
Multicasting in DIS:
A Unified Solution

Sudhir Srinivasan
Bronis R. de Supinski

Computer Science Report No. CS-95-17
March 21, 1995

Multicasting in DIS: A Unified Solution

Sudhir Srinivasan
ss7a@uvacs.cs.Virginia.EDU

http://uvacs.cs.Virginia.EDU/~ss7a/

Bronis R. de Supinski
brd5y@uvacs.cs.Virginia.EDU

http://uvacs.cs.virginia.edu/~brd5y/

Department of Computer Science
University of Virginia,

Charlottesville, VA 22903
(804) 982-2294

Abstract

Multicasting, as an alternative to broadcasting, has great potential to improve DIS
scalability by reducing the demands on network bandwidth and computational
resources. We take an eclectic approach to incorporating multicasting into DIS, blending
new ideas based on insights discussed here with the best schemes proposed previously. To
our knowledge, no previous work has provided such a unification. The simplicity and
completeness of our approach make it more promising than previous ones.

In general (and in DIS in particular), the multicastproblem should be considered as
consisting of two parts: i) definition and use of multicast groups, and ii) efficient imple-
mentation of these groups. We describe a method for defining and using multicast groups,
present its implementation requirements and show these to be realizable. Further, we pro-
vide insights into the configuration of DIS networks in order to obtain the most benefit
from multicasting. Finally, we note that management of static objects is inherently related
to any multicast solution. The integration of static object management with our multicast
solution is made possible by its static nature and use of a regular grid.

Appeared in:ELECSIM 1995, Electronic conference held on the Internet from April 10 - June 18, 1995

1

1. Introduction

The broadcasting by each simulation entity of
state changes poses the most appreciable and
immediate limit to the scalability of the DIS
architecture. As the size of the simulated
environment increases, it becomes likely that these
state changes are irrelevant to many of the
receiving simulation entities. This leads to the use
of relevancy filtering, whereby simulation entities
simply discard irrelevant messages. While this
reduces the computation load on the entities, as the
number of entities increases, relevancy filtering
can consume unacceptable levels of computation
power. Multicast schemes are frequently proposed
to reduce both network bandwidth requirements
and the demands of relevancy filtering. We propose
a comprehensive scheme which simplifies
relevancy filtering, reduces network bandwidth
requirements and integrates static object
management.

DIS is a distributed system of entities
interacting with each other to simulate some
complex real-world activity, such as a battle. In
order to simulate a common scenario coherently,
entities must be aware of the states of other
relevant entities, where relevancy may be defined
by proximity in the virtual environment (VE) (also
known as simulated environment, virtual world,
conceptual space, etc.). Thus, one of the critical
aspects of DIS is the timely exchange of state
information among entities. In SIMNET (an
ancestor of DIS), this exchange is achieved by
having each entity broadcast its state periodically
to all other entities. While this scheme works for
the small-scale systems for which SIMNET was
intended, it will not scale to the systems being
considered for DIS which are expected to have
millions of entities. For a more detailed analysis of
this scalability problem of DIS, see [MZP95].

The reason broadcasts were used in earlier
systems is that the VE’s were small enough that
each entity needed to be aware of most other
entities. Large scale DIS exercises are expected to
simulate much larger VE’s than before. As the size
of the VE grows, the communication requirements
for entities become relatively localized. If state
changes are broadcast to all entities, each entity

must perform relevancy filtering on the messages it
receives and discard those that are irrelevant to its
simulation. Thus a broadcast scheme generates a
lot of unnecessary work which can be avoided if
the state exchanges are done in a more controlled
manner. This locality of communication suggests
the use of multicasting instead of broadcasting. By
propagating each message only to those entities
that require it, we can minimize relevancy filtering
as well as reduce network bandwidth.

In the following section, we place the multicast
problem in the context of DIS. We then propose a
multicast scheme based on a static, regular
partitioning of the VE which is used to determine
static, possibly irregular, regions of the VE to use
as multicast groups. While static schemes are
falling out of favor, we believe after thorough
analysis that they are still the most effective way to
reduce DIS message overhead. Next, we discuss
the relationship between static object management
and the multicast problem and demonstrate that an
efficient static object management mechanism is
consistent with our multicast strategy. Finally, we
note the importance of the physical design of the
network and discuss an important class of
simulation entities, broad receivers, for this design.

2. The Multicast Problem

The multicast problem in DIS is two sided in
that many entities require the state changes of an
individual simulation entity and an individual
entity requires the state changes of several other
entities. That is, communication in DIS is both
one-to-many and many-to-one. The immediate
effect of this requirement is that entities multicast
to the group of entities interested in their state
changes, while listening to any multicast groups
whose state changes are relevant. Thus a multicast
scheme must provide an efficient mechanism for
determining both the group to which the entity will
send and the groups to which it listens.

A multicast solution cannot be proposed in
isolation. The network architecture must reflect the
communication requirements (both static and
dynamic) of the simulation entities. If it does not,
no multicast scheme can be effective.

2

Additionally, a successful multicast solution
must accommodate the management of static
objects. The state of static objects may change as a
result of the actions of simulation entities, and thus
state changes of relevant entities must reach these
objects. Further, state changes of these objects
affect the actions of simulation entities, and thus
must be sent to interested entities. Clearly, this
facet of static object management is simply a
specific instance of the multicast problem.

The multicast problem must therefore be
viewed as consisting of two parts:

• the definition of multicast groups
(addresses) and the way in which the
application uses them

• the implementation of these multicast
groups in the network architecture

These two are largely orthogonal, although some
design choices in one may have implications in the
other.

We focus primarily on the first part of the
multicast problem. In the context of DIS, this
requires: linking multicast groups with the VE;
establishing schemes employed by the entities to
use (i.e send to and listen to) these multicast
groups; and integrating static object management
with the definition and use of multicast groups

Efficient implementation of multicasting is still
being researched in the networking community.
Some simple implementations exist but these are
not efficient. We study the particular requirements
placed on the implementation by a large-scale
distributed system such as DIS and suggest a
simple implementation that meets these
requirements.

3. Multicast Gr oups

Multicast groups (MCG’s) may be organized
based on different criteria. Several excellent
criteria are suggested in [MZP95, DIS93], for
example, physical proximity, functional
relationships, fidelity requirements, temporal
behavior. In most of these cases, the design of the
MCG’s is fairly straightforward. However, groups
based on spatial proximity among entities in the

VE (called thespatial class in [MZP95]) present
some interesting challenges. Intuitively, spatial
MCG’s seem to be the most obvious way of
exploiting multicasting in DIS. If entities are close
to each other in the VE, they are likely to perceive
each other, requiring the corresponding simulators
to communicate. Correspondingly, if entities are
far apart in the VE, their simulators may not need
to communicate. By defining MCG’s based on
spatial proximity, we may thus minimize or even
eliminate unnecessary message traffic and
relevancy filtering.

However, it is very important to note that
proximity in the VE does NOT imply proximity in
the real world, i.e., two entities engaged in combat
with each other may be simulated by computers
located in different continents. All message traffic
between these two entitiesmust be routed to the
network segments that contain the simulators in
both continents. In the worst case, every message
could potentially go to every network segment in
the DIS network (because there is at least one
entity in each segment that listens to any particular
MCG). In this case, multicasting will degrade to
the equivalent of broadcasting and could in fact
become worse than broadcasting depending on
how the MCG’s are used and the how the multicast
is implemented. This observation suggests that
care must be taken in configuring the network. We
provide some insights later.

3.1 A unified solution
The scheme we propose for the first part of the

multicast problem, the definition and use of
MCG’s, can be best understood in four steps:

• static partitioning of the VE
• static allocation of MCG’s
• determination of the MCG’s to which each

entity “sends”
• determination of the MCG’s to which each

entity “listens”

The key word above is “static”. The scheme is
static because an allocation of MCG’s to points in
the VE is determined prior to an exercise and
remains fixed throughout the exercise. This is as
opposed to dynamically changing MCG’s where,
for instance, a “large enough” group of entities
constitutes a MCG which moves with the entities

3

as they move through the VE. Such a dynamic
approach has several problems:

• when is a group “large enough” to warrant
a MCG?

• when is a group “too large” so that it
should be split into smaller ones?

• when are two or more MCG’s close
enough in the VE that their members
should begin to receive each others’ mes-
sages?

• do entities change MCG’s and if so, when?
• how to incorporate static objects?

Most of these problems can be solved by using
some form of distributed arbitration which is
expensive and therefore may not be feasible in a
real-time environment such as DIS. Thus, while
such a dynamic scheme has some intuitive appeal,
it appears to have more drawbacks than benefits.

3.1.1Static partitioning of the VE
The first step is to partition the VE into a

regular grid structure. This grid discretizes the VE
in a regular way which makes it easy to compute
memberships in MCG’s. The grid must be of a
simple, regular shape such as square, rectangle or
hexagon. The granularity of the grid is influenced
by several factors and must be selected carefully.
Since the same grid will be used to partition the
static objects, the grid cells must be small enough
so that they each contain a manageable number of
static objects. On the other hand, the finer the grid,
the more often an entity has to recompute its grid
position. If the grid cells are too large, MCG’s will
tend to cover entities that do not need to
communicate with each other.

One factor which makes this trade-off difficult
is the widely varied density of static objects
common in large scale VE’s. Hierarchical grids
have been suggested as a solution to this varied
density. With hierarchical grids, dense areas can be
divided into finer resolution grid cells, thus
reducing the number of static objects in each grid
cell. As we will demonstrate in section 4, explicit
hierarchical grids are not necessary for static object
management. They are beneficial for the definition
of MCG’s only if the perception capabilities of
simulation entities changes with location.

Regardless of the grid partitioning scheme, the
grid granularity must be based on a variety of
factors. These include the terrain, the nature of the
engagement, the strategy chosen for allocating
MCG’s and the variance of the density of static
objects. We believe experience will play a
significant role in choosing a good grid size.

3.1.2Static allocation of MCG’s
Having discretized the VE with a regular grid,

the MCG’s may be overlaid on the grid in two
ways:

1. Regular - the MCG’s are formed by superim-
posing a second regular grid over the grid that
partitions the VE such that each cell in the
former encompasses one or more cells in the
latter (Figure 1). In its simplest form, the two
grids are identical so that each cell in the grid
corresponds to a single MCG, as suggested by
[JoM92] (Local Effects category) and
[MZP95] (example hexagonal MCG’s). How-
ever, there are competing factors for this sim-
ple scheme: on the one hand we wish to make
the MCG’s, and hence the grid cells, large so
as to reduce the number of MCG’s; on the
other hand, we wish to keep the grid cells
small so that the number of static objects per
cell is manageable by a single computer. The
more general mapping shown in Figure 1
allows a good balance in this trade-off. The
main advantage of this scheme is that a simple
mathematical formula may be used to deter-
mine the MCG’s relevant to an entity given its
position in the VE.

2. Irregular - the MCG’s can be arbitrarily
shaped groups of adjacent grid cells. Figure 2
shows an example. This scheme allows us to
take advantage of terrain information in defin-
ing MCG’s. For instance if we know an
impassable mountain separates two groups of
entities (thus limiting their interaction), the
two sides of the mountain can be assigned sep-
arate MCG’s. Similarly, if it is known that a
large area of the VE is going to have very little
activity, it can be assigned a single MCG as
opposed to the many MCG’s that would be
used in a regular allocation. The main advan-
tage of this scheme is that by selecting the

4

shapes and sizes of the MCG’s carefully, we
can dramatically reduce the number of multi-
cast addresses being used as well as unneces-
sary communications.

We wish to emphasize the separation between
partitioning the VE using a grid and overlaying the
MCG’s on this grid. This separation allows us to
define irregularly shaped MCG’s while alleviating
the biggest problem of irregularly shaped grids, the
determination of boundary crossings. In our
scheme, a simple mathematical formula can be
used to determine the grid cell corresponding to a
given position. Determining the MCG
corresponding to a grid cell can be as simple as a
table look-up.

Regular MCG’s have two main disadvantages.
First, it is possible to have too many MCG’s. As an

example, consider the situation where the VE
spans continents and the grids are defined on the
order of kilometers (typical when tanks are
engaged in battle). It is clear that this is wasteful
because MCG’s are being allocated to areas of the
VE, such as the ocean, where little or no activity
will take place. Secondly, since this scheme does
not explicitly allow us to take advantage of terrain
information, it may result in unnecessary
communication.

Irregular MCG’s have some significant
drawbacks as well. As we shall see later, entities
change the set of MCG’s they are listening to
incrementally as they move. As pointed out in
[MZP95], computing the change is trivial with
regular MCG’s such as hexes (because the change
is also regular). However, with irregular MCG’s,
this task may require relatively more computation

Figure 1 - Regular shaped multicast groups based on a regular grid

Figure 2 - Irregularly shaped multicast groups based on a regular grid

5

in spite of the regular grids. Secondly, the success
of this scheme depends on a careful analysis of the
terrain database and the nature of the exercise. In
reality, it may not be possible to predict exactly
where the action will take place. In other words,
incorrect analyses can lead to poor allocation of
MCG’s and consequent performance penalties.
Finally, as mentioned in [ShB92], changes in
terrain databases may change the allocation of
MCG’s requiring a re-analysis.

The primary factors that must be used to
decide between regular and irregular MCG’s
appear to be: the scale of the VE, availability of
multicast addresses, nature of the terrain and the
cost of doing incremental changes in MCG
membership using irregularly shaped MCG’s.

3.1.3Sending to MCG’s
Each entity follows two rules to determine

which MCG to send its messages to. First, it sends
its periodic state updates to the MCG that
corresponds to its current location in the VE. The
second rule is for when an entity affects another
entity in a different grid cell than its own. In this
case, the entity causing the effect must send the
message to the MCG corresponding to the grid cell

in which the target entity resides. Generalizing this,
when an entity causes changes in entities that
reside in grid cells other than its own, it must send
the messages to the MCG’s corresponding to each
of those grid cells (duplicates can be eliminated).
Note, in the case of self-guiding munitions, the
munition is instantiated as a separate entity and as
it moves through different cells, it must send
updates to the MCG through which it is currently
moving.

3.1.4Listening to MCG’s
The sending scheme outlined above can be

thought of as a “distributed mailbox” system. Each
MCG acts like a mailbox into which certain
entities drop messages. It is the responsibility of
other entities to “watch” any mailboxes that are
relevant to them and receive those messages. This
scheme fits well with the reality that it is the
sensors that perceive other entities passively. The
perception envelope or Area Of Interest (AOI) of a
sensor determines the entities it can observe.
Correspondingly, the AOI of an entity determines
the MCG’s to which it listens. In the VE, the AOI
is typically approximated as a circle centered at the
entity. The MCG’s that are covered (even partially)
by this circle are the ones to which this entity must

Figure 3- Incrementally tracking the AOI
(a) Regular MCG’s (a) Irregular MCG’s

AOI

ML
MJ
PO
PN

ML
MJ
PO
PN

6

listen. We call this set of MCG’s theworking set of
an entity.

Since the AOI moves with the entity but the
MCG’s are static, a simulator must track its
working set. A logical approach is to maintain the
working set incrementally (i.e. only compute the
change as the entity moves). Figure 3 shows how
the use of a regular partitioning grid makes it easy
to track the working set in our scheme even with
irregular MCG’s. For this discussion, we define the
periphery set of the AOI of an entity as the set of
all grid cells that are in the AOI and are adjacent to
one or more grid cells that are not in the AOI. To
determine the change in its AOI, each entity
computes four sets of MCG’s: ML is the set of
MCG’s corresponding to the grid cells that leave
the entity’s AOI, MJ is the set of MCG’s
corresponding to the grid cells that join the entity’s
AOI, PO is the periphery set corresponding to the
entity’s old AOI and PN is the periphery set of the
entity’s new AOI. Then ML - PN is the set of
MCG’s that the entity need no longer listen to and
MJ - PO is the set of MCG’s it must begin listening
to.

Steinman and Wieland [StW94] point out an
important potential source of error due to the fact
that an entity computes its current grid location
only periodically. If an entity crosses into a new
grid cell between successive grid location
computations, there is a time period during which
it is in error regarding its current grid location. In
this period, it will continue to send its state updates
to the MCG corresponding to its old grid location
when in fact it should be sending them to the MCG
of the new location. There may be sensors which
can sense this entity in its new location in reality
but cannot do so in the simulation because the old
MCG is beyond their AOI. A similar problem may
occur when an entity crosses into and out of a grid
cell in between successive grid location
computations. The authors [StW94] present a
satisfactory solution using “fuzzy grids” which is
incorporated into our scheme very easily. Their
solution is to inflate the AOI of sensors by fixed
amounts to compensate for the fact that other
entities as well as the sensors themselves are
moving. In our scheme, the inflated AOI should be

used to determine the set of MCG’s (figure 3) that
an entity must listen to.

4. Static objects

In order to be realistic, simulations must
incorporate static objects in the terrain such as
buildings, rock formations, trees or bomb craters.
Clearly, there can be a very large number of such
objects in a small area of terrain. As the simulation
proceeds, these static objects may be affected
(buildings may be destroyed, craters may form,
etc.). These changes must be made known to
participating entities because the changes may
affect the course of the rest of the simulation. Since
these objects are usually multi-state [Mil92] and
can be affected by multiple entities at the same
time in the simulation, the main problem is to
provide all entities with a consistent view of the
state of these objects. There are basically two ways
of solving this problem: distributed consensus or
centralized arbitration. The former has obvious
time costs which make it infeasible for DIS. Miller
[Mil92] proposes the use of special Object
Management Processors (OMP’s) whose sole
responsibility is to maintain the states of static
objects. These processors listen to the DIS network
for messages that could cause changes in the states
of any static objects for which they are responsible.
Upon receiving such messages, the OMP’s process
them and communicate state changes to other
entities. Another responsibility of the OMP’s is to
inform newly arrived entities of the states of all
static objects.

Although the static object problem is not
directly related to the multicast problem, its
solution must be consistent with the multicast
scheme we have outlined. The OMP’s, like other
entities, must send and listen to appropriate MCG’s
in order to perform their duties. To fit into our
multicast scheme, the OMP’s can be treated as
entities whose AOI’s span only those grid cells in
which static objects that they manage are located.
Thus, the OMP’s send messages to and receive
messages from the same set of MCG’s. When an
entity moves to a new position and begins sensing
a new grid cell as a result, it sends a message to the
MCG corresponding to that cell asking for
information about all static objects in that cell. The

7

OMP managing the objects for that cell must then
respond by sending the data reliably to the
requesting entity.

The allocation of static objects in the terrain to
OMP’s can impact message traffic. For instance,
since the management of static objects is not
computationally intensive, it is possible that each
OMP manages a large number of objects.
Therefore, the OMP’s may span many MCG’s and
must receive messages from all of them, increasing
the traffic on that segment of the network. This has
implications on network configuration which we
describe later. As noted, dense areas of static
objects are a significant factor in determining the
size of regularly shaped MCG’s. With irregularly
shaped MCG’s, the size of each MCG can reflect
the local density of static objects. Thus, OMP’s are
likely to span fewer MCG’s on average with
irregularly shaped MCG’s compared with regular
ones.

As yet, we have assumed that a single OMP
manages all static objects of a grid cell. This
situation is highly desirable as it minimizes the
cost of the reliable transfer of the state of static
objects. However, when the number of static
objects in a grid cell is very large, it may be
impractical for a single OMP to manage all of the
objects. A popular solution to this problem is to use
hierarchical grids.

Our solution is to have multiple OMP’s for
grid cells in which the density of static objects is
significantly greater than the average density of the
overall VE. Our multicast scheme guarantees that
all OMP’s will receive any messages relevant to
their static objects, regardless of the number of
OMP’s managing the objects of a grid cell. This
solution for the variable density of static objects
incurs almost no additional cost for grid cells
which do not require multiple OMP’s.
Determination of the assignment of static objects
to OMP’s does not require the participation of
other simulation entities. For any grid cell, the
process of assigning objects to OMP’s can be
restricted to those OMP’s which will manage its
static objects. This feature allows the number of
OMP’s for a grid cell to be determined
dynamically, which simplifies the task of managing
dynamically created static objects, such as a

downed aircraft or incapacitated tank. Our solution
to the problem of the widely varied density of
static objects in large scale VE’s effectively
implements transparent hierarchical grids for the
purpose of static object management.

5. Implementation issues

The challenge in implementing multicasting is
to efficiently route a message sent to a particular
MCG only to those nodes or network segments
containing those nodes that are listening to that
MCG. Efficiency in this case is two-fold: low-
latency for message transmissions and quick
response to changes in MCG membership (i.e., as
nodes in the system change their working set of
MCG’s, the implementation should adapt to these
changes fast enough so that no messages are lost).
To our knowledge, no implementation exists
currently that satisfies both of these goals. In most
distributed computations, the requirement of quick
dynamic response to MCG-membership changes
may not be very stringent. However, it is
particularly important in DIS since loss of
messages can detract from the fidelity of the
simulation.

5.1 Current technology
One implementation of multicasts is in the

MBONE [Eri94] which operates over the Internet.
Agents located around the network communicate
with each other periodically, exchanging
information about their locations and MCG sets.
Thus, each agent has sufficient information locally
to route multicasts to appropriate neighbors. Any
change in the topology or MCG set must be
communicated to all agents by message exchanges.
The time cost of such an operation makes this
scheme infeasible for DIS.

5.2 A simple implementation
We suggest a simple multi-tiered

implementation that cannot be applied to a large-
scale, general network such as the Internet but may
certainly be considered for a DIS-specific network
such as DSI. This multi-tiered implementation is
consistent with the two-tiered implementation of
the DIS Strawman document [Bea92]. We assume
geographically distributed sites are interconnected

8

by some system of WAN’s. This forms the top
level of the network hierarchy. At each site, we
may have some hierarchical organization of local
networks. Each local network connects to its
higher level network through a gateway. This
gateway maintains a list of MCG’s to which the
nodes in the lower level networks are listening. It is
assumed that changes in these lists can be
propagated fairly quickly up the tree within a site.
The scheme is very simple: all messages at the top
level (WAN’s) are broadcast to all WAN’s (and
therefore all sites). At each level in the hierarchy
below the WAN’s, the gateways perform filtering
by transmitting incoming messages to only those
networks at the lower level that have registered a
need to listen to the MCG in which that message
was sent. This system will obviously not reduce
WAN traffic but has the potential to reduce LAN
traffic and relevancy filtering significantly,
provided the networks are configured with care.

5.3 Impact of network configuration
An entity determines that the state changes of

other entities are relevant based on logical
proximity (i.e. in the VE) and not physical
proximity (i.e. in the network configuration).
Logical proximity will change over the course of
an exercise and thus entities cannot be physically
located to reflect logical proximity throughout an
exercise. Further, such placement may not be
desirable for a variety of reasons. To improve upon
broadcasting, the combined interests of simulation
entities on a network segment must be less than the
entire VE. This implies that for any multicast
scheme to be effective, the physical design of the
network must reflect the communication realities
of the simulation entities.

One approach may be to configure the
networks so as to minimize the number of MCG’s
of interest to the nodes in any segment. Simple as it
sounds, this may be very hard to achieve for two
reasons: first, it may not be possible to know a
priori which MCG’s are of interest to a particular
node and second, even if this set is known, it will
most likely change as the simulation proceeds.
These problems are compounded by common
events such as node crashes (requiring re-
configuration of local networks while the exercise

proceeds) and dynamic relocation of simulators to
other machines in the site.

However, there are special cases where we
may take advantage of our knowledge of the
entities. We define “broad-receivers” as simulation
entities, such as long-range sensors, whose AOI
includes all, or nearly all, of the VE, thus spanning
many MCG’s. For these entities, relevancy filtering
offers little or no advantage. Further, the presence
of even one of these broad receivers on a network
segment essentially reduces it to a broadcast
segment. If one is present on each segment, then a
broadcast network results, regardless of the
multicast solution. In this specific case, the
solution is simple: locate the broad-receivers of a
site on a separate segment. Other similar examples
are OMP’s that span a large number of MCG’s and
fast movers such as aircraft. The AOI of a fast
mover can be artificially inflated to reduce the rate
at which it changes its working set of MCG’s,
making it similar to a broad-receiver.

6. Summary

Multicasting is a way of reducing the demands
on network bandwidth and computational power in
DIS. The multicast problem consists of two parts:
structure and use of multicast groups and their
implementation. In this paper we have focused
primarily on a solution to the first part and
discussed DIS-specific multicast implementation
issues. The scheme we have outlined for the
definition and use of space-based multicast groups
is a unification of several previous proposals with
some novel contributions of our own. Finally, we
have pointed out that the solution to the problem of
managing static terrain objects must be taken into
account when considering multicast in DIS. We
have integrated one such solution into our
multicast scheme.

Although our scheme builds on previous work,
the unified perspective we have provided appears
to be a first. In a sense, this unification goes beyond
the sum of its parts by capturing only the best of
previous schemes and rejecting the rest. For
example, our scheme is completely distributed. We
have eliminated the need for centralizing agents
such as Area of Interest Managers [MZP95],

9

EOMAN’s [StW94] and group leaders [MZP95].
This reduces not only the complexity of the system
but also communication latencies (the scheme in
[StW94] requires three messages). Further, there is
no physical act of registering in and out of
multicast groups (also checking in/out or join/
leave) on the part of the entities. Each entity simply
informs its local network interface of the set of
groups from which it is interested in receiving
messages each time this set changes. The
implementation must ensure that these changes are
effected quickly. The rationale is that any
implementation of multicasts must necessarily deal
with changes in multicast group membership (and
rightly so). Consequently, there seems to be no
necessity to solve the same problem at the
application level.

Acknowledgments
We are grateful to Prof. Paul Reynolds for

motivating this paper, for proof-reading it and for
discussions and suggestions. The unification
concept arose from discussions with the
participants of Prof. Reynolds’ seminar on
Distributed Simulation. We thank Adam Ferrari,
Anand Natrajan, Anh Nguyen, Andrea Salas and
Chenxi Wang for those discussions and their
feedback. We also thank Bert Dempsey for advice
on the current state of multicasting in current
network technology.

References
[Bea92] Beaver, R., etal., “Strawman Distributed

Interactive Simulation Architecture
Description Document Volume I,” Loral
Systems Company, March 1992.

[DIS93] DIS Steering Committee, “The DIS Vision,”
Institute for Simulation and Training,
October 1993.

[Eri94] Eriksson, H., “MBONE: The Multicast
Backbone,” CACM, Vol. 37, No. 8, August,
1994, pp. 54-60

[JoM92] Johnson M. and Myers, S., “Allocation of
Multicast Message Addresses for Distributed
Interactive Simulation,” 6th Workshop on
Standards for the Interoperability of Defense
Simulations, Vol. II, pp. 109-114.

[MZP95] Macedonia, M.R., Zyda, M.J, Pratt, D.R. and
Barham, P.T., “Exploiting Reality with
Multicast Groups: A Network Architecture
for Large Scale Virtual Environments,”
submitted to the 1995 VRAIS Conference.

[Mil92] Miller, J.T., “Strawman Static Multi-state
Objects,” 7th Workshop on Standards for the
Interoperability of Defense Simulations,
Vol. I, pp. A-183 - A-191.

[ShB92] Sherman, R. and Butler, B., “Segmenting the
Battlefield,” 7th Workshop on Standards for
the Interoperability of Defense Simulations,
Vol. I, pp. A-27 - A-35.

[StW94] Steinman, J.S. and Wieland, F., “Parallel
Proximity Detection and the Distribution
List Algorithm,” ELECSIM 1994, R. Smith,
Editor, smithr@mystech.com, pp. 1 - 11.

