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Abstract

The proper handling of exceptional conditions is important in computing systems
that are intended to be dependable. The Ada language is used for programming such
systems and provides exception semantics as a means for handling exceptional
conditions, but the mere semantics do not guarantee any properties of dependability.
Numerous unusual situations (called anomalies here) can exist in the exception handling
portions of an Ada program that cause the program to diverge from its specification,
often in a completely unacceptable manner.

To increase dependability in existent Ada programs, anomalies must be located and
removed from them. When implementing new Ada programs, anomalies should be
precluded from the system by applying exception handling design principles during
program construction. Initially it was believed that these two goals (detection and
prevention of anomalies) were sufficient to substantially increase dependability in Ada
programs, but now it is felt that the anomalies of Ada arise due to basic problems with
the nature of exception handling itself. It is asserted that exception handling is a
fundamentally flawed paradigm and that it is not sufficient for the needs of dependable
computation. '

This paper urges a revision of the notions upon which exception handling is based.
A new and fundamentally different view of the problem domain currently addressed by
exception handling techniques is presented. A model based on the consequence is
discussed as an implementable and useable method for addressing the needs of
dependable computation. A consequence’s intent and causes are more precisely specified
than for exceptions, and the consequence is @ more general and flexible mechanism than
the exception.

The consequence model forms the basis for the OZ specification notation. This
notation can be added to Ada programs to guarantee properties of their behavior, even if
- certain classes of anomalies are present in the implementation. Augmenting an Ada
program with accurate OZ specifications also embeds important information in the
program’s specification that can be used later for verification. Using -OZ, certain
properties of dependability can be guaranteed a priori; exception handling only begins to
afford similar assurance after a difficult and potentially impossible verification of the ad
hoc programming employed to handle exceptions.
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SECTION 1

Introduction

Insuperable problems have been encountered in the Ada language’s exception -
handling semantics. The problems are collectively called anomalies, because their
presence can cause a program to exhibit unexpected and unusual behavior when an
exception is raised. If anomalies exist in an application, then some desired properties of
dependability cannot be guaranteed. In an effort to increase the dependability of
programs developed in Ada, it is important to uncover the anomalies, discover their
causes and develop solutions for them. '

To lay the foundation for understanding the problem, the previous work in
exception handling is reviewed in Section One. Section Two reviews the semantics for
exception handling in the Ada language to offer some terminological background for the

-work. To highlight the need for a solution, Section Three describes several of the
anomalies of Ada exception handling and their possible effects on Ada programs.
Section Four outlines the approach to detecting and eliminating anomalies from Ada
programs—— by employing a set of axioms that describe the anomalies in terms of Ada’s
exception handling semantics, precise causes can be ascribed to each anomaly and it is
possible to reason from the causes to a solution. Section Five describes a bipartite graph
model that represents control flow in an executing Ada program when performing
exception handling.

To fully understand the nature of exception handling, it is necessary to ascertain the
programming requirements addressed by exception handling. Several questions help
guide the search for these requirements:

¢  What exactly is an exception?

e  Why are exceptions a concern at all?

e . What are the underlying programming needs that exception
handling attempts to address?

o  What are the limits of exception handling?

Although answers have been proffered in the past, these are usually within the
context of a specific language or are at best constrained within existing notions of
exception handling. A goal of this research is to discover the ‘‘atom’’ of exception
handling—to uncover the essential characteristics of a flexible exception handling
mechanism that assists in the verification of programs using it.

Exception handling is used as a major design technique in many programs, and
semantics for exception handling are provided in several programming languages. This
in itself indicates that exception handling fulfills some need in the software, whether an
imagined or real one. It is asserted here that the need for exception handling is indeed
real, although the relative merits of existing exception handling models are debatable.
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Further, it is asserted that although there is a need for exception handling, there are
greater needs than current exception handling models can fulfill, among them the need
for verifiability, dependability, and allowance for hierarchical design.

While the set of anomalies discovered in Ada are an instance of insufficiencies in
one exception handling model, it is asserted that there is a need for a model that can be
used for the purposes of conventional exception handling, but which does not suffer from
what are now perceived as fundamental problems with the nature of the exception
handling paradigm itself. The consequence model is proposed to supplant existing
exception handling models. The consequence model can be used to implement any of
the previously proposed exception handling models—including the termination [1],
resumption {2] and replacement models [3] if desired. In addition, a failing of many
. exception models is an inability to handle exceptions within expressions adequately—
consequences integrate expressions seamlessly with statements to grant more flexibility:
than other models. It is asserted that consequences capture the concerns of exception
handling precisely and completely.

A specification notation called OZ is based on operations as they are defined in the
consequence model. OZ is offered as a means of specifying robust and verifiable
program behavior. Many of the Ada anomalies are prohibited from appearing in a
program specified with OZ as a matter of design. This assurance provides opportunities
for verifying Ada programs that have been augmented with consequence specifications.

Section Six discusses the consequence model in terms of the fundamental nature of
exception handling. In Section Seven, the OZ specification notation is described as a
method by which the consequences of operations may be specified and verified. A plan
of work is outlined in Section Eight to show how the goals of developing OZ and using it
within Ada programs will be accomplished.



SECTION 2

Previous Work

Goodenough ordered the previously cluttered field of exception handling by
outlining exactly what exceptional services are often desired and then detailing semantics
that provide them [2]. He defines an exception as a condition that must be brought to the
attention of an invoker. His model is resumption based—an operation may signal an
exception but then be resumed again afterwards. He specified three cases for resumption:

e always resuming,
e  never resuming, and
e sometime resuming, dependent upon the invoker’s situation.

Goodenough’s model for placement of handlers allows a handler to be attached to
any program statement that can raise an exception, including expressions. This is
general, but suffers from the problem of recursive inclusion of handlers within handlers
ad infinitum; if an exception handler can raise an exception, then a handler may need to
be attached to it to guarantee that the operation meets its specification. If the handler’s
handler can raise an exception, then it in turn needs a handler. Each new handler deepens
the level of nesting within the operation. Not only are programs constructed in this way
not clear, but it is also difficult to guarantee that the specification is met by the rat’s nest .
of handlers.

Cristian simplified the implementation and analysis problems by limiting his model
to a termination semantics [4,5]. In the termination model, an operation that raises an
exception is completed by that raise and cannot be resumed. Cristian defines an
exception as an operation’s response when its specification cannot be met, either due 10 a
violation of the operation’s pre-conditions or an inability to satisfy its postconditions.
His definition for a program specification includes information regarding its exceptional
‘specification as well.

Cristian uses backwards and forwards predicate transformations of the specification
" along with his precise definitions of operation semantics to prove certain properties of
programs, such as robustness. His approach may not be very easy to implement
however, because these predicate manipulations require a great deal of domain specific
knowledge on the part of the verifier, who is in this case a person.

Yemini proposes a replacement semantics for exception handling that can simulate
both the termination and the resumption model [3]. Her approach involves replacing the
result of an operation that raises an exception with the handler for that operation, in
effect replacing the operation’s result with its handler’s result. This approach amounts to
calling a function when an exception is raised and either 1) using the function’s result in
place of the exception raise itself, or 2) using the function’s result in place of the
operation’s result. The first case emulates resumption semantics and the second
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termination semantics.

The replacement model does not address the infinite recursion of handlers problem,
however; the handlers replacing the raised exception may raise exceptions also. Also, it
is not clear exactly how much program size will increase due to the addition of special
purpose functions for performing the handling; since replacement is effectively a
function call, each handler function must be implemented and included in the program.
Finally, it is not clear whether the replacement model is significantly more powerful than
a language that implements exception handling only through function calls.

Clu provides exception handling semantics that implement a one-level termination
model [6]. This model enforces declaration of all exceptions that an operation can raise,
and does not allow an invoker to re-raise an exception unless it has been declared. This
model avoids some problems with propagation, but allows others; instead of rigidly
enforcing a rule that all possible exceptions are handled, Clu allows operations to fail if
they do not handle an exception. The failure exception is thus an implicit exception of
all operations. This concept is useful, but can lead to a situation where an unhandled
failure completes the Clu program. '

Luckham and Polak detail a method for verifying Ada programs that enforces:
(1) explicit declaration of all exceptions that can be raised by an operation [7].

(2) attaching an assertion to every exception handler detailing the pre-conditions for its
handler activation.

If the declaration is correct, then the set of all exceptions that might be raised by an
operation can be constructed. The declaration part of the specification cannot be
constructed in a straightforward manner, however. In Ada, for example, there are five
pre-defined exceptions that can be raised by numerous primitive Ada operatiens (e.g.,
addition), and it may be quite teédious to decide whether an operauon can raise one or
more of these.

If handler assertions are specified accurately, then the pre-conditions for activating a
particular handler are known. This is not straightforward either, as these assertions are
selected by the programmer and no process for constructing them is outlined. Indeed, no
definition is provided for an Ada program specification either, so it is unclear what goals
the handlers must achieve. Given accurate declarations and assertionis, and assuming
there is a program specification, Luckham and Polak provide a proof techmque 3]
' guarantce that the Ada program meets its specification.

Black was one of the first to take issue with the very existence and use of the
exception [8]. He asserts that the exception is as powerful and dangerous as the goto
statement. While the language semantics in most languages structure exception handling
“more than they structure gotos, Black was the first to recognize that there are problems
with many aspects of exception handling methods.
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He makes the point that the exception is not a well-defined concept. This is a
flawed argument, because the exception has been defined well by several authors
(including Cristian), and the exception serves a necessary role in program construction.
Without it, there is no language defined mechanism for signalling that an operation’s
preconditions have been violated, nor for signalling that the postconditions cannot be
met. In langoages without exception handling, the result returned by an operation must
be checked to ensure that the operation succeeds.

Black does provide a substitute mechanism for the exception. Operations may
return oneof a number of different resuits, some of which essentially denote that an
exception has been detected. He claims that all programs can be written just as elegantly
without exceptions by using this mechanism. The first part of the claim is guaranteed by
Turing equivalence; any program with exceptions can be rewritten without exceptions.
The second part of the claim, elegance or ease of use, is not justified, because Black
provides very little beyond current exception handling techniques to manage his oneof
results. In the past, operation results have served to signal that exceptional situations
have occurred, but there is no guarantee that the programmer will check for the
exceptional result. At least exceptions provide a way to enforce that the program either
handles the exception or is halted.

Cui and Gannon claim that by associating exception handlers with data types,
program structure can be made clearer and programs can be made smaller [9]. Their
semantics add parameterized exception handlers to the definition of Ada data types by
including ' pre-processor directives for declaring, raising and handling exceptions
associated with the type. Their approach seems sound, but it is unclear how a data type’s
exceptions are handled other than through the pre-processor directives; they do not detail
the interaction involved if a situation arises where it is desired to handle a data type’s
exception using Ada’s own exception handling semantics. Also, since their approach
concerns only ‘‘implementation insufficiencies’ as described by Black [8], it is not clear
how generally applicable data oriented exception handling is.

Some of the papers in the field of exception handling attempt to verify properties of
- exception handling programs by using precise semantic definitions and a program
specification. In every case, however, the verifications are only attempted on a subset of
an existing language, or are attempted on a small set of pseudo-language semantics.
None of these papers addresses the problem of verifying the properties of large programs
for the full semantics of an actual language, such as Ada. This is due in part to the
complexity of Ada and the complexity of arbitrarily structured programs. For
verification to have a real possibility of success, then one or both of these complexities
must be reduced.
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Ada Exception Handling Semantics

Although the Ada Language Reference Manual [1] is fairly precise, its form and
content do not make its implications apparent. Many notes about exception handling are
strewn throughout the LRM, rather than being contained in the exception handling
section. By grouping all language defined information regarding exception handling in
one readable document [10], numerous rereadings of the LRM can be avoided. For
clarity, a summary of the Ada exception handling semantics is presented here,

The Ada semantics define that an exception must be declared within a scope, much
as variables are. The scope of an exception may be:

e a procedure or function, both of which are called sub-programs in
Ada, :

e a block, the smallest ‘part’ out of which sub-programs are

‘ constructed,

®  atask, the construct for concurrency in Ada, or

® a package, an object-based mechanism for implementing
abstractions composed of tasks and sub-programs.

Exceptions are raised to signal that an exceptional condition has been detected.
Exceptions are raised in a frame, which is the representation during execution of one of
" the four scopes described above. When a frame is invoked, it either completes normally
Or it raises an exception.

A group of exception handlers may be attached to the bottom of any frame. A
handler is activated when its exception is raised in the frame. If the handler itself does
not raise any exception, then its own exception is said to be masked. A masked
exception raise is treated by the invoker exactly as if the invoked frame completed
normally. A handler for the special name others handles any exceptions that have no
other exception handlers in the frame.

An exception may propagate 1o the invoker of a frame. Propagation means that the
exception is raised again inside the invoker (at the point where it invokes the frame
propagating the exception). Propagation occurs if one of the following is true for the
frame in which an exception is raised:

e  the exception has no handler in the frame,
e the handler raises the exception again, or
e the handler raises another exception.

Note that in the third case, the propagated excepuon is different from the one raised
initially,
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These semantics are not extremely complex, although certain of their interactions
with other aspects of the language can be complex or counter-intuitive. It is interesting
that such a small set of semantics, along with a few incongruous special cases, is capable
of generating the wide variety of problems that have been encountered.
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Anomalies

A catalog of the known Ada exception handling anomalies is compiled in [11]. The
cataloging effort provided a great deal of insight into why programs might be built
incorrectly when exception handling is used as a major design policy. To date, twenty
‘anomalies have been discovered.

Some of the anomalies are the result of peculiar nuances of the Ada semantics. In
Section 11.4.1.9 of the Language Reference Manual, exception propagation is specified
as being delayed when dependent tasks have not completed {1]. This rule causes a
program deadlock when:

(1) atask is instantiated in a frame,
(2) anexception raise circumvents rendezvous with the task, and
(3) propagation is delayed awaiting the task’s completion.

The resulting anomaly is called tasking deadlock due to delay of propagation. The
example in Figure 1 shows a program where a tasking deadlock is present.

Another anomaly resulting directly from the Ada semantics is the anonymous
exception. Exceptions are visible within the scope of their declaration, and obversely
there are scopes within which an exception is not visible. If an exception is propagated
to a scope where its declaration is not visible, then that exception becomes anonymous.
An anonymous exception stays anonymous even if it is propagated back into a scope
where the original name is visible. Anonymous exceptions plague Ada designers,
because an anonymous exception cannot be handled using its own name.

Other anomalies result from the nature of a Ianguage $ chosen exception handling
model. Ada’s model incorporates exception propagation as the method for signalling the
invoker of an operation that an exception has been raised. This design choice means that
an invoked operation may raise an exception in the invoker to signal an exceptional exit
of the operation. A number of anomalies result from the Ada interpretation of exception
propagation. These anomalies subsist primarily on this fact: although exceptions are
stated as existing when an Ada operation defines them, they are not declared as
propagatable in the operation’s interface. In other words, an operation’s exception
handling behavior is not fully specified in Ada, because some exceptions can be
propagated to the invoker without warning,

This is a serious -deficiency if Ada is to be used for applications requiring
dependability. It is not easy to determine the set of exceptions that can actually be
propagated. If an operation’s invoker is to handle the exceptions that it can propagate,
then the implementation of the operation and all operations that it invokes must be
examined. This situation is unbearable for the programmer and does not assist in the
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with Text Jo; use Text Io;

procedure Deadlocking procedure is
-— This exception’s ralse will cause the deadlock.
exception _whose_propagation_is_delayed : exception;

-- Sleeper is a dependent task of the Deadlocking_procedure.
task Sleeper is

entry Go_Ahead;
end;

task body Sleeper is
begin

accept Go_Ahead;

delay 10.0;

put_line ("After delay in Sleeper.™);
end Sleeper;

begin
=~ initial computations performed here.,.
-- eventudlly, this exception is raised:
ralse exception_whose_propagation is delayed;

-~ the exception’s raise causes this task entry not to be reached.
$leeper.Go_Ahead;

egxception
when exception_whose_propagation_is_delayed =>
put_line ("The exception is handled by Deadlocking procedure,"); .
«- The next raise would propagate the exceptiocn, but since Sleeper is not
—-— cemplete, the propagation is delayed. Sleeper won’t complete, since it
-- is awaiting a task entry. Thus, deadlock results.
raise;
end Deadlocking_procedure;

Figure 1: Propagation Delay Causing Deadlock

program design process.

A related anomaly in Ada is the uncontrolled propagation of an exception. Since
Ada does not enforce declaration of the propagatable exceptions, it is possible that an
exception can propagate beyond the point where it provides meaningful information to
the program. An uncontrolled propagation can actually complete the program by
propagating the exception back to the root control program. An exception handler for
others can keep the exception from propagating beyond a certain point, but it can only
perform the most general handling of the exception.

“Ada’s exception handling semantics allow the inclusion of anomalies in programs.
These anomalies are not only hard to locate and eliminate from the program, they are.
also dangerous because generally they break the program’s specification. The difficulty
encountered in using the current Ada semantics appropriately indicates the need for a
different exception handling solution than Ada provides.
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Axioms

A set of axioms expressing the exception handling semantics of Ada can be used to
state the precise reason for each anomaly’s existence, The axioms also lead directly to
the three important research offshoots of: 1) an exception handling taxonomy, 2)
algorithms for anomaly detection through static analysis of Ada programs and 3)

guidelines for creating anomaly-free Ada programs. These are introduced below.

1. Taxonomy

There are several underlying causes for the anomalies. The most general of these
causes are:

e  Exception handling is not easy.

Programmers often use ad hoc methods to handle exceptions, rather than thoroughly
considering how a raised exception may affect the requirements of the program
specification.

e  Exception handling is too powerful.

Although normal program execution follows a well-defined ordering of events, the
raise of an exception can perturb this order. An arbitrary number of operations may
be completed (aborted prematurely, in this case) before a handler for the exception
is located.

e  Exception handling is flawed.

Numerous unquestioned assumptions are often encoded directly into language
semantics for exceptions. A few of the more pandemic assumptions are:

(1) araised exception represents an emergency situation,

(2) exception raises are rare,

(3) exceptions are always treated exceptionally, and

(4) sequential control flow is the general rule when not handling
exceptions.

These assumptions are justified for many cases, but not for all. In situations where
they are not justified, the effects on the program may range from extensive extra
programming to get a desired effect all the way to programs breaking their
specifications due to a lack of knowledge about, or an incorrect interpretation of, an

— 10—
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assumption.

2. Static Analysis

The first hypotheses regarding the Ada anomalies suggested that static analysis
might be able to find anomalies that were present in program implementations and report
them with “‘red-flags’’. MITRE has constructed an analyzer capable of detecting several
of the anomalies, such as anonymous exceptions, uncontrolled propagation, and ill-
considered use of others handlers. The approach taken by MITRE uses the Diana
intermediate representation for Ada [12] to provide access to a disambiguated, compiled
form of Ada programs. Diana allows an abstract syntax tree for the entire Ada program
to be traversed and examined. By searching the tree of importations making up the
whole program, anomalies can be located and reported.

Many problems can be located this way, but others might escape notice. Since the
association of handlers to exceptions is dynamic, some programs may require a full Ada
simulator in order to ensure that all combinations of exceptions with handlers are
examined. It is preferable to devise a technique that is not only capable of finding
problems in programs, but is also capable of guaranteeing certain program properties.
Instead of a dual compilation and anomaly inspection being necessary for every change
in the program implementation, a single compilation phase is advocated—during this
phase, necessary exception handling structures should be added to the program to
guarantee certain aspects of the behavior during execution. A methodology for this

alternate approach is suggested in Section Eight in the sequel.

3. Guidelines .

A set of guidelines for Ada program construction can preclude certain anomalies
from the program implementation. If the existence of an anomaly A depends on
interactions between three features F |, F, and F 3, then it is fairly clear that the anomaly
can be prevented by disallowing either F;, F, or F3. The guideline for anomaly A is in
a form that explicitly describes how to keep these three conditions from being present at
the same time in a program. Each guideline follows one of two forms: either
combinations of features are warned against or an anomaly-free pattern for combining
certain features is provided.

—_11
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Dual Graph Model for Ada

A graph model for control flow during Ada exception handling can assist in
program analysis [13]. The model is based on the idea that there are dual control flow
graphs in an Ada program: one graph for ‘‘standard’’ control flow and the other for

‘“exceptional’’ control flow. While transitions from the standard to the exceptional graph
are fairly comprehensible, some of the possible transitions from the exceptional control
flow graph back to the standard graph are not intuitive or obvious.

The graph model can be used to determine certain program properties on sight,
because some anomalies have a visible ‘‘signature’’ that can be observed in the graph.
For example, the uncontrolled propagation anomaly arises when an exception is not
handled appropriately within a vicinity where its meaning is known. The extreme
example of uncontrolled propagation is when a program completes because no handler
exists for that exception in the entire chain of operation invocations. In the dual graph
model, the presence of an uncontrolled propagation becomes obvious; there is a long
sequence of links between the exception handlers in the exceptional control flow graph.

The graph model makes an important characteristic of Ada immediately apparent;
programs are schizophrenically split into normal parts and exceptional parts, rather than
being constructed in a unified manner. The fact that there are two separate and distinct
control flow graphs means that a programmer must actually create two programs that
interact by switching back and forth between the two graphs. This is not the most
obvious realization one can have about Ada or its exception handling semantics, although
the dual graphs are built directly into the language as the major control structure.

e 12
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The Fundamental Nature of Exception Handling

The exceptional domain for an operation is the space of operands for which the
operation cannot yield a *‘normal’’ result, whereas the standard domain is the operand
space for which the operation does yield a normal result [4]. The most basic cause for
the existence of an exceptional domain is that an algorithm is usually only a partial
function over its operand space; limiting operands to the algorithm’s standard domain
ensures that the algorithm produces a normal result, but when the algorithm is invoked in
its exceptional domain, the result is not defined.

Exceptions cover the ‘‘holes” of the exceptional domain. Rather than producing
incorrect results without warning, or enforcing a fail-stop policy that aborts the entire
program, the operation can raise an exception. Exception handling is thus an attempt 0
return a program to the ‘‘normal’’ space of operands and results. '

While this seems to be a fairly well-accepted definition of exceptions and exception
handling, the exception handling models that are created with this definition in mind are
insufficient for the purpose of creating large programs with useful properties such as
dependability or robustness. Models developed using this definition are insufficient for
three reasons:

(1) Exception handling models always suffer from the the assumptions noted earlier in
the ‘exception handling taxonomy discussion. These are built into the
implementation of exception handling in existing languages in an attempt to limit
the complexity of the exception handling semantics without hindering effective
programming. The assumptions built into a particular language must be understood
before programming in that language, or there is a high hkehhood that the programs
created will perform differently than expected.

(2) Anomalies can exist in current program implementations. Programs containing
anomalies cannot be proven dependable, simply because they may exhibit behavior
that breaks their specification. The detection and elimination of anomalies are not
simple activities, and they cannot be completed for non-trivial Ada programs unless
certain restrictions to the semantics are enforced and additional semantics are
added.

(3) The exception model is fundamentally flawed and 1mbalanced as will be detailed
below.

To substantiate the statement that exception handling is fundamentally flawed, it is
necessary to consider the limitations encountered when using a model based on
exceptions. First of all, the exception model contains the idea that an operation provides
a standard service and that there are some ‘‘abnormal’’ services that are represented by
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exceptions. But the attribution of results as standard or exceptional is not intrinsic to the
operation; these words denote viewpoints rather than facts. From an objective point of
view, all that one can say is that an operation can be invoked on some operands and may
have several outcomes. The labelling of these outcomes as standard or not is irrelevant
to their existence or their usage. Normal is in the eye of the beholder and should not be
built into a language. '

~ Second, the exception model assumes that there are only two basic categories:
normal and exceptional. This is a simplifying assumption, in many cases, because the
operation is invoked to achieve a particular purpose, and failing that, raises an exception.
But the exceptions that are raised are not necessarily of the same character; they are not
necessarily each as ‘‘exceptional’ as the other. For example, there are no language
defined methods for treating an end-of-file exception differently than an out-of-memory
exception in Ada, although they denote very different situations. In the case of Ada, both
exceptions terminate the frame in which they are raised. Instead of the language
providing semantics to describe clearly what each exception means, programmers must
resort to a “‘bag of tricks’” approach to handie them differently.

The third fundamental problem with exception handling is that when languages
attempt to emphasize generality and expressive power in the exception semantics, it is
difficult to prove properties for a program that uses exception handling as a design
methodology. This is relevant to the Ada anomalies, because Ada is a complex language
and most aspects of it are somehow integrated with exception handling. Unless all
possible control flows in an Ada program are analyzed, there is no guarantee that the
program is free of anomalies. There is no full specification of what exceptions can be
raised, nor is there one for why they are raised; this effectively eliminates the possibility
of program verification.

These three fundamental flaws cannot be expunged from exception handling
because they are a part of its basic nature in every existing model. It is submitted that a

model should not be changed when it has fundamental flaws—it should be abandoned.

1. Operations and their Consequences

Exception handling is an aged paradigm that seems to create more difficulties in the
design and production of dependable systems than it alleviates. A new definition is
offered here for a general program construct called the operation that is appropriate for
performing the same tasks as current exception handling models. However, this
definition does not incorporate the assumptions about exceptions that are perceived as the
major source of exception handling anomalies. Additionally, this definition is suitable
and useful in the context of program verification—programs based on operations are
clear about the expected domain of applicability and specify precisely the possible
consequences of the operation.
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The Fundamental Nature of Exception Handling

The notion of an operation is recursive—an operation can represent primitive
computations provided by a particular programming language or computer, or it can be
used to represent complex computations that are composed from multiple lower-level
operations. Operations have both a specification and an implementation, although clearly
the impiementation of primitive operations may not be available for inspection.

A set of definitions will now be presenfed to clarify the meaning of an operation in
the consequence model.

Definition 1: Element ::= A member of a data type.
Definition 2: Operand ::= An element passed as a parameter.

Definition 3: Operation ::= a computation that is applied to some number of
operands. It concludes with one and only one of the consequences listed in its
specification.

- The consequence is the semantic construct that replaces the exception. The
consequence details exactly what the operation accomplished upon its conclusion.
Operations are connected through their consequences—a consequence of one operation
may pass its result as an operand 1o a subsequent operation. This connection will only
become active if the first operation concludes by that particular consequence.

The basis of the operation is a data-flow model-—operations only activate when all
of their operands become available. Some operations, most notably numeric, have a
precedence associated with the operands specifying the order in which they are gathered.
In the absence of explicit control flow to compute operands, the precedence is used to
order the computations of operands unambiguously.

Operands Consequences
Opl /7 CI
ee+ 2 Operation —= *°**
/ T
Op,, "

Figure 2: The Essence of an Operation
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The flowing data is not only composed of discrete types, but also consists of
information about changes to the state of operands if an operation modifies them. Such
changes in state must be explicitly mentioned in the specification for the operation.

The choice of a data-flow model as the basis for operations in the consequence
model does not limit applicability because control-flow can be simulated if necessary. A
data token called the control point can be added as an operand for sequencing operations
that have no obvious data-flow connections. The control-point ensures that operations
are applied in a particular order. Since conirol-flow oriented languages like Ada, Pascal,
C, and so on are unable to eliminate the data-flow that occurs in expressions (indicating
that data-flow must be addressed in control-flow models also), and since the data-flow
model can simulate a control-flow model, this presentation relies on a data-flow model.

Operands have already been discussed as the data flowing into an operation. The
consequence embodies any data that flows out of the operation after it is applied to its
operands and has completed. An operation’s consequences are defined as follows:

Definition 4: Result ::= information that may flow away from the operation. Results
are specified by assertions that describe:

(1) changes in the state of the operands after an operation concludes,
{2) an element produced by the operation, or
(3) both state changes and a produced element.

Definition 5: Outcome ::= a path for data flow out of the operation. The outcome
distinguishes the nature of the result in terms of the possible operands to the operation.

Definition 6: Consequence ::= the 2-tuple consisting of the result computed by the
operation and the outcome on which the result travels.

Different outcomes arise because an operation’s domain, the operand space, is
partitioned into ‘equivalence classes. The equivalence classes characterize the
combinations of elements that must be treated differently from other combinations due to
the nature of the operation’s implementation, or due to peculiarities in the definition of
the element types. Each outcome represents the possibility that an algorithm may have to
perform differently for elements in these different classes. For example, the stack data
structure has three equivalence classes: stacks are empty, non-empty, or full. While a
stack push operation can add an element to an empty stack and a non-full stack, it cannot
add to a full stack. Likewise, a stack pop operation cannot remove an eiemcnt from an
empty stack, but may from the other two kinds.

- The three common operations on stacks are depicted in Figure 3. The result
specifications are based on an array-like notation for a stack. The ‘+’ operation adds a
new element to the stack, the ‘-’ operation removes an element from the stack and the
brackets access an element on the stack at a particular position (usually the top). Size is
the current number of elements on the stack.

— 16—



The Fundamental Nature of Exception Handling

outcome full when size(stack) = stack_limit,

stack . /_:b result ::= stack

element “~—= Outcome pushed when size(stack) < stack_limit,
result ::= stack + element

stack ———— W outcome empty when size(stack) = 0, result ::= stack

outcome popped when size(stack) > 0,
result 1= stack - stack{ size(stack) ]

stack ———> /—‘5' outcome empty when size(stack) = 0, result ::= Nil

outcome topping when size(stack) > 0,
result ::= stack[ size(stack) ]

Figure 3: Stack Operations in terms of Consequences

The fact that the operand space is partitioned ensures that operations are total over
their operands, rather than being partial functions, because each partition is represented
by one outcome for the operation. This is the essence of a robust operation—the
operation has a response defined for every combination of operands [4]. The outcome is
defined in terms of the equivalence class that it represents, because all of the members of
an operand class cause the operation to pass a result down that outcome’s path.

The consequence model posits a balanced view, because there are no adjectives like
“‘normal’’ prejudicing the operation’s definition; an outcome  describes only the
equivalence class of the operands without enforcing any interpretation of the result
passed along that outcome. The only implication that can be arrived at about an outcome
is that if the operands fall into that particular equivalence class, then the result will travel

- along that outcome.

Results can be either the modifications made by the operation to its operands or
elements created by the operation. The specification of the result describes the properties
of those modifications and elements. The result specification is the only information
needed (or available) about the *‘service’’ provided by a particular consequence. The
operation’s specification must therefore be complete in detailing the results it achieves
for each consequence.

The outcome might be seen as a unifying combination of the standard and
exceptional exits commonly used in exception handling, but this is not quite the case.
Outcomes are fundamentally different from exceptions, both in their definition and in
their usage. Existing programming languages make the assumption that exceptions must
be handled after they are raised, and that the normal order of execution is sequential.
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The consequence model makes no such assumptions; the outcomes of an operation can
- be managed in any way deemed appropriate by the designer. Since there is no split
between normal and exceptlonal domains, there are no cases where this split is
inappropriate, as there are in exception handling.

While exceptions require handling and then the termination of the frame they are
raised in, a consequence may be managed by:

(1) a default continuation for that consequence (in exception handling
terms, a defanlt handler),

(2) acontinuation to a next operation in the source program (sequential
control flow),

(3) auser-defined ‘‘*handler’’ for that consequence,

(4) mapping that consequence explicitly to the next sequential
statement in the source program (performing a null operation as a
handler), or

(5) promoting the consequence to form one of the consequences
specified for the containing operation.

These responses can of course also be achieved through programming using Ada
exceptions. By enclosing each section of a subprogram in its own frame and handling
certain exceptions while propagating others, Ada’s termination model can simulate the
connections between the consequences of operations. But this is exactly the type of ad
hoc solution that can lead to the inclusion of anomalies within a program—-each
individual situation requires an individually tailored new section of source program to
provide the semantics desired.

The appropriate pattern for dealing with an operation’s consequences should be
chosen by the designer and programmer and not be enforced by the language itself. This
does not mear that every consequence of every operation must be explicitly connected to
a continuation—ample defaults and shortcuts are desirable to ease the programmer’s
burden. When the full connectivity of the consequence model is not necessary, it should
not interfere with program construction. But when that connectivity is needcd for an

application of high dependablhty, it must be provided.

2. Hierarchical Program Design

Programs constructed as a hierarchy of well-defined abstractions are clearer than
programs written monolithically or as “‘spaghetti code’’. This is because the goals of the
program are compartmentalized and organized, rather than being implemented almost
accidentally by a combination of patchwork and ad hoc programming. In a hierarchical
program, the top-level abstraction accomplishes the goals of the program by
manipulating the-lower-level abstractions. Each abstraction is responsible for providing
the services defined in its interface specification, and each abstraction in turn relies on the
abstractions that it calls upon to provide their specified services. The most popular
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instantiation of these ideas is object oriented design and programming.

An oft cited reason for the inclusion of exception handling in a programming
language is to enhance program modularity by extending an abstraction’s responses to
program states that violate its pre-conditions [14]. However, this reason is not valid for
Ada due to the anomalies that exist in exception handling. Anomalies violate the
assumption that an abstraction can be implemented by managing only its own
concerns—abstractions in Ada may be forced to mandge the concerns of lower-level
abstractions also. In the example of the uncontrolled propagation anomaly, an exception
propagates past the point where it can be handled appropriately within an abstraction and
an upper-level abstraction must handle it, even if the propagated exception was not
declared in the lower-level abstraction’s interface. On the other hand, an anonymous
‘exception cannot be handled by its name at all, and hence cannot be declared by the
abstraction propagating it. "In this case, all upper-level abstractions must contain an-
others exception handler to ensure that anonymous exceptions are not propagated past
the point of their control. Anomalies of this kind violate the boundaries that are
emplaced around an abstraction and make verification more difficult even when a
program is well-structured.

Operations are defined hierarchically in the consequence model to avoid allowing a
consequence to ‘‘propagate’’ past the point where it is appropriate to handle it. Either an
operation handles the consequences of the lower-level operations that it invokes, or those
consequences are ‘‘inherited’”” by the higher-level operation and defined as part of its
specification. This restriction ensures that all relevant consequences are considered,
either by managing their occurrence inside an operation or by promoting their scope to
that of the operation’s interface. '

It might be appropriate to manage a consequence of an invoked sub-operation
within the invoker, because it represents a situations for which a response can be
‘planned. For example, an end of file consequence from a read character
operation is completely expected as a part of file reading. Unless the invoker is an
extended form of the read operation, then there is no reason to promote the consequence
- to its interface.

A consequence that represents a situation common to the environment of both an
abstraction and its invoked operation cannot be managed internally. This is because the
consequence has greater implications than either can manage successfully. An example
of this is an out of memory consequence from a dynamic data structure’s link
operation. The higher-level abstraction, perhaps a server storing requests on a list,
cannot necessarily free the memory that would allow the 1-ink operation to succeed. In
this case, the out of memory consequence needs to be promoted to the server
abstraction’s interface.

During the course of the design and implementation of a program, it may be
possible to eliminate some consequences from consideration by limiting the operands
applied to an operation. As a program stabilizes, more details are known about the
interconnections between operations. Some of these details can be exploited to reduce

—19—



The Fundamental Nature of Exception Handling

the number of consequences concluding particular operations. For example, if an
addition operation is invoked on two unknown integer operands, then it is possible that
the operation will overflow because the sum of the operands is too large. If it is later
realized that the operands are both of a constrained integer type that cannot generate a
sum that is too large, then the overflow consequence from that addition operation can be
eliminated; the partial operation of addition is made total by restricting its operands. If
the program is modified, then simplifying assumptions of this sort are re-checked to
guarantee that they still apply.

Real hierarchical design is made possible by the consequence model. No one can
make a similar claim for the Ada exception handling model as it stands, because the
anomalies cannot be prevented within that model. Restrictions must be enforced to allow
abstractions to be robustly encoded in Ada. Itis claimed that the restrictions necessary to
allow Ada to serve as an implementation language for hierarchical programs are those
restrictions that have been taken into account in the consequence model—consequences
must either be managed inside an operation or promoted to its interface.

Exception handling in existing languages is exclusively programmed in a bottom-
up, ad hoc manner. There are no language semantics for describing the overall exception
handling goals of a program in the same way that there are for stating the standard goals.
While good programmers generally design programs as a hierarchy of abstractions, the
semantics for exception handling have no such abstractions. The details of the lowest
level exception handler may affect the entire program in Ada, as in the uncontrolled
propagation anomaly. '

A model used for enhancing program dependability must allow the system designer
to specify operations from the top-down. The overall policy for managing consequences
(or bandling exceptions) must be visible from the top-level operation of the program,
rather than being composed from the interactions within the entire program (as is the case
in Ada). The concerns addressed by this policy must be orthogonal to the concerns
addressed by conventional control structures, and it is asserted that Ada exception
handling is too intertwined with these structures to offer the power needed to ensure that

a coherent policy for managing consequences is followed.

3. Verification

It is up to the designers of an abstraction to ensure that the consequence
specifications for its operations are accurate, Assertions made about the result and
outcome of the operation must represent the real situation within the operation. There
are two paths one may follow in verifying these assertions: allow a human to be
responsible for verifying the assertions, or use automated verification to prove that the
assertions are accurate with respect to an operation’s implementation. Depending upon
the criticality of the operations being defined, one approach may be more appropriate
than the other. Human endeavor is always marked by human flaws, and since automatic
verification is a human activity, it may always be flawed as well. However, verification
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can become more and more accurate as flaws are discovered, while humans seem to
improve at a less substantial rate. If utmost surety is necessary for the actual behavior of
critical operations in a program, then those operations should not only be verified
automatically to prove that each operation implements its interface specification, but both
the operation and its verification should be inspected by humans before the operation is
relied upon.

In the context of automatic verification, the assertions about an operation’s
consequences should either be verified or disproved. If their validity is ambiguous, then
the locations of concern must be pointed out for consideration. Assuming that the
specifications of lower-level operations are accurate (a fact that can be proved at a later
time), then an operation can be analyzed by tracing each possible path from its operands
to each of its consequences. Incorporating the assertions of each invoked operation on a
particular path yields a composite statement about the characteristics of the consequence
in terms of the operations on that path. This composite statement can be entered into a
theorem prover to assess whether the statement of the consequence is guaranteed by the
operations composing that path through the operation. If the consequence’s result or
outcome assertions for the operation cannot be proven, then either the operation is
incorrectly implemented on that path or there is not enough information to guarantee that
the assertion is true. In either case, more work is needed to ensure that the specified
consequence of an operation is the actual state arrived at when the operation concludes.

Some property verifications are necessary in dependable systems. These
verifications are possible only in a limited form for programs implemented in standard
Ada. The consequence model directly assists in the necessary verifications because it is
formal, precise, and unambiguous. The reliance that can be placed upon the verifications
performed for operations based on consequences is as strong as the reliance that can be
placed upon the operations composing them and upon the underlying hardware of
execution (to paraphrase Hoare quoted in [15]).
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SECTION 8

OZ: A Specification Notation

It is claimed that supplementing a traditional programming language with a small
specification language based upon the consequence model can enhance program
dependability by a very large degree. Consequences are the basis of the language, not
only to avoid the pitfalls of current models based on the exception, but also because the
consequence is general, allows the kind of control that designers of dependable
applications need, and because it provides for the essential needs of exception handling
without enforcing an inappropriate model. The initial problem of “‘what is wrong with
exception handling in Ada?’’ has been generalized to ‘*how can programs be designed to
ensure that certain properties of their specifications hold?”’ The answer to both questions
is: there needs to be a specification of exactly what operations have multiple outcomes,
and exactly how these outcomes are related to the operands. The OZ language (an
acronym for Operations and Zones) addresses these issues and provides a workable

solution to the problems of program verification for dependability.

1. OZ Description

The specification notation as it is currently conceived has three major constructs:
the element, the operation, and the zone. The element contains static data, the operation
manipulates elements, and the zone structures concurrent operations. Each construct is
defined hierarchically according to a precise format. New members of elements,
operations and zones can be composed recursively from pre-existing members.

Elements: -

Elements contain data in a variety of formats, many of which will be provided by
“the underlying language or computer of implementation. Elements can be composed
from other elements, and can be passed through a filtering operation to extract one part of
the element. Unlike the objects of object-oriented programming, elements have no
methods associated with them; without operations they are utterly static, although they
may have certain static characteristics specified in their definition.

An element’s characteristics may include domain specific knowledge or assertions
about the element type. For example, an integer element type might define MAXINT 1o
be the largest representable integer. The MAXINT name can then be used to define
operations on integers that do not require their specifications to be modified when the
underlying machine is changed; only the MAXINT value associated with the element
needs to be modified to allow the operation’s specification to be used on that machine.
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Another example element is a communications port. The port may represent
different pieces of port status information as a corresponding bit pattern held in a
" segment of the port’s logical pins. The element definition for the port would describe
these patterns and associate a name with them to allow operations to be independent of
the actual bit patterns. This allows information regarding the port element to be
described formally, which in turn can simplify the operations using the element. '

Operations:

Operations take elements as their operands. Application of an operation to its
operands yields one consequence as its conclusion. Each consequence is composed of an
outcome and result where the result is the data that flows on a particular outcome path.
The outcome of an operation may be connected to another operation, called a
continuation, when the result matches one or more of the operands of the continuation.
Operations are thus strongly typed, but flexible in that elements can be composed and
decomposed at will.

As an example, an integer addition operation is shown in Figure 4. This operation
might have two operands (a and b) and two consequences. The first consequence’s
outcome might be called “‘sum’’ and the second might be called *‘overflow’’. The result
for the sum outcome is the sum of the two operands (a+b), while the overflow outcome
might have a Nil result, meaning that no actual result is produced. The characteristic
predicate of the sum outcome that relates the outcome to the equivalence class causing it
might be a+b SMAXINT, where MAXINT is the largest representable integer. The
characteristic predicate of the overfiow outcome is then a+b > MAXINT., These two
predicates partition the operand space {the Cartesian product of all pairs of representable
integers) into two equivalence classes.

Op is a: integer; C | : outcome is Sum,
< K.: result s a +5
- - M »
Op, is b: integer; 21 outcome is Overflow,
: result is Nii

Figure 4: An Example Operation
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Zones:

The zone construct is used to specify concurrent programs within the consequence
model. Each zone has a boundary around it to ensure that no zone can affect another
zone’s computation other than through the message passing mechanism. The boundary
prohibits a variable from being used by more than one zone at a time, and this removes
the need for synchronizing access to the variable. Should a common data source be
needed, a zone can be used to grant or deny access to the data source.

A zone accepts a set of operand messages and can generate a set of consequence
messages. Each operand message is a request for a particular service from the zone and
it is connected to a single operation that processes it. The service requests are queued

“until the zone is free to work on them—although zones are concurrent with each other,
activity within a particular zone is sequential (excluding its sub-zones). Since operations
are arbitrarily large, a single operation for each service request is sufficient because the
operation can decode the message, compute a rtesult and sénd a reply message.

- Consequences of the operation processing a message may: 1) become the consequence

messages of the zone, 2) be deferred to a sub-zone for processing, or 3) not generate any
consequence message at all,

An example zone is shown in Figure 5. This is a simple zone that controls access to
a system’s real time clock. Two services are provided; one for setting the clock and the
other for reading the time. Communication delay may of course render the time reading
slightly out of date, but this clock is not intended for fine granularity computations.

Zones ease concurrent program construction by following the same model as
operations, and provide some analogous properties in the multi-processing environment.

. get_time ———4 ffggk‘ : ~—= outcome time_gotten,
operands ::= | result ;= real_time_clock.time,
none recipient 1= client
real_time_clock
set_time ————3 [ {outcome time_set,
operands ::= result ;1= real_time_clock.time = time_operand,
time_operand recipient ;1= none :

Figure 5: An Example Zone
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The properties of a zone result from the properties of the operations comprising it, and
there is a separation between aspects of the zone communication and aspects of the zone
computation that is felt necessary to effectively reason about concurrent operations.

Overview:

The OZ notation offers a different solution to the needs of depéndable computation
that are currently addressed (or not) by exception handling. Because OZ is based on the
consequence model, each operation is a total function over its operand space. OZ also
provides semantics for constructing concurrent programs that follow in a straight-forward
manner from non-concurrent operations. Both the sequentially executed operation and
the concurrently executed zone are amenable to property verification, where each level of
a design can be independently proven to meet its specification given that the
specifications of the invoked operations are accurate. If the specifications are verified to
. the level of the underlying computer, then the full verification of a program’s

~ consequences is possible and its behavior is ensured to conform to its overall

specification.

2. Toolset

To assist designers in using OZ to specify programs, a set of tools is necessary.
These tools are not intended to provide an entire design and run-time environment, but
are used to add OZ specifications to Ada programs and then verify properties of the
programs. Instead of relying on Ada’s flawed exception handling model, a designer can
specify an operation’s consequences using OZ and then implement the algorithmic
portions of the operations in Ada. The OZ specifications are embedded in the Ada
interface specifications for the packages and subprograms making up the design, and a
- full program implementation is constructed by putting together the Ada algorithms with
the basic structures that implement the properties specified in OZ notation. The toolset
makes this process easier and free of common errors. The toolset includes:

Specification Checker:

There are a number of properties that must hold for the definition of an operation, or
that operation cannot be called ‘‘well-specified’”’ within the model. These properties
have effective algorithms for detecting whether the operation is well-specified or not, and
each necessary property is checked before allowing the full Ada implementation of the
program to be constructed. '
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Visualizer:

A data-fiow graph can be constructed from operation specifications. The visualizer
produces this graph and displays it on an appropriate graphic display device. The visible
data-flow graph is useful for examining the connections and interactions within a design,
and for obtaining an overview of a design’s structure, Zooming in and out of operations
will be supported to allow the entire design to be traversed and inspected. The outermost
view depicts an entire non-concurrent program as a single operation, while the lower-
level operations contained within it can be individually zoomed into and inspected.

Verifier:

The verifier attempts to prove that the consequences specified for an upper-level
operation are actually implemented by the operations composing it. Using existing proof
techniques, the verifier shows that:

(1) the operand space is partitioned by the specification for the operation’s outcomes,

(2) the operation does not violate its specification by modifying inappropriate operands,

(3) the properties of each consequence are guaranteed by the specifications of the
operations used to implement that consequence,

(4) zones do not observe or modify elements unless they are passed to it in an operand
message,

(5) zones that are specified as infinitely operating servers are implemented as such, and

(6) communication between zones does not degrade due to badly specified message
dependencies.

This set of verifications is almost certainly not complete, but will be expanded as
necessary. In cases where an intended verification fails, the location of the failure will be
brought to the designer’s attention if such a location can be determined. At the very
least, the designer will be alerted that a particular property cannot be verified for the
operation or zone on which the verification was attempted.

Pre-processor:

‘The role of the pre-processor is to process a design that consists of OZ
specifications and Ada algorithms and create from the hybrid program a pure Ada
program that guarantees the specifications. This complete program can then be compiled
and executed, and the properties that have been verified for the design will be honored
within the executable version.
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SECTION 9

0Z Examples

In order to partially justify the claims that OZ represents a workable solution to the
problems of Ada, this section shows that several anomalies can be avoided by using OZ.
To justify that OZ serves as a program verification technique that can be applied to Ada,

an example program is presented and certain properties of it are verified.

1. Anonymous Exceptions

In OZ, there is no such thing as an anonymous consequence. Any operation
invoking another as a sub-operation either connects a continuation operation to a sub-
operation’s consequence, or the containing operation ‘‘inherits’’ the consequence as one
of its own. In the first case, the consequence is managed within the operation and has no
external visibility. In the second case, the consequence has become part of the
operation’s external interface and is visible to any other operation that invokes it. It is

thus impossible for a consequence’s name to be lost.

2. Uncontrolled Propagation

OZ does not suffer from uncontrolled propagation, An operation containing a
dangling, unconnected consequence internally is not well-specified according to the OZ
definition, and can be detected by the checker tool. The consequences of a lower-level
operation may indeed be promoted to become consequences of higher-level operations
that contain it, but there is no chance of that promoted consequence being unknown to
the designer of a higher-level abstraction. That consequence is detailed in the
- operation’s interface specification, and hence must be accounted for in the higher-level

operation.

3. Tasking Deadlock

The possibility of an Ada program becoming deadlocked due to delay of exception
propagation has been noted above. In OZ, this situation can never arise because of the
message passing paradigm employed by the Zone. Depending upon the communication
mechanism, messages may be lost, but no message can cause a Zone to deadlock with
another zone. There is no concept of waiting for the arrival of a particular message at all;
messages are processed as they arrive, and the zone re-enters the ‘‘message awaiting’’
state after processing of the previous request is complete. If a zone wishes to implement
a request and reaction to that request, then one of its operations must generate the request
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(and conclude), while another of its operations accepts the reply and reacts to it.

If messages can be lost by the communication mechanism, then a total deterioration
of communication between the zones could ensue and activity within the concurrent OZ
program would halt. A reliable communications sub-system would of course preclude
this situation, but even a non-reliable message system can be used if support for
watchdog timers is included. The timer could cause retransmission of a message if no
acknowledgement for it is received, where the lack of acknowledgement might be a

consequence of the message send operation.

4. Using OZ to Enhance Dependability in Existing Ada Programs

It is difficult to prove properties of dependability for large Ada programs because of
the possible presence of exception handling anomalies in the program implementation.
The presence of an anomaly is difficult to detect without a full analysis of the Ada
program, but by adding a small number of OZ specifications to the program, the absence
of certain anomalies can be guaranteed. The full Ada program implementation is created
by the OZ pre-processor in such a way that these anomalies are provably absent in the
regions that are specified as OZ operations. This section describes the general procedure
for applying OZ specifications to an existing application.

Figure 6 shows the structure formed by an existing Ada program that has been
designed hierarchically. A top-level control program (depicted as level 0) invokes
operations on the abstractions (levels 1 and greater) to accomplish the program goals.
Each abstraction is responsible for managing the data it encapsulates and for controlling
the abstractions below it. However, an abstraction might not fulfill this responsibility
due to the presence of an anomaly.

It is possible for an Ada abstraction to raise exceptions other than those declared in
its interface due to an anomaly. Since these exception have not been declared, it is
impossible to provide appropriate handlers for them without examining the abstraction’s
implementation—a situation that violates the abstraction’s logical boundary. However,
if this boundary is not violated, then the actual behavior of the abstraction within an Ada
program cannot be determined. Further, even if this inspection is performed, it is very
difficult to ensure that all of the possible exceptions that the abstraction can raise are
discovered.

Bulletproof Abstractions:

OZ offers a solution to the problem of anomalies within abstractions without
requiring a large amount of extra programming. By adding OZ specifications to the
upper levels of the program, the desired behavior of abstractions can be enforced
regardless of anomalies contained within lower levels. It is submitied that this solution is
much more clear and dependable than a solution relying exclusively on Ada control
structures, because the appropriate control structures are included by the OZ pre-
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 Figure 6: Hierarchical Ada Program

processor rather than being hand-coded every time they are needed.

Most of the former algorithms in the Ada subprograms can remain the same. The
changes needed to add OZ specifications to the program are:

¢ the interface declarations of the abstraction’s subprograms are stated in OZ notation
as operations,

e return statements in the abstraction’s subprograms are specified as representing a
particular consequence of the operation,

‘e ‘exception raises and handlers in the abstraction’s subprograms ‘are annotated as
consequences of the operation, or are removed entirely.

These changes are sufficient to allow automatic transformation of the mixed Ada and OZ
implementation into a pure Ada operation that implements the specification. The
algorithmic code is surrounded with an ‘‘anomaly-proof’’ shell that enforces. the
consequence behavior described in the specification. Once a program region is specified
as OZ operations, the synthesized program is guaranteed to conform to its consequence
specifications in the following respects:

(1) an operation does not propagate any exception to its invoker,

(2) an operation concludes with one and only one of its specified
consequences, and

(3) any exception raised within an operation or raised by any invoked
subprogram causes the operation to conclude with the consequence
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specified as the failure_consequence.

The first guarantee eliminates the need to handle exceptions that are propagated
from the operation—there simply are none. This is sufficient to eliminate both the
anomalies of anonymous exceptions and uncontrolled propagation from crossing the
boundary between an OZ operation and its invoker. Instead of performing exception
handling, the connections between the consequences and their continuations are
specified.

The second guarantee means that invokers of OZ operations can rely on the fact that
an operation will conclude as specified. It is possible that the programmer might omit
one of the consequences that concludes the operation, but the pre-processor will detect
this and report it before constructing the final implementation. Although total
verification of the specified results is not yet possible, the specified outcomes can be
relied upon as the only way that the operation concludes.

The third guarantee reflects the possibility that Ada subprograms can be completed
by an exception. The Ada-only portions of the program cannot be relied upon to not
Taise exceptions, but the impact of those exceptions on the operation can be mitigated.
The failure consequence is a necessary addition to the OZ semantics that allows OZ
operations to be successfully integrated with Ada. This consequence concludes the
operation whenever an exception is raised within the operation; instead of handling or
propagating the exception (or both), any raised exception is uniformly treated as a failure
of that operation to satisfy its specification. Unlike Clu’s failure exception, the failure
consequence must be managed by a continuation [6] and it is not allowed to propagate in
an uncontrolled manner.

The consequence that is specified as the failure consequence should be the one
guaranieeing the least functionality. If no existing consequence seems an appropriate
choice, a new consequence can be added for the failure. All anomalous behaviors for
exception propagation are mapped into the single failure consequence. This failure can
then be planned for intelligently, whereas an uncontrolled propagation does not yield so
adroitly to handling—it is better to be informed of a failure in an abstraction than for the
entire control program to complete before desired.

Persistent Control Programs:

Once the top-level abstractions have been transformed into operations, any
propagation anomalies in the lower-level abstractions have only a well-defined
representation as the failure consequence. They can no longer affect the control program
in any other way, This is a potent benefit of including the OZ specifications in the
program, because no analysis is required to show that these anomalies are not present—
their absence is guaranteed for every version of the program that the pre-processor
creates.
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The control program can aiso be specified in OZ as concluding with several
consequences. Once these consequences are specified, it can be guaranteed that the
program ends with one and only one of these. The control program could further be
specified as having an indefinitely long lifetime, meaning that it must not complete
prematurely if it is to meet its specification. The appropriate control structures for
guaranteeing this type of behavior can be automatically included by the OZ pre-processor
to ensure the persistence of the program.

Appiying QZ Judiciously:

The abstractions at level 2 and downwards can also be specified as OZ operations
after the top-level operations have had their consequences specified. This ensures that
the interactions between the top-level abstractions (level 1) and those invoked by the
top-level (level 2) are well-defined, and that no anomaly can affect the relationship
between them in an unexpected way. This process can be followed as far down into the
hierarchy as desired. Each new level that is specified as OZ operations increases the
assurance that the propagation anomalies, among others, cannot affect the vital
interactions between the program’s abstractions.

But wherever OZ operations are added to the program hierarchy, their presence
eliminates particular anomalies before the program goals are adversely affected. The OZ
operation emplaces a boundary in the program over which no exception may be
propagated, and the specified consequences are guaranteed 10 be the only way in which
the operation completes. Because these properties can be relied upon, the
implementation of the program is simplified and can in turn be relied upon for certain of
its charactenstzcs

Most of the necessary exception handling behavior for a program is encapsulated
within the OZ consequence specification, instead of within ad hoc handlers. The overall
dependability of the program has been increased because the OZ pre-processor checks
certain properties of the specifications and inserts only dependable components with
known properties into the program before allowing full compilation. Now, instead of the
hit-or-miss solution that is re-attempted every time exception handling control structures
are necessary in a program, the OZ-specified operations are guaranteed to be free of

particular anomalies by design.

5. An Example OZ Specification & the Resulting Ada Program

To show that an OZ specification for a program can be used to define essential
exceptlon handlmg behavior, an example is presented that will be proven to conform to
important aspects of its specification. Since operations are composed from sub-
operations, verification involves proving the relationship between an operation’s
interface and its implementation. The interface is just the consequences of applying the
operation: the equivalence classes in the operand space that cause each outcome and the
characteristics of the result for that outcome are specified. The implementation consists
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of the sub-operations that compose the operation as well as the connections between the
sub-operations. In the case of the simple example to be presented, the entire
implementation is stated in terms of OZ operations; this makes it especially easy to
verify the desired properties.

Due to the recursive definition for operations, total verification of an operation’s
consequences requires that the relationship between each interface and its
implementation be proved from the top-level interface down to the underlying language
or computer. This is essentially a proof of each level of the design. To demonstrate the
proof process but not dwell on the details of each level, this demonstration is restricted to
proving the relationship between one operation’s interface and its implementation.

The specification for a Safety Toaster is the subject for property verification. While
toasters do not commonly incorporate control programs or integrated circuits upon which
to-run them, it is interesting to consider how safety properties might be implemented for
a particular toaster configuration. The simplicity of this example allows the safety
properties to be stated in terms of the operations that interface with the toaster’s sensor
devices. In general, isolating safety properties is not this easy.

The underlying assumptions for this example are that the sensor devices are
sufficiently reliable to provide the assurance desired and that the heat generated inside
* the toaster does not adversely affect the control program. One stringent requirement
dominates the construction of the actual sensors; either the sensor reports accurate
readings for the toaster, or it fails by producing a value that it could not possibly have
measured within the toaster. The Safety Toaster control program relies upon the sensor
devices to carry out its objectives.

A temperature sensor is used for the dual goals of determining the temperature at
‘which the bread is being cooked and detecting if the bread inside the toaster is on fire, A
somewhat redundant luminosity sensor is also available to the control program for
reporting the light intensity inside the toaster. The light sensor can be used to detect if
bread has been inserted in the toaster, and also whether the bread has caught on fire.
Knowing if bread has actually been placed in the toaster allows the control program to
avoid unnecessary heating.

An example of a sensor reading operation is shown in Figure 7 for the
Read brightness operation. One consequence (brightness read) reports the
brighmess measured by the luminosity sensor. The other three report important
information about the state of affairs in the toaster—either that the toaster is on fire, that
there is no bread in the toaster, or that the Juminosity sensor has failed. ‘

The safety properties of the toaster are of the most concern here. It is desired that
power to the toaster be turned off if the bread catches on fire. To make this goal possible,
it is necessary that the toaster power relay be under software control, rather than under
exclusively manual switch control as it is in most toasters. This ensures that if the
toaster’s push switch jams in the ‘down’ position, the power to the toaster can still be
turned off.
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-~> operation read_bkrightness

~-=> consequence l: Toast_Missing cccurs when (no_toast threshold <
--> Light_meter) and {Light meter < fire_ threshold), result :i= Nil
--> consequence 2: Sensor_Failure occurs when {Light meter

-3 > highest_brightness) or (Light_meter < Lowest brightness),

- result ::= Nil, failure_outcome
--> consequence 3: On_Fire occurs when (fire_ threshold < Light meter; and
> (Light meter < highest _brightness), result :i= Nil

-=> gonsequence 4: Toast_present occurs when (lowest brightness <

- Light_meter) and (Light_meter < no_toast threshold}, result ::=
- Natural(nght meter)

functlon read_brightness{Light_ meter 1 special port) return Natural;

Figure 7: Read_brighmess Operation

A top-level specification for the toaster control program is shown in Figure 8. This
is a combination of the OZ specification for the root operation with an Ada specification
for the procedure implementing the OZ specification.

The implementation of the toaster control program is shown in Figure 9, again as a
mixture of OZ and Ada. This will be automatically transformed by the OZ pre-processor
into the full Ada implementation shown in Figure 10. The two major operations in the
program are the Toasting and Safety_check operations. The Toasting
operation carries out the functional aims of the toaster by applying heat to the toast until
it has been in the toaster as long as the table of cooking times specifies. The
Safety_check operation ensures that the toaster does not continue cooking the toast
once the toast has caught on fire. Safety_ check will be verified to conform to the
following safety properties:

-->» pperation toaster
—-~> consequence l: Toast Missing occurs when

-3 read_brightness -> Toast Missing, result ::= yellow alert

~=> consequence 2: Sensor Failure occurs when any -> Sensor Failure,
--> - result ::= orange_alert, failure_outcome

--> conseguence 3: On_Fire occurs when any -> On_Fire,

- result ::= red_alert

--> consequence 4: Done occurs when not (Toast_Missing or

-->  Sensor_Failure or On_Fire), result ::= condition gréen

crocedure toaster;

Figure 8: Ada & OZ Toaster Specification
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procedure tecaster is
timer : Natural;
Light meter : special_ port;
Temp : special port;
Knob : special port;

begin
Init;
Toast_safely(timer, Temp, Light_meter, Xnob);
--> Toast_safely -> On Fire
set_red_alert;
--> Toast_safely -> Sensor_ Fallure
set _orange alert;
--> Toast safely ~>» Toast Missing
set_yellow alert;
~~> Toast_safely -> Done
set_condition_green;

end toaster;

Figure 9: Ada & OZ Toaster Implementation

with toast safely; use toast_safely;

procedure toaster{c : out toaster_consequence} is
failure : exception;
begin
c.outcome = sensor_failure;
declare
timer @ Natural;
Light meter : special port;
Temp : special port;
Knob : special port;
consequencel : toast safely consequence;
begin
Init;
Toast _safely({consequencel, timer, Temp, Light-meter, Knob);
case consequencel.cutcome is

when On_Fire => set red alert; c.outcome := on_fire; return;
when Toast Missing => setf_yellow_alert;

c.outcome 1= yellow alert; return;
when Done => set condition_green; c.outcome := done; return;

end case;
set_orange_alert;
raise failure;
end;
exception
when cothers => return;
end toaster;

Figure 10: Full Ada Toaster Implementation

(1) The toaster is turned off if there is no toast in it. .
(2) The toaster is turned off when the sensors indicate a fire inside the
toaster.
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(3) The toaster is turned off if the sensors indicate that they have failed.

The first is not so much a safety property as an ‘‘idiot-proof’’ property, because it
ensures that the toaster is not heated when there is no reason to do so.

The specification for Safety check is shown in Figure 11. The consequences
of the sensor reading operations that indicate a violation of the safety properties have
been promoted to the interface of Safety check. This makes them accessible to the
control program and it can react to them by shutting down the toaster power. The
implementation of the Safety check operation is shown in Figure 12 with the
additional OZ notation necessary for connecting the consequences appropriately with
management logic. The pure Ada Safety check implementation is shown in Figure
13 as it might be output by the pre-processor.

The safety properties for this example can be stated as theorems to be verified in
this way:

(1)) For all invocations of Read Brightness that cause a
No Toast consequence, there exists an invocation of
Power Off within a short time span 3.

(2) For all  invocations of Read Brightness or

~ Read_Temperature that cause an On_Fire consequence,
there exists an invocation of Power off within a short time span
3.

(3) For all invocations of Read Brightness,
Read Temperature or Read knob that cause a
Sensor_error consequence, there exists an invocation of
Power_ off within a short time span 8.

--> operation safety check
--» consequence l: Toast Missing occurs when

--> read brightness ~> Toast Missing, result ::= Nil

--> consequence 23 Senscr Failure occurs when any -> Sensor_Failure,
-~»  result ::= Nil, failure outcome }

~-~> consequence 3: On _Fire occurs when any -> On_Fire,

-2 result ::= Nil

--> ¢onsequence 4: Currently Safe occurs when not {Toast Missing or
--> Sensor_Failure or On_Fire), result t:= Temp & Light meter & Knob

procedure safety check (Light meter, Temp, Knob : in special_port);

Figure 11: Safety Check Specification in Ada & OZ

e 3



OZ Examples

procedure safety_check (Light meter, Temp, Knob : in special port) is
light_value : Natural;
temp value : Natural;
knob_value : Matural;
begin, .
light_value := Read brightness (Light meter);
--> (Read_brightness -> Sensor Failure) => consequence Sensor_Fallure

return;}

-=> {Read brightness -»> Tcast_Missing) => consequence Toast_Missing
return; .

-~> {Read_brightness -> On_Fire) => consequence On_Fire

return;

~--> Read_brightness ~> Toast_present

temp_value = Read temp(Temp);

~-> Read_temp -> Sensor_Failure => consequence Sensor_Pailure
return;

--> Read_temp —-> On_Fire => consequence On_Fire

return;

--> Relad temp -> Qkay_temp

knob_value := Read knob (Knob):

~-> Read knob ~> Sensor_Fallure => consequence Sensor_Failure
return;

--> Read_knek -» Knob_read =» consequence Currehtly_Safe
return;

end safety check;

Figure 12: Safety Check Implementation in Ada & OZ
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procedure safety_check{c : out safety check_consequence;
Light meter, Temp, Knob : in special port) is
fallure : exception;
begin
c.outcome := sensor_fallure;
declare .
light_value : read brightness_consequence;
temp_value : read temp_consequence;
knob_value : read_knob_consequence;
begin ’
Read brightness{light_value, Light_meter};
case light value.outcome is
when Sengor Failure =»> raise failure;
when Toast Missing => c.outcome := toast missing; return;

when On Fire => c.outcome := on_fire; return;
when Toast present => null;
end case;

c.result.light _meter := light value.resulu;

Read temp(temp_value, Temp);
case temp _value.outcome is
when Sensor Fallure => raise fallure;

when On_Fife => <.outgame := On_ Fire; reburn;
when Okay_temz => null;

end case;

c.result.temp = temp value.result;

Read_knob{knobk_value, Knob);
case knobk value.outcome is
when Sensor Faillure => raise fallure;
when Knob read => null;
end case;
¢c.result.knob := knob_value.resultc;
end;
exception
when others =>
¢.outcome = sensor_fallure;
return;
end safety check;

Figure 13: Full Ada Implementation of Safety Check

The proof that these properties are guaranteed by the implementation of the toaster
control program begins by examining the Safety check implementation.
Safety check is the only operation that invokes any of the sensor reading
operations—it passes the sensed values to the Toast operation to simplify Toast’s
implementation. Each of the consequences mentioned in the safety properties are
contained in this operation, and each one is connected to the Power off operation.
Therefore, the safety properties are guaranteed given that the devices function properly.
Again, the simplicity of this example enabled a painless proof of the properties. In a real
program, the properties to be proved are significantly more complex, but they follow this
general pattern for verification.
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SECTION 10

Conclusion

Exception handling addresses a real need in program construction. At the same
time, exception handling is insufficient to address the full set of requirements imposed by
a need for program dependability. The consequence has been presented as a model that
addresses these needs for the next generation of dependable systems. To assist in the
construction of these systems, the OZ specification notation is offered as the vehicle for
program specification and refinement of that specification into an implementation,
Precise program structuring and careful consideration of all operation consequences is an
important antecedent to proving that a program conforms to its specification.
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