A Platform for Biological Sequence Comparison
on Parallel Computers

A. S. Deshpande
D. 8. Richards
W. R, Pearson

Computer Science Report No. TR-90-25
Sptember 3, 1990






b e @5 (A0S
fae, 29, 170

A Platform for Biological Sequence Comparison

on Parallel Computers

A. S. Deshpande, D. S. Richards,

Department of Computer Science
University of Virginia
Charlottesville, VA 22903

and W. R. Pearson”

Department of Biochemistry
University of Virginia
Charlottesville, VA 22908

“To whom correspondence should be addressed. Dept. of Biochemistry, Box 440 Jordan Hall,
Charlottesville, VA, 22908 (804) 924-2818



ABSTRACT

We have written two programs for searching biological sequence databases that run on intel hyper-
cube computers. PSCANLIB compares a single sequence against a sequence library, and PCOMPLIB
compares all the entries in one sequence library against a second library. The programs provide a general
framework for similarity searching; they include functions for reading in query sequences, search parame-
ters, and library entries, and reporting the results of a search. We have isolated the code for the specific
function that calculates the similarity score between the query and library sequence; alternative searching |
algorithms can be implemented by editing two files. We have implemented the rapid FASTA sequence
comparison algorithm and the more rigorous Smith-Waterman algorithm within this framework. The
PSCANLIB program on a 16-node iPSC/2 80386-based hypercube can compare a 229 amino acid protein
sequence with a 3.4 million residue sequence library in about 16 seconds with the FASTA algorithm,
Using the Smith-Waterman algorithm, the same search takes 35 minutes. The PCOMPLIB program can

compare a 0.8 million amino acid protein sequence library with itself in 5.3 minutes with FASTA on a

third-generation 32-node Intel iPSC/860 hypercube.



INTRODUCTION

Improvements in molecular cloning and DNA sequencing techniques have dramatically increased
the rate with which protein and DNA sequences are determined. These breakthroughs in molecular biol-
ogy have stimulated interest in determining the complete sequence of the entire human genome over the
next 15 years. As a result of the human genome initiative, the DNA sequence databases will increase by
more than 75-fold from their current 40 million residues, and the protein sequence databases will increase
about 10-fold from their current 5 million residues. The biochemical techniques required to characterize
a newly sequenced protein have not kept up with improvements in sequencing and computer technology.
As a result, the first characterization of a protein sequence frequently involves the comparison of the
sequence against the entries in a protein or DNA sequence database. In anticipation of rapid growth in
these databases, research efforts have been devoted to improving the speed and sensitivity of biological

sequence comparison algorithms.

Much research in biologi_cal sequence comparison seeks to identify those features of protein and
DNA molecules that can be extracted from the sequence alone. The feature that is most easily extracted
from sequence data is common evolutionary ancestry. Excellent algorithms for calculating optimal simi-
larity scores and sequence alignments have been available for twenty years (1-3); these methods are capa-
ble of demonstrating common evolutionary ancestry for proteins that diverged more than two billion
years in the past (4). Since proteins that have evolved from a common ancestor always have similar
structures, and frequently have related functions, demonstration of common ancestry can suggest a

variety of hypotheses that can be tested experimentally.

Traditional methods for comparing biologicai sequences use a dynamic programming strétégy that
requires O(n?) time to compare two sequences of length n, While there are considerably mdre efficient
algorithms for finding exact matches in strings, common evolutionary ancestry can be convincingly
demonstrated in sequences that share less than 20% sequence identity if weighted replacement penaities

are used (4). Methods designed for exact matches or a small number of mismatches are poorly suited for



protein sequence comparison, More recently, techniques have been developed that focus on the subset of
alignments between the two sequences that are most likely to yield the best similarity score (3-7). These
methods have reduced the time required to compare DNA and protein sequences more than 50-fold, so
that comparison of a single sequence against a library of all known protein sequences (4 million amino

acids) requires only a few minutes on a Sun workstation.

As new methods for biological sequence comparison are developed, they must be evaluated on the
basis of their sensitivity ~ the ability to identify very distantly related sequences — and their selectivity —
the ability to avoid high scores for unrelated sequences. The statistical properties of biological sequences
and sequence comparison algorithms are poorly understood, so that evaluation of a new comparison
method frequently involves many sequence comparisons, and, sometimes, complete comparison of all the
members of a protein sequence library (6000% sequence comparisons). Lander et al. have used a large

Connection Machine to evaluate scoring parameters for the dynamic programming algorithm (8).

To provide a flexible platform for large scale sequence comparisons, we have developed and imple-
mented two general sequence comparison programs on an Intel hypercube parallel computer. These pro-
grams are designed to provide the framework that any biological sequence comparison program might
need: functions to read a query sequence and search parameters, and to apply a comparison function to ail
the entries in a sequence library. The PSCANLIB program cant be used to comparé a single qﬁery
sequence o0 a sequence database, We have tested versions of PSCANLIB that use either the FASTA algo-
rithm (7, 9) or the more rigorous Smith-Waterman algorithm (2). The PCOMPLIB program is designed
to compare all the sequences in one library to all the sequences inr another. Although rapid methods for
comparing a single sequence to a sequence library are widely available (7), library-library comparison is a

task that requires the performance of parallel computers,

Comparison of a sequence or set of Sequences to a sequence database is a problem that would
appear to be easily mapped onto a parallel computer with a hypercube architecture. The problem can be

broken up into many independent sequence comparison problems, one for each sequence in the library,



and performed in paralicl. Surprisingly, our first implementation of FASTA on the hypercube performed
at 1/10 the expected speed, due to the high communications costs on the iPSC/2 hypercube. The optimi-
zations required to obtain reasonable performance with a rapid sequence comparison algorithm are

described below,

SYSTEM and METHODS

Hardware

The programs were developed on an Intel iPSC/2 hypercube (10, 11). The Intel iPSC/2 System
with I/O consists of a set of compute-nodes connected in a hypercube topology with an attached set of I/O

nodes and a host computer known as the System Resource Manager (Figure 1).

Each iPSC/2 node contains an Intel 80386 32 bit microprocessor with 4 Mbytes of memdry. The 16
MHz version that we used is rated at 4 MIPS, Each node is equipped with a Direct Connect Module
(DCM) for high speed routing of messages between nodes. For a node to communicate with another
node, a series of switches are closed, a path is established, and messages proceed at the full hardware
speed of 2.8 Mbytes/second. Only the sending and receiving processors are involved in the communica-
tion. An entire message is transmitted when sufficient buffer space is available on the receiving node.
Since the entire message is sent at once, large messages take about as much time to transmit as small
messages. Because of the fixed time for building a communications path, buffering messages between the

nodes to generate a smaller number of larger messages can result in a dramatic reduction in communica-

tion overhead.

Storage for database files is provided by an assembly of disk I/O notes and interleaved disks called
the Concurrent File System (CFS). Compute nodes on the hypercube communicate with the CFS through
a separate set of disk I/O nodes that do not run application processes directly. The /O subsystem consists
of several disks served by parallel I/O channels. Each 1/O node also has full access to the hypercube inter-

connect of the compute nodes. The CFS views all the disks in the system as a single logical disk with a



single file system. A file on the CFS may be distributed to all the disks using a technique known as
declustering. As a result, the data required by multiple compute nodes, whether from a single or multiple
files, is likely to be on separate disks and can be transferred simultaneousty. Hence, large parallel appli-
cations can obtain access (o large data files concurrently from multiple nodes at a high aggregate data

rate.

The hypercube nodes have little input/output capability of their own. All keyboard input goes
through the host processor, although the node programs are capable of producing output to the screen.

Node programs can read from and wrilte to files on either the host file system or the CFS.

The iPSC/2 system that we used for our experiments consisted of 16 compute nodes and 4 [/0 nodes

with 4 disk drives. Each drive had a capacity of about 380 megabytes, formatted, for a total of about 1.5

Gigabytes of mass storage.

We have also conducted some experiments on Intel’s third-generation iPSC/860 hypercube. This
system had 32 compute nodes and 8§ 1/O nodes. Each compute node on the iPSC/860 uses an Intel i860
64 bit microprocessor. The 40 MHz version that we used has a rating of 27 MIPS. The host uses an Intel
80386 processor. This computer was running a preliminary release of the operating system and com-

pilers; more mature versions are expected to perform better.

Accurately timing program execution on the Intel hypercubes is difficult. Each of the nodes in the
hypercube has its own clock, which is not synchronized with other clocks in the cube. Hence, we must
keep track of execution patterns on each niode to generate accurate timing information. Since the clocks
on the nodes are independent, we cannot know precise start and finish times, However, we can deduce
node timings by distributing the start times of each node uniformly across a known interval and then
using each node clock independently. Only elapsed wall-clock times can be measured on the hypercubé.
Since the host processor is shared with other users, timings reported by the host vary considerably for the

same program. Hence, the timings reported in this paper were obtained from the nodes. The execution

times that we report were retumed from the manager-node.



Other searches were performed using a MIPS M/120 workstation running Unix and an IBM-PC/AT
running Xenix. The MIPS M/120 uses a MIPS R2000 CPU running at 16 Mhz. The IBM-PC/AT con-
tained an Intel 80386DX CPU running at 25 Mhz with 64K cache memory. Runs on these machines were
timed using the unix times() system call; only user times are reported. These computers ran version 1.4
of the FASTA program package (9). The Smith-Waterman algorithm (2) was implemented in a program
called SSEARCH (Pearson, manuscript submitted). FASTA timings for the M/120 and PC/AT386 are for

the initial library scan only; scan times were about 90% of the total execution time.

Software

PSCANLIB and PCOMPLIB execute under the UNIX System V/386 Release 3.2 operating system
on the Intel iPSC/2 and iPSC/860 hypercubes. The nodes run the NX/2 operating system, which provides
message passing services and process management, but no I/O services. Programs are loaded onto the
node processors by executing the load() function on the host, and immediately begin execution. Mes-
sages can be passed between the host and the nodes or from nodes to node with the csend() and crecv()
primitives. Csend() allows a node to send a message to a single node or simultaneously to several nodes,
and causes the sending process to wait until the message has been transferred to the DCM. Crecv()
allows a node to receive a particular message type from one or more nodes, causing the receiving process

to wait until the message has been received.

The PSCANLIB and PCOMPLIB programs are written in the C programming language. PSCAN-
LIB compares a protein or DNA sequence to a data bank or list of data banks. The similarity calculation
may be split into two phases so that a faster, less sensitive, first phase can be applied to the entire data
bank and a slower, more sensitive, second phase can be applied to the highest scoring sequences from the
first pass. FASTA normally uses this strategy for displaying "optimized" scores. PCOMPLIB compares
all the sequences in one sequence library with all the sequences in another library. It requires that all the
sequences in the shorter library fit into memory on the hypercube. For example, a 4 Mbyte 16-node

hypercube would have 15 worker-nodes and more than 45 Mbytes of memory available for the library.



We have implemented two comparison functions within this parallel framework: the FASTA algo-
rithm (7, 9) and the Smith-Waterman function (2). FASTA is a rapid similarity search algorithm that uses
multiple phases. The first phase rapidly scans the entire library of protein or DNA sequences and calcu-
lates an initial similarity score based on regions with higher densities of sequence identity. The second
phase then computes an optimized score for a few of the best sequences discovered in the first phase. This
score is calculated by constructing an approximate optimal alignment between the two sequences using a
32-residue band centered on the alignment found in the first phase. FASTA uses the kfup parameter to
vary the speed and sensitivity of the search. Ktup=2 and ktup=1 are used for protein sequences. Searches
done with krup=1 are more sensitive that those done with ktup=2, and take about 5-times as long on a

conventional (serial architecture) computer.

The Smith-Waterman algorithm (2) uses a single phase to calculate a single, optimal, similarity
score between the query sequence and the library sequence. The method is sensitive, but is also slow. The
FASTA algorithm with optimization gives results that are similar to those obtained with the Smith-

Waterman algorithm, but runs 20-50 times faster.

Databases

All searches were performed using release 21 of the National Biomedical Foundation Protein
Identification Resource (PIR) protein sequence database (3,406,128 residues in 12,476 entries, ref. 123

unless otherwise noted. The order of entries in the library was randomized for library to library comparis-

OI118.

IMPLEMENTATION

Similarity searches of DNA and protein sequence databases is a problem that is well-suited to paral-
lel computation. Programs that Compare protein or DNA sequences to sequence databases apply a com-
parison function that calculates a similarity score between the query sequence and each of the sequences

in the library. Since the similarity score for each sequence in the library can be calculated independently,



and since the sequences are relatively short (less than 4000 amino acids, and less than 300,000 nucleo-
tides), parallel implementation is straightforward. One simply apportions the library to individual nodes,

sends each node the query sequence, starts them running, and collects the results.

This is the strategy that we used in our initial 1mp1ementauon of the FASTA algorithm on the
hypercube. A program on the host processor read in the query sequence the search parameters, and the
library file name. The program then divided the sequence library into a number of partitions, distributed a
partition to each node, and collected similarity scores. When a node returned a special similarity score
that indicated it had exhausted its portion of the library, the host handed out a new partition, until all the
partitions had been searched. Identical worker-programs running in parailel on the nodes read in portions
of the library, computed similarity scores for each library sequence, and transmitted them back to the
host. In this implementation, the worker-nodes generated a substantial amount of message traffic (about
100 bytes for each of the 12,000 sequences in the library). We leamed, in retrospect, that communication
between nodes and the host is much less efficient that node-node communication, and our initial imple-
mentation was very slow. A search of a 3.5 million amino acid library with 229 amino acid query
sequence using the FASTA function with ktup=2 took more than 15 minutes to run on 16 nodes of the
hypercube. An IBM-PC with a single 25-Mhz 80386 can perform the same search in 1.7 minutes; a

MIPS M/120 or Sun Sparcstation requires about 20 seconds.

To reduce the host-hypercube communications overhead, we introduced a manager-node into the
program. By shifting the ;ask of distributing the library partitions and receiying similarity scores from
the host to the manager-node, communication time was drastically reduced and the search time was
reduced to about 2 minutes. While this was a dramatic improvement, it was still substantially slower than
the expécted 10-fold speed-up over a single 25 Mhz 80386. Although we had decreased host-node com-
munication inefficiencies by including a manager-node, we were still reading the sequence library off the
host file system. As a result, many worker-nodes were simultaneously trying to read library sequences

from a single file on the host file system. This created a bottleneck at the host that resulted in all the

nodes waiting for the data.



Next we moved the libraries to the Concurrent File System (CFS). Now the nodes were able to
access the sequence library concurrently. As a result, execution time decreased to about 25 seconds — a
second eight-fold improvement. Buffering messages to reduce message traffic (see below) resulted in an
additional reduction in execution time by arcund 30%. The program now takes 16 seconds to compare a

single 229 amino acid sequence against a 3.4 million amino acid sequence library with the FASTA func-

tion on 16 nodes of an iPSC/2 hypercube.

The PSCANLIB and PCOMPLIB programs

Both the PSCANLIB and PCOMPLIB programs consist of three parts: a host program running on
the host, a manager program running on node 0 of the hypercube, and worker programs running on the
remaining nodes in the hypercube (Figure 1). When the program starts, the host acquires a subcube of a
particular size and loads the manager program onto node (Figure 2). In PSCANLIB, the host process
does little more than load the node programs and read keyboard input. The manager program that is exe-
cuting on node O partitions the library among the worker-nodes and collects the results they return. The
nost is more active in PCOMPLIB; it reads the first library and sends each of the sequences from that
library to the manager-node. In both PSCANLIB and PCOMPLIB, the worker-nodes read the library

sequences and perform the similarity calculation.

PSCANLIB differs from PCOMPLIB in the way the query sequences and library sequences are bal-
anced among the parallel nodes and in the role of the host. PSCANLIB compares a single query sequence
to a sequence library once, so each worker-node is given the query sequence and a portion of the
sequence library to scan. When a worker-node has finished its portion of the library, the manager-node
provides another portion, until all the library has been scanned. Since PSCANLIB perfonﬁs only one
complete search of the library, we have attempted to minimize the time between the start of the search
and the presentation of the results. Depending on the query sequence and the time required to search dif-

ferent portions of the library, different nodes may scan different portions of the library.

-10-



PCOMPLIB compares all the sequences in one library to all the sequences in a second library,
PCOMPLIB may compare a thousand sequences to the same library, so the program preprocesses the
library and apportions it to the worker-nodes in a preliminary pass, after which the sequences from the
second library remain in a worker-node’s memory. In PSCANLIB, the manager-node starts the worker-
nodes by giving them the query sequence and then distributes partitions of the library as worker-nodes
become available to process them. In PCOMPLIB, the rnanager—ﬁode divides the search library into as
many portions as there are worker-nodes, and then sends each worker a portion of the search library. This
portion remains unchanging for the lifetime of the worker. The manager-node then receives a query
sequence from the host, sends the query sequence to each worker-node, waits for each worker to ﬁniéh,
sorts the results of the search, and waits for the next query from the host. Thus, with PSCANLIB, the
query sequence remains constant in each worker-node and the library sequences vary, while in PCOM-
PLIB, the (second) library sequences remain constant and the query sequences (from the query library)

vary. PCOMPLIB also has an option (~i) for comparing a sequence library to itself. In this case, only

nxn - 1 similarity scores are calculated, and the comparison takes half as long* (Table III).

In writing PSCANLIB and PCOMPLIB, we have attempted to separate the general library-
searching-program code from the codé that is specific to a particular similarity function. The four subrou-
tines that must be tailored to a similarity function — two in the host program and two in the worker pro-
gram — are hjghlightéd in Figure 2. Thé host program collects the name of the query sequence and library

file. Then, using a similarity-function-specific part of the program, the host program prompts for any

"A straightforward implementation of the “-i” option would calculate only the upper triangular entries of
the matrix of comparison scores of ordered pairs of sequences; that is, compare sequence / against
sequence j if f i>j. The entries below the diagonal can be inferred from the symmetric entries above the
diagonal. This simple method does not work well because there are severe load imbalances in the latter
stages of the algorithm, (If there are N worker-nodes, the J-th worker-node will be idle after j/N of the
library has been processed.) Instead, we calculate half of the entries above the diagonal such that they
form a checkerboard pattern; below the diagonal is the complementary pattern. Specifically, compare
sequence i against sequence j when either i+;j is even and i2j or when i+ is odd and i< 7. With this
approach, each worker-node uses only half of its portion of the library.

-11-



additional search parameters that may be required, such as the ktup parameter used by FASTA. (The
Smith-Waterman algorithm does not require any additional parameters.) The parameters are passed down
through thg manager-node directly t the worker-routine conducting the similarity search., The definition
of the parameter structure can be changed to suit the needs of the analysis method. One defines a parame-
ter structure for a particular analysis method, reads in the parameters with the host program, and the
parameters are passed automatically to the analysis routine that uses them. The worker-nodes may aiso
perform some method-specific initialization. For FASTA, this includes allocating several data structures
and calculating the lookup table from the query sequence; for the Smith-Waterman algorithm, deletion

penalties are pre-calculated. The worker-nodes then perform the specific similarity calculation.

As shown in Figure 2, the PSCANLIB manager program can accommodate analysis functions that
calculate similarity scores in several stages. For example, FASTA calculates two scores, init! and initn,
for every sequence in the library in the first stage. FASTA calculates a third score (opt), in the second
stage, for those library sequences with the highest initn scores. In the first stage, the manager-node parti-
tions all the sequence library, After the first stage is complete, the highest scoring library sequences are
identified and individual sequences are partitioned to the nodes for the second stage calculation. The
second phase is usually slower, but more sensitive, than the first. Since the second phase examines only a
small percentage of the sequences examined by thé first phase, the additional cost is small. We have
implemented the two stages that are used by FASTA: a first stage that identifies regions high densities of
identities without gaps and a second stage that performs a limited Smith-Waterman alignment around the
diagonal that contains the best initial score. It would be straightforward to use a complete Smith-
Waterman calculation for the second similarity calculation. The Smith-Waterman implementation calcu-
lates a single similarity score in a single stage. Adding additional phases is simple: additional initializa-
tion and evaluation functions must be provided. The prograin only calculates pairwise similarity scores,

it does not display the implied alignment of the two sequences,

Copies of PSCANLIB and PCOMPLIB are available from William R. Pearson (electronic mail:
wrIp@virginia. EDU).

-12 -



RESULTS

PSCANLIB

We have implemented two general programs that can be used for searching libraries of DNA and
protein sequences on an Intel hypercube computer — PSCANLIB and PCOMPLIB. Execution times for
the PSCANLIB program on both an iPSC/2 386-based machine and an iPSC/860 hypercube are shown in
Table I. Searches were done against the PIR protein sequence database using 16-nodes of the iPSC/2 and

| iPSC/860. Timings are also shown for a MIPS M/120 computer {a workstation-class computer that is
about as fast as a Sun Sparcstation) and an IBM-PC/AT with a 25 Mhz Intel 386. A 16-node iPSC/2 (15
worker Intel 386's running at 16 Mhz) performs a little better than a MIPS M/120 (a single R2000 proces-
sor running at 16 MHz) on short sequences for FASTA with kup=2. However, as the computation
becomes more time-consuming (cither by increasing the length of the query sequence or by using
ktup=1), the performance of the iPSC/2 increases relative to the MIPS/120. This suggests that the fixed
overhead for scanning the sequence library is somewhat larger on the iPSC/2 than on the MIPS. The
difference in performance between tﬁe 16-node iPSC/2 and a single 25 MHz Intel 386 ranges from a faq—
tor of 5 for the fastest scan to a factor of 10 for longer sequences or slower comparison functions. A fac-
tor of 10 is exactly the speed-up expected based on the relative clock speeds of the two machines — 15
worker-nodes running at 16 Mhz would appear to be a 240 Mhz machine in the ideal case. Thus, our final
implementation of PSCANLIB makes very efficient use of the hypercube nodes with long query

sequences or slow comparison functions.

The most dramatic performance was obtained on the 32-node IPSC/860. This machine is so fast
that only about 0.9 of the 3.3 seconds required to compare a 229 residue seciuence to a 12,476 entry
library (ktup=2) was used to perform the sequence comparison, the rest of the time was spent reading the
sequence library. With FASTA and kmup=1, a 16-node iPSC/860 performs about 9-times faster than the
MIPS M/120 and S5-times faster than the 1PSC/‘2 However, we note that the iPSC/860 performs about

12-fold faster than the iPSC/2 with the Smith-Waterman algorithm. The reason for this difference is

-13-



unclear, the iPSC/2 also performs slower than expected on the Smith-Waterman algorithm when com-

pared with the MIPS M/120. This anomaly may be due to the architecture of the iPSC/2.

An important consideration in mapping an algorithm to a parallel machine is to allocate data and
control in such a way that one takes maximum advantage of the underlying machine architecture. In a
message-passing systent, interaction between processors should be maintained at a level in keeping with
the communication characteristics of the machine. However, we note that the optimizations described
below are required only for a rapid search algorithm such as FASTA. With a slow, computationally inten-
sive algorithm like Smith-Waterman, the communication time is usually small compared to the time

spent in computation,

We have explored the reiationship between computational complexity and parallel performance to
evaluate our programs. The computational complexities of FASTA and the Smith-Waterman are both
O(r?) ~ doubling the Query sequence length or the library size doubles the amount of time required to per-
form the search. In addition, FASTA has a search parameter, the ktup, parameter, that can be used to vary
the speed and sensitivity of the search. As noted above, protein library searches with ktup=17 are more
sensitive but take about 5-times as long as searches with ktup=2. The results presented in Tables I and II

and in Figs. 3 and 4 show the interaction between computational compiexity, either due to query

sequence length or comparison function, and parallel performance.

Relative performance on parallel processors can be viewed several ways. A simple criterion is exe-
cution speed — how long does a library search take. Table 11 shows the effect of running the PSCANLIB
program on additional iPSC/2 or iPSC/860 hypercube-nodes; the program runs faster when more worker-
nodes are used. While Tablé IT shows that additional worker-nodes help, it is not clear how efficiently the
additional nodes are used. This efficiency can be estimated by measuring the relative speed-up of a search
as additional processors are used. Ideaily, a search would be finished 4-times faster with 16-processors
than with 4-processors. Parallel programs rarely behave this well. Usually there are overhead costs, such

as contention for communications links between the parallel processors, that prevent the sixteenth proces-

-14-



sor from being used as efficiently as the fourth one.

Since PSCANLIB uses one hypercube-node to manage the others, a sixteen-node hypercube (fifteen
worker-nodes) should search a sequence database 15-times faster than a two-node cube, and 5-times faster
than a four-node cube. Figure 3 plots the data from Table II based on this assumption. Figure 3 shows
that PSCANLIB makes the most efficient use of additional hypercube-nodes only when the comparison
function is not too fast. When a 229 residue sequence is compared to a 3.4 million residue library on
either the iPSC/2 or iPSC/860 with the FASTA function (ktup=2), the sixteenth node is used about 60 -
70% as efficiently as the second node. Indeed, a 32-node iPSC/860 takes only 0.5 second less time to
search the library than a 16-node machine. These inefficiencies gradually disappear as the comparison
function becomes slower (FASTA with kfup=1 or Smith-Waterman) or the query sequence becomes
longer. Thus, on the iPSC/2 the sixieenth node works at 92% of the second node’s efficiency with
FASTA, ktup=1, and at 99% efficiency with Smith-Waterman. On the iPSC/860, high efficiency is not
seen until a long query sequence (RNBY3L, 1460 aa) and a slower comparison function (FASTA,

ktup=1) are used, but then the efficiency on the 32nd node is about 95% that of the second node.

The two hypercubes are not perfectly efficient for rapid comparison functions because of delays in
reading the sequence from the library. The time required to read the library is fixed by the speed of the
CFS, additional worker-nodes cannot decrease it. To examine the overhead required to read the sequence
library and to send the messages that report the similarity scores to the manager-nbde, we determined the
time required to read the protein sequence library on the iPSC/Z hypercube by running the PSCANLIB
program without a similarity function and without sending messég‘es to the manager-node. Eight seconds
were required to read the sequence library without any messages to the manager-node on a 16-node
iPSC/2; an additional second was required to send the manager-node a message reporting a score of 0 for
each sequence in the library. A similar estimate for overhead {13 seconds) can be calculated by extrapo-
lating the data Table I to a zero length query sequence. Thus, the hypercube is not compute-bound when
using a rapid comparison algorithm like FASTA. The speed of the concurrent file system is the major

limiting factor; communications from the worker-nodes to the manager-node contributes about 10% of

-15-



the overhead. When the comparison becomes more time-consuming, either because of a slower function
or a longer query sequence, this overhead becomes less significant. Thus, additional worker-nodes on a
larger hypercube would be efficiently used to decrease the time required for the Smith-Waterman func-
tion,

Parallel performance on a hypercube architecture can also be measured by collecting timing statis-
tics in each node of the hypercube. It is possible that some inefficiencies would be distributed among the
nodes in such a way that additional nodes would decrease the execution time, while each of the nodes was
idle for a substantial portion of the time. For example, a results message that consists of one or more
similarity scores is returned to the manager-node from the worker for each sequence in the sequence
library. The volume of messages generated could cause the manager-node to become a bottleneck
because everyone is trying to send to and receive from it. While the DCM on each node reduces conten-
tion by handling message passing on its own and thus freeing the main processor for computation, the
number of messages generated may become so large that there is blocking and wasted time. We
addressed this problem by buffering the results messages sent from the worker-nodes to the manager-
node. There are two classes of inter-node messages on the iPSC/2; there is a substantial overhead cost for
sending a message that is longer than 100 bytes. As a result, the time required to send messages between
100 and 2500 bytes is constant. Thus, instead of sending a message for every library sequence, the
worker stores the scores and transmits them in batches of 25. Reduced message traffic implies less con-
tention, blocking, and wasted time, and usually we have been able to maintain idle time below 2% of the
elapsed time of the worker process. Buffering the results messages in groups of 25 reduced execution

time by about 30%. (All the times reported were taken from programs that used buffered-message-

passing.}

PCOMPLIB

Comaparison of all the sequences in one library to all the sequences in a second library is a more

suitable problem for parallel processors. While FASTA can compare a single query sequence to a

-16 -



sequence database in less than a minute on a high performance workstation, comparison of two 6,000 -
14,000 entry libraries takes several days. With PSCANLIB, more than 50% of the execution time is spent
reading the sequence library when the query sequence is shorter than 300 residues and the FASTA com-
parison function is used. With PCOMPLIB, the library is only read from the disk once, after which it is
stored in the memory of the hypercube-nodes and searched hundreds of times. Thus, once a library is
read into memory on a niode, it can be used for the similarity calculation without any additional computa-
tion, and the overhead of reading in a large sequence library is spread over a large number of library

sCans.

The performance of the PCOMPLIB program on the iPSC/860 is summarized in Table III; addi-
tional timings on the iPSC/2 are shown in Figure 4 and Table IV, A measure of the parallel efficiency of
the PCOMPLIB program is shown in Figure 4. The expected 2-fold speed-up can be seen when the -i

option is used for library self-comparison.

PCOMPLIB (Figure 4) is much more efficient with a rapid comparison function (FASTA, ktup=2)
than PSCANLIB is. While PSCANLIB is able to use only about 25% of the 31st worker-node (ktup=2,
Figure 3), PCOMPLIB- uses 75% this node when searching a 3,000 entry library, and more than 85% of
the node when searching 12,476 sequences (Figure 4). This improved performance is expected; PCOM-
PLIB amortizes the cost of reading the sequence library over hundreds or thousands of sequence searches.
The improved efficiency of PCOMPLIB confirms that the relatively poor performance of PSCANLIB on
a 32-node iPSC/860 reflects the overhead required to read the sequence library. Calculations from the
timings Table IIT suggest that if all of the sequences were in memory, PSCANLIB would only require
about 0.6 seconds to compare a 229 amino acid sequence to the PIR protein sequence library on a 32-

node iPSC/860 hypercube.

The difference in the efficiency for scanning a 3,000 entry library versus a 12,476 entry library
(74% vs 88%) suggests that the time required to read the next sequence from the host can be limiting

when the library on the worker-nodes is short and the comparison function is fast, Normaily PCOMPLIB

-17 -



uses the host processor to read the query sequence library. In our early implementation of FASTA on the
iPSC/2 hypercube, we found that hqst~ncde communications can be slow, so we also modified PCOM-
PLIB to use the manager-node to read the query library. This modification did not produce any measur-
able improvement in performance or parailel efficiency, perhaps because the increased efficiency of hav-
ing the manager-node read the library was offset by additional delays in communicating the results from

the worker-nodes to the manager-node.,

More sophisticated logic may improve the performance of PCOMPLIB. The PCOMPLIB
manager-node waits for all the worker-nodes to finish a search before moving on to the next query library
sequence. Since the all the library has been distributed to the worker-nodes before the first PCOMPLIB
search starts, a slow search on single worker-node will cause the other nodes to be idle. This is more
likely to be a problem with the FASTA function, since its speed is a function of the sequence context
(FASTA takes longer to compare related sequences than to compare unrelated ones). The delay can be
reduced by randomizing the second library among the worker-nodes (the PIR database groups related
sequences), and the problem is less likely to occur with a 12,000 entry library than with a 3,000 entry
library. The timings that we report were determined with randomized libraries. Buffering the results
from the worker may also help; worker-nodes would then start searching with the next query sequence as
soon as they are finished with the previous one.” Finally, the manager-node is responsible for sorting all
the results after they are sent back from the worker-nodes. Currently, the manager-node waits until all the
results are in before starting the sorting procedure. This minimizes the competition between the worker-
nodes for communications paths to the manager-node, but as a resuit, there is a delay before the next
search starts. It is possible ;hat parallel sorting on the worker-nodes, followed by a merge of the sorted list

on the manager-node, would be more efficient. Nevertheless, only modest improvements can be

“We note that simply buffering the results from the worker-nodes, without randomizing the library, would
simply delay the problem when databases with contiguous related entries were compared. If all the
cytochrome ¢ entries were on one node, the first cytochrome ¢ sequence would wait on that node, and
then the second cytochrome ¢ sequence would wait, and so on, until alt the buffers were used.

- 18 -



expected. PCOMPLIB is very fast; on the 32-node iPSC/860 it can perform 112 x 12,476 sequence com-

parisons in 1.27 min.

DISCUSSION

Biological sequence comparison appears to be a problem that is tailor-made for parallel computers.
A comparisqn fanction is independently applied to each of 12,000 to 40,000 sequences in a database, the
results are retumned, and the highest scoring sequences are displayed. Thus; we were surprised when our
initial implementation of FASTA on the Intel iPSC/2 hypercube was slower than running the same pro-
gram on a 80386 IBM/PC. The poor performance of the hypercube was in large part due to the high per-
formance of the FASTA algorithm. Had we started with the Smith-Waterman algorithm, which is about
50-100 times slower than FASTA, the benefits of a paratlel implementation would have been apparent
immediately. Past parallel implementations of the Smith-Waterman algorithm have used fine-grained
parallelism on single-instruction multiple-data (SIMD) computers like the Connection Machine (8) and
the ICL Distributed Array Processor (DAP) (13, 14), although an implementation of the dynamic pro-
gramming algorithm on hypercubes and shared memory multiple-instruction multiple-data architectures
has been dgscn'bed (15). While the dynamic programming algorithm maps well onto massively parailel
SIMD machines, the implemenfation of less regular algorithms, such as FASTA, is considerably more
difficult. FASTA is so fast that it is impractical to use a fine-grained approach on a message-passing sys-
tem such as the hypercube. The large number of individual sequences in a DNA or protein database can

be accommodated naturally by the coarse-grained approach that we describe.

The performance of several serial and parallel architectures is summarized in Table IV, While the
fastest comparison times are found with parallel processors, the performance of today’s RISC architec-
tures is comparable to that obtained on the DAP and Cray-1 several years ago. The serial architectures
have the advantage that they are readily available in inexpensive, high performance, machines. In addi-
tion, on some parallel machines, the systems software, development tools, and hardware reliability rem-

ind one more of computing in the 1960s than the 1990s, Because of their accessibility, serial Processors

-19-



are likely to remain the machines of choice for single database searches. Nevertheless, parallel machines

are necessary for large inter-database comparisons.

The performance of the FASTA algorithm on the hypercube has improved 16-fold in fhe course of
our implementation. By removing almost all communication with the host processor, placing the
sequence libraries on the concurrent file system, and buffering communication between the worker-nodes
and the manager-node, node idle time has been reduced to less than 10% of elapsed time for longer
sequences or slower comparison functions. Despite this high efﬁciéncy, the 16-node iPSC/2 hypercube
performs only slightly better than a MIPS M/120 workstation. The benefits of paraliel computation are
more dramatic when the same programs are run on the third generation Intel iPSC/860. The data in
Tables I and II suggest that a single node on the /860 is almost as fast as the MIPS M/120 — a Smith-
Waterman search that required 31 min on the M/120 required 37 min on a one-worker-node iPSC/$60 and
2.5 min on a 16-node iPSC/860. Improvements in the iPSC/860 compiler may be able to increase this
machines performance by 30 - 50%. Because of the dramatically greater speed on the iPSC/360, com-
munications overhead becomes a serious cost, even on compute-intensive functions, and our fine-tuning

has a more substantial payoff.

We have designed a general, efficient, and flexible platform that can easily be adapted to evaluate a
variety of biological sequence comparison algorithms. These programs display close to optimal perfor-
mance characteristics. Since the platform has been implemented with coarse-grained parallelism on a
hypercube architecture machine, little effort should be required to implement new comparisen algorithms,
The general framework our programs may also be useful in implementing versions for new machines, as
well as for machines with similar architectural characteristics. For exampie, a variant of the PCOMPLIB
program might be easily implemented on a large network of high performance workstations. For library
to library comparisons, a Sun/3 network would be expected to perform somewhat better than the iPSC/2
hypercube of equal size, and a network of RISC-based processors (Sun Sparcstations or Digital Equip-

ment Decstations) should be about as fast as the iPSC/860.

.20 -



ACKNOWLEDGEMENTS

This research was supported by a grant from the National Library of Medicine (LM04969). Time on the
Intel IPSC/2 was provided by the U. of Virginia Institute for Parallel Computation (JPL957721). Access
to the Intel iPSC/860 was provided through a cooperative arrangement between the U. of Virginia Insti-
tute for Parallel Computation and the Institute for Computer Applications in Science and Engineering

(ICASE).

References

1. Needleman, S. and Wunsch, C. (1970) A general method applicable to the search for similarities in

the amino acid sequences of two proteins. /. Mol. Bz‘ol.; 48,444.453,

2. Smith, T. F. and Waterman, M. S. (1981) Identification of common molecuiar subsequences. J.

Mol. Biol., 147,195-197.

3, Sankoff, D. and Kruskal, I. B. (1983) Time Warps, String Edits, and Macromolecules: The Theory

and Practice of Sequence C omparison,Addison-Wesley

4, Doolittle, R. F., Feng, D. F., Johnson, M. 8., and McClure, M. A. (1986) Relationships of human

protein sequences to those of other organisms. Cold Spring Harb. Symp. Quant. Biol., 31,447-455,
5. Wilbur, W.J. and Lipman, D. J. (1983) Proc. Natl. Acad. Sci. USA, 80,726-730.

6.  Lipman, D. J. and Pearson, W. R. (1985) Rapid and Sensitive Protein Similarity Searches. Science,

227,1435-1441,

7. Pearson, W. R. and Lipman, D. J. (1988) Improved fools for biological sequence COIpAarison.

Proc. Natl. Acad. Sci. US4, 85,2444.2448.

8. Lander, E., Mesirov, J. P., and Taylor, W. (1989) Study of protein sequence comparison metrics on

the Connection Machine CM-2. J. of Supercomputing, 3,255-269.

9.  Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. In

Doolittle, R. F., ed. Meth. Enz., vol. 183. (New York: Academic Press), pp. 63-98.

-21-



10.

11

12.

13.

14.

15.

Arlauskas, R. (1988) iPSC/2 system: a second generation hypercube. Comm. ACM, 31,38-42.

Close, P. (1988) The iPSC/2 node architecture. Proc. 3rd Conf. on Hypercube Concurrent

Computers and Applications, , pp. 43-50.

Barker, W. C., George, D. G., and Hunt, L. T. (1990) Protein Sequence Database. In Doolittle, R.

F.,ed. Meth. Enz., vol. 183. (New York: Academic Press), pp. 31-49,

Coulson, A. F, W, Collins, J. F,, and Lyall, A. (1987) Protein and nucleic acid sequence database

searching: a suitable case for parallel processing. Computer J., 30,420-424.

Collins, J. F., Coulson, A. F. W., and Lyall, A. (1988) The significance of protein sequence

similarities. Comp. Appl. Biosci., 4,67-71.

Carriero, N. and Gelernter, D. (1989) Linda in context. Comm. ACM, 32,444-458.

-22.



Figure Legends

Fig. 1. The Intel iPSC/2 hypercube configuration used by PSCANLIB and PCOMPLIB — Each box (host,
manager, worker) denotes a 16 MHz Intel 386 with 4 Mbytes of memory. The Concurrent File System
box denotes a set of four 16 MHz Intel 386 nodes connected to a set of interleaved disk drives. The
dashed line indicates the relatively slow communications boundary between the host and the hypercube
nodes. Lines with arrows show the communications pathways used by the programs. Any of the nodes

can communicate with each other on the hypercube; PSCANLIB and PCOMPLIB use a hierarchicat

structure,

Fig. 2. The structure of the PSCANLIB program — The three programs used by PSCANLIB - host,
manager, and worker — are outlined. Those portions of the program that can be changed for a new

similarity function are underlined.

Fig. 3. Performance of PSCANLIB on different size hypercibes — A 3.4 million amino acid library was
scanned using bovine prolactin (LCBO, 229 amino acids) or yeast RNA polymerase (RNBY3L, 1460

amino acids) usiﬁg an iPSC/2 (A) or an iPSC/860 hypercube (B). Let 7, be the total execution time
when there are n worker-nodes. We define the relative efficiency of a program to be E, 5=

where a <b. We expect £, ;, to be close to 1.0 if the program scales well from @ worker-nodes up to »
worker-nodes. The relative efficiencies are plotted; in all cases the value shown is E 1,6 for various b,
except for the Smith-Waterman comparison of the LCBO sequence on the iPSC/2, where £, is shown.
The execution times are shown in Table IL (A) LCBO using FASTA (kup=2); (O) LCBO, FASTA,
ktup=1; () LCBO, Smith-Waterman. (A) RNBY3L, FASTA, (ktup=2); (O) RNBY3L, FASTA, ktup=1,
(Ch RNBY3L, Smith-Waterman.

Fig. 4. Performance of PCOMPLIB on different size hypercubes — Relative efficiency was calculated as
in Fig. 3. PCOMPLIB timings were determined by comparing a library of 112 entries with a library of
3,000 entries (solid lines), or a 112 entry library with a 12,476 entry library (dashed line). Comparisons

with FASTA, kup=2 (A, iPSC/2, A, iPSC/860), FASTA, kup=1, (O, iPSC/2, O, iPSC/860), and the

-23-



Smith-Waterman algorithm ((J, iPSC/860) are shown. E7,; is plotted for the 12,476 entry library; the

other vatues are E3 .

.24 -



Table I. PSCANLIB execution times

PIR Entry Description Length iPSC2 iPSC/860 M/120  AT/386
FASTA ktup=2

CcCos Ostrich Cytochrome ¢ 104 0:14 0:03.1 0:16 1:15

LCBO Bovine Prolactin 229 0:16 0:03.3 0:19 1:37

A27366 Rat AMP deaminase 747 0:22 0:04.4 0:30 2:58

RNBY3L  Yeast RNA pol IIf 1460 0:32 0:06.0 0:48 5:00

FASTA, ktup=1

CCOS Ostrich Cytochrome ¢ 104 0:29 0:05.1 0:44 4:18
I.CBO Bovine Prolactin 229 0:53 0:08.1 1:21 8:.02
A27366 Rat AMP deaminase 747 2:07 0:22.0 3:44 23:05
RNBY3L  Yeast RNA pol I 1460 4:07 (455 7:44 46:21

Smith-Waterman

CCOS Ostrich Cytochrome ¢ 104 15:19 1:10.5 14:15 -
LCBO Bovine Prolactin 229 33:36 2:32.9 31:11 -
A27366 Rat AMP deaminase 747 109:11 8:21.5  101:43 -
RNBY3L  Yeast RNA pol Il 1460 213:32 16:21.8  197:53 -

Timings (in min:sec) are reported for searches against a 12,476 sequence, 3,406,128 amino acid library
(PIR release 21). Sixteen nodes were used on the iPSC/2 and iPSC/860. —~ : not determined.



Table II. PSCANLIB execution time vs hypercube size

: Number of worker nodes
PIR E Funct
nry unetion i 3 7 i3 3
iPSC/2
LCBO FASTA (krup=2) 242 0:57 0:26 0:16 -
(229 aa) (ktup=1) 11:06 3:44 1:39 (:48 -
Smith-Waterman - 166:31 71:38 33:36 -
RNBY3L  FASTA (ktup=2) 6:56 2:23 1:04 0:32 -
(1490 aa) (ktup=1) 60:31 20:14 8:45 4:07 -
iPSC/860
LCBO FASTA (ktup=2) 0:26.3 0:09.0 0:04.8 0033 026
(229 aa) (ktup=1) 1:40.4 (:33.5 0:154 0:08.1 0:05.0
Smith-Waterman 37211 12:32.2 5:24.0 2:329 1:154
RNBY3L  FASTA (kup=2) 1:06.8 0:23.0 0:10.8 0:06.0 0:03.9
(1490 aa) (ktup=1} 10:53.0 3:38.5 1:34.7 0:45.5 0:232
Smith-Waterman  241:47.4 81:03.2 34:529 162218 7:59.1

Timings (in min:sec) are reported for searches against a 12,476 entry, 3,406,128 amino acid, library (PIR
release 21), — : not determined.

" Timings on the iPSC/860 should be considered preliminary.



Table III. PCOMPLIB execution times

Library size Function Time
First Second . : {min:sec)
112 3,000 FASTA (ktup=2) 0:22
(32476 aa) (804049 aa)

FASTA (ktup=1) 2:00

Smith-Waterman 35:04

112 12,476 FASTA (ktup=2) 1:16
3,000 3,000 FASTA (ktup=2) 9:21
(-i) 5:20

Smith-Waterman ~ 75:38:00"

Times are presented for a 32 node iPSC/860 hypercube, and do not include the time required to write the
results (about 2 min for a 3,000 vs 3,000 comparison).

¥ Value was calculated from the 112 X 3,000 comparison time.



Table IV. Library comparisons on parallel computers

Maching Size Library sizes Function Time Matrix Entries per
_ (tu:m%) Second (millions)

iPSC2 16 nodes 112X 3,000  FASTA (ktup=2) 0;04:69 105"
iPSCf2 16 nodes 112X 3,000  FASTA (ktup=1) 0:23:06 19"
iPSC/860 32 nodes 112X 12476  FASTA (ktup=2) 0:01:16 1,475
iPSC/860 32 nodes 3,000% FASTA (ktup=2) 0:09:00 1,206"
MIPS M/120 16 Mhz 1X 12,500  FASTA (ktup=2) 0:00:16 49"
iPSC/860 32 nodes 112 X 3,000 Smith-Waterman 0:35:00 12
CM-2 32,000 proc 2,350° Smith-Waterman 2:15:00 657
Cray X-MP Stnith-Waterman 1.17
DAP 64 X 64 Smith-Waterman 0.6%
Cray-1 Smith-Waterman 0.47
MIPS M/120 16 Mhz 1X12.500  Smith-Waterman 0:31:11 0.4

“This values are only approximately comparable to those determined with the Smith-Waterman algo-
rithm, as the matrix entries are compared in a very different fashion.

TRef. 8.

$Coulson et al. (13) report that 1.8 DAP second per residue in the query sequence is required to scan a one
million amino acid library.



Host Processor

-----------------------------------------------------------------------------------------------------

Manager 0 Hypercube Nodes

Workers

Concurrent File System

Lestponidte Xal Fio (.



HOST PROGRAM

load manager;

get options,

get query sequence;

get library name;

get other parameters;

send query sequence to manager;
send library name and parameters;
wait for manager to complete;

exit;

MANAGER PROGRAM

receive query sequence;

receive library name and parameters;

send query sequence to workers;

send parameters to workers;

for stages 1 ... N

while (there is library to search) {

send partition bounds to workers;
coliect similarity scores;

send stop signal to workers;
sort similarity scores;

report similarity scores;
exit;

' WORKER PROGRAM

receive query sequence from manager;
receive parameters from manager;
perform required initializations;

while (manager does not send stop signal) {
get partition bounds from manager; |
for each sequence in the library partition {
fetch a library sequence;
compute similarity scores;

}

exit;

Leshpante oo/ 4%



gl 92250 YRS

SOPON J8YI0M JO JaquINN SSPON 19)40pA JO IoqUINN :
€ 82 v2 02 9L 21 8 v 0 91 Al g ¥ 0
—n..m..._...~...m...-...un.._.-. O.o | I S | ._..._.n._... m.o
L 90
/0
.90
.60
= L 0°1

098/08d! 'd ¢/08d! 'V

Aouaioiyg sAnejey



Relative Efficiency

0.7

0.6+

0.5

LR L A SRR AL BN At S B M A (NN Mt e s S e

8 12 16 20 24
Number of Worker Nodes

28

ML

32

Deshpomate & ee/,



