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Abstract

Closure spaces have been previously investigated by Paul Edelman
and Robert Jamison as “convex geometries”. Consequently, a number
of the results given here duplicate theirs. However, we employ a slightly
different, but equivalent, defining axiom which gives a new flavor to
our presentation.

The major contribution is the definition of a partial order on all
subsets, not just closed (or convex) subsets. Tt is shown that the subsets
of a closure space, so ordered, form a lattice with regular, though non-
modular, properties. Investigation of this lattice becomes our primary
focus.

1 Introduction

We let U denote some universe of interest, that is a set of elements, points,
or phenomena. Individual points of U will be denoted by lower case letters:
a,b,....p,q,... € U. Elements of the power set, '2U7 we will denote by upper
case letters: ..., X,Y,Z C U (or € 2Y).

Our goal will be to partially order these power set elements. A straight-
forward partial order by inclusion yields a relatively uninteresting boolean
lattice, B,. If, instead, one looks at some underlying structure of the points
in U, then uses this to determine the partial order, more interesting results
can be obtained.

In [16] the author defined a convexity concept in directed graphs and
demonstrated that the collection of convex subsets, partially ordered by
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inclusion, formed a lower semi-modular lattice. Edelman [5] independently
demonstrated the more general result that any lattice of closed sets would
be lower semi-modular if the closure operator satisfied an anti-exchange
property. He and Jamison refined these ideas to develop a theory of convex
geometries [6]. The relationship between convex geometries, anti-matroids
and matroids is well covered by Korte, Lovasz and Schrader in [14].

In all these cited works, the partial order on the power set is by sub-
set inclusion and it is only the lattice of closed subsets that has interesting
structure. Adachi, in [1], proposed a different partial order which explic-
itly involved a closure operator.! But, the power set so ordered is only a
semi-lattice. In this paper we introduce a partial ordering of the subsets
of 2V induced by any closure operator @. It will be shown that if ¢ is
“uniquely generated” then '2U7 so ordered, is a lattice £ whose sublattice
of closed elements is precisely that of Edelman. Moreover it will be shown
that the structure of £ over non-closed elements has a regularity that per-
mits the enumeration and reconstruction of uniquely generated closures on
n elements.

2 Closure Operators

By a closure operator, ¢, we mean an operator 2U 2. 90U satisfying the
standard closure axioms:

Cl: X CX.up
C2: X CY implies X.p C Y.p
03: X.pp= X2 = X0

which are commonly called the Kuratowski Closure Axioms.? A set X C U
is said to be closed if X.o = X. The pair (U, ¢) is called a closure space
[9].

Closure operators are common in mathematics and other disciplines. For
example, the spanning operator of linear algebra is a closure operator, as
are reachability operators in graph theory, and all convex hull operators.

! Adachi developed his paper with respect to only a single “lower ideal” closure operator,
but it can be easily extended to any uniquely generated closure operator.

?Note that we are using the standard algebraic notation found in [8] [11], in which
binary operations are denoted by infix expressions and unary operations are denoted by
suffix expressions. This simplifies notation when closure is composed with other operators.
The, technically redundant, dot delimiter facilitates automatic parsing in the kind of
computer applications for which this theory is being developed.



In computer science, the transaction operator of concurrent processing is a
closure operator as are certain greedy algorithms.

The following lemma reviews a number of closure properties that are
virtually immediate from the axioms C1, C2, and C3.

Lemma 2.1 The following are basic closure properties:

(a) If C is closed and X C C C X.p then C' = X.¢.
(i.e. X.p is the smallest closed set containing X.)

(b) X.pUY.0o C(XUY ).

(c) (XNY).pC X.pnY..

(d) X.oNY.pis closed.

(e) X.onY.p =10 for any X,Y implies 0.0 = (.

(f) Up=T1.

It is well known (c.f. [6] [14]) that a family F of closed sets satisfing (d) and
(f) with a closure operator defined X.po = ycr X C VY is an equivalent
axiomatization of closure. Several authors also choose to make (.o = () an
axiom.
Given an arbitrary closure operator, ¢, we define an ordering, <, of 2U
by
X<Y ifandonly if Y NX.pC X CVY.up (1)

This somewhat unusual definition is central to our development. For ex-
ample, Adachi’s definition was X <Y if Y N X.p C X C VY (omitting the
second closure); thereby generating a semi-lattice structure. One can easily
show that:

Theorem 2.2 <, is a partial order relation on 2Y.

Proof: Reflexivity and weak anti symmetry are virtual corollaries of the definition
X<, Y=Y NX.pCX CY.pand the closure axioms C1-C3.

Transitivity is derived from X<,Y and Y <_,Z by manipulating the four equiva-
lent containments to yield Z N X.o C Y N X.9o C X. The idempotency of ¢ plus
XCYgpandY C Z.pyields X C Z.p. O

Because the ordering on 2U is not simple subset inclusion we must be
careful with ordering relationships; we cannot, for example, assume that
X NY <, X. The following lemma relates properties of X,Y, and Z as sets
to their relative order with respect to <,.



Lemma 2.3 Let X,Y,7Z C U and let ¢ be a closure operator on U.

(a) XCY CZ and X<,7, imply X<,Y

b) XCY CZ and Z< X, imply Z<,)Y and Y <X
() XCYC <X, imply Z<, <o
(c) X<.Y and X<,Z imply X<,Y UZ

(d) X<,Z andY<,Z imply X NY<,Z
(e) X<,Y implies X<, XUY<)Y

(f) X<.Y implies X NY <Y

(9) X<,)Y<,Z implies XNZ C Y.

All of the preceding results are based solely on the closure axioms C1, C2,
(3, and the definition of < in (1). To continue, we must restrict our closure
operators somewhat. In addition to the three required closure axioms, we
might consider any, or all, of the following properties.

C4: if p,g ¢ X.¢o then ¢ € (X U {p}).oimplies p € (X U{q}).¢
C5: X.po=Y.poimplies (X NY).p=X.p=Y.p

C6: (XNY)p=XenY.o

C7: (XUY)p=X.poUY.p

The first of these properties, C4, is called the Steinitz-MacLane exzchange
property. It characterizes the development of linear algebras, projective
geometries, and matroids in terms of closure concepts [2] [9]. One can also
postulate an anti-exchange property, of the form

if p,q & X.p then p € (X U{q}).0 implies ¢ & (X U{p}).p  (2)

which characterizes alignments [7], convex geometries [6], and anti-matroids
[14]. In the following development, we will make exclusive use of C5, which
we choose to call the unique generation property. However, as asserted

in [10] [6],

Theorem 2.4 A closure operator is uniquely generated if and only if it
satisfies the anti-exchange property (2).

Proof: (Unique generation implies anti-exchange) Let p,q € X.¢, and let p €

(X U{g}).p. Assume ¢ € (X U {p}).e. Then (X U{p}).¢ = (X U {q}).¢, so
that by the unique generation property X.¢ = (X U {p}).¢ implying p € X.p, a
contradiction.

(Anti-exchange implies unique generation) Let X.¢ = Y.¢. Let Mx be a minimal



set contained in X such that Mx.p = X.¢. We claim that Mx C Y.

Let p € Mx. We note that (Mx — {p}).¢ C X.¢. Now, suppose p € V. Let
) ¢ M’ CY be a minimal set such that (Mx — {p} U M’).0o = X.0. Let ¢ € M’
and let 7 = Mx — {p} UM’ —{q}. Then (Mx — {p} UM’ —{q}).o = Z.0 C X.¢0.
Now, p,q & Z,but p € (ZU{q}).o = X.p and ¢ € (ZU{p}).¢ = X.¢ contradicting
the anti-exchange axiom. Consequently Mx C Y. Since Mx C X NY implies
Mx.o = X.o C(X NY).p, equality holds. O

Consequently, uniquely generated closures are completely equivalent to those
of abstract convex geometries. Nevertheless, approaching this material from
a different direction leads to different insights that appear to be of value in
both lattice theory and computer applications.

The last two properties are relatively strong. We would note that (a) C6
clearly implies C5; that (b) Kuratowski [15] originally included C7 as one of
the closure axioms, because all closed sets in a topological space satisfy it;
and that (c) if a closure operator, ¢, satisfies both C6 and C7 then it must
be an “identity” operator.?

7 is said to cover X, which we denote X<_Z, if X # Z and for any
Y such that X< Y < 7, either X =Y or Y = Z. Covering relationships
are fundamental to the definition of both modularity and height functions
in lattices.

Theorem 2.5 (Fundamental Covering Theorem) If p ¢ X then

(a) X<,X U{p} if and only if p & X.¢
(b) XU{p}<.,X if and only if p € X.¢

where (a) is a cover if and only if (X U {p}).0 C X.oU{p} and
(b) is always a covering relationship.

Moreover, if ¢ is uniquely generated then (a) and (b) characterize all cov-

ering relations in (2Y,<,).

Proof:

(a) Readily X C (X U {p}).¢; thus X<, X U {p} iff (X U {p})N X.o C X iff

p¢ X.p.
The issue is to establish the covering relationship. Let (XU{p}).¢ C X.@U{p}
and let Y be such that X<, V<,X U {p}. By lemma 2.3(g), X C Y. We
assume that X £ Y else we are done. For ¢ € Y — X ¢ € X.p since X<, Y.
Y C (X U{p}).¢ C X.oU{p} by assumption. Thus, if ¢ € Y — X, ¢ € {p}
that is ¢ = p. Hence X is covered by X U {p} in <.

?More accurately, ¢ must have the form X.¢o = X U .S, where S is any fixed subset. If
S =10, so that §.¢ = @, then for all X, X.o = X, the “identity” operator.



(b) Readily X N (X U{p}).¢ C X;thus X U{p} C X.piff p€ X..

Let Y be such that X U{p}<,Y<,X. Again X CV. Assume X # V. Let
g€e€Y — X. Y<,X implies Y C X.¢ so in particular ¢ € X.o. X U {p}<, Y
implies Y N (X U {p}).¢ C X U{p}. So ¢ € X U{p} Thus q¢ = p.
Now assume that ¢ is uniquely generated, and that Y covers X. By lemma 2.3(e),
we know X<, XUY <,Y, and thus either X = XUY or Y = X UY by the covering
property. Simplifying, either Y C X or X C Y.
In the first case, suppose dp € X — Y. Let Z = Y U {p} so that Y ¢ Z C X.
Since X<,V by lemma 2.3(b), X<,7<,Y. Thus by the covering assumption,
7 = X =Y U{p} Consequently, case (b) of the proposition holds immediately.

For the case X C Y, assume that | — X| > 2. Our goal is to show that Y can not
cover X.
First, suppose that for some p,¢ € Y — X, (X U {p}).¢o = (X U{q}).o. By unique
generation property, (X U{p}).¢ = (X U{q}).o = X.p. Let 7 = XU{p}. X C XU
{p} C Y. By lemma2.3(a), X<, X U{p}, and XU{p}<,Y, since YN(XU{p}).o =
YNX.9oCX CXU({p} CY.p. Thus contradicting the covering assumption.
On the other hand, if we suppose that (X U{p}).¢ # (X U {q}).¢ for all p, ¢, then
by the pigeon hole principle, for at least one p, (X U {p}).¢ C X.¢o U {p}. Now
apply case (a) to

XCXUu{ptCY

to establish <_,and contradict the initial covering assumption.

Hence, if Y covers X, |YV|=|X|+1. O
As direct corollaries of this fundamental theorem, we have:

Corollary 2.6 Let Z be closed.

(a) IfY<,Z, thenY is closed andY C 7.
(b) IfY1<,7Z and Yy<,Z, then there exists X such that
X<¢Y1 and X<¢Y2.

Corollary 2.7 Let Y=< _Z.

(a) If Z =Y U{p}, then bothY and 7 are closed.
(b) If Z =Y —{p}, then Z is not closed.

Although, we will not establish that (2U,<_) is a lattice until the fol-
lowing section, we would observe that the interval [, U] consisting of those
subsets Y<_ U are precisely the closed subsets of U, by corollary 2.6(a).
Moreover they constitute a lower semi-modular sublattice as asserted by

2.6(b) and Thm 3.3 in [5].



3 Generators and Lattices

Let Z be any set closed with respect to ¢. By a generator of 7, denoted
Z.gen,, we mean a minimal set Y such that Y.p = Z. With a slight abuse
of notation, we shall use the expression Y.gen, with arbitrary V., with the
understanding that if Y is not closed, this means Y.¢.gen,. Moreover, we
will normally omit the subscript .

Readily, if ¢ satisfies the C5 closure property, then the generators of
closed sets are unique. (Because, if Y7 and Y3 are distinct minimal sets such
that 1.9 = 7 = Ys.¢, then (Y1NY3).¢ = Z contradicting minimality.) This
is the reason we call it the unique generation property. Clearly we have the
equivalent definition

Z.gen, = (1Y CUV,.¢ = Z.g}. (3)

Lemma 3.1 If ¢ is uniquely generated, and if Z # () is closed,
(a) p € Z.gen if and only if 7 — {p} is closed,
in which case Z.gen — {p} C (Z — {p}).gen;
(b) p,q € Z.gen implies there exist closed sets Y,,Y, C Z
such that pe Yy, q € Y, and p € Y,,q € Y,;
(¢) if 0.0 = 0, there exists p € Z such that {p} is closed.

In light of the preceding lemma, those points p € Z.gen could be called the
extreme points of 7, with the set Z.gen itself called the minimal spanning
set [6] or basis [14] of Z. We prefer the term “generator” because it has
fewer other associations.

Lemma 3.2 If ¢ is uniquely generated, then

(a) X CY, implies X NY.gen C X.gen.
(b) (X UY).gen C X.gen U Y.gen.
(¢c) X.genNY.gen C (X NY).gen.

Finally, to characterize those sets of elements Y; with the same closure,
and generator, in terms of the induced order <_, we have

Lemma 3.3 Suppose Y is not closed, and that By denotes the poset
ViV p< Vi<, Yip.gen},

with induced order <,. Then By = B, (boolean algebra on n elements),
where n = |Y.o| — |Y.p.gen|, and X <Y in B, if and only if Y C X.

Or equivalently, any interval [Y.¢,Y.gen| in ('2U7 <,) is a boolean algebra.



If we confine our attention to just closed sets Z, it is easy to show that
the height (cardinality of a maximal irreducible chain) is | 7|, as shown in
Thm 2.2 [6]. We, however, want a height function for all subsets in 2V for
which the above will be a special case.

Theorem 3.4 Let hi(Y') denote the length n of a mazimal irreducible chain
Y0<¢Y1<¢Y2<¢...<¢Yn =Y

then ht(Y) = 2 - |Y.g| — [Y| = |Yo|, and ht is a grading of (2Y,<,). In

particular, if Yo = 0.0 = 0, then ht(Y) =2-|Y.o| — |Y].

Proof: We prove the special case because 1t 1s the more important and because the
extra machinery needed for the general case tends to obscure the proof structure,
even though it is easy to add. We run an induction on ht(Y").

Let ht(Y) =0, implying Y = 0,Y.o = @, and 2 - || — |0] = 0.

Let ht(Y) =1, so §<,Y. By theorem 2.5, Y = {p} and (0 U {p}).o C 0.0 U {p} or
{p}.o C {p} (establishing that only closed singleton sets cover §)) so |Y.| = |V| =1,
and ht(Y)=2-|Y.o| = V| = 1.

Assume the induction hypothesis is true for VX such that ht(X) < n, and let
h(Y) = n.
1) Y is closed: By the corollary 2.6(a) YX<,V, X is closed, Y = X U {p}, and
hMY)=2-|Y.o|—|Y]
=2-([Xel+1) = (IX[+1)
=2 V|- |X|+1
= ht(X)+ 1.

2) Y is not closed: Observe that by corollary 2.7, we must have Y = X — {p}
(or X =Y U{p}),p€Y.p, and |Y|=|X| - 1.

2a) X.p = Y.p: In this case, X € By the boolean algebra of lemma 3.3,

and
M) +1= 2| Xp = [X] 41
=2V = |Y|
= (V).
2b) X.p # Y.p: Since X = Y U {p} and p € Y.p, X.¢ # Y. implies
p € Y.p.gen.

By lemma 3.1(a), X.@U{p} is closed, and so X.oU{p} = V.o implying
|V.p| = | X.¢| + 1. Consequently,



B(X)+1 = 2| Xp| = [X] + 1
=2- (Vo[- D= (Y[+ 1) +1

As noted earlier, Edelman [5], Edelman and Jamison [6], and the author
[16] have shown that the closed sets of U, partially ordered by inclusion,
form a lattice and have discussed it some detail. We have observed that the
partial ordering on 2U developed by Adachi [1] yields only a semi-lattice.
A major result of this paper is the demonstration that for any uniquely
generated closure, ¢, the partial ordering of 2U defined by (1) is in fact a
lattice.

Theorem 3.5 If ¢ is uniquely generated then (QU7 <,) is a lattice with
inf(X1, e Xa) = [)(Xi) 0 (J XD U (((Xip))-gen

Proof: Tet T =[(N;X;.¢) N (U; X;)] U (N; Xi.0).gen.

We claim I.¢ = N; X;.¢ because: (a) (N; X;.¢).gen. = N; X;.¢, and (b) the latter
intersection of closed sets is closed, so that, (M; X;.¢).¢0 = M; X;.0. From (b) we
have that

(ﬂiXZ'.QO).QO n (UZXZ)) C (ﬂiXi.QO).QO N (UZ'XZ').QO
= MNX;.eN (UZ'XZ').QO
C N X;.e.

which combined with (a) yields T.¢o C N;X;.0. On the other hand, because
(N; X;.¢).gen C T we have N; X;.¢ C T.¢.

We must show that Vk, I<, X} (or X; N T.p C T C Xi.¢). The first containment
follows from X N T.p = X N (M Xi.0) € Up Xy N (N; X;.¢0) € 1. The second
containment is immediate, because N; X;.0 N (U; X;) C X;.¢ and (N; X1.9).gen C
N; X;.0 C X;.0.

Suppose that for all k, Y <, X, then Y<_TI because

(a) Xp NY.p CVY implies [Up X NN X1 NY.0 C Y.
And, since Y C Xj.,Vk implies Y. C N; X;.¢0, we have by lemma 3.2(a),
YN (N X;.0).gen CY.p.gen CY. So, INY.o C Y.

(b) Y C Xj.,Vk implies Y C N Xj.0 = Top.

Having demonstrated that the inf operator exists, we need only establish the exis-
tence of a maximal element. We claim it is U.gen. Let X C U. Again by lemma
3.2(a), X.poNU.gen C (X.).gen C X. And, readily X C U.gen.p = U, so
X<, U.gen. O



Note that the dominant term of this infoperator, commonly denoted by A,
is N; X;.0, as one might expect. In the next section, we will give examples
which require its restriction to U;X; to keep the inf within the original
set, and require its augmentation to include the generators, (N; X;.¢).gen.
Finally, we observe that X NY C X A Y.

The lattice (2Y,<,) (as described in theorem 3.5) we call the closure
lattice induced by o, or more simply the closure lattice.

4 Examples

In this section, we examine two representative closure lattices. First, let
U = {a,b,c,d}. The 16 subsets of 2U and their closures have been listed in
the following table.

S R R 0 S S U
X.p [ {a} {ab} {ac}
X {d} {ab} {ac} {ad}
X.¢ | {abcd} {ab} {ac} {abcd}
X {bc} {bd} {cd} {abc}
X.o | {abc} {abcd} {abcd} {abc}
X {abd} {acd} {bcd} {abcd}
X.¢ | {abcd} {abcd} {abcd} {abcd}

Table 1: A closure, ¢, on U = {a,b, c,d}

The reader can verify that ¢ so defined on this small set really is a closure
operator, and that it is uniquely generated. The resulting closure lattice,
L, is shown in Figure 1. This figure illustrates several of the results of the
preceding sections. The interval [(), {abed}] consists precisely of the closed
subsets of U, and is lower semi-modular as required by corollary 2.6. (In this
case it is actually distributive.) This sublattice has been drawn with solid
lines for emphasis. However, the entire lattice is not lower semi-modular,
because {bc} covers both {b} and {c}, but neither covers {b} A {¢} = {a}.
Nor is it upper semi-modular.

The subsets {b},{c},{bc}, and {d} are generators for the closed sets
{ab},{ac},{abe}, and {abed} respectively; while {a} is its own generator.
Except for the element {bcd}, the boolean algebra comprising the interval
[{abcd}, {d}] (lemma 3.3) has been only schematically indicated as an ellipse
to avoid useless clutter.

10
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Figure 1: Closure Lattice, given closure ¢ above

Observe, that in {b} A {c}, the term [({b}.oN{c}.o)N ({b}U{c}) = 0.
So, in this case, {b} A {¢} = ({b}.¢oN {c}.¢).gen, as required in theorem 3.5.

The preceding closure operator was defined ez cathedra. More often they
are derived from some underlying relationships or properties of U. On any
given universe U of n points there are a wealth of distinct closure operators,
as we will show in the next section. If U is a partially ordered set, then
there are at least 3 natural closure operators corresponding to left ideals,
right ideals, and convex intervals.* For example, if one defines a left ideal
closure

Yo = {o|(y € V)[r < g}

on the 7 point graph of Figure 2 one obtains the somewhat more com-
plex closure lattice of Figure 3 which we will use to motivate the results
of the following section. Here again, the sublattice of closed sets, or in-
terval [(), U], has been indicated by solid lines, while the boolean algebras,
B, = [X.p, X.gen], have been denoted by dotted “ellipses”. Only a few
of the covering relationships between “adjacent” closure-generator intervals
have been shown. The compression of a closure lattice with 27 = 128 ele-
ments into just 17 closure-generator pairs facilitates an efficient computer
representation of closure spaces and their lattices. In light of (1) and (3), a

*Many would call these “upper” and “lower” ideals, but when the base universe is
ordered, the author orients it from left to right for illustrative purposes in order to minimize
confusion with the closure lattice order, which is oriented top down.

11



Figure 2: An acyclic graph T

9 13

ey 1

0

ht

Figure 3: Closure lattice associated with T’

more compressed representation of just the closed sets is also sufficient; but
for many applications it is computationally more expensive.

These are not the only closures on 7 points. Clearly the arbitrary distri-
bution of n points in a Euclidean d-space gives rise to many different convex
geometries, e.g. consider the convex sets in 2-space determined by the spa-

12



tial position of the 7 points in Figure 2. And convex geometries may be
generated by undirected graphs with appropriate properties, e.g. block [13]
or geodesic graphs, [7].

Processes can also give rise to uniquely generated closures. Both [14] and
[4] enumerate various shelling processes that give rise to matroids which sat-
isfy the exchange property, anti-matroids which satisfy the unique generation
property, and greedoids (from greedy algorithms) that generalize both.

Some applications have both graph and shelling aspects. For example,
one may regard the universe as consisting of the set F of edges of a directed
graph, rather than its points or vertices. Then one can recursively define
the transitive closure of £ on P by

Eo={(2,2)|(3y# 2 € P)(x.y) € E.(y,2) € Eg]}

This corresponds to the customary transitive closure, or path, relation. After
verifying the three basic closure axioms, one shows

Lemma 4.1 If E.p is a partial order of P then ¢ is uniquely generated.

Now, by lemma 3.1(a) one can delete any edge from FE.gen to yield a
new poset on P with exactly one less edge. This shelling technique has been
employed in [3] to generate sequences of posets with n elements.

To see that the condition of Lemma 4.1 cannot be relaxed, consider a
directed Peterson graph, as shown in Figure 4 in which F; is denoted by

Figure 4: A graph I' which is not uniquely generated by transitive closure

solid edges, F- is denoted by dashed edges. Readily, Fi.¢ = Fs.p, yet
FE{ N FEy = 0. Both E; and E, are minimal generators of this cyclic order.
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5 Lattice Structure of Non-Closed Subsets

The structure of the closed sets of any U with respect to a uniquely generated
closure ¢ is well known. They constitute a lower semi-modular sublattice of
L comprising interval [, U], in which the partial order is subset inclusion,
c.f. [6], or corollaries 2.6, 2.7 of the Fundamental Covering Theorem. These
can be restated in terms of X — {p} rather than X U {p}.

Lemma 5.1 Let ¢ be uniquely generated

(a) X <, X —{p} if and only if p € (X — {p}).¢
(b) If X is closed, then
X —{p} <, X ifand only if p ¢ (X — {p})-¢
(¢) If X is not closed, then
X —A{p} <, X if and only if (X — {p}).¢ <, X.¢.
(d) If X is closed, then either
X <, X —{p}or X —{p} <, X.

We now want to uncover the structural relationships between non-closed
elements (sets of U). We know that for any X, the interval [X.¢, X.gen]
is isomorphic to the boolean algebra B,, (lemma 3.3), but this provides no
information regarding the structure between elements in distinct intervals.

Our goal is to show that these [closed set, generator] boolean algebras
are stacked, in increasing size, with a covering structure that echoes that of
the closed sets which constitute their least elements; that is, the shape of
the closure lattices shown in Figures 1 and 3 is not accidental. We begin
with

Lemma 5.2 Let Xy be closed in (U, @) and let 71 = Xy.gen. Let X9 <, X1
(so Xo = Xy — {p} is also closed) and let 73 = Xs.gen. Then for all
Yy € [ X3, 73], there exists a unique Yy € [ X1, Z1] such that Yy <, V1.
Moreover, Y1 = Yo U {p}, and Y1 = X1 — § where § = X5 — V5.

Proof: By theorem 2.5, p € Xs.¢0. By lemma 3.1(a) p € X; = X;.gen and
Zy —{p} C Zs.

Given Yy € [Xo, Z5], let Y1 = Yo U {p}.

We first claim that V7 € [X1, Z1], or equivalently (Yo U {p}).¢ = X;.

Because Z5 C Y5 C Xo, because Xy U {p} = X1, and because Z; — {p} C Z, this
follows easily.

We next claim that Y3 <, V7.
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Y2<, Y1 because p € Ya.p = Xa.p. Moreover, (X2 U {p}).0 C Ya.p U {p} =
X2 U {p} = X1. So by theorem 2.5, it is a cover.

Finally, let Y’ € [X1, Z1]. A corollary to theorem 2.5 is that all covering relation-
ships involve exactly one point, so Y/ = Y5 U {q}. If ¢ # p then Y’ € [Xy, 7]
implies ¢ € X7, which in turn implies ¢ € X5 = Y., thereby contradiction (again
by theorem 2.5) that Y5<,Y’. D

It can be instructive to fill in some of the missing covering relation-
ships of Figure 3 that are asserted by this lemma. For example, the closed
element {abd} is covered by {abed} and {abdf} (with § = {¢} and {f}
respectively). Consequently, {d} is covered by {cd} (which is shown) and
{df} € [abdf, f] (which is not) respectively. Following are two direct corollar-
ies of this lemma. The first is virtually trivial. The second, which generalizes
the structure between elements in different [closed set, generator] intervals
is fundamental. We call it the Fundamental Structure Theorem, or FST.

Corollary 5.3 Let X<,Y, then [X.p, X.gen] 2 B,, and [Y.p,Y.gen] = B,
where m < n.

Theorem 5.4 (Fundamental Structure Theorem) Let X.p< V.0 and
let X € [X.p, X.gen]. There exists a unique Y € [Y.p,Y.gen] such that

X<.Y, where Y is minimal wrt. <, (mazimal wrt. C). Moreover Y =
XUA where A=Y.po— XpandY =Y.p— 6 where 6 = X.p— X.

The FST, which is shown by a simple induction argument, asserts the
existence of sets above any given set in the closure lattice L. For example
consider X = {ad} € [abd,d] in Figure 3. Since {abd}< {abcde}, this
theorem asserts that X<,V = {acf} with 6§ = {b} and A = {cf}. The
unique existence of these elements can be crucial in arguments regarding
the continuity of discrete operators, an issue which is not considered in this
paper.

Because a closure lattice can be regarded as a nested collection of boolean
algebras, that are themselves partially ordered by increasing size, it is possi-
ble to explicitly characterize all closure operators on n points. Since each of
the 2|Vl elements of a closure lattice over U belong to some boolean algebra
By, we have
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Lemma 5.5 Let ¢ be any uniquely generated closure operator on U, with
n = |U|. Let aj denote the number of [closed set, generator] intervals iso-
morphic to By, then

ap-2° + a;-2" -+ a,_1-2"" + a,-2"=2" (4)

The sequence < ag, ay,---,a, > of non-negative integers can be regarded as
a partition of 2". We call it the characteristic trace of ¢ on U. Readily,
(a) a, # 0 if and only if ay = 0 for all £ < n, in which case ¢ is the
trivial closure X.¢ = U for all X C U, and U.gen = §; (b) ag denotes the
number of closed sets which are their own generators; (¢) ag # 0 if and only
if .o = 0; (d) ap must be even; and (e) 3 ar denotes the total number of
closed subsets of U with respect to ¢. We observe in passing that (c) and
(d) together imply lemma 3.1(c).

One can recursively generate all distinct closure traces, because if <
ag, -+, Ap—1,0L, - - -, 0, > is a characteristic closure trace, then < ag,---,2-
ag_1,ar — 1,---,a, > is a trace as well. Using a simple program that
generates all traces in lexicographic order and counts them, one obtains
Table 5. The second column enumerates all closure traces on n points, the

closures with
n | all closures Dp=10
3 10 6
4 36 26
5 202 166
6 1,828 1,626
7 27,338 25,510
8 692,004 664,666
9| 30,251,722 29,559,718

Table 2: Enumeration of distinct characteristic traces of n point closures

third column those with ag # 0, or by the observation above (.o = 0. (For
n > 9, these values exceed the length of a long integer on the computer used
to generate the table.) As mentioned earlier, there exist many different
closures on a space of n points.

Given any arbitrary n point closure trace, such as the 5 point traces
< 20,2,2,0,0,0 > or < 0,2,1,3,0,0 > (the trase of Figure 3), one can
generate actual closure spaces with these characteristics. That is,
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Theorem 5.6 Let < ag, a1, -+, ay_1,0, > be any sequence of non-negative
integers such that S7_q ay, - 2F = 27. There exists a closure operator ¢ on
U, |U| = n, for which

trace(p) =< ag, - -+, a, >.

Proof: This is most easily demonstrated by a procedure which actually generates
the closure operator ¢, or more precisely a collection of [closed set, generator] pairs
which defines the operator. In our implementation, points are lower case letters,
a,b,c, ...,z and point sets are lexicographically ordered strings of distinct points.
Therefore the function first_points is well defined; it returns a point set consisting
of the first j points according to this arbitrary order.

generate (int n, int al ], point.set U)
Given n and af0], ... a[n], generate the closure
pairs of the corresponding closure over U

Point P

int i, j, k

set closed, closure._def

point_set new.cl, new_gen, oldcl, old gen
list queue

closed = empty-set

k=n
if alk] = 0
decrement k until al[k] != 0

newcl =U

new_gen = first_points (j, newcl )
insert newcl into closed

add (new_cl, new_gen) to queue

insert (new.cl, new gen) into closure.def
while queue is not empty do

remove (oldcl, old_gen) from queue
for each p in old_gen do

if alk] =0
decrement k until alk] != 0
newcl = oldcl - {p}
if new._cl not in closed
{ (old_cl, old_gen) covers a boolean
interval (new_cl, new_gen) which
s 1somorphic to Bfn].
insert newcl into closed
j = size of(newcl) - k
new._gen = first_points (j, newcl)
add (new_cl, new_gen) to queue
insert (new.cl, new_gen) into closure.def
decrement alk]

}

return closure def
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To show that the algorithm is correct, one needs only show that for closed
X, if p € X.gen then X covers X — {p}. But this follows directly from
lemma 5.1(b). O

Figure 5 illustrates the closure lattice returned by the generate procedure
when given the trace < 20,2,2,0,0,0 >.

Figure 5: Closure lattice with trace < 20,2,2,0,0,0 > returned by the
procedure generate

Unfortunately, trace sequences satisfying (4) do not uniquely character-
ize closure lattices. Consider the lattice of Figure 6(b) which also has the
trace < 20,2,2,0,0,0 > and compare it with Figure 5. Figure 6(b) is ob-
tained from the graph to its left, using a convex interval closure®

Yo = {z|y1 <2 < yo, where yp,y5 € V1.

Scalled order converin [12] and [6].
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(¢}

A

abcde

abce . abed bede

abc abd bed bce bde cde
ab ac bc bd be cd ce de

a b c d e
(¢]

(b)

Figure 6: Closure lattice with trace < 20,2,2,0,0,0 > induced by convex

interval closure on (a)

Consequently, Table 2 only can be regarded as providing a lower bound on

the number of distinct closure operators, and closure lattices, on n points.
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