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Abstract

We present a simple information security model to determine why, historically, the level
of security has not increased despite numerous technical advances.  In our model,  the
software design process involves trade-offs between security and functionality.
Developers choose points in the design space corresponding to certain levels of
security and functionality.  If development resources, such as number of
developers, time for completion, etc., are fixed, there is an implicit trade-off
between security and functionality.  We refer to the set of points that represent
the maximum possible security given a certain level of functionality as the
protection possibilities frontier (PPF).  Technical advances push back the PPF
expanding the set of accessible points in the design space potentially allowing both
increased security and increased functionality.  But historically this has not been
sufficient to result in increased security.  Instead almost all of the technical advancement
is used to increase functionality.  We examine how technical advances affect the
marginal cost of security in terms of sacrificed functionality and classify technical
advances into 3 categories: security neutral, security hostile, and security enhancing.  In
order for the level of security to increase, security enhancing technical advances must
offset security hostile technical advances.  We also observe that producing security
enhancing technologies is surprisingly difficult.  Even advances in information security
technologies often result in the ability to take additional risks rather than increased
security.  Additionally we briefly examine user preferences, which to a large extant drive
the actions of developers.  We suggest that the lack of security cannot be explained
purely by consumer apathy and that limited product availability and network externalities
also contribute.
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1. Introduction

“ the most secure computer in the world is one that has its disk wiped, is
turned off, and is buried in a 10-foot hole filled with concrete.  Of course, a
machine that secure also turns out to be useless.”  -- [Viega02, 35].

As is the case in many areas, in information security there is no free lunch.  The process
of system design involves trade-offs between numerous factors.  Developers and
administrators have limited resources and multiple criteria to fulfill.  To an extent,
security is inherently opposed to functionality, as the above quote makes clear.  But the
trade-off is made more stark because projects are conducted with limited resources.
There are a limited amount of developers, time for completion, and other resources.  In
order to produce software with greater security, there will be a cost such as increased
development resources or less functionality in the product.  For example, it may take
longer to finish a more secure product, or it may be necessary to recruit an outside
security expert.

We present a simplified model of software development that formalizes the above trade-
off.  In this model, developers have a finite amount of resources such as staff, equipment,
and time, and they must choose between functionality and security.  We define
functionality broadly to include total development time and cost as well as features.

We depart from the traditional view that security is a binary property.  Instead, we view
security as a relative property.  Although security cannot currently be precisely measured,
and no commonly accepted measure of a program's security exists, it is common for
programs and systems to be referred to as more or less secure.  Judgments about the
relative security of systems are usually based on past security flaws and the extent to
which the developers emphasized security.  Although these judgments are based on
imperfect information and are often questionable, the idea that two systems contain
different levels of security though neither has perfect security is consistent with the state
of the practice.

2. Model

Figure 1 presents a graphical view of our model of the design space.  The shaded area
represents accessible points in the design space.  The line represents the optimal points,
which provide the maximum level of functionality for a given level of security.  We refer
to this line as the protection possibilities frontier (PPF).  For example, Y represents a high
level of security and a low level of functionality while Z represents a low level of security
and a high level of functionality.
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Figure 1 A simple model of the design space.  Points Y, X, and Z are on the PPF. Point I is accessible but
suboptimal.  Points beyond the PPF are not accessible.

 

The key feature of our model is that there are limits to what is possible given a set of
resources.  If a project is operating optimally given current resources there are limits to
how much security can be achieved for a given amount of functionality and vice versa.
Of course, less functionality does not, by itself, mean greater security.  A suboptimal
point in the design space, such as I in figure 1, has less functionality but the same amount
of security as a point on the PPF such as X.

Technical advances push back the PPF expanding the set of accessible points in the
design space.  As shown in Figure 2, this provides opportunities to increase both
functionality and security.  But because the basic the trade-off between security and
functionality is remains, security will not necessarily be increased.  There has been an
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enormous increase in computing power in the past 15 years.  It would be trivial to
develop systems which were vastly more secure than those produced a decade ago but
which were just as functional.  But the security of computer systems is worse now than a
decade ago despite numerous technical advances in information security and computer
science in general.  Thus, the capacity for increased security through technical
advancement does not mean that security will increase.  In particular, hardware
improvements have led to larger, more feature-fill, and arguably more bloated programs
rather than more secure programs.

Figure 2 illustrates this trend.  Here, a technical advance has moved the PPF from Figure
1 further out.  X represents the status quo before the technical advance.  After the
technical advance, moving to point W would provide the same functionality but increased
security.  Instead, the trend has been to move to point D or point E, which provide
increased functionality but the same security or less security respectively.  Buffer
overflow vulnerabilities offer a security specific example.  These vulnerabilities could, to
some extent, be mitigated with slower languages that perform run time bounds checking,
or with tools such as stack guard [Cowan99].  But these options have not been widely
utilized.
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Figure 2 A technical advance extends the PPF.  X is on the old PPF.  W, D, and E are on the new PPF.  W
provides greater security than X, D provides the same security but greater functionality, and E provides
less security but still more functionality.

3. Types of Technical Advances
In the previous section, we observed that the ability to provide increased security while
maintaining current functionality is not sufficient to result in increased security in the
market place.  In this section, we attempt to explain this apparent discrepancy.  Technical
advances generally reduce the resources needed to obtain a particular level of security.
However, if resources can now also be applied more effectively to increase functionality,
the amount of functionality that must be given up to obtain a certain level of security may
not be reduced.  Thus the cost of a certain level of security can be best viewed as the
amount of functionality that must be given up to achieve that level of security.  Therefore
the appropriate measure of a technical advance's effect on security is the resulting change
in the marginal cost of security.  In this section, we classify technical advances based on
their effect on the marginal cost of security.  We identify three types of technical
advances: security neutral, security enhancing, and security hostile.
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3.1 Security Neutral Technical Advances

Security neutral technical advances provide equal opportunities for increased security and
increased functionality, and do not alter the marginal cost of security.  These advances
are unlikely to have a significant positive or negative impact on security.  

3.2 Security Hostile Technical Advances

Security hostile technical advances increase the marginal cost of security by providing
greater opportunity for increased functionality than increased security.  Because more
functionality must now be sacrificed to obtain a given level of security, security is likely
to decrease.  This type of technical advance is surprisingly common.  A significant
amount of research provides for increased functionality without addressing security.
Especially in academia, security agnostic researchers may focus on increasing
functionality and leave the resulting security issues as “ future work”  for more security
conscious researchers to clean up after them.

3.3 Security Enhancing Technical Advances

Security enhancing advances lower the marginal cost of security by providing greater
opportunity for increased security than for increased functionality.   This is the implicit
goal of a significant amount of security research.  In the security literature, there are
frequent references to the importance of making security convenient.  See, for example,
[Cox02].

3.4 Offsetting Advances

Software engineering has been described as a “ race between programmers striving to
build bigger and better idiot-proof programs, and the Universe trying to produce bigger
and better idiots”  [Cook].  Because security enhancing advances and security hostile
advances have off setting effects, security engineering could be described as a race
between security engineers striving to create security enhancing advances and security
agnostic researchers unconcerned about sacrificing security for functionality.

The marginal cost of security will only decrease if the effects of security enhancing
advances out weight the effects of security hostile advances.  Promoting research in
security enhancing technologies could result in increased security.  However, it may be
more effective to work to mitigate security hostile advances.  This could be done by
educational efforts to promote the importance of security and establish the view that
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security is an integral part of a system not after thought to be handled for others.

It is surprisingly difficult to develop security enhancing technical advances.  Often, even
advances in information security do not turn out to be security enhancing advances.
Advances in information security often result in both increased security exposure and
increased functionality in the marketplace.  For example, the creation of encryption
protocols that allow data to be sent over the Internet securely may have caused data to be
more vulnerable because it is now more likely to reside on network accessible machines.1

This phenomenon is by no means unique to information security.  Adams argues that
people have acceptable levels of risk and will compensate for technical advancements
and government mandates that reduce risk by taking riskier behavior.  For example, the
davy lantern, which had a bulb that burned cooler than the combustion point of methane,
was developed to make mining safer.  Instead, the device facilitated mining in methane
rich environments resulting in increased production and fatalities [Adams99].  Perrow
makes a similar point in a discussion of maritime shipping. Technical advances did not
create a safer industry but merely allowed greater risks to be taken such as faster travel in
more dangerous weather [Perrow99].

4. Interaction with Consumer Preferences

The efficient level of security has been debated [Anderson 02, Schneier02].  Lack of se-
curity resulting purely from consumer preferences is not necessarily a bad thing.  Con-
sumers have an insatiable desire for functionality and they are willing to accept a certain
amount of insecurity.2  Indeed, efforts to reduce risk personal risk below an acceptable
level can have perverse effects [Adams99].  

Still there is reason to believe that increased security is socially desirable.  The existence
of market inefficiencies such as externalities and imperfect information suggests that the
present level of security is inefficient [Anderson01].  For example, in a networked envir-
onment, insecurity in one system imposes costs on third party systems.  Additionally,
though the risks of cyber terrorism have been debated [Lemos02], after September 11th,
governments have placed increasing importance on information security as a national se-
curity concern3.  We do not attempt to address the policy question of whether the present

1 This is not necessarily a bad thing as functionality increases.
2 Individual aspects of a program such as speed are subject to diminishing marginal utility.  However,

functionality includes many properties and as defined in our model does not result in diminishing
marginal utility.

3  Regardless of the actual danger of cyber-terrorism, increased stigmatization of insecure computers
may be changing preferences towards more secure systems.
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level of security is efficient.  In this section, we examine consumer preferences and argue
that the current lack of security is not entirely due to consumer apathy.

Consumer preferences strongly influence software developers, but consumer choice is of-
ten limited. The software industry is not a perfectly competitive market [Shapiro99].
There are a limited number of vendors within a particular product category.  Vendors
rarely offer multiple versions of a program that provide significantly differing levels of
security.  Auditing a program and shipping a version with known security flaws and a
more expensive version in which these flaws have been fixed would raise legal and ethic-
al issues.  Reducing the size of a program by removing code that implements unneeded
features can increase security because there is less code to potentially introduce security
vulnerabilities.  But, it is difficult to do this in practice.  It is necessary to ensure that re-
moving code does not break other parts of the program.  Additionally, it may be neces-
sary to support features once they become part of a standard or file format.  Thus, con-
sumers must select among products representing the few points in the design space that
vendors have chosen to implement rather than choosing a product that provides their pre-
ferred amount of security and functionality.

However, users do not choose software purely because of its features and security.  Net-
work externalities are also significant [Shapiro99].  The utility of many products in-
creases with the number of users.  A typical user may need a certain set of features and
beyond that be concerned with standardization and interoperability.  In a market domin-
ated by a single product, users who, in autarchy, would be willing to sacrifice functional-
ity for security may choose a less secure product because of the benefits of interoperabil-
ity.

In an attempt to exploit positive feed back, vendors may add features to attract a small
number of users with special needs even if those features will be unused by other users
and result in lower security.  If consumers possess imperfect information about product
security, vendors have a greater incentive to do this. 4

5. Related Work

Our protection possibilities frontier model was inspired by the concept of the production
possibilities frontier -- a standard macroeconomic model in which a country can produce

4 It is also possible that the reverse is true.  That is network effects may cause consumers to accept
programs that provide more security but less functionality than they would otherwise want.  However,
vendors' desire to increase market share by adding additional features and anecdotal evidence that
market leaders often neglect security lead us to believe that security is under provided not over
provided.
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two goods and faces a trade-off between the amount of one good that can be produced
and the amount of the other good that can be produced.  On the microeconomic level we
found a somewhat analogous model in [Shapiro99].  In this model, designers face a trade-
off between performance and backwards compatibility.

6. Future Work

The model described above is characterized by significant developer choice.  Security
and functionality can be freely traded.  This is only realistic when a product is in the
initial design stage.  Many products have long life times of evolutionary growth and
multiple releases.  A complete rewrite of a legacy product is rarely practical.  For
example, it has been reported that Microsoft has tried to rewrite Word on multiple
occasions and gave up each time [Brandy98]. 

A possible long term model might view the lifetime development of a product as a series
of releases in which the design space for each release is highly influenced by the state of
the code after the previous release.  This view has interesting security implications.  Se-
curity is not a feature or an add-on property [Schneier99].  If security is not designed into
a system, adding it later is difficult and expensive [Hoo01].  Thus, the PPF for a project
building off existing code is extremely dependent on the architecture and design of the
existing code.  If the existing code base emphasizes functionality over security, the PPF
will be restrictive.  Increasing the security of existing code requires significant expendit-
ure of resources, which will be unavailable for increasing functionality.  (As discussed in
section 4, restricting the functionality of an existing system is unlikely to significantly in-
crease security unless the restrictions are sweeping.)  By contrast, if the existing code was
designed with security in mind, the PPF will allow greater flexibility.  Because additional
resources are expended for the new release, it will be possible to add functionality while
maintaining the current level of security.

Long term design becomes a strategic process.  While each individual release must ad-
dress immediate concerns, it also influences the possibilities for future releases.  Instead
of only focusing on the immediate requirements for the current design, it is necessary to
look at a release's impact on future options.  For example, in order to obtain increased se-
curity in a future release, it may be necessary to build the current release with more secur-
ity and less functionality than its immediate requirements call for.5

A fully developed long term design model may well yield interesting results.  For
example, one possibility is that if the cost of increasing the security of legacy products is
very high, then, in the long run, a product initially designed for security may have nearly

5Options theory may be a useful tool for analyzing these type of long term design trade-
offs.
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the same degree of functionality as a product not initially designed for security but will
have a far greater degree of security.  Furthermore, if high security later becomes a
requirement, the product initially developed with security in mind may, in the long run,
have a higher level of functionality if significant resources would have otherwise been
expended to improve the security of existing code that are now available to add
functionality.  Thus a program may be burdened throughout its life by the myopic
decisions of its initial developers.  

We view this type of long term development model as an important area for further
research.  The full development of this model along with realistic empirically based
estimates of the software development cost structure will allow a more thorough
understanding of security in evolutionary software development processes.

7. Conclusion

The costs of security are primarily opportunity costs such as less functionality.  Technical
advances allow improvements in all areas, but do not change the nature of the basic trade-
off.  Consequently, despite significant technical advancements, security has not signific-
antly improved though functionality has greatly increased.  Technical advances that lower
the marginal cost of security are most likely to result in improved security.  However, of-
ten advances in information security result in increased functionality, rather than in-
creased security.  Additionally, because of network effects, users, who would otherwise
prefer increased security to increased functionality, may choose less secure but more
widely used programs.
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