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Abstract: The distributed applications of the 1990s, especially
those related to factory automation, will require a new set of com-
munications services and will demand a new standard of pertor-
mance. In this paper we discuss the design of the Xpress Transfer
Protocal which is intended o provide these new services, We
explain its history and motivation as well as its features and func-
tionality. In addition, we describe a new technology for imple-
menting communications protocols in hardware—ihe Prorocol
Engine. The PE provides an end-to-end silicon path between com-
municants across an intervening network. In its first implementa-
tion, the PE will process network uaffic at the 100 Mbits/sec rate
of a commercial FDDI loca} area network.

Background

An international group of researchers, led by Greg Chesson at
Silicon Graphics Inc. (Mountain View, California), has developed
a new transfer layer communications protocol (the integrasion of
the transport and netwerk layers from the OSI Reference Model)
specificaily. designed to meet the needs of modern, distributed
computing systems. The Xpress Transfer Protocol (XTP) {1
represents the synthesis of the best ideas developed by several
extant protocols and then extends those ideas with new services
designed to support distributed applications and embedded real-
time sysierns, As a result, XTP offers a unique combination of ser-
vices, inciuding fast connection setup, iarge data pipeline size,
selective acknowledgement, selective retransmission, How, error,
rate and burst control, message priority, intraprotocol scheduling,
reliable and unretizbie datagrams, out-of-band data delivery, mul-
tiple addressing formars {including Internet and ISO 8348 Nerwork
layer addresses) and reliable tansport multicast. XTP’s design
reflects a clear separation of policy from mechanism—XTP pro-
vides multiple communications mechanisms, but XTP's user is
allowed to select those mechanisms which support the user’s
desired communications paradigm.

XTP’s new services should prove especially valuable for the
types of applications we expect to see in the 1990s: communica-
tions between compuiation engines and high-resolution displays:
remote medical imaging; ransaction-based client/server Sysiems:
transmission of terabit databases; real-time control systems for
ships, aircraft, space vehicles, and factories; and multimedia
teleconferencing. As ar example of XTP's emerging acceptance,
the United States Navy has selected XTP as one of the prowcols in
Safenet (Survivable Adaptable Fiber Optic Embedded Network)
[2], the Navy's next-generation specification for mission critical
communications systems.

Another distinguishing feature of X TP is that it is specifically
designed for implementation in hardware as the Protwco! Engine.
When coupled with a commercial FDDI network, the PE will be
able t0 process packets at the same rawe as their arrival from the
network medium. Thus we foresee providing ransport and net-
work layer services at a rate of 100 Mbirs/sec in the near future,
and at gigabit/sec speeds as the hardware technology matures. The
commercialization of the Protocol Engine, the VLS realization of
XTP in silicon, and the adoption of XTP by the Navy's Safener
community ali point to a new era of high throughput, low latency

communications service for distributed real-time systems.

In this paper we lock first at the history and motivation of
XTF, then ar its new functionality, and finally at the Prooco!
Engine design which will enable XTP to establish an epd-ig-end
“stlicon data path” between applications.

Motivation for XTP

The fundamental nature of computing and contrel systems is
changing. No longer confined to an individuai processor, applica-
tions are distributed across a multiplicity of computers. thereby
miking the communications network a critical factor in the overall
systems architecture. For a new application, and in particular a
factory control application, the choice of the communications pro-
wcol controls the functionality of the services offered as well a5
the ultimate performance observed by the service users.

To be advantagecus, any new protoco! for distributed systems
must provide more and better services than are currently available.
For example, typical ransport protocol pravide either a totally relt-
able service {(connection-oriented) or an unacknowledged service
{connection-less), and nothing in berween, A better strategy would
be 10 provide a variety of mechanisms and let the user select which
communications paradigm best suits his particular application,
XTF addresses this issue by supporting transactions. user-defined
service reliability, multipeer communication {multicast), and
latency control.

On the performance side, any new protocol should permit a
variety of implementations—from all software to all hardwire—so
that system designers can balance performance with economics.
While the protocol itself must remain invariant, its implementation

- should scale gracefully from megubits to gigabits, and likewise

should span LANg and MANs and WANSs without alteration,

Why Change?

The networking commurity has designed 2 number of suc-
cessful transport protocols, of which the best known ure the
Transmission Conwrol Protocol (TCPY [3] and the 1SO Transport
Protocol class 4 {TP4) [4). Since these are in everyday use. why
change?

The motivation for change comes about because the network-
ing world has changed énormously in the past decade. Whereas
TCP and TP4 were designed in an era when bit error dites on the
medium were typically 107, modern fiber optic networks rou-
tinely provide bit error rates of 1072 or less; clearly-this affects
the retransmission strategy. Similarly, older prowuol - were
designed when transmission speeds were slow (e.g., 56 Kbits/see
over a dedicated telephone line). As ransmission speed increases.,
from the 10 Mbits/sec of Ethernet to the 100 Mbits/sec of FDDI w
the gigabit/sec speeds of tomomow's ATM (Asvnchronous
Transfer Mode) networks, the end-to-end bitpipe is more densely
packed than ever before. At these high speeds, new mechanismy
for error control and error avoidance will be particularty valuable

(see [5).



Perhaps most compelling is the observation is that the user of
the network has changed. Rather than simply being a vehicle for
the exchange of daw berween two peers in a fully reliable,
connection-oriented fashion, the network can now be viewed as a
virtual backplane for distributed applications. Especially in the
real-tme control environment of the modern factory, nerworks
must support synchronization, transaction processing, multipie
priority messages, reliable one-to-many transmission, and both
reliable and unacknowledged datagrams, in addition to the tradi-
tional connection-orienied services.

New Functionality in XTP

A complete description of XTP's functionality may be found
in [6]. This section summarizes the most important design issues.

Muliicast. Of all of XTP’s features, multicast may be the
most innovative and important. XTP allows @ user o define a
transport multicast group, thereafter, rransmissions from the mulsi-
cast transmitter are routed to all members of the multicast receiver
group. Data transmission is reliable; that is, receivers may NACK
missing data, causing it to be reransmined transparently. Mult-
cast is also progressive, in that the failure of 2 muiticast receiver
does not impede the progress of the group. Although multicast
group management is not a part of the XTP specification, our
research group has made a proposal about how to manage the reli-
ability of the multicast group membership in {7.8]. ‘

Friprities. A well-known problem with traditional protocols
is that they are not very responsive to user data of varying impor-
tance. This is particularly crucial for real-time systems. In the
same way that FDDI discriminates among data classes (synchro-
nous vs. asynchronous) at the datalink layer, XTP provides a
discrimiration mechanism (called SORT) at the transpors layer.
Users may optionally encode a 32-bit SORT value to indicate a
message’s relative priority. Within the XTP delivery sub-sysiem,
including both erd-systems and all intermediate routers, the SORT
value of incoming packets is used 1o influence intraprotocol
scheduling. At each transmission opportunity, a node selects its
most important packer and processes it. While not as responsive
as a pre-emptive scheme, it is more efficient, and provides discrim-
ination among competing packets with a granularity of one
packet’s transmission time, thus drasticajly reducing priotity inver-
sion. .

Rate and Burst Control. Every tansport protocol provides
control mechanisms for bit error detection (e.g., checksums) and
for fiow control (buffer management). However, as characteristic
network error rates drop from, say, 107 on copper media o more
like 107'% on fiber optic media, bil error fate is much less of a
problem; on fiber optic LANs such as FDDI, for example, darta loss
from buffer overruns is much, much more of an issue than dara
corTuption due to bit errors,

XTP thus introduces rate and burst control. Rate control
allows the receiver to specify a maximum rate (bytes/sec) a1 which
the wansmitter should emit data; this helps synchronize not oniy
the transmitter and receiver, buz, properly used, the end-systems as
well. Burst control allows the receiver o specify the maximum
amount of data {bytes/burst) which the receiver can handle effec-
tively; this augments flow control in avaiding buffer starvation. In
addition, routers may participate in rate and burst control. so that a
connection can be oplimized not only for the end-system but also
for the route being used.

Address Translarion, Connection establishment ultimately
requires the resolution of a nrerwork address w0 a connection
iden:ifier. Since sending large addresses repeatedly (e.g., in every
packet) reduces network efficiency, some protocols utilize a form
of address translation such thar, once a connection is estabiished.
subsequent packets need not carry a full network address. The
efficiency of the wranslation scheme is therefore a concern,

especially for routers. Address lookups can be accelerated with
cacheing schemes, and Van Jacobson's header prediction tech-
nique for TCP is an example of a helpful scheme. Header predic-
tion has less impact if the traffic patiern is random {e.g.. un X-
Window server), and increasing the header cache size to accom-
modate a large number of active connections can increase its over-
head to nearly that of the original address translation problem.

To counteract this effect, XTP evolved into ¢ KEY-based
scheme. The initial XTP packet which sets up an XTP connection
(called a FIRST packet) contains an address segment and an
address type field. Through a hardware hashing function, initial
addresses are resolved into a 32-bit KEY field. Thereafter. subse-
quent packets can be identified by a table lookup on their KEY
field. Note that XTP does not introduce (yet another) network
addressing plan; XTP can operate with IP addresses, or ISO 8348
Newwork layer addresses, or any other network addressing plan.

Retransmission. Error detection results in retransmission for
connection-oriented protocols. TCP and TP4 both use “go-back-n"
in which the ransmission scheme is reset and retransmission
begins with the lost byte or packet. This scheme may redeliver
information which has previously been sent and received correcily,
XTP implements a more flexible mechanism. Receivers can pro-
vide a vector that indicates what spans of information have been
correctly received. Using selective retransmission, only the miss-
ing data need be retransmitted. Selective retransmission is an
option, not & requirement, and so “go-back-n" may still be used if
appropriate.

Acknowledgement Control. TCP and TP4 provide automatic
acknowledgements for packets received correctly. This again
reflects the designer’s underlying assumption that the nerwork
often loses packets and that positive acknowledgement is therefore
a virme, This decision embeds policy with mechanism, XTP
aliows the user o decide whether and when acknowledgements are
desirable. Acknowledgements are requested by the transmitter by
setting a status request bit, thus separating policy fram mechanism.

This reflects another general philosophy in XTP: the
transmitter is in control, Receivers do what they are asked 1o do,
when they are asked to do it, but in general they do not automati-
cally provide information which is not requested.

Qut-of-band Dara. A common prowcol problem is how
send information from one user to another without embedding it in
the data steam itself (i.e, out-of-band data). This is useful for
passing application-layer control information about the state of the
end-user processes, or possibly for passing apptication-layer
semantic information regarding the daa stream iwself. XTP
accomplishes out-of-band transmission by permitting each packet
1 carry eight bytes of tagged daa. If used, XTP delivers the
tagged data to the user, along with a fiag indicating its presence,
but XTP itself never interprets the data. A potential use for tagged
data is to Hmestamp time-critical data,

Dara Pipeline Size. How much data can be ourstanding on
any one connection? The answer depends upon the design of the
sliding window protocol. If the size of the sliding window is 0o
small, then the protocol will revert 1o stop-znd-wait operation
when used with high capacity networks. XTP anticiputed this
environment and provides a 32-bit sequence number and sliding
window {i.e. a four gigabyte sequence space). The sequence
number can be enlarged easily 1o 64 bits 10 accommodate future
erabit/sec networks. :

Connection Services. For reasons of reliability, some com-
munications are connection-oriented, and thus the cfficiency of
building and maimaining connections is a concern. TP4, for
instance, uses a six-packet handshake to wansfer information reli-
ably: two packets 1o request and acknowledge & connection, two
packets 1o send and acknowledge data. and two packets 1o relesse



and confirm the close of the connection, XTP accomplishes the
same rellability with a three-packet handshake.

Alignment. Data alignment may seem a simple notion, but its
use pays big dividends. XTP aligns its major fields on 4-byte
boundaries. Rather than actually aligning non-aligned data, which
would involve copying, XTP uses an offser field and a length field;
the former provides an offset from the beginning of the data frame
to the beginning of user data while the lauer allows the user to
identify the last byte of user dawa in a frame which may be physi-
cally longer. Thus the transmited data frames are always aligned,
even if the data inside them is not. Since data copying is a very
time consuming operation, mechanisms which seek to avoid dara
COpying are seen as very advaniageous.

FPolicy vs. Mechanism

XTP artempts to provide mechanisms, rather than 10 imple-
ment any particular pre-established policy; XTP realizes that only
the user has sufficient information to ruly optimize the parameters
of 2 data exchange. To that end, XTP supports some special
modes which the user may elect.

While some classes of wansfer are adequately served by a
try-as-best-you-can policy, others require more synchronization
between transmitter and receiver 1o be effective. If, for example, it
is pointless o transfer data unless it is known that the receiver has
space for the data, that policy can be implemented using reserva-
tlon mode. When reservation mode is selected, the transmitter for-
bids the user from including in its allocation any buffer space not
dedicated to this association. This forces the transmitier and
receiver to adopt a conservative flow control policy in which the
transmitter always knows that there is buffer space available for
every packet it sends.

Some data types should never be retransmitted. If, for exam-
ple, subsequent data will soon be available, it may be better to
drop an errant packet rather than retransmit stale data. This is
accomplished using XTP’s noerror mode, which defeats the nor-
mai retransmission scheme. Data received in error is marked as
being in error, but no attempt is made to retransmit it This
preserves the sequentiality of data bur permits gaps. An example
would be sending successive frame buffers for a video display at a
rate of, say, 30 frames/sec. If an individual frame is lost, the
receiver could just ignore it and wait for the next one rather than
atiempt a repair.

Some data mransfers need to distinguish between whar the

XTP receiver has received vs. what the receiving XTP user has
received. To permis that distinction, the XTP transmitter may

make two types of requests: SREQ (status request) and DREQ |

(delivered status request). By setting the SREQ or DREQ bits in
the protocol control fields, the transmiter forces the receiver o
emit a contrel packet containing the sequence number of the data
byie last received by XTP (in. response to SREQ) or of the data
byte last delivered 1o the XTP user (in response 10 DREQ). These
sequence numbers are returned as RSEQ (received sequence
rumber) and DSEQ (delivered sequence number) in the control
packet generated by the receiver.

What should be clear by now is that XTP offers extraosdinary
flexibility to the XTP user by providing miechanisms rather than
implementing some pre-selected poiicy. This allows XTP to be
dyramically responsive to the user for a wide range of applica-
tions,

The Protocol Engine

The goal of the Prowcol Engine (PE) is to process informa-
tion at the same rate that it arrives from the network medium. This
so-called real-time packer processing requires a flow through
architecture in which daza is moved. managed, and manipulated

such that one packet can be processed before a second packet has
fully arrived. This in turn requires a pipetined design in which the
various protocol operations and data movements can be over-
lapped and executed in paraliel.

Figure | shows the dataflow required when the PE is con-
nected to a commercial FDDI network. At the 100 Mbits/sec data
rate of FDDI, the arrival of two back-10-back 60-byte packets per-
mits onty 5 microseconds for the processing of each packet. The
PE accomplishes this goal by pipelining the protocol parsing,
address parsing and lookup, packet steering, forwarding, and
checksum calculation. These operations are assigned o a short
pipeline of parailel RISC engines which accomplish the operations
required a2 each stage of the pipe.

Short (60-byte) packez
5 us wransit gme
i XTP Packet I XTP Packat
e e
parsing PATSing
address address |
processing | H processing |
packet | packet
stesring | steering |
forwarding forwarding
; tuffering and _i buffering and
checksum caiculation i checksum calculaden
Figure 1.

Packet Pipelining in the Protocol Engine

To accomplish the goal, four VLSI chips are currently being
desigred to handle the various stages of the pipeline. The chips
are the MPORT (MAC Port), which interfaces to the underlying
network; the HPORT (Host Port), which interfaces to the host's
backplane bus; the BCTL (Buffer Conrroller), which provides em-
porary storage between the MPORT and HPORT; and the CP
{Control Processor), a commercial RISC processor that executes
some of the more complicated protocot operations. Figure 2
shows a typical configuration.
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Protocol Engine Block Diagram

MPORT, The MAC Port chip moves data between the ne:-
work and the buffer memory. In its first version, the selected
MAC will be a commercial FDDI chipset, Figure 3 shows a block
diagram of the MPORT.
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MPORT Biock Diagram

On its receive side, the MPORT's Receive Engine accepts
data from the MAC and performs two protocel-specific hardware
checksums on the packet. The first is the so-called header check-
sum, which protects the addressing field of the packet, If this
check fails the packer is discarded, since the Transport Service
Access Point would be in doubt. The second check is the check-
sum across the data field of the packet.

As part of XTP's capability to support user-specified levels of
reliability, a failed data checksum does not sutomatically force the
packet w0 be discarded. If the packet is in error, it is marked as
being in error and it is an XTP protocol option as to whether it
should be discarded or delivered {(complete with the notation that
data errors bave been discovered). The Packet Processor Module
parses the protocol header, extracts protocol state information,

demultiplexes the packet according to its context {i.e., its intended

end-te-end association), and sweers the data to the Buffer Con-
wroller. On its wansmit side, the Transmit Engine moves data from
the Data Bus Interface Unit (DIU) to the ransmit side of the MAC.

HPORT. The Host Port provides high speed Direct Memory
Access (DMA) transfers between the host's backplane bus, its own
internal FIFOs, and the Network Buffer Memory, It packetizes
data supplied by the.host and calculazes transport checksums for
each packet. Figure 4 shows its block diagram.
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Figure 4,
HPORT Block Diagram

As data flows toward the network, the HPORT generates the
packet header and trailer, computes and inserts the checksum,
inserts the sequence number, and performs the utility functions of
byte swapping, word alignment, and padding. As data Hows to the
user, the HPORT separates the protocol control data from the yser
data and delivers both 1o separate areas of user memory.

BCTL. The Buffer Controller arbitrates aceess to the Das
Bus (DBus) and provides an interface for data transfer from the
DBus to either the Neswork Buffer Memory or the Non-Volatile
Memory. The BCTL's block diagram is shown in Figure .
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BCTL Block Diagram

The DBus Arbiter controls mastery of the DBus among the
three DIUs in the HPORT, MPORT, and BCTL. Data destined
(temporarily) for the Network Buffer Memory arrives on the
DBus, flows through the DRAM transceivers, and out 1w the
DRAM itself. The DRAM controller provides the necessary read,
write, and refresh operations. The Non-Yolatile Memory Con-
troller interfaces to an EEPROM which stores the microcode for
the HPORT and MPORT. ‘

CP. The Control Processor provides high-level protocol pro-
cessing functions such as association management and puth
management. While the MPORT, HPORT, and BCTL provide
generic packet processing functions, the CP accomplishes
protocol-specific actions. The CP is expected to be a commercial,
microprogrammable RISC processor.

The three-chip set of MPORT, HPORT, and BCTL form a
protocol accelergror; adding the CP makes it a protocol engine,
The protocol accelerator is expected to be available as 4 commer-
cial product from Protocol Engines Inc. in late 1992 or earty 1993
{9].

Off-Host Processing

The intent of the protocol engine is-to move network Sysem
processing off-host. This means much more than protocol process-
ing, which accounts for only a portion of the end-to-end latency
encountered in a typical communication. The protocol engine
approach addresses data movement, buffer management, interfaces
to the operating system and application program, physical inter-
faces 10 the network ard the backplane bus, checksum calculation.
and device driver considerations.

One of the protocol engine’s strengths is its use of
paralielism—in the system block diagram shown in Figure 2
above, the host interface, the network interface, protocol parsing,
and internal buffer control are essentially paraliel processes.
Although any particular packet is handled serially, the processes
themselves operate in parallel, resulting it an effective processing
pipeline berween network and host.

Of course, off-host processing is not a guaranteed win. There
are a number of other considerations which affect overall perior-
mance. Among them are: speed of the backplane bus. contention
for bus cycles, number of daw copies made while moving



information between the host and the protocol processor, number
of hardware interrupts generated, choice of a shared memory
versus a message passing architecture berween host and front-end,
and the number and frequency of interactions with the host’s
operating system. However, given competent design and imple-
mentation, the protocol engine should prove © be a substantial
asset for moving network subsystem processing off-host.

Experience
The Computer Networks Laboratory at the University of Vir-

ginia has had much experience with developing XTP for several -

different hosts (Intel 80x86, Motorola 680x0, SUN, RS/6000), for
several different operating systems (pSOS, pSOS+, VRTX, ZEK,
DOS), and for several different networks (Ethernet, token ring,
FDDI). Our experiences are further described in [10-15]. Other
groups, particularly those in Europe, have also documented their
experignces in [16-19],

Summary

XTP is a new venture in transport and network protocol
design. When implemented in software. XTP provides new proto-
col functionalities (e.g., multicast, priorities) that are expected to
be of significant benefit to the next generation of modern distri-
buted applications. When implemented in hardware in the form of
the Protocol Engine, XTP should off-load much of the host’s net-
work  subsystem  processing, thereby increasing  network
throughput and reducing end-to-end latency,
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