell Placement,”Proc.

IEEE ICCAD-86, Santa Clara, CA, 378-380, 1986.

[10] L.K. Grover, “Standard Cell Placement Using Simulated Sintering,”Proc. 24th ACM/IEEE

DAC, Miami Beach, FL, 56-59, 1987.

[11] B. Hajek, “A Tutorial Survey of Theory and Applications of Simulated Annealing,”Proc.

24th IEEE Conf. Decision and Control, Ft. Lauderdale, FL, 755-760, 1985.

[12] M. Hanan, “On Steiner’s Problem With Rectilinear Distance,”SIAM J. Appl. Math., vol. 14,

255-265, 1966.

[13] M.D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An Efficient General Cooling

Schedule for Simulated Annealing,”Proc. IEEE ICCAD-86, Santa Clara, CA, 381-384,

1986.

[14] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, “Optimization by Simulated

Annealing: An Experimental Evaluation; Part 1, Graph Partitioning,”Operations Research,

23

Draft - submitted for publication

vol. 37, no. 6, 865-892, 1989.

[15] R.L. Karg and G.L. Thompson, “A Heuristic Approach to Solving Traveling-Salesman Prob-

lems,” Management Science, vol. 10, 225-247, 1964.

[16] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell

Sys. Tech. J., vol. 49, 291-307, 1970.

[17] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by Simulated Annealing,” Sci-

ence, vol. 220, 45-54, 1983.

[18] J.B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem,” Proc. American Math. Soc., vol. 7, 48-50, 1956.

[19] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications,

Reidel Publishing, Dordrecht, Netherlands, 1987.

[20] J. Lam and J.-M. Delosme, “Performance of a New Annealing Schedule,” Proc. 25th

ACM/IEEE DAC, Anaheim, CA, 306-311, 1988.

[21] J. Lam and J.-M. Delosme, “Simulated Annealing: A Fast Heuristic for Some Generic Layout

Problems,” Proc. IEEE ICCAD-88, Santa Clara, CA, 510-513, 1988.

[22] S. Lin and B.W. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman

Problem,” Operations Research, vol. 21, 498-516, 1973.

[23] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of State

Calculations by Fast Computing Machines,” J. Chem. Phys., vol. 21, 1087-1092, 1953.

[24] R.H.J.M. Otten and L.P.P.P. van Ginneken, “Stop Criterion in Simulated Annealing,” Proc.

IEEE ICCD, Rye Brook, NY, 549-552, 1988.

[25] R.H.J.M. Otten and L.P.P.P. van Ginneken, The Annealing Algorithm, Kluwer Academic

Publishers, Boston, MA, 1989.

[26] B. Preas, “Benchmarks for Cell-Based Layout Systems,” Proc. 24th ACM/IEEE DAC, Miami

Beach, FL, 319-320, 1987.

[27] F. Romeo and A. Sangiovanni-Vincentelli, “Probabilistic Hill Climbing Algorithms: Proper-

ties and Algorithms,” Proc. 1985 Chapel Hill Conf. on VLSI, Chapel Hill, NC, 393-417,

1985.

[28] J.S. Rose, W.M. Snelgrove, and Z.G. Vranesic, “Parallel Standard Cell Placement Algo-

rithms with Quality Equivalent to Simulated Annealing,” IEEE Trans. CADICS, vol. 7,

387-396, 1988.

[29] J.S. Rose, W. Klebsch, and J. Wolf, “Temperature Measurement and Equilibrium Dynamics

24

Draft - submitted for publication

of Simulated Annealing Placements,” IEEE Trans. CADICS, vol. 9, 253-259, 1990.

[30] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing Pack-

age,” IEEE J. Solid-State Circuits, vol. 20, 510-522, 1985.

[31] S.R. White, “Concepts of Scale in Simulated Annealing,” Proc. IEEE ICCD, Port Chester,

NY, 646-651, 1984.

[32] D.F. Wong, H.W. Leong, and C.L. Liu, Simulated Annealing for VLSI Design, Kluwer Aca-

demic Publishers, Boston, MA, 1988.

