Simplifying Code Generation Through
Peephole Optimizations

Jack W, Davidson

Computer Science Technical Report TR-87-07
May 1, 1987

Simplifying Code Generation Through Peephole Optintization*

Jack W, Davidson

Department of Computer Science
University of Virginia
Charlottesville, VA 22903

ABSTRACT

Producing compilers that generate good object code is difficnit. The early phase of the com-
piler, syntactical and lexical analysis, have been automated. The latter phases, code generation
and optimization, are more difficult because of the wide range of machine architectures. This
dissertation describes a technique for the rapid implementation of production-quality compilers
through the use of a machine-independent retargetable peephole optimizer, PO. PO is retargeted
by providing a description of the new machine. '

PO simplifies many of the tasks associated with developing compilers. It simplifies code
generation by eliminating most of the case-analysis typically necessary to produce good code. It
simplifies the optimization phase by collecting several disparate optimizations and generalizing
them as peephole optimizations, PO also demonstrates that traditional optimizations, such as
register allocation, common subexpression elimination, and removal of unreachable code, may
be done more thoroughly and completely when information about the target machine is avail-
able.

May 1, 1987

Depariment of Computer Science
The University of Virginia

Charlottesville, VA 22903

*This work was supported by the National Science Foundation under Grant MCS-7802545.

Table of Contents
B INIPOUUETION Lttt ettt ettt ee e ee e e e I
LA Previots WOrk oo eyttt !
LT Intermediate Language APproach oo 2
ELE BOPL ettt e e e 2
LEE2 Pascal o e e 2
FLL3 MACROSPITBOL e e 3
1.1.2 Table-driven Approach ... [T VR 3
1.1.2.1 Portable C Compilerooovvevevieiienen e OO UPRRPUREUIRRIRIN 3
22 Glanville®s WOTK oo 4
1123 Ganapathi’s WOTK: Lt 4
1.1.2.4 Production-Quality Compiler-Compiler Project ... ererer e o 4
LE2S Fraser’s Work oottt e res e 5
LR26 Donegans Work oo 5
EL2T Lamb’s WOrK oo et 5
£.2 Overview of this Research ... a4 ke er et a e en e fr
3 Guide 1o the DHSSErtation e oo eeeeeroe v SRR PRI 6
2. Fhe Intermediate EANZUBEE oot e Y
2.0 The Union Approach e USSR 9
2.2 The Intersection APProacil ..ot e e e 10
2.3 IDESCUSSION i e et ettt r e e i
30 Machine DESCriPLONS e et i3
31 Instruction-Set PrOCESSOT i v er e e e e 13
3.2 Maching IXBSCIIPLIONS oot eee e sttt s 14
3.3 A Sample Machine DeSCrIPUON ..ot 15
3.4 Compurison With Other WOEK ..o e oo 18
Fa0 Glanville s Work e T 18
b 2 Ganapathis WOrK i Ik
FA4.3 Cattell’s WOTK it 19
3.4.8 COMPAFISON ooctitiritiiesitie et ee et et 19
45 TRE COAE EXPARGET oot Ry
A1 Form RUIES i e e e 21
4.2 Valid Instruction RULC ..o 21
A3 Label RUIE et 22
4.4 SHC EITECt RUIE oot 2
4.5 Register Rules and Guidelines ..., et 22
451 Register AIFOCALION oo e 22
4.5.2 Machine Register RUIC ..o 23
4.5.3 Annotation Guidelies ... e 23
4.5.4 Intermediate Result Guidelings ... 23

i

0.

ThEe OPLMIZET = PO oot eeeeae et see e s a et s st et . 25

3.1.2 Redundant Load EHMINAtion ... 26
5.1.3 Common Subexpression EHmination ... 27
S.04 Dead-Variable EImination ... 2%
505 WiIndow DCIIRITION oo 2%
500 ARROERLIOR Lo i oottt e et e e 29
SLT IMPlementation .o ettt 29
5.2 COMDINET et e e e et et ne s e e ettt e e ens 30
S.20 PAITE oottt e ettt et 30
U522 TrIpIES e e kY
23 LAbels ettt a et ae e 32
524 BranChes ..ottt ettty 32
5.2.5 Branch Chaing .ottt et 33
5,26 SIMPHIICALIONS Lottt et ees e .
327 Implementation ..o
5.3 ABSIEIET it
5.3.1 Register Assignment :)
332 ASSEIMIDIY oo ettt .
533 IMpIEMEnTAtION .ottt et e K
5.4 RESUIS oottt ettt ettt e et X
Results and ConClUSIONS L.ttt 9
6.1 COMPATISON oo e e e 19
6L Code QUality e m
6.2 Compiler SPeet oot 46
6.1.3 Machine Applicability ... R TIOTIO et 46
614 Tmplementation EROrt e e 40
6.2 Areas for Further Reseiiel oo 46
0.3 COntriBULIONS oo e v 47
Appendix At The Y Intermediate LANZUAEE ..o 49
Appendix Br o POP-1T Machine Description oo 35
CAppendix O . DEC-10 Machine DesCriprion ... oo e 57
Appendix P Cyber 175 Muachine Deseription 6ol
Appendix E: - 8080 Machine DICSCHIPLON Lo 03
Appendix Fr The Caching AlZOrithIn .o 6S |
Appendix G: Benchmark Programs ... e e e e 67
EASUOERCICTENCEN i et T

ACKNOWLEDGEMENTS

The work described in this dissertation was supported by the National Science Foundation under
Grant-MCS-7802545, :

I would like to thank the members of my committee, Chris Fraser. Ralph Griswold. and Dave Hanson
for their support of this rescarch. Special thanks go to Chris and Dave for their constant support and
cncouragement. My advisor, Chris, deserves special mention for all the time and cffort he put into this
work. No matter how busy he was, he always found time to discuss problems and solutions.

Finally, I would like to thank all my friends for their support, especially Audrey.

Chapter 1

Introduction

In the last few years there has been a great deal of research dlrected at automating compiler
construction, particularly the code generation phase. There are several reasons for these efforts:

I. Because of advances in hardware design and construction, new machine architectures arc being
produced at a surprising rate. Unfortunately, compiler and software development has not progressed
at the same rate,

2. Despite lower hardware costs and increased machine speeds, high-quality. code is still desndblc
[WurBl] ‘

3. Advances in programming langhage design have led to large, complex languages that need the
support of good compilers,

4. The early phases of compiler construction, lexical analysis and syntax analysis, have been smccsstui!y
automated.

Automating code generation is difficult because there are many machines each w1th dilferent
characteristics. There are one-, two- and threc-address machines, general-register machines, stack
machines. array processors, and composites of these. Evén among machines of the same architectural
class there arc major differences. [Instruction sets differ, and each architécture has its own idiosyncrasics:
cortain registers have restricted uses,-division must be done in even-odd register pairs, some instructions
set condition codes while others do not, etc. This makes it difficult to decide which instructions to use to
produce the best code. [n the past. code generators used extensive case analysis to generate optimai code
sequences. Such case analysis is ad hoc and difficult to validate.

The goal of this research has becn development of a retargetable compiler for a high-level language
that produces production-quality code. This has been achieved through a retargetable peephole optimizer
[McKE65] that automates most of the case analysis typically performed by code generators. A$ a vehicle
for testing and validating the ideas of this dissertation, a compiler for a high-level programming language
has been developed that can be retargeted for a new machine with two to three days of effort.

E.1 Previous Work

There are several criteria for evaluating automatic code gencration technigues and portable compilers.
These are;

t. Speed

2. Quality of code

3. Machine applicability
4. lmplementation cost

For the code generator to be practical, it must produce code at a reasonable rate. Few users will tolerate
a slow compiler. Similarly, few users tolerate inefficient code. A technique that accommodates a wide
variety of architecturcs is better than one that handles a ‘restricted set. Simitarly, the less effort to retarget
the compiler the better,

The only way code generation techniques can be accurately evaluated is lhroug.,h extensive use. O the
work reviewed below, only the BCPL, Pascal, and the Portable € Compiler have been extensively tested.

It is surprising that- although many code generation techniques are presented as being applicabic to a wide
range of architectures, usually only one or two machines are presented as evidence of this.

Previous work on producing retargetable compilers and code generation falls into two categories:
intermediate language approaches and table-driven approaches. .

‘LL.1 Intermediate Language Approach
Some of the first successful work in developing portable software used intermediate languages. These
works are based on an earlier effort called UNCOL [Stro58. Ster6l}. an acroaym for UNiversal
Computer Oriented Language. In the UNCOL approach, compilers emit machine-independent UNCOL.,
which is translated to machine-specific object code. To retarget the compiler for a new machinc, the
program that translates UNCOL to object code is rewritten, This project failed because it was too
difficuit to represent a wide variety of architectures and languages in a single intermediate language.
Closely related to the intermediate language approach is abstract machine modeling [Nrwr72]. An
abstract machine along with a language that describes the basic operations and data types of the muchine
. are dcyclbpcd. The language is often called an intermediate language. SIL, the SNOBOIL4
Implementation Language [Gris72), is used to implement a portable version of SNOBOL4 [Gris71].
AIM1 [Newr72] and STAGE2 [Wair73] were used to implement a BASIC [Dary70] interpreter. lanus
{HADLT7E] has been used to implement a set of machine-independent mathematical software. ‘

B Intermediate languages have also been used to develop retargetable compilers. The code gencrator of
‘the compiler produces code for an abstract machine. This code is then translated to assembly language
for the target machine, typically through macro expansion or a similar process called code expansion.
BCPL and Pascal are two typical languages for which this approach proved successful, '

1.1.1.1 BCPL

BCPL [Ricu7l, Ricu77] is a relatively simple systems programming language that has one type, the
binary bit pattern. The BCPL compiler transiates BCPL to QCODE.. the assembly language for the
BCPL abstract machine. Because there is only one type, OCODE is relatively simple and has only 56
operation codes (‘opcodes’).

BCPL is moved to a new machine by rewriting the code expander that translates each OCODE
statement into a sequence of assembly language instructions for the target machine. This produces an
inefficient version of* the compiler. More sophisticated code expanders that translate QCODE into
assembly language can then be written in BCPL. These new expanders can perform optimizations to
produce mare efficient versions of the compiler,

te requires three to five months of effort to move BCPL to a new machine if the implementor has no
previous knowledge of BCPL [Ricu71]. Part of the difficulty is that several versions of the QCODE 1o
asscmibly language translator had 1o e written before an efficient version of the compiter was produced.
While OCODE is well suited to exceuting BCPL on an abstract machine, it is not suited (o real machines.
Nonctheless, BCPL, is a successful portable compiler and has been transferred to aver ten machines.

1.1.1.2 Pascal

) The Pascal-P compiler [Nori§1] is a retargetable compiler for a “standard subset® of Pascal [Wiri75].
The compiler is written in the subset of Pascal it compites. It emits object code for a hypothetical stack
machine. The assembly language for the stack machine is called PCODE. To retarget the compiler for a
new machine, the code expander must be rewritten. Pascal-P takes longer to retarget than BCPL. Six
months {Brrr78] scems to be a realistic figure. This is probably due to Pascal having more types than
BCPL which is reflected by the size of the abstract machine’s instruction set. Pascal-P's PCODE has 125
opeodes (when types are included) as opposed to OCODE’ 56.

There are several other retargetable Pascal compilers. These implementations are more complicated
but capable of generating more efficient object code. One part of the compiler that is more complicated is

-

the intermediate language. So that it can be efficiently mapped to the target machines, special purpose
opcodes have been added to the intermediate language [Niis79]. The UCSD Pascal compiler [Stit 78],
PASCALIJ [Hann78], and the VU Pascal compiler [TAne80] are examples. To further increase the
efficiency of the generated code, optimizers for the hypothetical stack machines assembly language are
often included as part of the distribution package [PErk79, TaneSO0].

1.1.1.3 MACRO SPITBOL

While BCPL and Pascal achieve portability by compiling themseivcs and generating an intermediate
language, MACRO SPITBOL [Dewa77} takes a different approach. The compiler, the interpreter. and
system routines are written in a machine-independent macro assembly language, called MINIMAL. The
MACRO SPITBOL system is retargeted for a new machine by wr:tmg a transiator that transforms
MINIMAL statements to the target machine’s assemb!y language.

!mp]ementdtaons of MACRO SPITBOL exist on a wide range of machmes The PDP-{1. DEC-10,
CDC Cyber series, and Burroughs B1700 are a few of the machines that have been accommodated.
MACRO SPITBOL is unique in that the retargeted code can be faster than code that is tailored for the
specific machine. Benchmarks of a MACRO SPITBOL implementation for the DEC-10 and SITBOL
[Gimp73], a DEC-10 specific implementation of SNOBOL4, reveal that MACRO SPITBOL runs faster
than SITBOL [Gris77].

1.1.2 Table-driven Approach

Table-driven approaches to code gencratton modularize code generation by organizing code generation
information in tabular form. The main differences in table-driven methods are how the tables are built
and how the tables are used to generate code. This approach to code gencration ofters the same
advantages as table-driven lexical and syntax analysis; ease of use, rchiability, enhanced portability, and
modularity.

1.1.2.1 Portable C Compiler

C [Kern78] is the systems programming language for the UNIX operating system [Roc74]. The
Portable C Compiler [Joun78] uses many of the ideas of a previous work by Snyder [Snyn74]. The goals
of this work coincide with the goals of this research. These are to produce a portable compiler that is
easily retargeted, produces good code, and is fast enough to be used as a production compiler.

The early phases of the compiler are mostly machine-independent and are implemented using many of
the tools available with the UNIX operating system [Jonn80]. To simplify code generation and show that
it is correct, Johnson abstracts the relevant features of code generation into two models. The expression
tree produced by the parser models the computation to be performed, while which registers are busy
wight be the model of the machines state. Code pencration is simplified (o Ll:nmn% the proper
transformations’ to pc:[mm on the expression tree to reduce it to a single node.

A transformation is a rewriting rule for the expression tree. Transformations arc organized into
templates that represent the change to the cxpression tree, the associated change to the machine state. and
instructions that implement those changes. Templates are organized in a table so that transformations can
be rapidly matched to expression trees. If the machine state and the expression tree are correct, and i the
semantics of the transtormation to the expression tree match the semantics of the instructions emitted, the
generated code must be correct.

This code generation method is both practical and flexible. The compiler has been implemented on
« ver a dozen machines including the Honeywell 6000, IBM 370, and Interdata 8/32 [Joun78]. 1t produces
good code and is used as a production compiler.

The compiler is retargeted by writing templates for the new machine. Johnson reports no statistics on

lhow long it takes to retarget the compiler. Building new templates is an ad hoc process. and the quality
of the code and the speed of the code generator depend on the design of the templates.

1.1.2.2 Glanvilles Work

One of the newer and more promising approaches to automatic code generation is due to Robert S,
Glanville and Susan L. Graham [GLANT7, GuANTS, Grau80] Their technique involves a table-driven
algorithm that translates a low-level intermediate representation of a program into assembly language for
the target machine. The tables are constructed from a description of the target machine’s instruction set.

Building the code generation tables is similar to building parse tables from a grammar. In fact. the
theory of context-free parsing was used in developing the algorithm [An072]. As a result, the algorithm is
fast-and easily understood., ‘

The code generator produces locally good code. In his dissertation. Glanville discusses code generators
for two machines, the PDP-11 and the IBM 370. Although these machines are quite different. it is
difficult to evaluate the ability of the algorithm to accommodate a wide variety of machines. Glanville
expects _to have difficulties with ‘awkward’ architectures such as the CDDC Cyber series machines.

A more serious problem appears in the machine descriptions. Because context-free parsing techniques
are used to construct the tables. it is necessary to describe each instruction with every addressing mode.
For example, the PDP-1! has eight word-addressing modes. In some double-operand instructions every
mode can be used in the source and destination. For a double-operand instruction such as mov there are
64 possible addressing modé combinations. This means that a full description of the PDP-11 must have
64 patterns to describe the mov instruction. Complete descriptions are large and tedious to write.

1.1.2.3 Ganapathi’s Work

Ganapathi’s work [GaNaB0] is similar to Glanville's. While Glanville uses LR grammars, Ganapathi
uses attribute grammars [Knur68]. The attributes are used to pass code generation information up the
tree. This added information can be used to generate better code and perform machine-dependent
optimizations.

Ganapathi produced code generators for the PDP-11 and the VAX-11/780. These machines are so
similar that it is impossible to evaluate the ability of the technique to accommodate various architectures.
_The machine descriptions are very long and hard to understand. Ganapathi’s PDP-11 description is seven
pages tong, whereas Glanville's is only three pages. Similarly, Ganapathi’'s VAX-11/780 description is {1
pages long. ‘ : :

Ganapathi uses the attributes to perform many machine-dependent optimizations, These optimizations
are hand-coded into the semantic actions of the machine description. Consequently, the quality of the
code is somewhat better than that of the methods reviewed thus far.

1.1.2.4 Production-Quality Compiler-Compiler Project

The Production-Quality Compiler-Compiler (PQCC) project [Leve80] is somewhat more ambitious
than the previously mentioned works. PQCC’s goal is to automate all phases of compiler construction.
The practical result would be a truly automatic compiler generation system. The project has focused on
two areas of compiler writing: code optimization and code generation. Of main interest here is the work
on code generation,

Code selection in the PQCC project is performed by the code generator generator developed by Cattell
{CAT178, CATT79, CATr80]. Code generation is similar to the technique used in Johnsons Portable €
Compiler. Templates are matched against a tree representing the program. The work differs from

Johnson's in that templates are gencrated automatically from a machine description.

Templates are generated using heuristic search methods borrowed from artificial intelligence [Ernsé9].
The heuristics cannot guarantee that the best instruction sequences will be found. or that any sequence

will be found at all, but as a practical matter, the heuristics seem to be quite effective. Code generation is
extremely fast; Cattell reports producing 2000 instructions per second on a DEC-10.

‘Many code generation issues are not dealt with by Catteli’s code generator. Such issucs as register
allocation, register assignment, temporary assignment, and storage assignment are dealt with by other
phases of the compiler. This spreads machine-dependent information throughout the compiler. Work is
in progress by the PQCC group to build generators that derive this machine-dependent informiation from
machine descriptions [Levig0],

1.E.2.5 Fraser’s Work _

Fraser [Fras77] describes a4 code generator generator whose organization is sirilar to Cattells, Both
methods use machine descriptions to gencrate templates. Frascr's approach differs from Catteli’s in the
manner of template generation.

Cattells approach is o formalizé code selection, while Fraser uses human programming knowledge to
aid code selection, Each approach has strengths and weaknesses. Cattell [Ca1178] notes that possibly the
best approach would be a combination of formal methods along with human-knowledge information to
ald code selection when formal methods fail. Fraser implemented a experimental version of his code
gencrator generator and code generator. The method produced locally ;_,ood code but was very slow,

1.L.2.6 Donegan’s Work

Doncgan {Done79] describes a language for writing code generators called CGGL. {prunnumui sea-
gulh). It extends his earlier work in this. area [Donk73]. This approach has clements of both table-driven
and intermediate language approaches. The compiler produces an intermediate language that is translted
to machine code by a code expander. The code expander is constructed from a CGGL. program that
describes the semantics of cach intermediate language opcode lor the target machine.

A finite-state automation that models code generation is constructed from a CGGI, program. lor
instance. data movement is expressed as finite-state machine transitions. Optimal code generation:
involves finding the minimal path frfom the start state to the goal state for cach intermediate language
opcode.

The code expander is realized by converting the finite-state automaton into a Pascal program for
generating code. Currently CGGL only handles simple architectures. Attempts to model more complex
machines, such as the CDC Cyber series, resuit in an explosion of the number of states in the finite state
automaton.. Donegan makes no statements about the speed of the code generators produced from CGGHL
programs or how long it takes to produce a code generator. '

1.1.2.7 Lamb's Work

Lamb | LampBH] describes o set of tools that aid the mnxmu,lsnn ol peepliole optimizers. A peephale
optimizer replices poor code sequences in the object code with better ones. For example, one common
peephole optimization is the replacement of pairs of instructions with a singlcton that has the same cffect,
Lamb uses a pattern language to describe poor code sequences and their :cphau,mcnts. The language
resembles assembly language with the capability 10 specify arbitrary patterns und conditions necessary for
the replacement to occur. | These patterns are converted by a transktor to subroutines in the
implementation language. BLISS-10 [Wu1+71]. The subroutines are calied by a sct of speciafized patiern-
matching routines, The optimizer is retargeted by writing patterns for the new machine.

Writing patterns is an ad hoc process. Unoptimized generated code is scanned for poor code
Cagments. Patterns that should be included may be omitted if they do not appear in the scanncd code
samples, A more critical problem is that the person who writes the patterns must ensure that patterns
maich only when appropriate. Failure to do so can produce incorrect code. Currently an optimizer for
one machine. the VAX-11/780, has been implemented. Statistics for this machine show the optimizer to

be reasonably fast. As more machines are accommodated, the technique’s flexibility will become easier to
evaluate. ‘ -

1.2 Overview of this Research

This work contains elements of both the intermediate language and table-driven approaches. It differs,
however, radically in its approach to achieving its goal of production-quality code. Most of the
approaches described above use the traditional model of compilation consisting of five phases [ArOS0]:

¢ lexical analysis
® syntax analysis
& semantic analysis
code optimization
» code generation

Typically, the code optimization phase attempts to transform an intermediate representation of the source
program into one that is faster, or smalier, or both. Code generation translates the optimized intermediate
representation into target-machine code. B

- This research modifies the model of compilation by reversing the last two phases: code optimization
and code generation. This has several effects. Code generation is simplified to a naive translation of the
source-language program to machine code. The code optimization phase transforms the naive machine
code produced by the code generator to production-quality machine code.

Code optimization is also simplified. All optimizations performed consist of peephole optimizations
on a maching-dependent representation of the program. This research shows that many optimizations
© typically performed at a higher level are subsumed by a few machine-independent peephole optimizations.
In addition, machine-level optimizations are shown to be more thorough than their high-level
counterparts.

A block diagram of the organization of the compiler appears in Figure 1. The first phase of the
compiler is machine-independent and produces intermediate code for an abstract machine. The second
phase, called the code expander (back end), translates the intermediate language to target machine code.
It is machine specific and must be rewritten for each new machine. The last phase optimizes the machine
code and outputs assembly language. The optimizer, called PO, extends earlier work by Fraser [Fras79].
PO combines instructions by symbolically simulating pairs and using a machine description to verify that
the result is valid. PO is retargeted by writing a new machine description. The compiler has been
retargeted by the author for several machines in as few as three days. The compiler produces code that is
as good as or better than all of the previously mentioned methods except PQCC.,

1.3 Guide to the Dissertation

This dissertation is organized in much the same way as the compiter. Chapter 2 describes the
intermediate languagé produced by the compiler. Chapter 3 introduces the register transfer notation used
to describe instructions and explains how machines are described. Chapter 4 describes the phase of the
compiler that translates the intermediate language to code for the target machine. Chapter 5, the bulk of
the dissertation, describes the retargetable peephole optimizer, PO. Chapter 6 reviews the results of this
work and outlines areas for future research.

Source Code

1

Compiler

y

Code Expander

l

Optimizer

l

Assembly Code

Figure 1. Compiler Organization

Chapter 2

The Intermediate Language

Mlacllinewindependence in the compiler is achieved through abstract machine modeling [Korng0.
NEwr72) The abstract machine is designed to support the Y programming language [Hans81], but it is
sufficiently general so it could be used to implement compilers for other languages such as C, Pascal, or
Ada [lcur79] with minor modifications.

The abstract machine interprets a simple postfix code. There are no general registers. and all
operations are performed on the operands on the stack. It supports three types: integer, real, and
character, and arrays of these types. There are three addressing modes: focal, global, and paramcter.
Scalar parameters are passed by value. Arrays are passed by reference. Addresses are treated as a spectal
type, and there is a set of operations for address calculations. Other mechanisms, such as passing arrays
by value, can be built upon this foundation. ' ‘ '

2.1 The Union Approach

Conventional abstract machines might be called ‘union’ machines because their instruction sets are
collections of features from the target machines needed to support the target language. lor example, il
any target machine has threc-address operations, and il it is desired that the generaled code use them
when possible, these three-address operations would be included in the instruction set of the abstract
machine. This is necessary because it is difficult to exploit three-address target machine instructions when
the abstract. machine has only two-address instructions. As with most software design processes, trade-
offs are made between convenience and efficiency. The result is an abstract machine that closely parailels
the real machincs in terms of data types, addressing modes, and types of instructions. The intermediute
language is large, but it can effectively use the instruction sets of most target machines.

There are several problems with this technique. Intermediate languages that are developed using this
approach tend to be unwieldy. Many machines have special-case instructions that are more efficient than
their, general counterparts. To make effective use of the target machine’s instruction set, these instructions
are often included in the intermediate language. This makes the intermediate language large. and
consequently the code expander is also large. '

Another problem with the union approach, which is shared with many compiiers, is that the code
generation phase is complicated. 1n order to generate code to use the abstract machine’s special case
‘instructions, the code generator or code expander must do cxtensive case analysis. In order to cmit a
clear instruction instead of the more general store instruction, for example. the code generator or
expander must check if the value being stored is zero. '

A third problem with the union approach is that inefficient code is produced. For example. many
‘machines have a condition-code register that is set to reflect the result of the last operation. Few abstract
machies have explicit operations on the condition-code register, making it difficuit for the compiler or
cxpander to take advantage of the condition code being set by a previous operation. For example the
code fragment,

=] .
if (i == 0)

‘ might be translated to the following intermediate code

-9

store i store jin i
cmpne i,01 jump to label i1 if i is nonzero

il-ab i define label 1
This code might be translated by an expander into the following PDP- 1 assembly language.

mov i move value of jto i
cmp i #0 compareito 0
bne H jump to label 11 if not equal

n:

Comparing the value i to zero is unnecessary, since the condition code register is set when j is stored ini. Such
situations are typically remedied by peephole optimizers [Wuirr75].

Finally, a fourth problem with the union approach is the difficuity of adding new machines with new
features to the set of target machines. To do so may require redesigning the abstract machine so that
code generators can take advantage of the new features. For example, the VAX-11/780 has instructions
for manipulating queues. Several years ago such operations were rarely included in machine instruction
sets. To exploit new operations, the abstract machine must be modified to include them. Because it is
difficult to predict new machine features, union abstract machines are unstable.

2.2 The Intersection Approach

An alternate approach to abstract machine design is to include only the most general source-language
operations required to support the language. This method might be called the ‘intersection” approach.
White the union approach is motivated by the source language and target machines, the intersection
approach is motivated mainly by the source language.

For example, many machines have ‘clear memory’ instructions, but they are not included in an
intersection machine’s instruction repertoire. This is because there is a general way to clear a memory
location—load a zero and then store it. Similarly, the abstract machine has add and subtract instructions.
but not increment and decrement instructions. Consequently, intersection abstract machines have smaller
instruction sets than union machines. In general, intersection intermediate languages provide only one
way to generate code for any source language operation.

The generated code for the two kinds of abstract machines for the code fragment
=i~

is shown below.

Union Machine Intersection Machine
pushi i push value of i pushia i push local address of i
dec decrement i pushla i push local address of i
popi i store value back pushi load an integer using
' into i ' address on top of stack
‘ pushic 1 push a constant 1
or subi subtract two integers
, popi store integer on top of stack in
dec | o location pointed to by stack = |

Constructing an abstract machine using the intersection approach has several beneficial eltects.
Because the intermediate language is small, the expander is small, simplifying its implementation:

The absence of special-case instructions simplifies the code generation phase of the compiler. In the

- 10 -

example above, the union machine requires the code pencrator to check the operands of the subtract
operation so it can emit a decrement instruction. Intersection machines do not require such case analysis,

T'he‘only detrimental effect of the intersection method is the poor quality of the generated code. 1t
each line of abstract-machine code in the above example is translated to one line of target-machine
assembly code. the union machine produces one or three instructions, the intersection machine, six. Both
code fragments nced peephole optimization, but the intersection example needs extensive optimization just
to reduce its size to that of the union example. This optimization, however, is shown in Chapter 5 to be
manageuwble. '

2.3 Discussion

T'he abstract machine used in this research is an intersection machine. [t has 99 opcodes. In contrast,
EM-1. the union intermediate language for the VU Pascal compiler, has 219 opcodes [TantB0] A
complete list of the abstract machine instructions along with a description of their operations appears in
Appendix A,

The abstract machine designed for v supports a broad range of machine architectures. Cross-compilers
that use the abstract machine exist for the PDP-11, DEC-10, the CDC CYBER series computers. and
intel’s 3080 microprocessor. _

Certain architectures seem better suited to the Yy abstract machine than others. Byte-addressable
machines with stacks are particularly easy to accommodate. The abstract machine is more dilticult to
map onto machines with no registers or with irregular register sets such as the Intel’s 8080 or the MOS
Technology's 6502, but such machines can be accommodated.

To illustrate the case of generating code using the v intermediate language, two examples of source
code along with the intermediate code produced by the compiler are shown below.

code generated fora=hx ¢+ 1

pushla a push address of local variable a
pushla b push address of local variable b

pushi toad an integer using address on-top of stack

pushla ¢ push address of local variable ¢

pushi toad an integer using address on top of stack

muti multiply two integers

pushic 1 push a constant 1

addi add two integers .

popi store integer on top of stack in location pointed to by stack - |

code generated for () 1 = inlj]

pushla | push address of local variable |
pushi’ get value of |
pushic 0 push constant 0 .

-cmpie N compare and jump to label 11 if equal
pushla i push address of local variable i
pushla] . push address of local variable j
pushi ~ get value of §
pushla in push address of local variable in
index .2 convert in and index | to an address where in’s element size s 2
adda -2 add offset of ~2 to address
pushi get array value
popt store vitlue from top of stack into i

llab i

-1 -

¥

Chapter 3

Machine Descriptions

PO is retargeted for a new machine by providing“a new machine description. A machine description
describes the syntax and effects of each target machine instruction, From the machine description. a
recognizer and transducer are automatically constructed. PO uses the recognizer to check that a register
transfer represents a valid target machine instruction. It uses the transducer to translate the intcrnai
representation of instructions into the target machine’s assembly language.

3.1 Instruction-Set Processor N ,
The effects of instructions are described using I1SP-like notation [Beii 71} For instance, the PDP-10
instruction ' ' .

add 3,loc
is c-xprcssed in ISP as
1[3] —]3] + m[loc]:
which indicates that the contents of memory location loc is added to register 3. The register transfer
PG — if r[3] = miloc] then PC+1 else F’C;T |
!'epres.:t:lus the DEC-10 instruction
camg 3.loc

The instruction skips the next location if the contents of register 3 exceeds the contents of memory location
loc. PC denotes the program counter, and is the only name that has special meaning to PQO. The program
counter is assumed to be incremented automatically, so this effect need not be made explicit,

Many machine instructions have multiple effects, Such instructions may contain several regisier
transfers. For example, the DEC-i0 instruction

aoje 5,L1
is expressed in ISP as
r{5] = r[5] + 1; PC — if.r[5] + 1 = 0 then L1 else PC;
The first register transfer specilies that register 5 is incremented: the second specifies that if the result is sero a
jump is made to label L1, otherwise execution continues with the next instruction, The “+ 17 s needed in the
second register transfer because all register transfers are done in parallel,
Details irrelevant to the machine description may be omitted.” For example, the PDP-11 instruction
tstr1 '

is expressed as

*oFhe actuad implementation syntax differs slightly.

- 13-

NZ—r[1]1 70

where NZ represents the condition-code register. The contents of register | are compared to zero and the
condition code is set accordingly. Code generators do not need to know how the condition code represents the
result of comparisons, so the semantics of the *?° operator need not be specified, The DEC-10 ibp instruction,
which increments a byte pointer, performs several complicated operations. Various fields in the byte pointer
are manipulated, based on the size of the byte. Such detail is irrelevant to PO, which need know only that a
memory location is being modified in the same way other byte pointer instructions manipulate them. Thus,

ibp loc
is expressed as
m[lroc} - tbp{m{toc]);

“which specifiés that the byte pointer at memory location loc is incremented. Similarly, the ‘load byte’
instruction : :

idb 3,lo¢
is expressed as
rf3] — ldb({miioc])

From the ISP for these two instructions, it is easy to see how the ildb instruction {increment and load byte)
should be expressed. Composing the register transfers yields . :

r{3} — Idb{ibp(mfioc]))

which describes the instruction
ildb 3,l0c

3.2 Machine Descriptions

A machine description is a grammar for syntax-directed translation between ISP register transfers and
the machine’s assembly language. Because PO is retargeted for a new machine by rewriting the maching
description, machine descriptions have been kept simple to write. Typically, a machine description takes
‘about a day to write by someone familiar with the target machine.

Awkward machine features can be disguised by the machine description. Muany microprocessors have
addressing modes that can only reach nearby words. These addressing modes are valuable because they
are faster and take less space than their general counterparts. Assemblers often offer pseudo-instructions
so the user does not have to decide which addressing variant is appropriate. Machine descriptions can do
the same thing by allowing all addressing modes to any address. The machine description or the
assembler can translate them to the appropriate addressing mode depending on the distance of the
instruction to the source or destination. Similarly, many microprocessors have conditional branches that
can only reach nearby locations. The machine description can disguise this feature by ailowing
conditional branches to arbitrary targets and let the assembier translate them to two-instruction sequences
as necessary.

The machine description need not include every instruction in the machine’s instruction sct.
Instructions that PO has little chance of replacing (e.g. subroutine jump instructions, block moves. and
1/ O instructions) may be omitted. Instructions that are never generated may also be omitted. Experience,
however, has shown that it is difficult to predict the transformations PO will make on the generated code,
PO can do its best job when it knows 4ll instructions except those it has Hittle chance of replacing.

A machine description is divided logically into two parts. The first part describes the maching’s
addressing modes, and the second part describes the instructions. This division provides a natural way to
describe machines. The addressing modes are described without regard for the instructions that use them.
The ihachine operations and the addressing modes are combined to describe the machine’s instruction sel.

. ld-

Structuring machine descriptions in this way produces concise, understandable machine descriptions,
Machine descriptions usually comprise two to four pages.

‘In this work, the recognizer and transducer are realized by transforming the machine description into a
grammar for Lex {LISK79] a lexical-analyzer generator. From its input, Lex generates subroutines that
implement the recognizer and transducer. Because Lex recognizes only regular cxpressions, the machine
must be described using regular expressions, Most machines, however, have context sensitive components
in their instructions. For instance the DEC-10. add instruction can be described as

*

RG -~ RG + M;

where RG denotes a register and M denotes a memory locdtion. When a nonterminal appears twice in a
production, the strings matched by the patterns must be identical. In the above example, hoth instances of RG
must match the same string.

At times it is necessary to override the context sensitivity checking periormed by the recognizer. This
can be done by defining several instances of the same pattern each with a different name. For example.
the description of the CDC Cyber instruction for moving one X register to another is

x[RN1] — x{RN2];

Although RN1 and RN2 (register numbers) represent the same pattern, they need not match identical strings.

33A Qample Machine Descﬂptmn

Portions of the machine description for the PDP-1{ are given below. Following, each part of the
description is a explanation of the description. To minimize detail, only a portion of the machine
description is given. : ' '

‘RN [0-7H |
XDENT (({"_"|"L.")[A~Za—20~9_]H)}(~?{0~9}+)
IDENT XDENT{" "[-+]" "XDENT)»
LABEL "L"[LO-9]+

!'hls ‘part of thc description defmcs regular express:ons used throughout the description of the
addressing modes. The first definition describes a register number: a sequence of onec or more digits
between 0 and 7. Le. an octal number. The second definition describes a component of an identifier: an
" underscore or a capital L followed by one or more letters, digits, or underscores. or a number preceded by
an optional negative sign. IDENT defines an identifier: an XDENT followed by 7cro or more occurrences
of the operators + or ~ followed by a XDENT. The last definition is for a label: a capital L followed by u
sequence of one or more Ls or digits; A description of the addressing modes follows.

- 15 -

REG = r{RNj = RN

L8 = LABEL = LABEL
= ‘ (] = $0
= = §1

n = {DENT = SIDENT

-WORD = m[iDENT] = IDENT

. = m[r[RN] + IDENT] = IDENT(rRN)

= mr[RN]++] = (rRN)+
= mf—r[RNI} = —(rRN)
= mr[RN}] = (rRAN)
= mim{r[RN}++]] = K {rRN)+
= m{m{—r[AN]]] = +—(rfRN)
= mimir[AN] + IDENT]] = *IDENT{RN)
= m[m{IDENTI}} = «IDENT
= m{m[r[RN]}] = *(rRN)

REL = == = eq
= = = one
I = ge
= = = e
= < =t
= > = gt

SO s

Each line of the definition has three fields: the token returned by the recognizer if the register transfer
pattern is matched, the ISP syntax for the pattern, and the assembler syntax for the pattern. For
-instance, the first line defines a register: r followed by the register number in brackets. The corresponding
assembler syntax is r followed by the register number, When a register is recognized. the token RG is
returned,

If the first field is empty, the token returned is the string matched, as shown in the third line of the
address definitions. [n this case, a 0 is returned when a 0 is recognized. The assembler syntax field is aiso
optional, as illustrated by the definition of SO, the shift operator. There is no corresponding assembler
syntax so the field is omitted.

In the addressing modes definition, it is necessary to distinguish between a 0, & 1, and an 1D, The
pattern for 1D can be written so that it does not match a 0 or a 1, but that complicates the pattern. To
make things easier, the Lex rules for resolving ambiguous expressions are used.

1. The longest match is preferred.
2. Among rules that match the same number of characters, the rule given first is preferred.

Because the rules for 0 and 1 appear first, their tokens are returned instead of the token ID. Similarly.
rule 1 ensures that the token SO is returned when the characters << are encountered instecad of two
occurrences of REL.

The final part of the address definitions groups the previously described tokens and single characters
into classes: ‘

-6~

RG1 = RG

) RG2 = RG
 DSTW = REG| WORD.
_SACW = REG|ID|WORD|0]1

RG1 and HGQ are two instances of registers. DSTW is a register or a word, and SRCW s A register. an
identifier, a word. a 0, or a 1. Only tokens and single characters can appear on the right-hand side of these
definitions. These groupings allow concise definition of instructions by combining simllar addressing modes
and operators into single groups. .

The syntax for instruction definition is
instruction expression = instruction definition
Aninstruction (f({fff:ll'(ff)ﬂ is: |
action | §

[test condition:] action
[test condition:] action

y
whcrc brackets and:cate an optional field and | separate alternatives. Ellipses (...) indicate indefinite !LDLHU()H
oi items, Italicized words are nonterminals defined in the following paragraphs.

An instruction erpress.ron is the ISP representation of the instruction. Action’s are exceuted if their
associated rest condition is true. Test conditions are evaluated in the order they appear. A series of test
conditions can be thought of .as an else-if chain or a case expression, 1f 4 test condition s omitted, the
assoctated action is always exccuted. »

The simplest type of instruction definition is one that has no test Londauons and only one action. The
action is the assembly language to output if the instruction expression is matched. An instruction
expression matches the input string if it performs all register transfers requested, and the rest of its register
transfers perform harmiess functions. An example is the deecrrpnon of the PDP-11 compare instruction,
cmp. '

NZ — DSTW ? SRCW; = cmp DSTW.SRCW

Within test conditions it is possible to reference substrings of the input string that matehed
components of the instruction, expression.” For instance, the following machine description fragment
du‘mbes the PDP i1 instructions asr and ash.

RG - RG SO SRCW NZ — BG SO SRCW 2 0, = |

stremp(SRCW, “—1"): asr RG

ash SRCW.RG
fn this example, the test condition allows one in.s'{rum'(m'e.\',m-e.\'.s-fon o identify two instructions. H the shift
count is —1, then the asr instruction is matched, otherwise the more general ash instruction iy matched.

Test conditions may call system-supplied and user-supplied procedures. An example is stremp, which

is used whove to compare two strings; it returns true if they are equal. and false otherwise. The definition
of the multiply instruction, mui, uses several different user-supplied routines:

RG — RG » SRCWINZ —~ RG « SRCW 7 0; = |
lodd{RG) || Hispwr2{SRCW): ABCRT
Istremp(SACW, "2"): ast RG
pwr2{SRCW): ash SRCW,RG
mul SRCW,RG
}

Odd returns true if its argument is an odd-numbered register - 16-bit multiplication on the PIXP-1T must be

- 17 -

done in an odd-numbered register. 1spwr2 returns true if its argument is a power of two, Pwr2 returns true if
its argument is a power of two, and as a side effect converts its argument 1o the logz of itself. {t is used to
determine whether the faster shift operation can be used instead of a multiply.

The special action ABORT indicates that although the input matched the instruction expression, it
cannot possibly be a valid instruction, and that the recognition process should be terminated immediately.
An ABORT action must be the first action in an instruction definition, as shown in the description of the
multiply instruction. For example, 16-bit muitiplication must be performed in an odd-numbered register,
but if the multiplier is a power of two, it can be performed by a shift operation in any register. If neither
of these two conditions is met. the input is not a valid instruction and is rejected.

Machine descriptions are converted to input suitable for Lex by a machine description processor
- written in SNOBOL4 [Gris71]. Using regular expressions to describe machine instructions and Lex to
construct a recognizer and transducer is one successful approach to the problem of recognizing legal
instructions. A previous implementation [Davi80] used SNOBOL4 patterns and pattern matching to
recognize legal instructions. It was much too slow for production use. The speed of the optimizer hinges
on the recognition and translation process, Developing new notations for describing machine instruction
sets and concomitant methods for recognizing machine instructions is an area of further research,

. 3.4 Comparison with Other Work

Several of the works discussed in Chapter | use machine descriptions to achieve machine
independence. Since each miethod depends heavily on the descriptions, it is worthwhile to compare and
contrast the various description methods. The PDP-11 add instruction is used as a basis of comparison.

3.4.1 Glanville’s Work
Glanville’s description of the add instruction is:

r.1 v= (R rl r2) "add r.2.r1;

r1 = (+k1rel) “add $k.1,r.1

rl =R "add *k.1,r1";

A ==kt tknd) "add ri1,"k.1"

r2 ={t+t+kirir?) "add kK.1{r.1},r.2";

A ==t RI T+ +HRT 1 r2) "add r.2,kK1{r.1)";

A i (meb R PR R k2) "add k.2(r.2) k. 1(r.1)";
A ==tk rdl k2 H KT “add $k.2k.H(r.1)";

r.1and r.2 represent registers: k.1 and k.2 represent constants. Tis a unary operator that retrieves the value of
the memory location addressed by its operand. The assembly language instruction to output if the production
matches the input appears to the right of the production.

3.4.2 Ganapathi's Work
- Ganapathi's description of the add instruction is:

Word! — + Wordta Word!r istemp(ir) EMIT (I'add’ ia Ir)
—~ + Wordia Word!b GETTEMP(l'word’ tr)
EMIT (I'mov’ b In)
EMIT (I'add’ ia Ir)

t denotes a synthetic attribute that passes information up the parse tree. i denotes an inherited attribute, and it
passes information down the parse tree. The variables a, b, and r are attribute variables. Word represents the
word-addressing modes available on the PDP-11. Istemp is a disambiguating predicate that determines
whether the current production can apply. /stemp is passed the attributes of the destination of the addition
and verifies that it can be destroyed by the addition. GETTMP allocates a temporary, and EMIT outputs the
assembly language instruction if the production matches the input.

- 18-

3.4.3 Cattell's Work
“Cattell’s description of the add instruction is:

(; (— $1:D8T (+ $1:DST $2:5RC)) {— %N (LSS (+ $1:DST $2:SRC) 0})
(— %Z (EQL (+ $1:0S5T $2:SRC) 0))

DST and SRC represent the word-addressing modes available on the PDP-11. They are described in a
separate part of the description.

3.4.4 Comparison
T he descnpl:on used in this research is:

DSTW — DSTW + SRCWNZ — DSTW + SRCW 70, = add SRCW,DSTW

DSTW and SRCW represent the word-addressing modes available on the PDP-11. NZ represents the condition
code register. The assembly language instruction to output if the instruction expression matches the input
follows the "=

This description is somewhat easier to read than the others because it uses infix notation instead of
prefix. Ganapathi’s description reguires that the user implement the disambiguating predicates and
actions [or each machine. While this gives this method flexibility in performing machine-dependent
optimizations, it complicates writing descriptions.

Glanville's description is substantially longer than the others because the addressing modes have not
been factored out of the instruction definition.

Both Glanvitle's and Ganapathi’s descriptions are incomplete in that the setting of the condition code
is not deseribed. in Glanvilles case, this means that code cannot be generated that performs an addition
“solely for the side effect of setting the condition code. Ganapathi has a separate mechanism. that scans for
instructions that are only used to set the condition code. If it sets the condition code exactly as the
preceding instruction, the instruction is suppressed. Since his description of the add instruction does not
specify that the instruction sets the condition code, this information must come from some other source,

The description method used in this research provides a simple. yet robust mecthod of descrihing
machine instructions. Uninteresting details of the machine’ architecture can be suppressed. while
~ complicated but necessary details can easily be described. Machine descriptions for the PDP-11, PDP-10.
CIXYC Cyber series machines, and the 8080 appear in Appendices B, C, D, and E, respectively.

-19-

Chapter 4
The Code Expander

The code expander translates the intermediate lariguage produced by the code generator into register
transfer lists (‘RTLs’) for the target machine. Because the code expander must be rewritien to retarget the
compiler for a new machine, it has been kept very. simple. Nevertheless, it still translates the intermediate
language into RTLs in a way that supports the final goal-—production-quality code.

The remainder of this chapter describes rules and guidelines that have been adopted to simplify the
code expander and provide input to PO that results in high-quality code. A rule must be rigorously
observed. Failure to observe a rule can result in generation of erroneous code, Guidelines are suggestions
and hints from an experienced user. They can be ignored. but code guality may suffer,

4.1 Form Rules

‘Fhe expander produces a series of records as output, some of which can be ignored by PO. Each
record has four fields: a sequence number, a label, a RTL, and a dead-variable list. All but the first of
these ficlds may be empty. '

The sequence number is a unique integer that PO uses to construct pointers into the fist of RT1.s.
Labels should have a consistent format so that they can be easily identified. PO uses the RTI. and the
dead-variable list to dynamically discover the effects’ of “instructions. The dead-variable list contains
variables and registers whose contents are no longer valid, or of no further interest.

The expander can emit code that is ignored by PO by marking the record with a special tag,
Debugging code is an example: code that logs statement numbers, posts routine names, and outputs
diagnostic information. If PO deleted, rearranged, or modified such code, the user could be confused by
the unexpected absence, rearrangement, or modification of the expected output.

It is sometimes difficult to describe a machine operation using the ISP notation. These can be
expressed in assembly language and tagged so that PO ignores them. Other information, such as
assembler pseudo- operations used to declare variables. allocate space, and define constants are of no use
to PO and can bhe tagged

4.2 Valid Instruction Rule

The code expander translates each abstract machine opcode into onc or more valid RTLs for the
target machine. A valid RTL represents a legal instruction from the machine description, 1f the expander
emits an invalid RTL, the phase of PO that transiates RTLs into assembly language reports an error,

-21.

4.3 Label Rule

The code expander identifies labels introduced during code expansion to ensure that incorrect
optimizations are not made. Code expanders for machines with ‘skip’ instructions also produce code
expansion labels for the implicit target of the skip. The section on labels in Chapter 5 explains the effects
labeis have on the various phases of optimization.

4.4 Side Effect Rule

The code expander identifies all side effects caused by the expanded code. If all side effects of the
- penerated code are not identified, missing information causes PO to make erroneous changes to the
program. ' | ‘ ‘

- If an instruction causes the contents of a register to be destroyed, the code expander must pass this
information to PO. For instance, on the DEC-10 the bl instruction (block transfer) destroys the contents
of the register used to hold the source and destination addresses. On some CDC machines, the integer
divide - instruction is actually a macro that uses certain registers as scratch locations. Subroutine calls
often have side effects that must be indicated. Depending on the calling sequence, the contents of certain
registers may be destroyed by subroutine calls. The expander places such registers on the dead-variable
Hst so that PO knows their contents are invalid,

. 4.5 Register Rules and Guidelines
4.5.1 Register Allocation

The code expander maps the abstract machine onto the target machine. For stack architectures, the
mapping is straightforward. For general-register architectures, the mapping is more difficult because the
abstract machine is stack oriented. Conventional code expanders are complicated by allocation of the
target machine’s registers. They must decide which values should be in registers and what to do if the
available machine registers are exhausted. They also must maintain the status of the real machine
registers and temporary locations—which ones are in use and what they contain.

The policy adopted in the expanders used with PO solves all of the problems above. All values are
initially loaded into registers. This, however, would quickly exhaust the supply of registers.
Consequently, expanders assume that there are as many registers as needed. Each time a new register is
needed, one is generated, Once PO has reduced the number of registers needed and determined which
values should remain in registers, a later pass, described in Chapter 5, maps the pseudo- regxstcrs onto the
set'of real machine registers. ‘

All bookkeeping involving registers and temporary locations traditionally done by expanders is
eliminated. Mapping the abstract stack machine to a register machine requires simply simulating the
stack in the infinite supply of registers,

Fhe foHowing is a fragment of v code, the intermediate code emitted by the v compiler, and the R
emitted by the DEC-10 expander.

j=i — pushla j — r[16] ~ r[15] +|;
pushta i — r[17] —r{15] +
pushi — {18} ~ m[r{17};
popi = m[r(16]] ~ r[18};

Pseudo-registers are numbered starting after the highest numbered register of the target machine. Thi§ allows
the code expander to use the target machine’s registers if necessary. In the above example, register 15 is the

target machine register that serves as the pointer to local variables. The stack is simulated in pseudo-registers
16, 17, 18, ete.

-2 .

4.5.2 Machine Regtster Rule

A machine’s hardware reg:sters may be used in generatmg code (e.p. register 15 in the example
above). Before. a‘hardware register is loaded, it must be placed on the previous dead-variabie list. This
“ensures. that PO does: not rcarrange'thegenerated code so that the use of a hardware register is moved
pd'il a subsequent load. This lS unnecessary for pseudo-registers if the intermediate result guideline below
is foltowed: :

4.5.3 Annotation Guidelines

PO climinates redundant loads by tracking values that are loaded into registers, and when possible.
reusing a value in a register instead of reloading it.” Depending on the target machine, there may be
vdalues for which it is better t0 keep the load instruction. For example, on the CDC Cyber series
machines, zero need not be retained in a register, since register BO is always zero. These values, of course,
~ depend on the particular target machine. Determining this set of values is left to the expander. For

“instance, on the DEC-10 it is better to not allocate a register to a constant that is eighteen bits or smailer
since these are accessed inexpensively via ‘immediate’ mode operations, such as addi and movei. On the
PBRP-11, sixteen-bit constants can be accessed by indexing off the program counter via immediate mode
addressing. In this case, it is less expensive to keep a constant that is used several times in a register and
save the memory references, but this consumes scarce registers. For the PDP-I1 expander used in this
research, RTLs that load integer constants are annotated. Registers are saved for values that are
expensive to load or compute. ‘

Loads that should nor be deleted are annotated. Annotation is a simple marking of the RTL. Using
annotation. only affects the quality of generated code; omitting annotation does not affect the correctness
~of the code. Experience indicates that annotation is more important on some machines than on others.
For uampic the code ‘on the PDP-1] suffers considerably if annotation is not used. while code on the
I)FC 10 is sml guite good, because the DEC-10 has more registers.

4.5.4 Intermediate Result Guidelines

Often a value that is loaded into a register is destroyed by an operation that uses that value. Fhis is
true on many two-address machines. For instance, on the DEC-10 the add instruction destroys one of the
instruction’s operands, If that value is used later, it must be reloaded. Expanders can determine which
values can be destroyed only by looking ahead in the instruction stream. To avoid this complication and
stitl produce good code. all values and intermediate results are preserved. Later phases of optimization
determine which values can be destroyed. A small example clarifies this guideline. Again there s a v
code frugment. the intermediate code emitted by the v compiler, and the RTLs generated by the PDI>-11
expander, '

j=i+1 —~ pushta i ~ r{8} - r[5]:
‘ r[8} — r(8] +j;
pushla i - r[9] ~ r[5];
. r[9} — r[9] + i;
pushi ~ r[10] — mir[{91};

pushic 1 - — r[11}] —~ 1;

addi = {12} ~ [10};
r[12] — r[12] + r[11];
popi — mfr{8]] — (12}

Register 5 is the frame pointer. The RTLs of interest are those generated for addi. On the PDP-I1, an add
instruction destroys one of the operands. H that value is subsequently used it has to be reloaded. To avord
this, the-expander emits two transfers. The first one saves i in a new register. The second performs the
addition in the new register. [f there are subsequent uses of & it is already in a register. and the redundant

loads caﬁ be deleted. O:i the other hand. il there are no subsequent uses of i, the transfer of the contents
of pseudo-register 10 to pseudo-register 12 is unnecessary and will be deleted by PO.

This guideline is irrelevant for three-address machines, since instructions operate on values without
destroying them. If this guideline is not followed for two-address machines, code quality suffers; it may
contain unnecessary loads. ,

‘Writing an expander is an ad hoc process. For traditional expanders, the quality of the final code
depends on the ingenuity and expertise of the person writing the code expander. This is much less truc
for expanders written for use with PO. PO corrects inefficiencies, turning poor code into good code.
Generally, it takes a day or so to implement an expander using the techniques described above. For
example, the author implemented a code expander for the CDC Cyber series machines in five hours. '

-4 -

Chapter §
The Optimizer - PO

There are two types of conventional peephole optimization. One type tracks values held in registers
and tries to.reuse their values whenever possible. The other combines logically adjacent instructions,
replacing several instructions with one. PO performs both these optimizations in a machine-independent
way, Fhe part of PO that tracks values is called Cacher: the part that combines instructions is called
Combiner., These two programs along with a third called Assigner, which assigns registers and translates
RTLs to assembly lanjguage; form PO. The names Combiner and Assigner are derived from their
functions. while the name Cacher suggests its implementation.

5.1 Cacher .

Cacher eliminates redundant loads. In addition, it eliminates common subexpressions within a block
of code bounded by labels, identifies dead variables, and defines the size of the peephole for Combiner,

Cacher extends the work of Freiburghouse [Frei74] and Gries [Grir7H]. The algorithm is similar to
Freiburghouse's, but it is simpler and more thorough. It is simpler because it s Just peephole
optimization. 1t is more thorough because it detects and eliminates rcdunddnt computations missed by -
Freiburghouse's algorithm.

5.1.1 The Algorithm

Cacher reads a *block” of code at a time, processes it, and then emits the simplified code. A block s a
section of code bounded by labels. It builds sets of symbolic expressions (c-cxprs) it has encountered as it
scans the'input. Formally, these sets form equivalence classes based on the foltowing equivalence relation.

Let R be the set of all symbolic intermediate results produced by the bounded block. let ah g R
Then the equivalence relation @ = b is true at a given point in the block if and only if the block scts
values so that ¢ and » have the same value at that point.

For example, after the register transiers

r{1] — mia}
r(1} = r[1] + m[b]

" r[1] =mia] + m{b}.

Two Telations are defined on the clements of R, Let efigh € R Let > be an order relation where
e > £ means that ¢ was produced first in the code sequence, i.c. e is older than £ Let <. be an order
ILIJEIOI} where g < h means that g is cheaper than A. Usually cheaper means faster, e, s a faster
reference to the machine’s store than 4. For instance, register references are the fastest references 1o a
register machine’s store. To optimize a program for size instead of speed, cheaper would mean smatiier.

As Cacher scans the input, it partitions the c-exprs produced by the block into equivaience classes. As
new c-exprs are read, Cacher searches the equivalence class for a set whose members are cquivadent to the
new c-expr. If one is found, Cacher substitutes the cheapest member of the set for the c-expr, chminating
a redundant load. The intermediate result guideline of Chapter 4 ensures that c-cxprs previously loaded
or computed are not destroyed and are available for reuse.

- 25

The input to Cacher is a list of RTLs. Each register transfer of each RTL is split into its destination
and source. These are referred to as dsr and sre. If a RTL contains more than one register transfer, the
operations outlined below are performed on each pair of dsts and sres. This initial presentation of the
algorithm ignores dead-variable analysis, redundant computation elimination, annotation, and window
definition. A formal presentation of the complete aigorithm appears in Appendix F.

The first two steps of the algorithm produce canonical forms for ds¢ and sre. Having a unique
_representation for each symbolic intermediate result simplifies identification of equivalent values—-two
symbolic results are equivalent if and only if their canonical representations are identical.

I3 l_).s'f is put into canonical form by first stripping off the outermost name and any brackets, exposing
the address calculation. . This string is called adsi. For each register that is a substring of adst, the
register’s equivalence class is found and the register is replaced with the oldest member of that set.
The original name and outermost brackets are then replaced. The resulting string is calied cdlsz. '

Cacher only replaces address calculations of destinations because replacing full destinations would remove
stores to memory. '

2. The second step puts sre into canonical from. For each register that is a substring of sre, the register’s
equivalence class is found and the register is replaced with the oldest member of that set. The
resulting string is called csre. '

The relation >, selects replacement values. Its use ensures that each dst and sre can be transformed to

a wnique string. The relation <, cannot be used to select replacement values because several equivalent

expressions for the same value may be equally cheap.

3. This step searches for the ‘cheapest’ replacement for src and the cheapest replacement for the address
calculation in dsz. 1f a set is found in which csre is a member, the cheapest member of that set
replaces sre in the RTL. If a set is found in which adsz is a member, the cheapest member of that set
replaces the address calculation of dst.

The fourth step places cdst and csre in the appropriate equivalence class, and removes from all
equivalence classes any members with which cdst interferes, The current register transfer is changing the
value of dsr, so any c-expr that depends on dst is also changed, and it may no longer belong in its current
set. :

4, First, csre’s equivalence class is found. If no set contains csre, one is created. Next, any set members
with which cdst interferes are removed from their sets. Finally, edst is added to the set found for cyre
above. '

Cdst's new set is identified before the deletions because it cannot be found later if csre is among the
deietions. Interference is determined by a machine-independent function described in the implementation
section. - ‘ :

Though relatively simple, Cacher implements several optimizations at once. These are described in the
following sections. ‘ ‘ -

5.1.2 Redundant Load Elimination
Consider a machine that has a set of registers denoted by r[n], where n is a register number. For example,

a=b
c=h+1

might compile into code that begins

! r{10} — m{b};
2 mlal ~ r[10];
3 r{11] — m[b}

Applying the algorithm to the first two RTLs produces the equivalence class

- 26 -

{ tm[b], r[10], m{a]} |

Processing the third RTL, dst and sre are r{11] and mb], and cdst and csre are r{11] and mib]. Therc is a set
that contains mfb}. and the cheapest member of this set is r{10], so the third RTL is changed to

ri11] — r{10];
eliminating a redundant load of memory location a. The equivalence class becomes

{ {m{b], r{10], mia], r[11]} }

This cxample exposes one of Cacher’s assumptions. In theory. a machine might have instructions for
loading from memory, but not for inter-register transfers like the one above. Cacher should use PO’
recognizer to verify the legality of its changes. In practice, most machines allow inter-register transiers, so
instruction checking has not proven necessary. In general, Cacher assumes that a c-expr can always be
replaced by a register, ' -

5.1.3 Common Subexpression Elimination

 Cacher maintains use fists for each c-expr. A use list contains pointers to each RTL that uses the c-
expr. When an instruction is first encountered, it is added to the use lists of each c-expr it uses. When an
instruction is changed to use a cheaper reference, it is removed from the use lists of the c-exprs it had
used, and it is added to the use lists of the new c- eXprs that it now uses., When a register’s usce list
becomes empty, the instruction that loaded that register is deleted and removed from the use lists of the
c-exprs it had used. This may trigger further deletions and removals, recursively, By deleting unused
instructions Cacher climinates common subexpressions. For example, consider the code

a=b+3
c=hb+3

For the simple machine defined carlier, the RTLs generated are

r{10] - mfb};

r[11] —

r[10} — r{10} + ¢[11];
mia] — r{10];

r[12] — mib};

rf13] — 3,

rft2] - rpt2] + ri13};
micl,— r[12}

20 ~1 T W B L Do

When Cacher processes RTL 6, it detects that 3 was previously loaded into r[11], and rewrites it as
rf13] - rf11];

it then adds RTL 6 to r[11]' usc list. r[11]'s use list now contains RTLs 3and 6. It then processes R'UT 7 and
discovers that the sum m[b} + 3 has been computed and is inr[10]. it changes RTL 710

r(12] — r[19];

adds it to r[10]'s use list, and removes it from the use lists for r[12] and r[13]. This emptics these fists. so
Cacher deletes RTLs 5 and 6. It then processes RTL 8, replacing r[12] with r[10] (older c-exprs are the
cheaper of equals). RTL 71is now unused and is deleted. The final register transfers are:

P t[10} — m[b];

2 1)~ 3

3 r{10]- wr[10]+r[ﬁ}
4 mifa] — ri10];

& mie] - r[10];

-27-

Common subexpressions are usually eliminated at a higher level. There is, however, an advantage to
doing common subexpression elimination (‘CSE”) on register transfers. At this level aif values that are
computed by the code sequence are exposed. For example, expanding address calculations often creates
redundant machine-independent subexpressions that cannot be eliminated earlier because they did not
exist earlier. In addition, machine idiosyncrasies hamper high-level CSE algorithms. For example, some
instructions have -extra effects (a-division may yield both a quotient and a remainder) that cannot be
‘detected or used by high-level CSE algorithms. Some machines compare two values by computing the
difference and comparing-it- with zero. If a later calculation needs the difference between the two values,
Cacher detects that it was already computed and uses the previously computed value, which higher-level
machine-independent CSE algorithms cannot.

5.1.4 Dead-Variable ldéntification

. Combiner can do a better job of combining instructions if it knows where variables die. A variable is
dead if there-are no further uses of it or its contents are no longer valid. Cacher identifies dead variables
by noting where c-exprs are last used. ldentifying dead variables at the machine level provides a bonus
similar to that of doing CSE at a low level—all values computed by the code are subjected to dead-
variable analysis. For example, many calling sequences return function values in a fixed register, After
the function return, the value is moved to another register in case the special register is needed again.
Sometimes the move is unnecessary as there are no further uses of the special register. Conventional
compilers identify such avoidable moves by case analysis deep in a machine-dependent code generator,
Cacher avoids such unnecessary moves through the general operation of dead-variable identification. The
last example is shown with the dead variables in parentheses to the right of the RTLs where the variables
died. : :

T r[10] — mib];

2 A -3

30 ff10] = e[10] + f{11); (e[11])
4 mia] - r[10};

8 mic] ~ r[10]; (r[10])

5.1.5 Window Definition

_Earlier versions of PO only .combined lexically adjacent instructions. Many obvious optimizations
were missed. For example, PO could not collapse an otherwise-reducible pair separated by a third.
‘uncombinable instruction. This lack of context is addressed by Cacher. By noting where c-exprs are set
and used, it does a simple flow analysis of the program. It outputs this information as links between
register transfer lists, Use of a c-expr is linked back to the instruction that set it, provided no previous
instruction has a link (o that instruction.

These links aliow Combiner to consider instructions separated by an arbitrary number of instructions.
Combiner is no longer looking at the instructions through a small peephole, but through a window whose
opening is constantly being adjusted. Experiments show a 20% reduction in code size by an optimizer
that uses such window information as compared to one that uses a fixed window. The following is the
last example with the Hnks added in braces.

r{10] — mib];

r{11] — 3; :
2 Moy - ol + 11y (rf11p
{3} mfa] — r{10]; :

mfc] — r[10]; {r{10])

O 4l b o=

-28 -

Note that although RTL 8 uses r[10]. there is no link between it and RTL 3. This is because of the
intervening use at RTL 4. If there were a link, Combiner would attempt to collapsc the pair. possibly
rearranging the code so that the effect of RTL 3 occurs after RTL 4. This would change, erroncously, the
effect of the program.

5.1.6 Annotation

Annotation, introduced in Chapter 4, controls which values are held in registers. C-exprs [rom
annotated register transfers cannot be used to replace the source of a register transfer. This ensures that
annolated vatues do not persist in the machine’s registers. This does not mean that annotated register
transfers cannot be deleted. If an annotated register transfer provides input to a larger computation that
is redundant, when that computation is replaced all RTLs that are inputs to the computation (annotated
or not) may be deleted. For the previous simple machine, if it was decided that constants should not be
saved in registers, the RTLs generated would be: ‘

r{10} — m[b};

11} - 3

rf10] — r[10] + v}
mia) — r[10};

rf12] — mib];

T{13] ~ 3;

F{12] — r[12] + ¢{13];
mic} — r[12};

o ol s R T]

‘When processing RTL 6, the algorithm would not replace the 3 with r{11]. 1t would, when processing R'TL 7,
detect the redundant computation, and replace the source with r{10] and delete R'T'Ls 5 and 6.

The complete algorithm with dead-variable analysis, annotation, redundant expression climination, and
window definition appears in Appendix F,

5.1.7 lmplementation

Cacher uses an associative memory or cache to maintain the cquivalence classes. When un
intcrmediate result is presented to the cache, its equivalence class is returned. Fach set is a linked st of
its members ordered according to the relation, >,

Cacher is retargeted by rewriting the functxon that determines cost, <o and supplying patterns thal
identify registers. The cost function accepts two c-exprs and returns the Lhulpel one. C-exprs matching o
tegister pattern are preferred to those matching simple memory refercnces, which are preferred to more
cxpeasive memory references. Typically, only a few machine-dependent patterns must be changed.

To avourd machine-dependencies in the interference function, the front end of the v compifer identifics
for Cacher conflicts due Lo aliasing [Ano77) 1t can do so without the machine-dependent patieras thal
Cacher would require to recognize register transfer patterns that result in aliasing {e.g. addressing for
array clements, paramecters, or globals). Aliasing information is passed by the front end to Cacher
through the use of special intermediate language opcodes {(see Appendix A). Cachers interference
function thus accepts two arguments and reports a conflict only if the first explicitly appears in the
second.

_ Each c-expr has two lists associated with it. One marks the RTLs that use the c-expr. and the other
marks the register transfers that set it. These lists maintain the m!ormauon needed to produce the dead
variable and window definition information.

As Cacher processes each RTL, it computes the window pointers for that RTL. This is accomplished
by identifying all cells that are used in the current RTL and locating the RTLs that set them. It no other
RTLs have links to the RTL that set the cell, the RTLs are linked.

-9 .

'When Cacher encounters a label, it removes all c-exprs. As each c-expr is removed, it adds the c-expr
to the dead-variable list of the RTL that last used the c-expr,

Function and subroutine calls require special attention by Cacher. It knows equivalent values only by
simulating the effects of register transfers. Subroutines and functions can. change values without Cacher
‘being aware of the effects. It must remove any values from its associative memory that could be modified
as a side effect of ‘a subroutine call. It does this by scanning the cache at each subroutine call and
removing all references to global variables and to arrays that are arguments of the call. These are
identified by the compiler and passed to Cacher using the same intermediate language opecodes 1o pass
aliasing information. ' ‘

Cacher is written in C and runs on a PDP-11/70 under UNIX. This implementation is 1100 lines of
code and processes about 100 instructions per second. Because information is not maintained across
labels, it does not require much memory. Experiments show that Cacher produces a five to ten percent
improvement in code size, and it allows Combiner to reduce it by another twenty percent.

5.2 Combiner

Combiner symbolically simulates pairs of instructions that have been linked by Cacher’s flow analysis
and, where possible, replaces them with equivalent single instructions.

5.2.1 Pairs

Combiner determines the effect of a pair by combining their independent effects, substituting values
assigned to variables in the first register transfer list for instances of those variables in the second, and
removing effects that set dead variables. For example, the DEC-10 instructions

setz 1
movem 1loc

are represented in ISP as

rit] - O,
miioc} — r{1};

The combined effect of these instructions is
mfloc] — 0; r[1] — O;

To determine if the resulting RTL is a legal instruction, Combiner uses the recognizer described in Chapter 3.
The register transfer above represents the instruction

setzb 1,loc
‘Combiner considers an instruction and its logical predecessors, By combining instructions in reverse

order, Combiner avoids backing up to consider new possibilitics when a replacement is made. For
exampie, the ISP for the CDC Cyber instructions

shd b3+b2
sa3 b4

is (with dead variables and window pointers)

5 W bl4} — b[3]+b{2]; (b{3].b[2])
6 {53} x[8] - m[bl4i]; a[3] — b{4]; (b[4])

Combiner first attempts to combine instruction 5 with its logical predecessor, instruction 4 (not shown).
Assuming it fails, Combiner advances to instruction 6 and considers it with its logical predecessor, instruction
5. The combined effect of these instructions is

- 30 -

x[3] — mEb[3i+b{2]l. a[3] — bi3]+bl2];

Smcc the resuiting RTL is a legal instruction, Combiner replaces the RTL 6 with the result and deletes RTL 3.
In the above example, the RTL represents the instruction

-sa3 b3+b2

" After each replacement, Combiner creates the dead-variable list for the new RTL. The new list is formed by
merging the dead+variable lists of the RTLs that formed the new instruction. Further, any pseudo-registers

used in the first RTL and dead before the second are moved from their old dead-variable list to the new one.
If a hardware register used in the first RTL appears on a dead-variable list that lies between the R s that
formed-the new instruction, the combination is illegal and the replacement is not made. The back-pointer list
for the new RTL is formed by merging the lists of the RTLs that formed the new instruction. For the above
example, the result with merged lists is

6 @3} (3] ~ m(b[3}+b[2]}; al3] - b[3}+b{2]; (bI4]1,b3LbI2])

After successfully replacing a pair of instructions, Combiner considers pairs that cnd with the new
instruction. In the cxample above, Combiner would now consider instruction 6 with its logical
predecessors, instructions 4 and 3. When all possible combinations of the current instruction with

* :previous instructions have been considered, Combiner advances to the next instruction, Through the use

of window pointers and by combining instructions in reverse order, Combmer reduces all possible linked
pairs without backing up after each replacement.

5.2.2 Triples

If the result of combining a pair'is not a legal instruction, Combiner simulates a triple when possible,
If the pointer list of the first RTL of the pair is not empty, it combines its logical predecessor with the
result of combining the pair. If the result is a valid instruction, Combiner replaces the fast R, and
deletes the first two. As with pairs, it creates a new dead-variable fist and pointer list from ail three
RTLs. An example clarifics how Combmer handles triples. The following DEC-10 code increments the
local varsdble

move 10,i{15)
addi 10,1
movem 10,i{15)

The corresponding register transfers with window pointers and dead variables are
E r{10] — m{r[15] + i}};

2 {1} 10 —rt0] @ 1;
3082} mir15]+ i1 = rf10]; (/[10])

@ is the 36-bit addition operator. First, Coxnbiner composes RTLs Fand 2. This yiclds the R'T'L
r{10] — mirf15j +ij @ 1

which is not a legal DEC-10 instruction. Because list | has no pointers, Combiner advances to RTE 3 &
combines RTLs 2 and 3 yielding

mir[15] + 1] — r[10} @ 1; (¢[10])

ivhich, again, is not a legal instruction. RTL 2. however, has a pointer to RTL | so Combiner simulates the
“compaosition of RTLs 2and 3 with RTL 1. This yields

m[r[15] +i] — m[r{15] +] @ 1; (r[10])

which is the instruction

w3

aos H15)
Combiner replaces RTL 3 with the result, and deletes RTLs | and 2,

Combiner simulates triples because many machines offer some one-instruction replacements for
load/operate/store sequences, but few offer replacements for load/operate or operate/store sequences.
Combiner must consider all three register transfers to reduce them to one. Simulating triples slows
Combiner, but it does not make it more complex as it uses the machinery that combines pairs to do
triples, Portunately. no specnai need has been seen for a more compiex replacement strategy (e.g..
quadruples).

5.2.3 Labeis

Labels prevent the consideration of some pairs. Combining pairs whose second instruction is labeled
might change, erroneously, the effect of the program. Branches to the label would cause the effects of
both instructions to be performed. To do the best job possible, Combiner removes any labels it can. As
it reads the program, Combiner constructs a symbol table of labels. The symbol table contains a
~ reference count and a pointer to where the label was defined. Any labels that have a zero reference count

are immediately removed. As optlmwatton progresses, labels whose reference counts become zero are
‘ removed ‘

When Combiner removes the last refcrence to a label that it has passed: it should back up to
reconsider the instructions the label separated; optimizations between the previously separated pair may
now be possible. This reconsideration is needed only for labels referenced following their definition,
When optimizing code generated from a program with ‘structured’ control flow, the only such labels are
loop and subroutine heads, and peephole optimizers seldom remove these labels. This particular form of
backup, though easily implemented and theoretically necessary, was discarded as ineffective.

Progmms that are too large to fit into Combiner’s memory are optimized in segments. When
optimizing in segments, Combiner cannot delete labels because parts of the program not yet optimized
may reference the labels, :

5.2.4 Branches

Pairs that begin with branches need special treatment. A branch instruétion is always linked to its
lexical predecessor. The condition on which the branch depends must be inverted and added to the
register transfers of the second instruction before combining effects. Consider, for example, the PDP-11
code

beq L1
br L2
L1:

This is represented in register transfers as

3421 PC — if NZ = 0 then L1 else PC;
4 13} PC —L2;
5 L1

These combine to

PC - if NZ = 0 then L1 eise PC; PC - if ~(NZ = 0) then L2 else PC;
L1:

A symbolic simplifier improves awkward relationals and removes redundant assignments, yielding

32 .

PC — if NZ # 0 then L2 else PC;
L1

which is the instruction
. bne L2
L1i;

Unconditional branches depend on the constant condition true; the symbolic simplifier deletes register
transfers depending on its ‘inverse, removing unreachable code. The following code for the DEC-{0
provides an example.

jumpe 3,L2 '
jrst L3

jrst L2
has the effect |
PC — if r[3] = 0 then L2 else PC;
.F.’.C - 13,
PC — L2;
The second jrstis linked to the first and they combine to
~ PC ~ L3, PC - if false then L2 else PC;
which simplifies to
PC — L3;
Combiner replaces the pair with the singleton yie]ding the instruction
jumpe 3,L.2 :
;:;st 1.2

removing the second unreachable jump. The next section shows how code can become unreachable.

3.2.5 Branch Chains

Combiner collapses branch chains by treating a branch and jts target as a pair. It locates the target of
the branch by using the label symbol table. If the pair-coliapses to a legal instruction, only the branch is
replaced; the labeled instruction is not modified. For example, the PDP-10 code seguence

jumpe 3,L1
jrst L3
L1 jrst L2
has the effect
PC — if r[3} = 0 then L1 else PC;
o PC ~ L3;
L1: 7 PC—L2;
The jumpe and its target combine to
PC ~ if r[3] = 0 then L2 else PC;

which is the instruction

-33-

jumpe 3.L2
Combiner replaces the first instruction with the result, yielding

jumpe 3,L.2

jrst L3
L1: jrst L2

Notice that a reference to label L1 has been removed. If this is the last reference, the label can be removed
making the second jrst unreachable, '

Before performing branch chaining, Combiner must make certain that the branch chain does not
contain a cycle. Branch chains containing cycles can cause Combiner to perform a infinite sequence of
optimizations. For example, the following code for the PDP-f| contains a cycle between labels £1 and
L2 '

br L1
Lt - br L2
L2: br L1

Without cycle detectiofh Combiner would follow the first branch chain and rewrite the first br to branch to L2.
It would then follow the new branch chain and rewrite the first brto branch to L1. The code is now back to its
original form. Combiner would continue to follow one branch chain and then the other.

Combiner detects cycles by following branch chains and marking branch instructions that it has
visited. If it encounters a branch instruction that it has visited before, the chain contains a cycle and
branch chaining is not performed. ' :

5.2.6 Simplifications

Combiner has a section of code that is specially designed to simpiify RTLs. It removes double
negations, jumps to the next instruction, unnecessary additions and subtractions of zero, and conditionals
that depend on the constant condition faise. It also replaces awkward relationals such as ~ (x = y) with
X Y :

Simplifications can also be machine dependent. For example, the PDP-11 machine description
describes the auto-increment register addressing mode as

m{r[RAN]++]
A simplification is included that rewrites RTLs such as
mir[2]] - 0; r[2} ~ r[:2] +2;
as ' : :
mir2]++ - 0;

A similar simplification is included for auto-decrement, These are the only machine-dependent
simplifications currently found to be necessary.

Simplifications can be added or removed to Combiner as dictated by the target machine. In practice,
simplifications added are seldom removed when retargeting PO for a new machine unless the
simplification causes poor code to be produced. '

-34 -

5.2.7 Implementation

Combiner’s first phase reads the input. The input consists of the output from Cacher: register transfer
lists, dead-variable lists, and window pointers, If the entire program will not fit in memory, it reads in as
much as possible, optimizing the program in segments. As it reads the input, it builds a doubly-linked list
of RTLs and a symbol table of labels.

After the input is read, Combiner deletes all labels that are known to have a zero reference count and
begins simulating instructions. When the end of the linked list of RTLs is reached, it outputs the register
transfers along with the dead-variable lists. The dead-variable lists are used by Assigner to assign
registers. _ ‘

Combiner is written in C and runs on a PDP-11/70 under UNIX. This implementation is 1600 lines
of code and processes approximately 60 instructions per second. Combiner produces a 40 to 506
improvement in code size. A better code generator would reduce this figure.

5.3 Assigner
Assigner maps pseudo-registers to hardware registers and translates RTLs to assembly language.

5.3.1 Register Assignment

When the RTLs are generated. pseudo-registers are used instead of real registers. As it reads RTLs.
Assigner associates a hardware register with each pseudo-register and replaces each use of a pseudo-
register with the associated hardware register. Assigner frees the associated hardware register when the
pscudo-register dies. '

There are two aspects of regmter allocation: value retention and register demand [}“RH74} Value
retention is concerned with making sure that a value is held in a register no longer than necessary.
Cacher’s dead-variable analysis provides an optimal solution to the value retenuon problem for bounded
blocks [Frii74].

Register demand is concerned with minimizing the number of loads and stores when excess demand
for registers forces a register to be stored in a temporary location. The optimal algorithm for bounded
blocks is given by Bemciy [Beta66]. It requires looking ahead in the input stream and picking the register
whose next reference is farthest away. Freiburghouse compared three techniques for solving the register
demand problem to the optimal solution. Of the three methods, .usage counts produced the best results.
Least-recently-used and least-recently-loaded were second and third. Although Cacher develops usage
counts (through the use lists), Assigner uses the LRU technique because Combiner invalidates those
counts by collapsing instructions,

For example, suppose the simple machine used in the first part of this chapter had only two hardware
registers, 0 and | The code

; r{10] — m]aj;

2 1] -3

30 r[10} - f[10] + rf 1Y (rf11])

4 mla) —r[10]; {ri1oh)

5 12} — mlb};

6 ri13] ~ 4 -
7 r[12] — «f12] + f[13]; {r[13])

8 mie] — r[12}; (r[121)

would be converted to

-35.

ri0} — mla};
-3

r10] — r[O] + r[1};
m[aj — r{0};

{1} — mib};

r{0] — 4. -

r(1} = rf1] + rfO];
mie] — r{1};

GO ~3 O L B Lo B3 e

Pseudo-registers 10 and 13 are assigned hardware register.0, and 11 and 12 are assigned hardware register 1.

When the demand for hardware registers exceeds the supply, Assigner allocates a temporary, generates
code to save the contents of the hardware register in the temporary, and frees the register for use. This is
called a register spill. The pseudo-register that was associated with the freed hardware register is now
associated with a temporary location. When Assigner encounters the pseudo- reglster again, it allocates a
hardware register, generates code to load the register from the temporary location, and frees the
temporary.

One flaw in this organization is that instructions to load and store registers from temporary locations
are added after Combiner’s peephole optimization phase. Optimizations may now be possible between the
néw instructions and the old ones. Fortunately, this seldom occurs. The 3500-line Y compiler is compiled
using only 42 register sptils for the PDP-#1 {with three allocated registers) and none for the DEC-10 (wsth
twelve),

Assigner also makes certain optimizations. Because of the code generation gu:delme of retaining
temporary values (intermediate resuit guideline, Chapter 4), RTLs of the form

r[11] — r[10}; (r[10])

- often appear for 2-address machines. Assigner deletes such RTLs, and associates the hardware register that
was associated with pseudo-register 10 with pseudo-register 11. ‘

 Thus, for the simple machine introduced at the beginning of this chapter, the following register
transfers :

([10] — mibi;

I

3 r12] -0}, {r{10])
4 121 —[12]1+3

S mial - r[12];

8

mle] — r12]; . {r[*2])
are transformed to ‘

H r{0] — mib];

4 [0} —r[0] + 3;

S mia] - 0}

8 mie] - ri0]; -

5.3.2 Assembly

After the pseudo-registers of a register transfer list are mapped to real registers, Assigner translates the
register transfer list to the assembly language of the target machine and outputs it. This translation is
performed by the transducer described in Chapter 3.

-36 -

For examplé. Assigner translates the PDP-11 RTL
© m(5) + i] — mr(5] + i] << 1; (NZ)

Lo

astifrs)
The CDC Cyber series RTL
| x[3] — O;

is translated to
mx3 0

This last cxample iHustrates one of the functions of Assigner—picking the cheapest instruction that does the
job. On the CDC Cyber series machines there are several ways to clear a X register. A zero can be loaded via a
-set X instruction, zero can be loaded [rom register BO which always is zero, or the mask instruction can be used

to build a zero mask. The fastest way to clear a X register is to use the mask instruction, Because instructions
" in the machine description are ordered according to speed, Assigner can pick the fastest instruction that
performs the register transfers requested.

5.3.3 Implementation.

Assigner is generated from the machine description of the target machine and from a machine-
independent register assigner. The register assigner is retargeted by supplying information about the
machine’s registers, For each type of register, Assigner must know how many there are, their sizes, which
ones are available for assignment, and code templates for storing them into and loadiig them {rom
temporaries. Approximately twenty lines of code must be changed to retarget Assigner’s register
assignment module for @ new machine. _

Assigner is written in C and runs on a PDP-11/70 under UNIX. This implementation is 1400 lines ol
code and processes 90 instructions per second.

5.4 Results
PO performs all of the following optimizations.

commeon subexpression removal within blocks
aliocation and assignment of registers

special case instruction usage

exotic addressing mode usage

branching chaining

unreachable code removal

&t 0 & & & @

In addition. PO is complete in the sense that upon completion no instruction, and no pair or triple ol
logically adjacent instructions, can be replaced with a cheaper single instruction that has the same effect.

Chapter 6

Results and Conclusions

The previous chapters have outlined a technique for producing retargetable compilers. Y cross-
compilers for several machines have been constructed using these techniques. One of these compilers, the
y PDP-11 compiler, has been in use for over a year and a half, Compilers constructed using this
technique compare favorably to existing compilers for other high-level languages.

6.1 Comparisen

The effectiveness of this technigue for producing retargetable compilers can best be measured by
comparing a compiler built using these technigues to existing compilers.: There are four areas of
comparison: the quality of the generated code, the speed. of the compiler, machine applicability, and the
effort required to retarget the compiler for a new machine, '

6.1.} Code Quality

Code quality will be illustrated using some of the many routines compiled by the v cross-compilers [or
the PDP-11, DEC-18, and CDC Cyber {75, The same routines have also been compiled on those
machines using existing compilers,

One such routine is ctoi [KernT76, Kern81} which converts an ASCIE string to a number, 1t skips over

feading tabs and blanks and stops at the first character that is not a digit. This routine has been written
in C, Pascal, SIMULA [Dan1.66], Ratfor [Kern76]. and ¥. The ¥ version of ctoi is

integer ctoi(in)
char in{]
inti, sum

i=1,

while (infi] == ' ‘| In[i] == "\t}
i=i+1

sum =0 .

while (infi} >= "0’ & infi] <= "9} {
sum = sum * 10 + inl[i] — 0’
P=i+1
!

return {sum)

end

Below is the code produced by the PDP-11 v compiler and the PDP-11 Unix C compiler. They have
been edited to improve their readability. The important differences are summarized following the code.

- 36 .

Yy Compiler C Compil'er

1 ctoi: jsr 5,ysv ctoi: jsr r§,csv

2 sub $150,sp sub $4,sp

3 mov $1,i(r) mov $1,i(r5)

4 {1 mov i{r5)r2 jbr L4

3 add in{r5),r2 L10: inc i(r5)

6 movb —1(r2},r3. L4 mov in(r5),r0

7 cmp r3. %"’ add i(r8),r0

8 jeg L4 cmpb § ' {r0)

9 cemp 3,50\t © jeq L19

10 ine £3 mov in(r8),rQ
I L4 inc - i(r8) add Hrs),r0

iz jbr L1 cmpb $°\,(r0)
13 L3 clr sum{rs) ieq L10

14 L5 mov i(k5)r2 clr sum{rs)
15 mov 12,13 jbr L& .
16 add 4(r5),r3 L20: mov in{rS)r0
17 movb —1{r3),r4 add i{r5),10

18 cmp r4,%°0 cmpb §'9'.(r0)

19 jlt L7 jtt L7 .
20 cmp 14,59 mov . sum(rs}r
21 jot L7 ’ mul $12.r1

22 mov $12,r1 mov in{r5),r2
23 mul sum{r5),r add i(r5),r2

24 mov rir3 movb (r2),r2

25 add t4,+3 add r2el

26 sub $60,73 add $-60,r1
27 mov r3,sum{rs) mov rl,sum(rs)
28 ing r2 inc ~10(r5)
29 mov r2,i{(r5) L6: mov in{r5),r0
30 jor L5 add i{r5),r0
3L mov sum(rs),r0 cmpb $'0',(r0)
32 jmp yret jle L20

33 L7" mov sum{r5),r0
34 : imp cret

The v compiler’s code is only two instructions shorter than the code produced by the Unix C compxler
It occupies, however, ten percent fewer bytes. The Y code is shorter because the expression infi] is kept in
a register within a basic block. For instance in the loop that computes sum, the v compiler loaded infi]
into register 4 and avoided two redundant loads, C programmers can put variables in registers, but not
expressions such as in[i]. Johnson’s Portable C Compiler for the PDP-11 produces exactly the same code
as the Unix C compiler. A compartson of the execution speed of the generated code appears at the end of
this section.

The Vr:_;e Pascal compiler generates code for the PDP-11. This compiler produces code for an
abstract machine called EM-1. Before EM-1 is translated to assembly language, it is optimized by a
peephole optimizer. The v compiler generates 110 bytes of code for ctoi. The VU Pascal compiler
generates {62 bytes. '

There are several reasons for this large difference. The VU code for loading in[i] is longer. The code
generated by the two compilers for loading ini] is

Yy Compiler VU Compiler
mov i{r5),r2 mov i{rd),rQ

]

2 add in(r5),r2 dec rQ .

3 movh ~{r2),r3 add (rd4),r0
4 cle 2

5 bisb =r0,r2

-40-

Because of Pascal's character convention, a character is loaded by clearing a register and or-ing in the
character.- The code could still be improved. For example, the decrement instruction could be combined with
the bisb forming the instruction

bisb . ~1(r0),r2

This code was not produéed because optimization was performed before code expansion. Consequently, the

- peephole optimizer could not detect that parts of the address calculation could be combined. This is a specilic
instance of the more general problem of applying optimizations at a high-level. Certain optimizations arc
missed because information about the machine’s instruction set is unavailable.

The other difference between the Y compiler’s code and the VU Pascal compiler’s code s thc
elimination of redundant loads. The VU Pascal compiler could save forty-two bytes of code if
eliminated redundant loads,

There is a Pascal compiler developed at the Swiss Federal Institute of Technology (ETH) for the CDC
Cyber series machines. Although the compiler is one-pass, it generates very good code [Amma77]. Below
is comparison of the code generated by a Y compiler targeted for the CDC machines and the code
generated by the ETH Zurich Pascal compiler. The program Lompiled was an integer version of ctoi (see
Appendvx G).

4] -

y Compiler
ctoi. 1 ysav cto
sb? b7+28
sx8 bl
sa6 b6+ L1
ta satl b6H.
sa2 beétin.
sh2 x2
sb3 x1+b2
sal b3+-1d
sx2 32d
ix3 x1—x2
zr x3,1.4
sx2 9d
ix3 x1-x2 B
nz x3,L3
L4 sal b6+
-sx2 bl
ix6 x1+x2
sag at
aq L1
t3 mxé 0
sa6 b6+sum,
LS sal b6+
sa2 b6+in.
sh2 x2
sb3 x1+b2 L2
saz b3+—1d
sx3 48d
ixd x2—x3
ng x4,L7
sx4 57d
ixs x4~x2
ng x5,L7
. sa5 b6tsum.
sx4 10d
x5 x5s«x4
x4 x5+x2
ix6 x4—x3
sa6 ad
sx2 bl
ix6 xt+x2
sa6 al
, eq LB
L7 sat b&tsum.
bx0 x1
eq yret
L3

-42.

ETH Pascal

r

sx6
sab
sal
sa2
ix0
s5a3
sx0
ix3
ix4
sx8
sad
ix4

bx6

ix7
bx7
ix3
bx3
bx4
pl
sx3
ix7
sa7
eq
sa6
sat
sa2
ix0
sa3
sx0
ix3
ix4
sa4
sxb
ix4
bx6
ng
sad
x4
bx6
ix6
ix6
ix4
sa4
ix4
ix6
sab
sx3
ix7?
sa7
eq
sa3
bx6
a6
bx6
eq

xp.pen-
b1
b5+i
b5+in
b&-+i
x14+x2
x0—1
55b
x3—x0
%1+x2
11b
x4—1
x4—x5
x8&—x6
X6~x3
—X7-x3
X6—x4
~X3—x4
X74+Xx8
x4,L2
b1
x2+x3
a2

L1
al—b1
b5+in
b&+i
x1+x2
x0—1
33b
x3—x0
x1+x2
x4—1
b0+44b
x5—x4
X3+x4
x8,L3
az2-b1
b1,x3
x4 ’
2
xB+x4
X14+x2
x4—1
x6+x4
x4—x0
a3

b1
x2+x3
a2

L2
az—bi
x3
at+b1
x3
Xp.pex

The v compiler’s code is ten instructions shorter than the ETH compiler, but the sequences occupy the
same number of words. The ETH compiler is tailored for model 6400 CDC machines. For example,
multiplies by a constant that can be expressed as a sum or difference of powers of two are performed
using faster shifts and adds instead of a multiply instruction. While this would be faster on a 6400, it is
slower on the newer model 175 and 176. The compiler uses this technique to accomplish the multiply by
ten at lines 39 through 42. The ETH code sequence would be shorter if they had used a regular muitiply
instruction., .

The ETH compiler also attempts to preserve values in registers that may be used later. For example,
addresses are preserved in address registers as long as possible to avoid recomputing addresses. This also
allows smaller fifteen-bit Joad and store instructions to be used where possible. The ETH Pascal compiler
uses this technique to load and store sum. For example at line 25, it stores a zero into memory location
sum. It has remembered that X6 contains zero and that a2 contains the address of i which is the address
of sum pius one. ‘ ' ‘

The initial implementation effort for the ETH compiler was fourteen months. The Cyber Y compiler
took the author five days, and this included developing a skeletal runtime system. Despite this large
difference in implementation effort and the careful tailoring of the ETH compiler to one class of
machines, the Y compiler generally generates code of roughly equal quality.

Glanville’s dissertation displays code produced by his code generator for the PDP-tl. One of the
routines that he used to compare code with the Unix C compiler is shown below rewritten in v. it reads
an integer from the input.

int ch
int readn{)
int answer, lval, base

while (ch ==" ")
ch = getc()
if {ch <= '@ &ch>="'0"{
if {ch == "0')
base = 8
else
bhase = 10
ivai = 0
repeat {
lval = lval = base + ch ~ '0";
ch = getc(}
}until (ch < '0'} {ch — 'G") > base}
answer = |val

!

else
answer = —1
return (answer)
and

The code produced by the y PDP-11 compiler and Glanville’s code generator is shown below.

-43 -

vy Compiler Glanville's Code Generator

1 L1 cmp ch§ ' Li: cmp ch$§'’

2 ine L3 | jne L2

3. jsr pc,getchar jsr pc,getchar
4 mov rdch : mov rQ,ch

5. jbr L1 jor L1

6 L3: mov chr2 cemp ch,$'9

7 cmp 12,59 gt L3

8 gt L4 cmp ch,$0

9 cmp 230 jit L3

10 jlt L4 cemp ch,$0

i cmp 12,50 jne LB

2 jne. L6 mov $10,base(rs)
13 mov $10,base(rs) jor L8

i4 jbr L7 L5: mov $12base(r5)
15 L6: mov $12base(r5) L6: clr ival{r5)
16 L7: clr fval(rs) L7: mov base{r8),r0
17 L8 mov Ival(rs),n mwl —4(r5),10

- I8 . mul base(rs),ri add ch,Q
i 19 add ch,rt sub $60,r0

20 sub $60,r1 mov 0 Ival(rs}
21 mov r1,ival{r5) jsr pc,getchar
22 jsr pc,geichar mov r0,ch

23 mov rO,ch cmp ch$'0

24 mov ch,r2 ft L8

24 cmp 2,80 mov c¢ch,rQ

25 it L sub $60,r0

26 sub $60,12 cmp r0,base(r5)
27 cmp r2,base(r5) jlt L7

28 jle L8 L8 mov Ival{r5),answer(r5)
29 L1 mov ival{r§),answer(r5) jbr L4

30 jpr L5 L3: mov $-1.answer(rs)
31 L4 mov $—1answer(r5) {4: mov answer{r5),r0

32 Ls mov answer(rd), 0

Although the code produced by the Y compiler is one instruction tonger than the code produced by Glanville’s
code generator, it is actually two bytes shorter.T

Similar comparisons with code produced by Ganapathi's code generator show that v compilers
constructed using PO generally produce better code,

Comparisons of code on other machines with other language processors show that code generated
using PO is generally of better quality except for language processors that perform optimizations such as
global register allocation and code motion. Large gains in both the size and speed of the generated code
are oblained when optimizations such as assignment of loop indices to registers are performed. The
timings of the CDC and DEC-10 Fortran compilers are evidence of this.

in addition to comparing code size, the execution speed of the code produced by retargetable v
compilers is compared to the execution speed of code produced by existing compilers. To accomplish
this, three programs are presented as benchmarks. A program that solves the eight-queens problem
(called 8q) was chosen to test recursion. An integer version of ctoi {called ictoi) was chosen because it
involves integer arithmetic and manipulation of integer arrays. Ctoi was chosen because it involves
characters and character arrays. Listings of these programs appear in Appendix G,

To minimize drift and error in the timings, each routine was surrounded by an outer loop that
executed the routine many times. Ctoi and ictoi were called thirty thousand times, while 8q was called one

t Glanville's code appears to contain a subtie error. Sixteen-bit multiplication should be performed in an odd register:
see fine 17. ' o .

hundred times. Timings were taken on the PDP-11, the DEC-i0, and the CDC Cyber using a
retargetable v compiler and various existing compilers. Each program was compiled using all
optimizations available for the particular compiler. The execution times are in seconds.

On the PDP-11, the programs were compiled using the Y compiler, the Unix C compiler, and the VU
Pascal compiler. The timings are as foilows,

Y Compiler € Compiler VU Pascal
8q 37.0 37.3 62.2
ctoi 19.5 21.5 26.2
ictoi 39.5 45.9 69.6

The timings for the v compiler are better than .those for the UNIX C compiler and the VU Pascal
compiler, mainly because the Y compiler eliminates redundant express:onh Notice that the timings for the
character versions are substantially better than the integer versions. This is because the integer versions
requlre a shift instruction to convert an array index to a word index.

On the CDC Cyber machine, timings were taken using the ETH Pascal compiler, Ratfor and the v
compiler. A Ratfor version of 8q could not be run because it is recursive. A Ratfor version of ctoi also
could not be run because the version of Fortran used did not support characters. The timings follow

Y Compiler Ratfor ETH Pascal
8q 17.6 n/a 16.6
ctoi 18.1 njfa 26.3
ictoi 15.5 8.7 14.0

The timings show that the Cyber v compiler is more efficient than the ETH Pascal compiler in
handling characters while the ETH compiler is slightly better at handling integers. The Ratfor version of
ictoi is much faster than the other two versions. Most of this difference is due to the differences in the
calling sequences. Instrumenting the v code showed that approximately thirty percent of the execution
time in the procedure prologue and epilogue code. The other differences come from global optimizations
that the Fortran compiler performs.

On the DEC-10, the benchmark programs were run using four compilers. They were a SIMULA
compiler, the DEC-10 Ratfor compiler, a v compiler specific to the DEC-10, and the retargetable v
compiler,

y Compiler DEC-10y Ratfor SIMULA
8q 29.0 28.7 n/a 66.0
ctoi 377 55.3 nfa: 82.6
ictoi 29.7 26.8 20.5 R4.6

The v compiler produces better code for ctoi than the DEC-10 specific Y compiler. This is because of
a different code generation strategy for handling characters. This is one of the advantages of an easily
retargetable compiler. Different code generation strategies can be explored to find the most efficient.

The Ratfor compiler’s code for ctoi runs faster because global register optimization assigns i and sum
to registers. The code produced by the SIMULA compiler is much slower than that of the other
compilers because of the calling sequence and the poor code generated.

- 45-

6.1.2 Compiler Speed

The retargetable Y compilers currently only run on the PDP-11/70, so the only basis of comparison is
- between compilers that run on the PDP-11/70. These are the Unix C compiler, the Portable C Compiler,
and the VU Pascal compiler. The following table compares the speed of the PDP-I1 v compiler to these
three compilers. ‘ ‘

Y Compiler Port. C Unix C VU Pascal
instructions/sec 12 57 74 50
source lines/sec 6 22 13 10

The current implementation of v is six times slower than the Unix C compiler. Much of this difference is due
" to thé organization of the Y compiler. In order to overcome the address limitations of the PDP-11/70, the
compiler was split into five filters [KernT79], each of which produces output that is human readabie. While
this encoding is an asset while developing and debugging the compiler, it is not necessary in a production
‘environment.” Consequently a large percentage of the compiler’s time is wasted doing I/ O and rebuilding data
structures. Of the five filters only the first, the compiler front end, has Been extensively optimized. Speeding
up the compiler is one area for further research. It should be possible to reduce the execution time by at least a
factor of two. '

6.1.3 Machine Applicability

Building production-quality compilers using a retargetable peephole optimizer is applicable to a wide
range of machines. Y cross-compilers have been developed for four machines: the CDC Cyber 175, the
DEC-10, the PDP-il, and Intel's 8080 microprocessor. These machines represent a broad range of
architectures. The CDC Cyber 175 and the DEC-10 are two very different types of large-scale
mainframes. The PDP-11 is a sixteen-bit minicomputer, while the 8080 is an eight-bit microprocessor.
As described below, it even appears possible to use PO to build compilers for unconventional
architcctures such as as array processors and pipelined machines.

6.1.4 Impiementation Effort

Retargeting the compiler for a new machine requires the following steps.

Rewrite the code expander for the target machine. It can generate very naive code.

Write patterns for Cacher that wentify registers and rank addressing modes according to speed.
Write a description of the target machine’s architecture.

B -

Provide Assigner with information about the machine’s register set: how many registers of each type
and which can be assigned,

5. Provide a skeletal run-time support system,
Each of the above tasks requires usually less than a day to accomplish. The author implemented 2

cross compiler and a skeleton run-time system for the CDC Cyber machines in five man-days. A cross
comptler for Intel's 8080 required the author three days.

6.2 Areas for Further Research

One area for further research is to make the compilers built using PO run faster. There are several
obvious changes that would make the compiler more efficient. As mentioned above, a more compact
representation of the intermediate files would produce a large savings. A even larger savings could be
made if the four filters comprising the back end of the compiler were merged into one program. Such a
compiler is planned for a VAX-11/780 implementation. This will remove most encoding, decoding. 1/0.
and niemory management overhead.

- 46 -

As mentioned in Chapter 4, the speed of PO hinges on the speed of the recognizer and transducer built
from the machine description. The current implementation uses Lex to generate the recognizer and
transducer. Further research is needed in the area of encoding and recognizing valid machine instructions.

PO currently only performs local optimizations. As the previous timings for various compilers show, a
large payoff may be pained by performing global optimizations. Many optimizations traditionally
performed at a high level, such as register allocation and common subexpression removal within basic
blocks, are now accomplished by PO. PO may also be able to do certain global optimizations.

PO currently allocates registers to loop indices, but leaves the foad at the top of the loop and the store
at the bottom, By moving the load and store out of the loop, it may be possible to achieve a measure of
global register allocation. Other optimizations such as code motion and strength reduction may alkso be
possible and useful at this low level. -For example, changing a loop index to count by two or four on a
byt'e-‘add_‘rcssabie machine is properly a machine-dependent optimization.

Generating code for unconventional architectures such as array processors and machines with a high
degree of parallelism is difficult. By supplying PO with additional information about the processor
through the machine description, it may be possible to generate code for the processor in the conventional
way. PO would apply transformations to the naive code, producing code that takes advantage of the
unconventional architecture. For example. on a machine with multiple arithmetic processors, code can be

. generated that uses only one processor with each instruction. PO can replace pairs ol instructions that
use different processors with a singleton that uses both. '

On the CDC Cyber machines with multiple functional units, it is advantageous to use the results as lur
as possible from their computation. This allows the processor to proceed without having to wait for a
result to be computed. PO could accomplish such instruction scheduling by reordering code. PO, when
eliminating redundant code, could construct lists of the intermediate steps of computations. By applying
scheduling algorithms to such lists, PO could rearrange the steps of the computation to avoid processor
waits.

6.3 Contributions

This dissertation has presented a technique for the rapid implementation of production-quality
compilers. This has been accomplished through the use of 4 machine-independent retargetable peephole
optimizer. PO. PO simplifies many of the tasks typically associated with developing compilers, in
particular retargetable compilers,

The design of abstract machines is simplified. Instead of using large complex "union’ abstract
machines. simple ‘intersection” machines can be used. The abstract machine mode no longer needs
clements from the set of target architectures. Intersection machines simplify code generation by
climinating most case analysis typically performed by the compiler or code expander.

Interseciton nachines also simplify code expansion. Code oxpanders are smaller because the ahstract
machine & smaller, In addition, they are conceptually sumpler. Tasks typicaily porformad by code
expanders such as register allocation and register assignment are perlormed by PO, With very naive code
expanders that perform a simple macro replacement of abstract opcodes, production-quality code is still
obtained.

A notation for describing machine architectures has been developed that is flexible vet simple. Using
the notation, someone familiar with the target machine can write a description in a day. Several machines
with different architectures have been described using the notation. The machine description drives the
retargetable peephole optimizer PO.

PO simplified the optimization phase of the compiler by coliecting several disparate optimizations and
generalizing them as peephole optimizations. Register allocation and assignment, removal of unreachable
code, removal of common subexpressions, and exploitation of special case instructions and addressing
riodes are all performed by PO.

Traditional compilers perform as many optimizations as they can before code gencration.
Optimization is performed as far as possible from the target machine to avoid machine-dependent
complications. PO shows that optimization can be performed at a low-fevel, and that it is beneficiai to do

- 47 -

so. Traditional optimizations may be done more thoroughly and completcly when information about the
target machine is available.

-48 -

Appendix A
The Y Intermediate Language

In the following description of the Y postfix operators, CGS refers to the code generatbr‘s stack and
RTS refers to the runtime stack. References to the CGS refer to the cell or register that simulates that
CGS location. For instance, on the PDP-11 if the top of the CGS stack is register 1, the operation

ADDA 1

would cause the register transfer.
m1~ﬁn+1f

to be emitted.

The increment (++) and decrement (~~) operators are similiar to those defined for C, and are used to
manipulate the CGS and RTS stacks. These stacks are assumed to grow up in memory. If this is not
convenient for the particular machine environment (particularly for the RTS), the usage of the increment
and decrement operators may be changed to suit the environment. MEMC, MEMI, and MEMR are
character, integer, and real memories. -

ADDA n ‘
add a constant n to an address: n + CGS[top] ~ CGSftop}.
ADDCA »
add a constant n to a character address of a string: 7 + CGSjftop] — CGS{top].
ADDI '
_ add two integers: CGS[top~~] + CGS[top——] CGS[++top].
ADDR : ‘
add two reals: CGS[top-~] + CGS[top——] - CGS[++op].
ADDRESS
generate a cell containing the address of label n.
AND ' :
and two integers; CGSjtop—-] & CGS[top——] — CGS[++top].
ARGA
push an address argument onto the runtime stack: CGS{top—] — RTS[++top].
ARGCA _
push a character address argument onto the runtime stack: CGS{top——] —~ RTS[++top).
ARGC |
push a character argument onto the runtime stack: CGSltop——} ~ RTS[++top].
ARGI :
push an integer argument onto the runtime stack: CGS{top—} — RTS[++top].
ARGR '

push a real arguiment onto the runtime stack: CGS[top—] — RTS[++top].

_49-

BCMPIE .
compare two integers and generate TRUE if they are equal, otherwise generate FALSE:

CGS[top—] = CGS[top——] then TRUE else FALSE — CGS[++top].

BCMPIGE
compare two integers and generate TRUE if the first is greater than or equal to the second, otherwise
~ generate FALSE: CGSitop——] =z CGS{top——] then TRUE eise FALSE -~ CGS[++top].

- BCMPIGT '
.compare two integers and generate TRUE if the first is greater than the second,
CGS[top—1] > CGS{top——1] then TRUE else FALSE — CGS{++top].

BCMPILE ‘
compare two integers and generate TRUE if the first is less than or equal to the second, otherwise
generate FALSE: CGS[top—] < CGS[top——] then TRUE eise FALSE — CGS[++tap].

BCMPILT
compare two integers and generate TRUE if the first is less than the second, otherwise generate
FALSE: CGS[top—] < CGS{top——] then TRUE else FALSE ~ CGS[++top].

BCMPIN . .
compare two integers and generate TRUE if they are not equal, otherwise generate FALSE:
CGS{top——] # CGS[top——] then TRUE else FALSE — CGS[++top].

BCMPRE
compare two reals and generate TRUE if they are equal, otherwise generate FALSE:
CGSftop—] = CGS8[top~—] then TRUE else FALSE — CGS[++top].

BCMPRGE ‘
‘ compare two reals and generate TRUE if the first is greater than or equal to the second, otherwise
generate FALSE: CGS[top——] = CGS{top—] then TRUE eise FALSE — CGS[++topl.

BCMPRGT
compare two reals and generate TRUE if the first is greater than the second, otherwise generate
FALSE: CGS[top—] > CGS[top~~] then TRUE else FALSE ~ CGS{++top].

BCMPRLE
compare two reals and generate TRUE if the first is less than or equal to the second, otherwise
generate FALSE: CGS[top——] = CGS{top—~] then TRUE else FALSE — CGS[++Hopl. -

BCMPARLT _
compare two reals and generate TRUE if the first is less than the second, otherwise generate FALSE:
CGS[top—] < CGS[top—] then TRUE eise FALSE — CGS[++top].

BCMPRNE .
compare two reals and generate TRUE If they are not equal, otherwise generate FALSE:
CGS[top——] # CGS{top—-] then TRUE else FALSE - CGS{++topl.

BEG id
beginning of module id.

BSS »
reserve n units of storage. An unit of storage is particular to each machine.

GALLIF id.n,size
call an integer function id with n arguments totaling size units of storage.

CALLRF id.n,size
call a real function id with n arguments totaling size units of storage.

-50-

CALLP id,n.size
call a procedure id with » arguments totaling size units of storage.

cOoM
logical complement of an integer: ~CGS{top—] —~ CGS[++top].

DIVE
divide two integers: CGS{top—] / CGS[top—] — CGS[++top].

T DIVR

divide two reals CGS[top——-] / CGS[top——] — CGS[++top].

END
end of module.

ENDEXPR
eind of expression; can be used in conventional code expanders to free resources such as reglsters and
temporarles

ENT id
exported identifier; id is accessible from other modules.

EPDEF
end of definition of procedure prolog.

EPROC
end of a procedure.

FPARM id, size
declare a formal parameter id occupying size units of storage.

EXT idd
imported identifier; id is defined in another module.

FiX : : .
' convert from real to integer: FIX(CGS[top—]) — CGS[++top].
FLOAT
convert from integer to reai FLOAT(CGS[top—1]) - CGS[++top].
GLBL id

deciare global identifier id.

INDEXC size
compute the character address of an element in a character array gwcn a character address and an
index; each element of the array occupies size units of storage.

TINDEX size ,
compute the address of an element in a array given an address and an index; each clement of the array
occupies size units of storage,

INT n
reserve storage for an integér and initialize it to .

JCMPIE n _ 7
-compare two integers and branch to label 1 if they are equal:
CGS[top—] = CGS{top—] then n else PC + 1 — PC.

JCMPIGE . '
compare two integers and branch to label n if the first is greater than or equal to the sccond:
CGS[top——] = CGSftop—] then »n else PC + 1 —~ PC.

JCMPIGT n
compare two integers and branch to label n if the first is greater than the second:
CG@S8[top~~] > CGS[top—-—] then n else PC + 1 —~ PC.

JCMPILE »
compare two integers and brarnch to label # if the first is less than or equal to the second:
CGS[top——1 < CGS[top—] then n else PC + 1 — PC. ‘

JCMPILT n - o :
compare two integers and branch to label n if the first is less than the second:
CGS{top—] < CGS[top—1] then n else PC + 1 — PC,

JCMPIN n
compare two integers and branch to label n if they are not equal;
. CGS[top—] # CGS{top——] then n else PC + 1 — PC.

JCMPRE n
compare two reals and branch to label n if they are equal:
CGS[top——] = CGS{top——] then nelse PC + 1 — PC.

JCMPRGE n .
compare two reals and branch to label » if the first is greater than or equal to the second:
CGS[top—] = CGS[top—T] then n else PC + 1 — PC.

JCMPRGT n
compare two reals and branch to label n if the first is greater than the second:
CGSltop—] > CGS[topf—} then n else PC + 1 — PC.

 JCMPRLE n

compare two reals and branch to label i if the first is less than or equal to the second:
CGSltop—] < CGS[top—1 then n else PC + 1 - PC.

JOCMPRLT n
compare two reals and branch to label » if the first is less than the second:
CGS[top~~] < CGS[top~~] then # else PC + 1 — PC.

JCMPRN n
compare two reals and branch to label n if they are not equal:
CGS[top—~] # CGS[top~—] then n else PC + 1 — PC.

JMP r

jump to label a1,
LLAB n

generate local label n.
LCL idsize

declare local identifier id occupying size units of storage.

- MOD

generate modulus of two integers: CGS[top—] % CGS[top~—] — CGS{++topl.
MULI _

multiply two integers: CGS[top—] » CGS[top—-] ~ CGS{++top].
MULR

multiply two reals: CGS[top—-] + CGS[top—] — CGS[++top].
NEGI ’

negate an integer: —CGS[top] — CGS{topl.

-52 .

NEGR ‘
negate a real: ~CGS[top] — CGS{top}.

OR

or two integers: CGS[top——]| CGS{top—] CGS[++topl.
POPC

store a character: CGS[top] — MEMC(CGS[top—1]); CGS[top—] — CGS[topl.
POPI

store an integer: CGS[top] - MEMI(CGS[top—1]); CGS{top—] — CGSftopl.
POPR

store a real: CGS[top] — MEMR(CGS[top—1]); CGS{top—ﬁ} — CGSftop].
PROC id '

begin procedure or function id.
PUSHGA id

push the address of a giobal addressof(td) CGS[++Hop].

PUSHGCA id
push the character address of a global: addressoffid) — CGS[++top].

PUSHLA id
push the address of a local: addressof(:d) — CGS[++opl.

PUSHLCA id
push the character address of a local: addressofiid) — CGS[++iopl.

PUSHCCA cl.....cn ‘
push the character address of character constant comprised of ASCIE characters «of,...om
addressoffcl....,cn) — CGS[++topl.

PUSHIC n
push an integer constant: n — CGS[++topl.
PUSHRC n
push a real constant: n — CGS[++top].
PUSHC |
push a character: MEMC(CGS[top]) — CGSltop].
PUSHI |
push an integer: MEMI{CGSItop]) — CGSftop}.
PUSHR
push a real: MEMR(CGSltop]) — CGS{top}.
PUSHRP jd
push the address of a reference parameter: addressof(id) — CGS[++top].
PUSHRPC id
push the character address of a reference parameter: addressof(id} — CGS[++topl.
PUSHVP id | .
push the address of a value parameter: addressoftid) — CGS{++topl.
REAL x
reserve storage for a reéal and initialize it to x.
RET

return from a procedure.

-53-

RETI
return an integer.

"RETR

return a real.
SEG n

switch to segment n.
SETC n

begin calling sequence for n arguments.
SHIFTL

logical left shift: CGS{top-——] << CGSitop—] — CGS{++opl.
SHIFTR

fogical right shift: CGS{top—] >> CGS[top—] —~ CGS[++top].
STMTBGN ' '

* begin statement a; can be used to generate debugging code if desired.

STMTEND 1

end statement 7, cah. be used to generate debugging code if desired.

STR ncl,....cm
~ reserve storage for a string of n characters and initialize it to ¢f,...cm

s5UBi :
subtract two integers: CGS[top~~] — CGS[top—] — CGS[++top].

SUBR
subtract two reals; CGS[top——] — CGS[top—] — CGS{++top].

SWITCHC th,ub.n
case switch: jump to label » if switch value on the top of the CGS is between b and ub.

SWITCHJ lh,ub,n
jump switch: if switch value on the top of the CGS is between /b and ub jump through dlspatch table
that immediately follows the instruction; otherwise, jump to default label n.

' TRASHG :
‘used by compiler to pass information to Cacher about which globals to remove from the cache.

TRASHL | :
‘used by compiler to pass information to Cacher about which locals to remove from the cache.

TRASHP :
used by compiler to pass mfummtmn to Cacher about which parameters to remove {rom the cache.

Notes

For case statements, the ¥ compiler decides whether to generate code that simulates an else-if chain or
a branch table, The SWITCHJ opcode is used to generate branch table code; SWITCHGCs are used to
generate else-if code,

The EQI and EQR opcodes along with the other relationals that compute a value should actually not
be included in an ‘intersection’ machine. For certain machines, however, it is possible to generate very
efficient code when comparing values. At this time, PO is not able to convert natve code to this efficicnt
code for some machines. Consequently, these operations have been included.

-54 -

~ Appendix B
PDP-11 Machine Descfiption

The following is a complete PDP-11 description except for floating-point operations.

RN
XDNT
IDNT
LABEL
%%

RG

LB

WD

BT

SO
IMP
NZ

PC

[0-71+

((("—1"L")A-Za~z0-9_]+)|{~?[0-9]+))
{XDNTH" "[+]" "{(XDNT}»

"L LO-9]+
r[RN]

0

1

LABEL
IDNT

m{IDNT]

mfr[RN].+ IDNT]
mir[ANI++]
mi——r{RN}]
mir[RN]} .
m{m{r[RN]++]]
m{m[——r{RN}]]
mi{m[r{RN] + IDNT]]
m{m[r{RN]]]
m{m[IDNT}}

b[IDNT]

b[r{RN] + IDNT]
b[r{RN]++}
b[—-r{RN]]
b{r{RN]]
bim{r[RN]++]}
b[m{~~r[RN]]]
b{m[riRN] + IDNT]}
b[m[r{RN]]] .
bim{iDNT]]

=<
-
NZ

PC

T)

T

(T

E I

L]

- 55 -

RN

$0

$1
LABEL
$IDNT

IDNT ,
IDNT(rRN)
(rBRN)+
~(rRN)

{rRN)
x(rRN)+
w{rRN}
*IDNT(rRN)
«(rRN)
«|DNT -

IDNT
IDNT(rBRN)
(FRN)+
~{rRN}
(RN)
*{(rRN}+-
=—{rRN)
+IDNT{rRN)
*{rRN)
«IDNT -

YRT. = vyret

SXT = SXT
AL = == =
‘ o =
> -
< e
> =
%%
RGt = RG
RG2 = RG
C8STW = RGIWD
SRCW = RGID{WD| 0} 1
- D8TB == RG|BT
SRCB = RG|ID|BT| 0|1
%%
NZ =DSTW ? G
NZ = DSTB ? 0;

NZ = DSTW 7 SRCW:
. NZ=DSTB 7 SRCB;
‘DSTW == 8XT,

DSTW = O;NZ =017 0,
-DETB=O;NZ=07 0

DSTW = SRCW;NZ = SRCW ? 0;

DSTB = SRCB;NZ = SRCB ? 0;

DSTW = DSTW + 1NZ=DSTW + 170,

DSTW=DSTW -) NZ=DSTW - 1?0

DSTW = DSTW + SRCW;NZ = DSTW + SRCW ? ;

DSTW = DSTW - SRCW;NZ = DSTW — SRCW ? 0;

DSTW = DSTW & ~SRCW;NZ = DSTW & ~SRCW ? 0

DSTW = DSTW § SRCW;NZ = DSTW $ SRCW 7 0;

DETW = ~DSTW;NZ = -DSTW ? 0;

DETW = ~DSTW;NZ = ~DSTW 7 0;

PC = LB;

PC = YRT;

PC = ID{RG);

PC=NZRL 0 IMP LB] PC;)

DSTW = DSTW S0 1;NZ = DSTW 80 1 7 0;

RG = RG SO SRCW:NZ = RG SO SRCW 2 O
Istremp(SRCW, "1} asr RG
ash SRCW,RG
}

DSTW = DSTW SO ID;NZ = DSTW SO ID ? 0
stremp(lD, "—=1")r ABORY
asr DSTW
}

RG = ARG » BRCW;NZ = RG » SRCW 7 0: -
lodd(RG) || lispwr2(SRCW): ABORT
Istremp(SRCW, "2"): asl RG
pwr2(SRCW): ash SRCW,RG
mui SRCW,RG
1

eq
ne
ge
ie
It

gt

I T T

H

EE)

ER Y

WU CE WO

{st
tsib
cmp
cmpb
sxt
clr
cirb
mov
movh
ing
dec
add
sub
bic
bis
neg
com
jbr
jmp
jmp
jRL
asi

RG1 = RG1 RG2 / SRCW;RG2 = RG1 RG2 % SRCW;NZ = RG1 RG2 / SRCW 7 0,

Ipair{RG1, RG2): ABORT
div SRCW, RG1

}

-56-

DSTW

DSTB
DSTW,SRCW
DSTB,SRCB
DSTW

DSTW

DSTB
SRCW.DSTW
SRCB,DSTB

. DSTW

psTW
DSTW,SRCW
DSTW,SRCW
DSTW,SRCW
DSTW,SRCW
DSTW '
DSTW

LB

YRT

*D{RG)

L8

DSTW

=

Appendix C
DEC-10 Machine Description

The following is a DEC-10 description except for floating-point operations.

IR
REG
XDNT
IDNT
PM
Y%
ZRG
IR

MEM

EQ
NE

ORL

PUSH

LDB

DrPB

+ 3P

PC

[1-71{0-7}
[0-71+

(([L%S$.}[A—Za~z0~8]+)f (~2[0-9]+))

[XDNT}(" "[~+]" "[XDNT})»

[—+]

r{0]

rlIR]

m[IDNT]

mir[IR] PM IDNT]
mim[IDNT]]
mim{rfIR]]]
mim{r{IR] PM IDNT]]
0

1

IDNT

r{IR] PM IDNT
m[IDNT]

m{r{IR]]
m{r{IR} PM IDNT]

Log
DPB
iBP

PC

“

T T T

W

i

) W W W

WO

- 57

0

IR

IDNT

PM IDNT(IR)

@IDNT
@(IR)

@PM IDNT(IR)
0

1

IDNT

PM IDNT(IR)
@IDNT

@(IR)

@PM IDNT(IR)

e

n

ge
le

pcP = PC+1

IMP = e

SF = <<
HRL e HRL.

- MI = @~
%%

RL == EQ{NE!ORL.
M == E|0j1
R = ZRG|IR
R1 = IR

M = ZRG| IR MEM
AO = +@
80 = =Ml
LB = E

%%

R=M

M=R;

R=RA0O M,
R=RS80OM;
R=R*M;

R=R&M,

R=R§M

M =R AO M,

M =R SO M,
M=RxM;

M=R/M
M=R&M,
M=RS$M
R=RAOMM=RA0OM;
A=RSOMM=RSOM,
R=R+MM=08xM
R=R&EMM=R &M
R=REMM=RSM
R=RA0IM

R =R SO IM;

B =HRx*iM;
R=R&IM
R=R$%IM

R=0

R = iM;

R=R/MM=R/MR!=R%M:
pair(R, R1): ABORT
idive RM
}

H=R/MR1=R%M;
Ipair(R, R1}: ABORT
idiv. RM
!

R=R/IMR1=R % IM;
Ipair R, R1): ABORT
idivi RM
]

- 58 -

WO WU W W W e

WOUOWOW W W W0

W

T

move -

movem
add
sub
imul

. and

or
addm
subm
imuim
idivm
andm
iorm
addb
subb
imulb
andh
iorb
addi
subi
fmuli
andi
ori
setz
movei

RM
RM
RM
RM
RM
RM
RM
R.M
RM
RM
RM
RM
RM

‘RM

R.M
R.M
RM
R.M
R.IM
R.IM
R,IM
R, 1M
A.IM

/iM

PUSH(R) = M;

DPB(M) =R;

R = LDB{M);

M = IBP(M); .

R = LDB{IBP(M));
DPB(IBP{M)) = R;

R = HRL({IM,R);

R = HRL(M,R);

M == 0;

M= ;R = 0

PC = R RL M IMP PCP| PC;
PC =M RL 0 IMP PCP| PC;
PC=MRLOIMPPCPI PCR=M
PC = R RL iM IMP PCP| PC;
M=M@ 1,

M=MMI 1;

PC =LB;

R=R@ 1,PC = LB;

R =R Ml 1,PC = LB;
M=M@1R=M®@1;
M=MM 1 R=MMI 1,

R = R SF IM;
= —NM;

R = ~M,

M = —R;

M= ~R;

R = —iM;

R = ~IM;

M= M,

M = ~M;

PC =R & MEQ O IMP PCP| PC;

PC =R & M NE 0 IMP PCP| PC;
R=R&-~M,

R=R$§$M;

R=R§ M;PC = PCP;

R=R& ~MPC =PCP;

PC = RRL 0 IMP LB| PC;

PC = ID{R);
PC=R&MEQOIMPPCP|PC,R=R $ M;
PC=R & MNEO P PCP| PCR=R$ M,
R=R@1,PC=R@ 1RLOIMPLB]| PC;
R=RM t,PC =R M 1RLOIMPLB| PC;
M=M@®IRI=M@ 1;PC=M@ 1 RL 0 IMP PCP| PC;

M=MMI :R1=MMI 1,PC = MM 1RLOIMPPCP| PC;.

PC=R&MEQQGIMPPCP|PCR=R& -M;
PC=R&MNEOIMPPCP| PCR=R & ~M;

-59.

.

WO

BT T T T A T

RN

I T T T T T T

IR

E

W

ME

)

push
dpb
ldb

ibp
ildb
idpb
hrli.

hri
setzm
seizb
camRL
skipRL
skipRL
caiRL
aos
$08

jrst
aoja
s0ja
aos
sS08

Ish
movn
setcm
movnm
setcam
movni
seterni
movns
setcmm
tdne
tann
tdz

tdo
tdoa
tdza
jumpRL
jrst
tdoe
tdon
aojRL
s50jRL
aosRL
sosRL
tdze
tdzn

A.M
RM
A.M

B.M
R.M
R,iM
R.IM

RM
M
M
R.M
R, IM

M
LB
R,LB
RLB
R.M
R.M
R,IM
R.M
RM
R.M
R.M
R,IM

" R,IM

M

M

R.M
R.M
R.M
RM
R.M

R,LB
@ID(R)
R.M
R.M
R.LB
R.LB
R1M
R1.M
R,M
R.M

Appendix D
Cyber 175 Machine Description

The following is a complete CDC Cyber description with enough floating-point operaiions to describe
integer division, '

LDR [67]

R1 [O-71+

R2 I (i 55 ¢ ¥ o ,

XDNT - ({"L[0-9)) ([A-Za—2] [A—Za~20-9_]* [$#%])] (—7[0~9]+"d"))

IDNT ’ {XDNTH[—+][XDNT}H+

LABEL "L L0~}

%% : .

STN = LDR = LDR

RN = A1 = R1

LB = LABEL = LABEL

1D = IDNT = IONT

ADRS = afR1}+IDNT - = aR1+IDNT
b{R1}J+HDNT = bR1+IDNT
x[R1JHDNT = XR1+IDNT
x[R14bfR2] = xR1+bR2
a[R1}+b[R2] = aR1+bR2
a[R1]-b[R2] = aR1-bR2
b[R1}+b]R2} = bR1+bR2
b[R1]-b[R2] = bR1-bR2

BRL = = = zr

' I= = nz

» T ge
o = le
< = ng

RL o s (= zr
f== 0 s nZ
»=0 = pl
<0 = ng

UPCK = UPCK

PCK = PCK

NRM = NRM

MASK = " MASK

Si. = <<

SR = >

-6l -

IMP = -

PC = PC

YRT = yret

Mt = @

PL = @

%% ‘

AN1 = STN|RN
RNZ = STN|RN
BN3 - = STN|RN
RN4 = STNIRN
ADDR = LBIIDIADRS
LAB = LBiYRT

%%
x[RN1] = x{RN2];
x{RN1] = x{AN2] PL x[RN3};
x{RN1] = xIRN2] Mi x[RN3];
x[RN*] = x[RN2] $ x[RN3};
- x[RN1] = x[RN2] & x[RN3];
X[BNT] = x[RN2] « x[RN3];
X[RN1} = x[RN2} / x[RN3];
X[RN1} = x[RN2] # x{RN3];
x{AN1] = ~x{RN2] & x[RN3};
x[RN1] = ~x[RN2] § x[RN3];
x[RN1] = ~x[RAN2] # x[RN3];
x[RN1] = ~x[RN2];
x[RN1] = x[AN1] SLID;
x[RN1] = x[RN1] SR 1D;
X[AN1} = x[RN2]} SL b]RN3J;
x[AN1] = x[RN2} SR b{RN3};
x[AN1] = MASK(ID};
m[ADDR] = x[STN}:a[STN] = ADDR:
x[RAN1] = m[ADDR];a[RN1] = ADDR;
m[b{RN1}] = x[STNLa[STN] = b[RN1];
miafRN1]] = x[STN}a[STN] = a{RN1];
mix{RN1]] = x[STN];a[STN] = x[RN1];
x[RN1] = m{b[RN2}];a[RN1] = b[RN2];
x[RN1] = m[a[RN2]];a[RN1] = a[RN2];
Xx[RAN1] = m{x[RN2j];a[RN1]} = x[RN2];
b[RN1} = ADDR; ‘
b[RN1] = b[RN2];
bIRN1} . a[RN2],
B{RN1} = x[RN2];
x{RN1] = b[RN2];
x{BN1] = a[RN2],
PC = x{RN1] RL IMP LAB| PC;
PC = LLAB;
PC = LAB(bIRN1}Y;
x[RN1] = PCK{x[RN2],b{RN3]);
X[RN1] = NRM(x[RN2]);b[AN3] = NRM(x{RN2]);
x[RN1] = UPCK(x[RN2]);b[RN3] = UPCK(x[RN2]);
PC = b[RN1] BRL b[RN2] IMP LAB| PC;
x[RN1] = ADDR:
Istremp(ADDR, "0d"”}; mxRN1 0
tstrump(ADDR, “1d”); sxRN1 b1
sxRN1t ADDR
i

- 62 -

TH W

T R TH TO TH T

i

W

ER

i

N

(1T T

WO H W

i

i

bxRN1
ixRNT
ixRN1
bxRNT

‘hxRN1

ixBN1
xRN
bxRN1
bxRN1
bxRN1
bxRN1
bxRN1
IxRN1
axRNt
IxRN1
axRN1
mxRN1
saSTN
saRN1
5a3TN
saSTN
saSTN
saRN1
saHN1
saRN1
sbRAN1
sbRN1
sbRN1
sbRN1
sxRN1
sxfN1
RL

eq

ip
pxRN1
nxRN1
uxRNt
BRL

xRN2
xRN2+xBN3
xRN2-xRN3
xRN2+xRN3
xRN2+xRAN3
xRN2xxRN3
xRN2/xRN3
xRN2-xRN3
—xXRN2xxRN3
—xRNZ+xAN3
—xRAN2—xAN3
—xRN2

]

18]
xRN2,bRN3
xRAN2,bRN3
1D

ADDR
ADDR

bRN1

aRN1

xRN1

bRN2

aRN2

xRN2

ADDR

bRANZ

aRiN2

xRNZ

bRN2

aRN2

xRNt LAB
LAB
bRN1+LE
xRN2 bRN3
xRN2,bRN3
xBN2,bRN3
bRN1,bRN2 LAB

Appendix E
8080 Machine Description

The following is the 8080 description. Many of the eight-bit operations have been omitted because ¥
- does not use them. - -

XDENT ({{A-Za-zIA-Za-Z0~9.]*"$") (~?10~9]+))
IDENT IXDENT}(" "[—+]" "(XDENT})"
LABEL. "L [0-91+ '
%% T
LAB = _ LABEL = LABEL
BC = r{bc) = b
DE = ride] : = d
HL = rinl} = h
sP e risp] e sp
AR = rfa] = a
RG - = r[b}. = b
rie} = C
rld] = g
e} = e
rih] == h
r[1] = j
Ju= 0 = 0
L= 1 = 1
DT = IDENT = IDENT
RLC = EQ = eq
. CMP = cmp
RL = b = ne
= oo zZ
= s p
< = m
SHFT = < = rig
> == rre
" PUSH = PUSH
POP = POP

- 63 -

0P = . TOP

pa = z28
IMP = >

PC T RrC
%% '
10 = IDT|O(
RG1 = AR|RG
RG2 = AR|RG
RP = BC|DE|HL|SP
%% :
RG1 = RG2;

RG1 = b[HL};

b{HL] = RG1;

RG1 = ID;

b{HL] = ID;

RP = ID; .
AR = b{iD];

biiD] = AR;

HL = m[ID];

m[iD] = HL,;

AR = b{RP};

b{RP] = AR;

HL = DE;DE = HL,;
RG1I=RG1+1,ZS=RG1+1720;
RG1=RGt~-1Z8=RG1~-170;
b{HL] = b{HL] + 1:Z8 =b[HL] + 12 O;
b{HL] = b{HL] ~ 1;ZS = b[HL] - 17 O;
RP=RP + 1; ‘

RP = RP ~ 1;

HL = HL + RP;

PC = LAB;

PC = ZS RL 0 IMP LAB| PC;
PC = ML;

SP = PUSH(RP);

SP = POP{SP);RP = TOP(SP);

SP = Hi;

HL = HL & DE;

HL = RP " RP,

HL = ~iHL;

DE = ~DE:

HL = DE / HL,;

DE = DE % HL.;

HL = DE SHFT ML,

Z8 = RLC(DE HML);

HL = RLC(DE,HL);

Wu WM

E I

WoE W

WO

WOWOWOE W

"

W

OO W ¥

)

i

mov
mov
mov
mvi
mvi
Ixi
Ida
sta
lhid
shild
ldax
stax
xchg
inr
der
inr

- der
inx
doex
dad
imp
jRL
pcht
push
pop
sphl
cali
call
call
catl
call
cali
call
call
call

-64-

RG1,RG2
RG1,m
m,RG1
RG1,ID
m,iD
RP,ID
D

D

I8}

1D

RP

RP

AG1
RG1
M

M
RP
RP
RP
LAB
LAB

RP
RP

and.
mui.
cma,
tfcma.
div.
mod.
SHFT,
RLC.
RLC.

Appendix F
The Caching Algorithm

"The steps below are performed for each bounded block of register transfer lists (RTLs). A bounded

block is a section of code with only one entry. Cis the set of equivalence classes. At the start of each
block, the set C is assumed to be empty. Dst and src are the destination and source of each RTL as it is
processed. At the end of a block, the modified list of RTLs is output. The modified list includes
identification of dead variables as well as linkage information denoting where cells were set and then used.

1.

Dst is put into canonical form by first stripping off the outermost name and any brackets. Call this
string adst. For each register that is a substring of adst, do the following. Call the register r. For
each 4 € C, if r € A then substitute b, where b € A4, and for all other z & 4, b < z. Add the RTL to
r's use list.. Replace the original name and the outermost brackets. Call the resulting string ¢dst. Add
the RTL to dst’s set list.

For each register that is a substring of sre, do the following.. Calf the register r. For each 4 € ., if
r € A then substitute b, where 5 & 4 and for all other z€ 4, b <, z. Add the RTL to r's use list.

" Call the resulting string csre.

For cach 4 € C, il csre € A, then find an ¢ € A4 such that @ <_ b for all other h & 4. Substitute ¢ for
sre in the current RTL. Add the current RTL to o's use list. Apply the function def to sre. Def is
defined below.

For cach 4 € C, il adst € A, then find an a € A4 such that ¢ <_5 for all other h € A. Substitute « for
the address calculation of dsr. Substitute this new string for o5t in the current RTL. Add the current
RTL to o' use list. Apply the function del to the address calculation of dsr.

For the possibly new RTL just created by the above two steps do the following. For each register that
is a substring of the RTL, locate the RTL that set it. Call it S. I no previous RTLs have links to S.
then link the current RTL to S. ‘

For each 4 € C and for each a € 4, if csr¢ = g, then remember the set 4. I no equivalence class
contains csre, create one. Call this set £ For each 4 € € and for each @ € 4. if cdss interfercs with
a, thenset 4to 4 —{u} Finaliyset Eto EU {cdst), and set Cto C U E.

For each string s on the dead-variable list, for each A & € and for each ¢ € A. if 5 interferes with «.
thenset AtoAd —fal

The function del is defined as follows. For each register r thal is a substring of del’s argument do the

following. Remove the last RTL on r's use list. [f the use list becomes empty, the RTL that set r is no
longer necessary, Call that RTL S. Apply del to the source of § and then delete §.

f.

2.

. When the end of the block is reached. do the following.

For cach 4 € C and for each ¢ & A. add g to the dead-variable list of the RTL at the end of a% use
list, S ‘

Output the RTL' with window information and dead-variabie information appended.

-65-

Appendix G

Benchmark Programs

The following are the benchmark programs 8q, ctoi, and ctoi used in Chapter 6.

8q

import putc from "/usr/include/ylib.d”
integer up[15}, down[18], rows[8], x[8]
main() h . ‘
integer i, K C :
for (k =1, k <= 100; k = k + 1} {
queens(1);
putc(012);
i
end
queens(c)
integerr, c

for{r=1r<=8r=r+1}

if {rows]r] == 0 & up[r-c+8] == 0 & down[r+¢c-1] == 0} {

rows{r] = up[r—c+8] = down[r+c—1] = 1
Xfel=r
if {c == B8}
print{ }
else
queens{c + 1} ‘
rows{r] = up{r—c+8] = down[r+c~1} =0
}
end
print(}
integer k

for (K = 1, k<=8 k =k + 1} |
putc(’ ')
putc('0’ + x[k})
i
putc(012)
end

-67-

ctoi

tmport printf from "/usr/include/ylib.d”
main(}
integer i, j, k, ctoi{)

for (i=1,i<=30;i=i+1)
for (f=1,] <= 10000;j =} + 1}
. k=ctoi(" 3567")
-printf{"K is %d\n", k)
end

ctot - convert string to integer
integer ctoiin) :
char inf]
integer i, sum

i=1: Co

while (infi] == | in[i] == '\t)
i=i+1 . '

sum=20

while (inli] >="0" & in[i} <= '8 {
sum = sum & 10 + in[i] — 0

i=i+1
]
return (sum)

end

-68 -

ictoi

import printf from "/usr/include/ylib.d"
main()

inti,j, k, ctoi{)

int str[10]

strf1] = str[2} = str[3] = ' '

strid] ='%
strf5] = '5'
strig] =6’
stri7] =7’
stri8] = 0

for{i=11<=30i=i+1)
for{f=1;j<=10000; j=}+ 1}
k = ctoi(str}
printf("k is %d\n", k)
end

ctoi - convert string to integer .
integer ctoi(in) '
integer in[}

integer i, sum

i=1; :

while (in{i] ==" '| in[i] == "\t"}
P=i+1

sum =0

while {in[i] >= '0' & infi] <= '@} {
sum = sum = 10 +in[i] — 'O’
i=it+1
}

return (sumj}

end

-69-

Ano72
Ano77
Ano8i
AMMATT
Bei.A66
Btk 71
Brrr78
Carr78

Carr79

CarvR0

Da1.66
DAR'1’7O
Davi80

Duwa77
: nnw-.-ﬁ

DoniE79

Erns69

Fras77

List of Réferences

Aho, A. V. and Ullman, J. D. The theory of parsing, translation. and compiling, Prentice-
Hall, Englewood Cliffs, NJ, 1972,

Aho, A. V. and Ullman, J. D. Principles of compiler desfgn, Prentice-Hall, Englewood Cliffs.
NJ, 1977,

Aho, A. V. “Translator writing systems: where do they now stand.” IEEE Computer 13, §
(August 1980), 9-14.

Ammann, U. “On code generation in a PASCAL compiler,” Software— Practice & Experience
7. 3 (June 1977), 391-423.

Belady, L. A. “A study of replacement algorithms for a'virtuai storage computer,” /BM
Systems Journal 5 2 (April [966), 78-101.

Bell, - C. G., and: Newcll A. Computer structures: readings and examp!es McGraw-Hill, New
York, NY, 1971.

Berry, R. E. “Experience with the Pascal P-compiler,” Software— Practice & Expericnce 8, 5
(September 1978) 617-627,

Cattell, R. G. G. “Formalization and automatic derivation of code generators,” Ph.D.
dissertation, Carnegie-Mellon University, Pittsburgh, PA, April 1978,

Cattell, R. G. G., Newcomer, J. M., and Leverett, B. W. “Code generation in a machine-
independent compiler,” in Proceedings of the ACM SIGPLAN Symposium on Compiler
Construction, August 1979, pp. 63-75.

- Cattell, R.'G. G. “Automatic derivation of code generators from machine descriptions.” ACM

Transactions on Programming Languages and Systems. 2, 2 (April 1980), 173-190,

‘Dahl, O. and Nygaard, K. *“SIMULA—an ALGOL-based simulation language”
Communications of the ACM 9, 9 (September 1966), 671-678.

Dé(rtr'lncgth College, BASIC, 5th edition, Dartmouth College, Hanover, NH, 1970.

Davidson, J. W., and Fraser, C. W. “The design and application. of a retargetable peephole
optimizer,” ACM Transactions on Programming Languages and Systems, 2, 2 (April [980).
191-202. - A .

Dewar, R." B. K. and McCann, A. P. “MACRQO SPITBOL-—a SNOBOL4 compiler.”
Software— Practice & Experience 7, 1 (January [977), 95-113.

Doncgan, M. K. “An approach to the automatic generation of code generators,™ Ph.
disseriation, Rice University, Houston, TX, 1973, _

Donegan, M. K., Noonan, R. E., and Feyock, S. “A code generator generator language.” in

Proceedings of the ACM SIGPLAN Swnpowum on Compiler Construction, August 1979, pp.
58-64.

Einst, G. W, and Newell. A. GPS: a case study in generality and problem solving. Academic
Press, New York, NY, 1969,

Fraser, C. W. “Automatic generation of code generators,” Ph.D. dissertation, Yale University,
New Haven, CT, 1977.

7] -

. Fras79

Frri74

‘GANASO

GEMP‘73
Gran77?
GLANTS
Granl
Grie7l
Gris71
Gris72
N _GRIS'?’?
Hapn78
Hans81

leun79

JOHNTS
Joun80

Kean76
Kern78

Kern80
Kern8l
KnuT68
Korn8Q

Lamu®l

Fraser. C. W. “A compact machine independent peephole optimizer,” in Conference Record
of the 6th Annual Symposium on Principles of Programming Languages, January 1979, pp. 1-
6.

Freiburghouse, R, A, “Register allocation via usage counts,” Communications of the ACM
17, 11 {(November 1974), 638-642.

Ganapathi, M. “Retargetable code generation and optimization using attribute grammars,”
Ph.D. dissertation, University of Wisconsin, Madison W1, [980.

Gimpel, J. F. SITBOL; version 3.0, Technical Report 54D30b, Bell Teiephone Laboratories,
Inc., Murray Hili, NJ, 1973,

Glanville, R. S. “A machine independent algorithm for code generation and its use in
retargc_:table compilers,” Ph.D. dissertation, University of California, Berkeley, CA, 1977.

Glanville, R. S., and Graham, 8. L. “A new method for compiler code generation,” in
Conference Record of the 5th Annual Symposium on Principles of Programming Languages.
January 1978, pp. 231-240.

Graham, S. L. “Table-driven code generation,” /EEE Computer 13, 8 (August 1980), 25-34.

Gries, D. Compiler construction for digital computers, John Wiley & Sons, New York, NY,
197t.

Griswold, R. E., Poage, J. F., and Polonsky, 1. P. The SNOBOL4 programming language,
2nd edition, Prentice-Hall, Englewood Cliffs, NJ, {971.

Griswold, R. E. The macro implementation of SNOBOIL4, W. H. Freeman and Co., San
Fransico, CA, 1972.

Griswold, R. E. “Benchmarks of DEC-10 SNOBOL4 processors,” ” Dcpartment of Computer
Science, The University of Arizona, (June 1977).

Haddon, B. K. and Waite, W. M. “Experience with the universal intermediate language
Janus,” Software-— Practice & Experience 8, 5 (September [978), 601-627.

Hanson, D. R. “The Yy programming language,” SIGPLAN Notices 16, 2 (February 1981),
59-68.

Ichbiah, J. D., Heliard, J. C., Roubine, O., Barnes, J. G. P., Kreig-Brueckner, B., and

" Wichmann, B. A. “Reference manual for the Ada programming language,” SIGPLAN Notices

14, 6 (June 1979).

Johnson, S. C. “A portable compiler: theory and practice,” in Conference Record of the 5th
Annual Symposium on Principles of Programming Languages, January 1978, pp. 97-104,

Johnson, 8. C. “Language development tools on the UNIX system,” IEFE Computer 13. 8
{August [980), 16-21,

Kernighan, B. W., and Plauger, P. J. Software tools, Addison-Wesley, Reading, MA, 1976,

Kcrnighzln. B. W, and Ritchic, D, M. The C programming language, Prentice-1kall,
Englewood Cliffs, NJ, 1978.

~ Kernighan, B. W., and Mashey, J. R. “The UNIX programming environment,” Software—

Practice & Experience 9, | (January 1980), 1-15.

- Kernighan, B. W., and Plauger, P. J. Software tools in Pascal. Addison-Wesley, Reading,

Ma, 1981.

Knuth, D. E. “Semantics of context-free languages,” Math Systems and Theory 2. 2 (June
1968), 127-145.

Korner_up, P.. Kristen, B. B., and Madsen, O. L. ““Interpretation and code generation based
on intermediate languages,” Software~— Practice & Experience 10, 8 {August 1980), 635-658.

Lamb, D. A. “Construction of a peephole optimizer,” Software— Practice & Experience 11, 6
(June 1981}, 639-647,

- 72 -

LEsk 79

Leveg0

McKE6S
Ni-‘.l,s‘ﬁ)

NEwe72

Norig!

Perx79

Ricu71

Rien77

Rirc74

SHiu 78

Snyn74

StrOS8

Si1re6]

TANESBD

Warr73

Wirt75

Wure7l

Wi 75

Wi 181

Lesk, M. E. “Lex—a lexical analyzer generator,” UNIX Programmer’s Manual 2, Section 20,
January 1979, . _

Leverett, B. W., Cattell, R. G. G,, Hobbs, 5. O., Newcomer, J. M., Reiner, A. H.. Schatz, B
R.: and: Wiilf, W. A. “An overview of the production quahty compiler-compiler project.”
IEEE. Compmer 13, 8 (August 1980), 38-49

McKeeman, W, M. “Peephole optimization,” Communications of the ACM 8. 7 (July 1965).

- 443-444,

Nelson, P. A. “A comparison of PASCAL intermediate languages.” in Proceedings of the
ACM SIGPLAN Symposium on Compiler Construction, August 1979, pp. 208-213.
Newey, M. C., Poole, P. C.,, and Waite, W. M. “Abstract machine modelling to produce

portable software—a review and evaluation,” Software— Practice & Experience 2. ? {April
1972), 107-136.

Nori, K. V., Ammann U., Jensen, K., Nageli, H. H., and Jacobi, C. H. “Pascal-P
implementation notes,” in Pascal—The Language and its [mp!ememanon D. W. Barron, Ed..
Wiley-Interscience, Chichester, UK, 1981, ‘

Perkins, D. R. and Sites, R. L. “Machine- -independent Pascal code optimization,” in
FProceedings of the ACM SIGPLAN Symposium on Compiler Construction, August 1979, pp.
201-207.

Richards, M. “The portability of the BCPL compiler,” Softwaré— Practice & Experience 1, 2
(April 1971), 135-146. .

Richards, M. “The implementation of BCPL,” in Software Portability, P. J. Brown, Ed..
Cambridge University Press, Cambridge, UK, [977. _

Ritchie, D. M., and Thompson, K. “The UNIX time-sharing system.” Communications of the
ACM 17,7 (July 1974), 365-375.

Shillington K. A. and ALkidnd G. M. UCSD Pascal version 1.5, Institute for En!orm.nmm
Systems, University of California, San Diego, CA, 1978,

Snyder, A. “A portable compiler for the language C." Master’s thesis. Massachusetts Institute
of Technology, Cambridge, MA, 1974, ,

Strong, J., Wegstein, J., Tritter, A., Olsztyn, J.. Mock., O., Steel, T. “The problem of
programming communication with changing machines: a proposed solution,” Communicarions
of the ACM I, 8 (August 1958), 12-18.

Steel, T. B. “A first version of UNCOL,” in Western Joint Compter C onference Proceedings.
May 1961, pp. 371-378.

Tanenbaum. A. S, Stevenson, J. W., and van Staveven, H. “Description of an experimental
machine architecture for use with blocknstructured langud;:.es " Informatic Rapport IR-34,
Vrije Universteit, Amsterdam, The Netherlands, 1980,

Waite, W M. Implementing software for non-numeric applications, Prentice-Hall, E nglewood
Cliffs, NJ, 1973,

Wirth, N., and Jensen, K. Pascal user manual and report, gprmgcrmVeriag,, New York, NY,
1975,

Wull, W. A, Russell, D. B., and Haberman, A, N. “BLISS: a language for systems
programming,” Communicaiions of the ACM 14, 12 (December 1971), 780-790. ‘

Wull, W. A.. Johnsson, R. K., Weinstock, C. B.. Hobbs, S. O.. and Geschke. C. M. The
design of an optimizing compiler, Elsevier North-Holland, New York, NY, 1975, 107-125,

Wulf, W. A, “Compilers and computer architecture,” IEEE Computer 14, 7 (luly 198 1), 41-
47.

~T3-

