
On the Expressive Power of Classpects∗

Hridesh Rajan
University of Virginia
hr2j@cs.virginia.edu

Kevin Sullivan
University of Virginia

sullivan@cs.virginia.edu

Abstract
The most prominent feature of AspectJ and derivative languages
is theaspect. The aspect is a module-like construct that supports
data abstraction but that is distinct from the class in several ways.
First, aspects support new mechanisms: notably join points, point-
cut descriptors and advice. At the same time, they lack some key
features of classes, namely the ability to manage aspect instanti-
ation usingnew. In earlier work [23, 25], we showed that it was
possible and valuable to simplify the design of such languages
without loss of expressiveness by unifying aspects and classes in
a new construct that we called theclasspect.The contribution of
this paper is the formal demonstration, using Felleisen’s notion of
macro–eliminable programming language extensions [11], that the
classpect language model, realized in the Eos language and com-
piler, is strictly more expressive than AspectJ in the important case
in which aspect-like modules must advise other aspect modules.

1. Introduction
Aspect-oriented programming (AOP) has shown the potentialto
improve the ability of software architects to devise more effective
modularizations for some traditionally non-modular concerns. The
dominant family of languages in this domain is based on the As-
pectJ model [3, 7, 14, 16, 22, 28] or what Masuhara and Kiczales
would call a Pointcut-Advice Model [21]. In this work, we study
this model. The designs of AspectJ-like languages are unique in
having shown that AOP can succeed in practice. Their successis
due in part to the careful balancing of competing pressures in the
design of the language. A major goal was industrial adoption. The
pursuit of this goal led the designers of AspectJ to make important
early design decisions that in some cases traded against orthogo-
nality, uniformity and generality [20] in the language design in or-
der to make the new constructs more acceptable to potential early
adopters. Now that the model has shown promise, it makes sense
to ask whether we can improve upon it by the application of more
traditional principles of programming language design [20,33].

One specific design decision that was the subject of our earlier
work [25] was to introduce aspects as a new concept and as a sep-
arate abstraction mechanism. AspectJ-like languages [16]support
two related but distinct constructs for modular design: classes and
aspects. Aspects are promoted as means to modularize tradition-

∗ This research supported in part by NSF grant FCA-0429947.

[copyright notice will appear here]

ally non-modular concerns such as execution tracing policy, cross-
module optimization, use of common thread pool, security policy
enforcement, component integration, etc. Generally, AspectJ pro-
grams are designed in a two-layered style: abaselayer, typically of
object-oriented code, is advised and extended by an aspect layer.

In previous work [25], we showed that some of the properties
of aspects in the AspectJ style make it hard to go beyond such a
two-layered style. While aspects can advise classes, classes cannot
advise aspects, and aspects cannot advise other aspects in full
generality. On one hand introduction of the aspect as an analytic
category has caused people to struggle with the question, “what
is an aspect,” just as they struggled with the question, “what is
an object, ” when object-oriented languages and methods were
introduced. On the other hand, it has consequences that are felt in
the form of unnecessary constraints on designers, surprising non-
compositionality properties, undue design complexity in resulting
programs, and performance problems for which it does not appear
optimizations are readily available.

We also proposed a unified model [25], embodied by the Eos
language [23], which replaces the non-orthogonal and asymmetric
abstractions of aspect and class, and advice and method, respec-
tively with the more orthogonal notions of classpect, method, and
binding. Based on the Eos programming model’s ability to improve
the modularization of integration [23] [29] and higher-order con-
cerns [25], we made informal claims about its expressiveness.

This paper presents formal validation of the claim that the uni-
fied model is more expressive then the AspectJ language model.
The validation is provided by a sound formal argument based on
Felleisen’s notion of macro-eliminable programming language ex-
tensions [11]. In particular, we show that key constructs inAspectJ
are macro-eliminable in Eos, but not the other way around. Infor-
mally, we show that Eos retains the expressive power of AspectJ
in essentially all major dimensions, and that in one important di-
mension Eos is strictly more expressive than the AspectJ-like lan-
guages.

The rest of this paper is organized as follows. In the next Sec-
tion, we give background on aspect-oriented programming, the uni-
fied language model proposed in our earlier work, and Felleisen’s
formulation of the relative expressive power of Turning-complete
languages. In Section 3, we formulate the expressiveness argument.
In Section 4, we establish a representation to be used in the rest of
the paper. In Section 5 and 6, we sketch a proof of the expressive
power of the unified aspect language model with respect to theAs-
pectJ language model. In Section 7, we illustrate the arguments pre-
sented in Section 5 and 6 through an example. Section 8 discusses
related work, and Section 9 concludes.

2. Background
In this section, we briefly review the AspectJ and unified language
model embodied by Eos. The focus is on their key differences.The
AspectJ language model is described in detail by Kiczales etal.

1 2005/7/19

1 aspect Tracing {
2 pointcut tracedCall():
3 execution(* *(..));
4 before(): tracedExecution() {
5 /* Trace the Execution */
6 }
7 }

Figure 1. A Simple Example Aspect

[16]. A complete language manual and compiler is available from
the AspectJ web site [2] as of this writing. The unified language
model is described in detail in our earlier work [25] and the Eos
compiler is available from the Eos web site [10]. We also present
the background on Felleisen’s work on comparing the expressive
power of Turing-complete languages [11].

2.1 The AspectJ Language Model

In this subsection, we will review basic concepts in the dominant
aspect-oriented model, namely the AspectJ model. AspectJ [16]
is an extension to Java [13]. The rest of this paper starts with
this model. Other languages in this class include AspectC++[28],
AspectR [7], AspectWerkz [3], AspectS [14], Caesar [22], etc.
While Eos [23] is not AspectJ-like, it is in the broader classof
Pointcut-Advice-based AO languages [21]. The central goalof
AspectJ-like languages is to enable the modular representation of
crosscutting concerns.

AspectJ-like languages organize programs into a two-layered
hierarchy. The concerns that can be modularized using the tradi-
tional OO modularization techniques, classes, are in the first layer.
The first layer is also often called the base layer [19]. The modular-
ized representation of the crosscutting concerns, aspects, are in the
second layer. These aspects affect the behavior of the classes in the
base layer.

These languages add five key constructs to the object-oriented
model: join points, pointcuts, advice, inter-type declarations, and
aspects. For the purpose of this paper, inter-type declarations are
not relevant as they remain unchanged in the unified model. A
simple example is shown in Figure 1 to make the points concrete.

An aspect (lines 1-7), modifies the behavior of a program at cer-
tain selected execution events exposed to such modificationby the
semantics of the programming language. These events are called
join points. The execution of a method in the program in whichthe
Tracing aspect appears is an example of a join point. A pointcut
(lines 2-3) is a predicate that selects a subset of join points for such
modification – here, execution of any method. An advice(see lines
4-6) is a specialmethod-likeconstructs that effect such a modifica-
tion at each join point selected by a pointcut. An aspect (lines 1-7)
is a class–like module that uses these constructs to modify behav-
iors defined by the classes of a software system.

Like classes, aspects also support the data abstraction andin-
heritance, but they do differ from classes. First, aspects can use
pointcuts, advice, and inter-type declarations. In this sense, they are
strictly more expressive than classes. Second, instantiation of as-
pects and binding of advice to join points are wholly controlled by
the Aspect language runtime. There is nonew for aspects. Aspect
instances are thus not first-class, and, in this dimension, classes are
strictly more expressive than aspects. Third, although aspects can
advise methods with fine selectivity, they can select advicebodies
to advise only in coarse-grained ways.

In earlier work [23, 24], we addressed the limits of aspects
with respect to instantiation and join point binding under program
control, but we left aspects and classes separate and incomparable,
and the resulting compositionality problems unresolved. We tack-

1 class Tracing {
2 pointcut tracedExecution():
3 execution(* *(..))&& !within(Trace);
4 static before tracedExecution(): Trace();
5 public void Trace() {
6 /* Trace the call */
7 }
8 }

Figure 2. A Simple Example Classpect

led this problem in the following work [25], leading to a unified
language design in which advising emerged as a general alternative
to overriding or method invocation.

2.2 The Unified Language Model

The new language model unifies aspects and objects in three ways.
First, it unifies aspects and classes asclasspects. A classpecthas
all the capabilities of classes, all of essential capabilities of aspects
in AspectJ–like languages, and the extensions to aspects needed to
make them first class objects. Second, the unified model eliminates
advice in favor of using methods only, with a separate and explicit
join-point-method binding construct. Third, it supports ageneral-
ized advising model. To the usual object-oriented mechanisms of
explicit or implicit method call and overriding based on inheritance
we add implicit invocation using before and after advice, and over-
riding using around advice, respectively.

To make the point concrete we revisit the example presented
in the previous section in Figure 2. A classpect (lines 1-8),similar
to the aspect in the previous section, declares a pointcut (lines 2-
3) to select the execution of any method and then composes it
with thewithin(Trace)pointcut expression to exclude the methods
in itself to avoid recursion. A static binding (line 4) bindsthe
method Trace (lines 5-7) to execute before all join points selected
by the pointcut tracedExecution. Note that by binding statically join
points in all instances are affected. A non-static binding binds to
instances selectively. The key difference in this implementation is
that all concerns are modularized as classpects and methods. The
crosscutting concerns, however, uses bindings to bind the method
containing the implementation of the crosscutting concerns to join
points.

The AspectJ dichotomy between object-oriented and aspect
modules, with the latter able to advising the former but not vice-
versa promotes a two-level, asymmetric design style. AspectJ does
provide limited mechanisms for aspects to advise other aspects, so
two-level architecture is not strictly enforced, but it is awkward to
write aspects that advise aspects. We view advising as a general
module composition mechanism and believe that there is value sup-
porting it as a first-class mechanism. It is in this dimensionthat we
show that Eos is more expressive than the AspectJ-like languages.

2.3 On the Expressive Power of Programming Languages

In response to the lack of formal framework for specifying and
verifying statements about the expressiveness of programming lan-
guage, Felleisen in his work,On the expressive power of program-
ming languages[11] proposed a formal notion of expressiveness
and showed that his formal framework captures many informal
ideas on expressiveness. His approach adopts the ideas fromthe
formal systems to programming languages. In particular, headopts
the notion of expressible or eliminable systems proposed byKleene
[17] and extensions of Kleene’s notion by Troelstra [30].

In order to understand the adaptation in the programming lan-
guage context, let us first look into the notion of expressible sys-
tems in the logic/formal systems paradigm. The next subsection

2 2005/7/19

presents essential definitions. These definitions are originally from
Troelstra’s work. Felleisen adopted them to the programming lan-
guage context.

2.3.1 Formal Systems

A formal system L is a 3-tuple of sets{Expressions(L),
Formula(L), Theorems(L)} such that Expressions(L) ⊃
Formula(L) ⊃ Theorems(L). Expressions either are terms, or
generated by applying logical and non-logical operators over other
expressions. A formula is a recursive subset of the set of expres-
sions and satisfies well-formedness criteria. Theorems areformula
defined to be true in the formal system.

Conservative Extension: A conservative extension of a formal
systemL′ is a formal system L if the following relationships hold
between the expressions, formula and theorems in these two formal
systems.

1. Expressions(L) ⊃ Expressions(L′)
2. Formula(L) ∩Expressions(L′) = Formula(L′)
3. Theorems(L) ∩Expressions(L′) = Theorems(L′)
The first relationship denotes that the conservative extension L

contains all the expressions inL′ and possibly more. The richer
sets of operations in the extension generate these additional expres-
sions. The next two relationships express the fact that formula and
theorems in the original formal systemL′ can be expressed in the
extension L.

Definitional Extension: A definitional extension L ofL′, is
a conservative extension for which there exists a relationR :
Expressions(L)→ Expressions(L′) such that:

1.∀f ∈ Formula(L), R(f) ∈ Formula(L′)
2.∀f ∈ Formula(L′), R(f) = f

3. R is homomorphic in all logical operators1.
4. L ⊢ t ⇐⇒ L′ ⊢ R(t)
5. L ⊢ t↔ R(t)
The existence of the relation R that satisfies the propertiesde-

scribed above makes the symbols that generate additional expres-
sions in the extension L eliminable. Felleisen adopted thisnotion
from the formal systems context to the programming language
world to assess their relative expressiveness. The next subsection
presents the definition of programming languages and their defini-
tional and conservative extension from his work.

2.3.2 Programming Languages

Programming Language: A programming language is modeled as
a 3-tuple of sets{Phrases(L), Programs(L), Semantics(L)} where
these sets are defined as follows:

• Phrases(L) is a set of abstract syntax trees freely generated from
function symbolsF, F1, . . . with aritiesa, a1,

• Programs(L) is non-empty recursive subset of the Phrases(L).
• Semantics, evalL, is a recursively enumerable predicate on

Programs(L). The program terminates iffevalL holds for that
program.

Conservative Extension (Restriction) of a Programming Lan-
guage: Let us assume a programming languageL′ is extended with
additional symbols{F1, . . . , Fn, . . .} to yield an extension L. This
extension is represented asL = L′\{F1, . . . , Fn, . . .}, and is a
conservative extension if:

1. constructors of L are constructors of L’ plus additional
{F1, . . . , Fn, . . .}.

1 A mapping R from formal system L to L’ is homomorphic with respect
to some hypothetical binary logical operator l ifa ∈ Expressions(L),
b ∈ Expressions(L), R(l) = o ⇐⇒ R(alb) = R(a)oR(b).

2. Phrases(L′) ⊂ Phrases(L) with no constructs in
{F1, . . . , Fn, . . .}.

3. Programs(L′) ⊂ Programs(L) with no constructs in
{F1, . . . , Fn, . . .}.

4. Semantics(L′) is a restriction of Semantics(L).

Eliminable Programming Constructs: Let
L = L′\{F1, . . . , Fn, . . .} be a conservative extension ofL′. The
new constructs{F1, . . . , Fn, . . .} in the language L areeliminable
if there exists a mappingR : Phrases(L)→ Phrases(L′) such
that:

1. ∀P ∈ Programs(L),R(P) ∈ Programs(L′)

2. R is homomorphic in all constructs ofL′, i.e.
R(F (e1, . . . , ea)) = F (R(e1), . . . , R(ea)) for all constructs
F of L′.

3. ∀P ∈ Programs(L), evalL(e) is true↔ evalL′(R(P)) is
true.

4. Programs(L′) ⊂ Programs(L) with no constructs in
{F1, . . . , Fn, . . .}.

5. ∀P ∈ Programs(L′), evalL′(P) is true↔ evalL(P) is true.

Macro Eliminable Extension of a programming language:
Let L = L′\{F1, . . . , Fn, . . .} be a conservative extension
of L′, i.e. L′ is conservative restriction of L. The constructs
{F1, . . . , Fn, . . .} aremacro eliminableif they are eliminable and
if eliminating mappingR satisfies the following condition as well.

• ∀F ∈ {F1, . . . , Fn, . . .}∃α−ary syntactic abstraction, A, over
L′ such thatR(F (e1, . . . , eα)) = A(R(e1), . . . , R(eα)).

In other words, the original language can locally express each
additional construct in the conservative extension. If such an ab-
straction does not exists the language extension is not macro elim-
inable, therefore it is more expressive. Felleisen described this ex-
pressiveness relationship as follows:

Given two universal programming languages that only
differ by a set of programming constructs,c1, c2, . . . , cn,
the relation holds if the additional constructs make the larger
language more expressive than the smaller one. Heremore
expressivemeans that the translation of a program with oc-
currences of one of the constructsci to the smaller language
requires a global reorganization of the entire program.

In the next section, we apply this notion of expressive powerto
compare the unified model proposed by our earlier work [25] and
the AspectJ model [16].

3. Expressive Power of The Unified Model
The unified model (LEos) proposed in this work differs from the
AspectJ model (LAJ) by the constructs{advice, aspect, binding,
classpect, class} as shown in the Table 1. The symbolX denotes
the presence of a construct in the model. For brevity, the table
only shows the constructs of interest. The rowOtherdenotes other
constructs likeevents, indexers, inter-type declarationetc. that are
present in both language model.

As depicted in Table 1,LAJ contains advice, aspect, and class
that are eliminated inLEos in favor of classpect and binding. The
rest of the constructs are present in both models, so they will not be
discussed in the rest of this section, unless relevant. Let us construct
a third modelLCombined, where constructs inLCombined = con-
structs inLEos ∪ constructs inLAJ . The languageLCombined can
be represented asLCombined = LEos \ {aspect, advice, class}
or LCombined = LAJ \ {classpect, binding}, i.e. as conservative

3 2005/7/19

ε ∈ E (Expression)
ζ ∈ E (Method call expression)
ξ ∈ E (Advice or method body)
σ ∈ E (Argument)
r ⊂ E (Method return expressions)
proceed ∈ E (Proceed expression)
j ∈ J ⊂ (E ×E × E) (Join points)
℘(J) (Power set of J)
ej ∈ EJ (Method execution join points)
aj ∈ AJ (Advice execution join points)
id ∈ E (Identifier expression)
reflect ∈ E (Reflective information at the join point)
ρ ∈ ℘ (Pointcut expression)
methodexecution ∈ ℘m(J) ⊂ ℘(J) (Method execution pointcut designators)
adviceexecution ∈ ℘a(J) ⊂ ℘(J) (Advice execution pointcut designators)
pattern ∈ E (Pattern expression)
j ::= idj reflectj εj (Join point)
ξ ::= εξ | ejξ | ajξ {body}
methodexecution: (pattern× J)→ (Execution point cut matching.)

{ ej : ∀ ej∈ J, idej 7→ pattern}
adviceexecution: J→ {aj: ∀ aj∈ J} (Advice execution point cut matching.)
℘(J) = ℘m(J) ∪ ℘a(J)

Figure 3. Pointcut and Join Points

α ∈ AS (Aspects)
c ∈ C (Classes)
ĉ ∈ Ĉ (Classpects)
ctor ∈ (E × E) (Constructors)
f ∈ E (Fields)
m ∈M ⊂ (E × E) (Methods)
a ∈ A ⊂ (τ × E × E) (Advice)
τ ::= before | after | around (Temporal specification)
b ∈ (τ ×E × E × E) (Bindings)
a ::= τa σa ρa ξa Advice form
Where∃ σa 7→ reflectρa

.
b ::= τb ρb ζb σa Binding form
Where∃ σb 7→ reflectρb

∧ ∃ σb 7→ σζb
.

m ::= idm σm ξm Method form
α ::= [aα]∗ [fα]∗ [mα]∗ [ρα]∗ Aspects
c ::= [ctorc]

∗ [fc]
∗ [mc]

∗ [ρc]
∗ Classes

ĉ ::= [bĉ]
∗ [ctorĉ]

∗ [fĉ]
∗ [mĉ]

∗ [ρĉ]
∗ Classpects

Figure 4. Aspect and Classpect Members

extensions ofLEos andLAJ . To support the informal claims about
expressiveness, it will be sufficient to prove the Theorem 3.1.

Theorem 3.1. LEos is more expressive thenLAJ .

Lemma 3.1. The constructs{aspect, advice, class} are
macro-eliminable from the languageLCombined = LEos\
{aspect, advice, class}.

Lemma 3.2. The constructs{classpect, binding} are not
macro–eliminable from the languageLCombined = LAJ\
{classpect, binding}.

Theorem 3.1 is self-explanatory. Informally, the Lemma 3.1
means that the extra constructs aspect, advice and class construct
can be eliminated because they do not add additional expressive-
ness to the combined model relative to the unified model. The
Lemma 3.2 means that the constructs classpect and binding add
additional expressiveness to the combined model relative to the
AspectJ model, so they cannot be eliminated without sacrificing ex-
pressiveness. To prove Theorem 3.1, it suffices to prove the Lemma

3.1 and 3.2 and to compose the two results. The next three sections
will sketch the proof. The next section provides a representation of
the language models. The rest of this paper uses that representation.

4. Representation of the Language Models
Figure 3 shows a representation of the relevant expressions, point-
cuts, and join point matching process. A join point (j) is an ex-
pression that evaluates to an identifier expression (tag), an expres-
sion that evaluates to the reflective information, and an expression
that evaluates to the body that constitutes the join point. Amethod-
execution join point (ej) is a join point that evaluates to a tag equal
to the name of the method, reflective information expression, and
an expression equivalent to the method body. An advice-execution
join point (aj) evaluates to a tag equal to null (advice is anony-
mous), reflective information expression, and an expression equiv-
alent to the advice body.

A pointcut expression (ρ) can be an execution pointcut expres-
sion or an advice execution pointcut expression. To keep thefor-

4 2005/7/19

Table 1. Difference in Constructs

AspectJ Model:LAJ

Unified Model:LEos

Combined Model:LCombined

Construct LAJ LEos LCombined

Advice X X
Aspect X X
Binding X X
Classpect X X
Class X X
Constructor X X X
Field X X X
Method X X X
Pointcut X X X
Others X X X

malism brief and relevant to the current discussion, we haveelided
other pointcut expressions except method-execution and advice-
execution join points in both models. The formalization only con-
siders simple pointcut expressions. Extending it to complex point-
cut expressions by adding operators is trivial and not relevant to the
current discussion as both AspectJ model and Eos model support
exactly the same pointcut sub-language. An execution pointcut ex-
pression evaluates to a subset of execution join points suchthat the
pattern of the pointcut expression matches the tag of the execution
join point. An advice-execution pointcut expression evaluates to all
advice execution join points.

There are other expressions such as method call expression
ζ, method and advice body as expressionξ, method and advice
arguments as expressionσ, method return expression r, and proceed
expression p. Theproceedexpression can only be a sub-expression
of advice body expression.

Figure 4 presents representations of aspect, class, advice,
classpect, and binding. The notationXY means that X is associ-
ated with Y and the notation[XY]∗ means that one or more X’s are
associated with or contained in Y.

• An aspectα is a collection of zero or more advice constructs,
fields, methods, and, pointcuts. Note that according to the As-
pectJ programming guide [2],aspects are not directly instanti-
ated with a new expression, with cloning, or with serialization.
Aspects may have one constructor definition, but if so it mustbe
of a constructor taking no arguments and throwing no checked
exceptions.

• A classc is a collection of zero or more constructors, fields,
methods, and pointcuts. For simplicity, inner classes are not
considered.

• A classpect̂c is a collection of zero or more bindings, construc-
tors, fields, methods, and pointcuts.

• An adviceevaluates to a 4–tuple: temporal specification, advice
argument expression, pointcut expression, and body expression,
such that there exists a translation between advice arguments
and the reflective information exposed by the pointcut expres-
sion.

• A methodevaluates to a 3–tuple: identifier expression, method
argument expression, and body expression.

• A bindingevaluates to a 3–tuple: temporal specification, point-
cut expression, and method call expression, such that thereex-
ists a translation between the binding arguments and the reflec-
tive information exposed by the pointcut expression, and be-
tween the binding argument and the argument to the method
call expression.

To prove the Lemma 3.1, it is sufficient to provide a textually
local translation of the constructs{aspect, advice, class} from
LCombined to LEos. A translation from a languageL to another
languageL′ is defined as a meaning-preserving syntactically de-
fined map that transforms programs fromL to L′ [26]. To prove the
Lemma 3.2, it is sufficient to provide a translation of the constructs
{classpect, binding} from LCombined to LAJ , to show that it is
not textually local, and to prove that any other translationwill pre-
serve this property. The next section presents a translation of con-
structs{aspect, advice, class} from LCombined to LEos

5. Translation from LCombined to LEos

Lemma 5.1. A class is macro–eliminable inLCombined = LEos\
{aspect, advice, class}.

Γ : C 7→ Ĉ ⇐⇒

∀c ∈ C ∃ ĉ ∈ Ĉ
[[ctorc]

∗ ≡ [ctorĉ]
∗

∧[fc]
∗ ≡ [fĉ]

∗

∧[mc]
∗ ≡ [mĉ]

∗

∧[ρc]
∗ ≡ [ρĉ]

∗]

Figure 5. Translation of a Class

The translationΓ : C 7→ Ĉ, of a class to a classpect proves
the Lemma 5.1. This translation is trivial as shown in Figure5.
The translation from the members of a class to equivalent members
in the classpect is also trivial. In practice, this translation is not
even necessary in Eos as classpects are also represented using the
keywordclass. As can be observed, this translation is textually local
and therefore classes are macro–eliminable in the conservative
extensionLCombined.

Lemma 5.2. An aspect is macro-eliminable inLCombined =
LEos\ {aspect, advice, class}.

Γ̈ : α 7→ ĉ ⇐⇒

∀α ∈ AS ∃ ĉ ∈ Ĉ
[[fα]∗ ≡ [fĉ]

∗

∧[mα]∗ ≡ [mĉ]
∗

∧[ρα]∗ ≡ [ρĉ]
∗

∧[Π(aα)]∗ ≡ [(b×m)ĉ]
∗]

Figure 6. Translation of an Aspect

The translationΓ̈ from an aspect in the combined language
model to a classpect in the unified model (See Figure 6) has two
parts: translationΠ of an advice to it’s equivalent in the classpect
and translation of other members to their equivalent. The second
part of the translation is trivial, as it just requires straightforward
translation (in practice textual copy) of the other membersto the
classpect. The first part of the translation is non-trivial,and com-
plete aspect to classpect translation exists if and only if avalid
translation from advice exists. This translation is textually local, so
the construct aspect is also macro-eliminable if and only ifadvice
is macro-eliminable.

Lemma 5.3. An advice is macro-eliminable inLCombined =
LEos\ {aspect, advice, class}.

The translationΠ of an advice to an equivalent method and a
binding is shown in Figure 7. This translation exists if and only if:

• The temporal specification of the advice is equivalent to the
temporal specification of the binding.

5 2005/7/19

Π : A 7→ (B ×M) ⇐⇒
∀a ∈ A ∃(b,m) ∈ (B ×M)

[τa = τb

∧ρa ≡ ρb

∧ξa ≡ ξm

∧ζb ≡ idm

∧σa ≡ σb

∧(ξa depends onreflectρa
→

reflectρb
7→ σb ∧ reflectρb

7→ σζb
)

∧(ξa depends onproceedρa
→

proceedρa
7→ σb ∧ proceedρa

7→ σζb
)]

Figure 7. Translation of an Advice

• There exists a translation from the pointcut in the advice tothe
pointcut in the binding.

• There exists a translation from the advice body to the method
body.

• There exists a translation from the binding call expressionto
the method’s identifier expression.

• There exists a translation from advice parameters to the binding
parameters.

• In addition, if the advice body expression depends on reflec-
tive information expression orproceedexpression, there exists a
translation from them to binding argument expression and bind-
ing call expression.

All these sub-translations, except the sub-translation from ad-
vice body to method body, are trivial. For example the tempo-
ral specification of the advicebefore/after/aroundwill be textu-
ally translated to the temporal specification of the bindingbe-
fore/after/around. Only the translation from the advice body to the
method body is slightly involved, because AspectJ advice can use
implicit reflective variables likethisJoinPointand special forms
like proceedto invoke the inner join points. If the advice body does
not use any of these special construct, the translation is equivalent
to textual copy. If the advice body uses the implicit variables, the
translation from advice body to method body has three steps.First,
a unique argument is added to the method. Second, all occurrences
of the implicit variable in the advice body are replaced by the new
argument, and third, the argument is bound to the reflective infor-
mation in the binding.

If the advice body uses the special formproceed, the translation
has three steps. First, a unique argument to represent delegate chain
is added to the method. Second, all occurrences of the special
form in the advice body are replaced by the call on the argument
to invoke the next delegate in the chain, and third, the argument
is bound to the delegate chain in the binding. For advice body
with both implicit variable and binding, a combination of the two
translations described above can be used. All these translations are
textually local, so the construct advice is macro-eliminable, and
therefore construct aspect is also macro-eliminable proving Lemma
5.2 and Lemma 5.3.

The Lemma’s 5.1, 5.2, and 5.3 together complete the
proof of Lemma 3.1. If we recall, Lemma 3.1 shows that
{class, advice, andaspect} can be eliminated from the combined
language model without sacrificing expressiveness. In other words,
if a language model contains{classpect, binding}; addition of
{class, aspect, advice} to it doesn’t enhances its expressiveness.
All new programs generated by{class, aspect, advice} can be
translated to an equivalent program using{classpect, binding}.

To prove the Lemma 3.2, the next section provides a translation
of the constructs{classpect, binding} from LCombined to LAJ ,

shows that it is not textually local, and proves that any other trans-
lation will preserve this property.

6. Translation from LCombined to LAJ

Lemma 6.1. Classpect is not macro–eliminable inLCombined =
LAJ\{classpect, binding}.

Ĉ = {ĉ : ĉ is a classpect}
Ĉ1 = {ĉ : n([bĉ]

∗) = 0 ∧ n([ctorĉ]
∗) 6= 0}

Ĉ2 = {ĉ : n([bĉ]
∗) 6= 0 ∧ n([ctorĉ]

∗) = 0 ∧ ¬HO(ĉ)}
Ĉ3 = {ĉ : n([bĉ]

∗) 6= 0 ∧ n([ctorĉ]
∗) 6= 0 ∧ ¬HO(ĉ)}

Ĉ4 = {ĉ : n([bĉ]
∗) 6= 0 ∧ n([ctorĉ]

∗) = 0 ∧HO(ĉ)}
Ĉ5 = {ĉ : n([bĉ]

∗) 6= 0 ∧ n([ctorĉ]
∗) 6= 0 ∧HO(ĉ)}

Heren([bĉ]
∗) andn([ctorĉ]

∗) are the number of bindings and
constructors in̂c.

HO(ĉ) = ∃bĉ : [ρbĉ
∩ {ej : ej ∈ EJLEos

∧ej 7→ aj ∧ aj ∈ AJL‘} 6= φ]

Ĉ = Ĉ1 ∪ Ĉ2 ∪ Ĉ3 ∪ Ĉ4 ∪ Ĉ5

Figure 8. Partition of Classpects

A binding selects a subset of join points and binds a method to
execute at these join points. Let us call these join pointssubjects
of binding and the bound methodhandler of binding. For the
purpose of the rest of this paper, a binding is ahigher-order binding
if the subjectsof the binding arehandlersof other bindings or
contained inhandlersof other bindings. A classpect is ahigher-
order classpectif it contains one or morehigher-order bindings. In
other words, it modularizes concerns that are scattered andtangled
with other crosscutting concerns. We call these concernshigher-
order concerns[25]. The Boolean functionHO(ĉ) checks the
condition, Is ĉ a higher-order classpect?. It checks if the set of
method execution join points selected by any binding maps toan
advice execution join point in the current model.

The translation of a classpect in the unified model to constructs
in the unified model (Ω) is non-trivial. The domainĈ, is divided
into five disjoint partitions,Ĉ1, Ĉ2, Ĉ3, andĈ4, as shown in Fig-
ure 8. This partition is based on two properties:instantiationand
the presence ofhigher-order bindings. The classpects in the parti-
tion Ĉ4 andĈ5 are higher–order classpects (i.e.HO(ĉ) is true for
these classpects) and the classpects in the partitionĈ1, Ĉ2, andĈ3

are not. The partition̂C1 contains classpects with no bindings but
may contain one or more constructors (i.e. these classpectsmay be
instantiated). The second partition̂C2 contains classpects with one
or more bindings but no constructors (i.e. classpects that are never
instantiated). The third partition̂C3 contains classpects with one or
more bindings and constructors that are not higher-order classpect.
The fourth partitionĈ4 contains classpects with one or more bind-
ings but no constructors that are higher-order classpects.The fifth
partitionĈ5 contains classpects with one or more bindings and one
or more constructors that are higher-order classpects. These parti-
tions and corresponding translations are systematically analyzed in
the rest of this section.

Five translationsΩ1, Ω2, Ω3, Ω4, and Ω5 map Ĉ1, Ĉ2, Ĉ3,
and Ĉ4 to C, AS, (C × AS), AS ←֓ {[α]+ : α ∈ AS}, and
(C × AS) ←֓ {[α]+ : α ∈ AS} respectively (See Figure 8).
The notation[α]+ denotes a collection of one or more aspects. The
notationAS ←֓ {[α]+ : α ∈ AS} denotes an aspect, correct
implementation of which requires changes in[α]+ to expose right
join points.

6 2005/7/19

Ω = Ω1 ∪ Ω2 ∪ Ω3Ω4 ∪ Ω5

Ω1 : Ĉ1 7→ C

Ω2 : Ĉ2 7→ AS

Ω3 : Ĉ3 7→ (C ×AS)

Ω4 : Ĉ4 7→ AS ←֓ {[α]+ : α ∈ AS}

Ω5 : Ĉ5 7→ (C ×AS) ←֓ {[α]+ : α ∈ AS}

Figure 9. Five Sub-Translations of a Classpect

• The first translation’s domain contains classpect with no bind-
ings. These classpects can be translated to classes (C).

• The second translation’s domain contains classpects with one or
more bindings but that are never instantiated. These classpects
can be translated to aspects.

• The third translation’s domain contains classpects with one
or more bindings and constructors (i.e. they are instantiated)
that are not higher-order classpect. These classpects cannot
be translated to classes, because classes cannot advise. They
cannot be directly translated to aspects, because aspects cannot
be instantiated. These classpects can be translated to a (class,
aspect) 2-tuple, where the class handles instantiation andaspect
handles advising.

• The fourth translation’s domain contains classpects with one
or more bindings but no constructors that are higher-order
classpects. These classpects can be translated to aspects,but
successful translation requires that all join points required by
this aspect are still quantifiable in the translation. By quantifi-
able we mean that there exists a set of pointcut expression in
the translation to select all join points required by the aspect.

• The fifth translation’s domain contains classpects with one
or more bindings and one or more constructors that are
higher-order classpects. Similar, to the third translation, these
classpects are translated to (class, aspect) 2-tuple, provided that
all join points required by the aspect are still quantifiable.

∀ĉ ∈ Ĉ1 ∃ c ∈ C
[[ctorĉ]

∗ ≡ [ctorc]
∗

∧[fĉ]
∗ ≡ [fc]

∗

∧[mĉ]
∗ ≡ [mc]

∗

∧[ρĉ]
∗ ≡ [ρc]

∗]]

Figure 10. Translation of a Classpect to a Class

The translationΩ1 shown in Figure 10 is trivial. It simply maps
the members of a classpect to equivalent members in the class. This
translation is textually local, so the construct classpectis macro-
eliminable if it does not contain any bindings. This result is not
surprising as a classpect with no bindings in the unified model is
equivalent to a class in the AspectJ model.

The translationΩ2 shown in Figure 11 has two parts: the trans-
lationΘ1 from a (method, binding) pair in a classpect to an equiva-
lent advice in the aspect, and the translation of the rest of the mem-
bers from classpect to aspect. Therefore,Ω2 exists if and only if
Θ1 exists. This translation is textually local if and only ifΘ1 is
textually local.

The translationΘ1 maps a (method, binding) pair in a classpect
to an equivalent advice in the aspect. Figure 11 describes this
translation. It maps a (method, binding) pair to an advice such that
the arguments and body expressions of the method is equivalent
to the arguments and body expressions of the advice, the temporal
specification of the advice is the same as temporal specification of
the binding, and the pointcut expression of the binding is equivalent

Ω2 : Ĉ2 7→ AS ⇐⇒

∀ĉ ∈ Ĉ1 ∃ α ∈ AS
fĉ]

∗ ≡ [fα]∗

∧[mĉ]
∗ ≡ [mα]∗

∧[ρĉ]
∗ ≡ [ρα]∗

∧[Θ1((b, m)ĉ)]
∗ ≡ [aα]∗

Θ1 : (B ×M) 7→ A ⇐⇒
∀ (b,m)∈ (B ×M) ∃ a ∈ A

∧τb = τa

∧ρb ≡ ρa

∧ξm ≡ ξa

∧σb ≡ σa]

Figure 11. Translation of a Classpect to an Aspect

to the pointcut expression of advice. All these sub-translations are
trivial except in the following cases:

• When the binding’s temporal specification is equal toaround
and the pointcut expression in the binding exposes the delegate
chain and supplies it as an argument to the method to invoke
inner delegates. In other words, when the method bound around
uses Eos’s equivalent ofproceed. In this case, the delegate chain
argument is eliminated from the binding’s pointcut expression
and the handler method. All occurrences of the invocation in-
side the method body is replaced by aproceedcall. This trans-
lation is textually local in that it affects the code segmentinside
the body.

• When the pointcut expression in the binding exposes the re-
flective variablesthisJoinPoint, etc. In this case, the argument
is eliminated from the pointcut expression and the handler
method. All reference to the explicit arguments are replaced by
the reference to the implicit variable. This translation isalso
textually local.

This translation is overall textually local, thereforeΩ2 is also
textually local leading to another result. The construct classpect is
macro-eliminable if it is not explicitly instantiated using newand it
is not a higher-order classpect.

Lemma 6.2. A non-higher-order classpect that can be explicitly
instantiated is not macro–eliminable.

∵ n([ctorα]∗) = 0 ∴ [ctorĉ]
∗ 7→ [ctorc]

∗

All instantiation capabilities have to be emulated by a class.
Aspects may not be explicitly instantiated.

∵ n([ac]
∗) = 0 ∴ [aĉ]

∗ 7→ [aα]∗

All advising has to be done by a separate aspect.
Classes may not advise.

Ω3 : Ĉ3 7→ C ×AS ⇐⇒

∀ĉ ∈ Ĉ1 ∃ (c, α) ∈ C ×AS
[[ctorĉ]

∗ ≡ [ctorc]
∗

∧[fĉ]
∗ ≡ [fc]

∗

∧[mĉ]
∗ ≡ [mc]

∗

∧[ρĉ]
∗ ≡ [ρα]∗

∧[Θ1((b, m)ĉ)]
∗ ≡ [aα]∗

Figure 12. Translation of a Classpect to a Class and an Aspect

The translationΩ3 shown in Figure 12 is subtle as it involves
partitioning of roles between an aspect and a class. The pointcuts

7 2005/7/19

are mapped to the equivalent pointcut in the aspect. The method
binding pair in this case is mapped to an advice in an aspect by
the translationΘ1. The translationΘ1 is textually local, butΩ3 is
not textually local as it results in the classpect represented as two
abstractions an aspect and a class.Therefore, a non-higher-order
classpect with constructors (i.e. a classpect that can be instanti-
ated) is not macro-eliminable proving Lemma6.2.

Lemma 6.3. Higher-order Classpect is not macro-eliminable in
LCombined = LAJ\{classpect, binding}.

Ω4 : Ĉ4 7→ AS ←֓ {[α]+ : α ∈ AS} ⇐⇒

∀ĉ ∈ Ĉ4∃α ∈ AS
[∀b 6∈ HOB(ĉ)Θ1((b,m)ĉ)]

∗ ≡ [aα]∗

[∀b ∈ HOB(ĉ)Θ2((b,m)ĉ)]
∗ ≡ [aα]∗

∧[fĉ]
∗ ≡ [fα]∗

∧[mĉ]
∗ ≡ [mα]∗

∧[ρĉ]
∗ ≡ [ρα]∗

Where,
HOB(ĉ) = {b : b ∈ [bĉ]

∗

∧[ρb ∩ {ej : ej ∈ EJLEos

∧ej 7→ aj
∧aj ∈ AJL‘} 6= φ]}

Figure 13. Translation of a Higher-Order Classpect

Θ2 : (B ×M) 7→ A ←֓ {[a]+ : a ∈ A} ⇐⇒

∧[∀b ∈ HOB(ĉ),∀m ∈ X(b),∃b′, ζb′ ≡ idm →
∃a ∈ [aα]∗,∃m′ ∈ [mα]∗,

τa = τb′ ∧ ρa ≡ ρb′ ∧ ξm ≡ ξm′ ∧ ξa ≡ ζm]]
Where,
X(b) = {m : ∀m ∈MLEos

,
∃j ∈ {ρb ∩ {ej : ej ∈ EJLEos

∧ej 7→ aj
∧aj ∈ AJLAJ

}, idj = idm}

Figure 14. Translation of a Higher-Order Binding

The translationΩ4 (See Figure 13) exists if translationsΘ1 and
Θ2 exists to map (non-higher-order binding, method) and (higher-
order binding, method) in the classpect to corresponding advice.
The pointcuts, fields, and methods similarly should have their
equivalent in the aspect. The non–trivial part of this translation is
the translationΘ2, which translates the higher-order bindings of
the classpect. In the translation, the relationHOB(ĉ) yields a sub-
set of bindings of the classpectĉ such that each binding in that
subset is a higher-order binding. To recall, a binding is ahigher-
order if its subjectjoin points are or contained inhandlersof other
bindings in the program. An important property of thesesubjectsis
that either they or their containers are eventually translated to ad-
vice constructs inLAJ . The relationHOB(ĉ) selects higher-order
bindings using this property. Note that a binding that hassubjects,
only parts of which are eventually translated to advice constructs,
can be split into ahigher-orderand a normal binding. We call such
bindings,partial higher-order bindings.

Lemma 6.4. Higher-order Binding is not macro-eliminable in
LCombined = LAJ\{classpect, binding}.

The relationX(b) shown in Figure 14, selects thesubjectsof a
higher-order bindingb. All subjects of a higher-order binding are
translated to an advice or are contained in an advice. An advice is
anonymous; therefore, selecting individual advice using pointcuts
is not possible in general. The translation requires that the subject

join point be quantifiable [12]. Note that a pointcut expression se-
lects a join point by matching its pattern with the identifierexpres-
sion associated with the join point. To enable quantification using
pointcuts, an identifier expression must be associated withthe sub-
ject join points. One possible way to do it is to consistentlyuse the
delegation pattern. In this case, advice body is moved to a method
and advice just calls that method. Another possibility is toasso-
ciate distinguishing attributes with advice bodies. The figure uses
the delegation pattern as an example.

The translationΘ2 exists if for everyhigher-order bindingb and
for eachsubjectof that binding, if there are any other bindings (e.g.
b′) for which thesubjectis either thehandleror contained in the
handler, then there must exist an aspectα that contains thissubject
or the method containing thissubjectand an advice such that the
advice delegates to the method.

This translation requires global changes. For each higher-order
bindingb, n(X(b)) advice constructs are to be modified.A higher-
order binding with no constructors is thus not macro-eliminable
proving Lemma6.4. Therefore, a higher-order classpect with no
constructors is also not macro-eliminable proving Lemma6.3. The
translationΩ5 is a composition of the translationsΩ3 and Ω4,
therefore a higher-order classpect with constructors is also not
macro-eliminable. The proof of Lemma 6.1 follows from the proof
of Lemma 6.2 and Lemma 6.3. If we recall, Lemma 6.1 shows that
{classpect, binding} cannot be eliminated from the combined
language model without sacrificing expressiveness. In other words,
addition of{classpect, binding} enhances the expressiveness of
LAJ .

In this paper we have shown that if a language model con-
tains{classpect, binding}; addition of{class, aspect, advice}
to it doesn’t enhances its expressiveness. All new programs
generated by{class, aspect, advice} can be translated to an
equivalent program using{classpect, binding}. However, if a
language model just has{class, aspect, advice} addition of
{classpect, binding} enhances its expressiveness. The programs
generated by{classpect, binding} cannot be generated using
{class, aspect, advice}. In terms of language models, we have
proved that the combined model is more expressive then the As-
pectJ model and the combined model has the same expressive as
the Eos programming model. From the two results it follows that
Eos is more expressive then AspectJ.

7. Discussion

bPi
= τbPi

ρbPi
ζbPi

σbPi

mPi
= idmPi

σmPi
ξmPi

τbPi
= around

ρbPi
= pointcut to select execution of methodmĉi

ζbPi
= call expression, target method ismPi

σbPi
7→ reflectρbPi

/* Binding arguments map to the reflective

variables exposed by pointcuts.*/
σbPi

7→ σζbPi

/* Binding arguments map to the arguments

of the method call expression.*/

Figure 15. The Retry Policy Binding and Method

In this section, we present an informal discussion of the for-
malism described in the previous section. For the purpose ofthis
discussion, we use a simple but representative example. We use the
notation described in Figure 3 and 4. Our example system models
error-prone resources and fault-tolerance policies. There aren dif-
ferent types of resources in the system,R1, R2, . . . ,Rn. A require-
ment is to construct a fault-tolerant system with these error-prone

8 2005/7/19

ĉO = bi ctor f mi

bi = τbi
ρbi

ζbi
σbi

mi ::= idmi
σmi

ξmi

τbi
= after

ρbi
= pointcut to select execution of methodmPi

ζbi
= call expression, target method ismi

σbi
7→ reflectρbi

/* Binding arguments map to the reflective
variables exposed by pointcuts.*/

σbi
7→ σζbi

/* Binding arguments map to the arguments
of the method call expression.*/

Figure 16. The Overhead Computation Classpect

resources. To construct a fault-tolerant system, a retry policy type
Pi is defined for each resource typeRi.

To implement this system usingLEos, the resource types will
be modeled as classpectsĉi ∈ Ĉ. For simplicity, let us assume
that each basic resource typeRi provides exactly one operation
opi. We can always model a resource type that provides more
then one operation as a combination of basic resource types.These
operations are modeled as methods,mĉi

∈ M . The retry policy
types are also modeled as classpectsĉPi

∈ Ĉ. The retry policies
are implemented using an around binding and a method. Each retry
policy classpect̂cPi

declares a bindingbPi
and a methodmPi

as
shown in Figure 15. The bindingbPi

selects the execution of the
methodmĉi

and binds the methodmPi
to execute around it. When

the methodmĉi
is called to perform operationopi on resource type

Ri the methodmPi
bound around is invoked instead. The around

method retries the original method specified number of times.
To translate this system toLAJ , the resource types will be

modeled to equivalent classesci ∈ C as shown in the Figure 13.
The retry policies will be mapped to equivalent aspectsαi ∈ AS
such that the bindingbPi

and a methodmPi
is mapped to an around

adviceaPi
essentially performing the same function as shown in

Figure 13.
Let us consider an evolution scenario in which the system needs

to compute the overhead of each retry. For each retry policy typePi

there is an associated overheadOi. In LEos, to compute the over-
head for retry policy, an overhead computation module is imple-
mented as a classpectĉO ∈ Ĉ as shown in Figure 16. The classpect
provides a field to store the overhead, a constructor to initialize it
to zero, a bindingbi and a methodmi corresponding to each retry
policy Pi. The binding binds the methodmi to execute after the
methodmPi

to record the overhead.
To translate the overhead requirement toLAJ , one would think

of translating the overhead classpectĉO to an aspectαO with each
binding bi and methodmi pair translated to an after adviceai.
To pursue this straightforward implementation technique,selecting
individual advice-execution join pointsaPi

is required. We cannot
select individual advice-execution join points because advice is not
a named construct. An alternative is to perform a translation from
aPi

to another around advicea′

Pi
and a methodm′

Pi
such that

the around advicea′

Pi
calls the methodm′

Pi
. Another alternative

is the upfront translation from the bindingbPi
and the method

mPi
to the around advicea′

Pi
and the methodm′

Pi
. Both these

translations require global changes showing thatLEos is more
expressive compared toLAJ in this dimension.

8. Related Work
To the best of our knowledge, this is the first paper to formally
relate the expressiveness of variants of aspect-oriented languages,
in general, or of AspectJ-like languages, in particular. Many lan-
guages and approaches have been compared using Felleisen’sno-
tion of expressive power of programming languages. For example,

Brogi et al. compare the expressive power of three classes ofco-
ordination models based on shared dataspaces [4]. Among others,
Roychoudhury et al. [27] informally compare aspect-oriented lan-
guages with meta-programming techniques.

There has been significant interest in formalizing aspect-
oriented programming. To name a few: Andrews [1] take a process
algebraic view of AOP in which aspects are modeled as processes
and aspect interaction is modeled as process interaction. Douénce
et al. [9] formalize aspect interaction using execution traces. As-
pects monitor the execution traces and insert additional behaviors
to it. Jagdeesan et al. [15] propose a calculus and an operational
semantics for AOP. Clifton et al. [8] describe a parameterized cal-
culus for AOP. Bruns et al. [6] give a name-based calculus in which
aspect is the primitive unit of modularity andnamedadvice is
the primary unit of procedural abstraction. Most recently,Wand et
al. [32] give a denotational semantics for a mini-language that em-
bodies most features of AspectJ-like languages. Walker et al. [31]
take an entirely different approach. They give semantics toAOP by
defining a compact well-defined core language and a type-directed
translation from the external language to the core language. There
core language extends lambda calculus with explicitly defined join
points and first-class advice.

Most of the formal models that we are aware of, subscribe to the
dominant language model of AOP in which classes and aspects are
non-orthogonal and asymmetric. The view taken by Bruns et al. [6]
is particularly interesting as it takes completely opposite view of
aspect-oriented programming eliminating classes and methods in
favor of aspect and advice. The proposed model retains the cou-
pling betweenwhere the advice executesandwhat the advice does.
In this work, we do not claim to formalize aspect-oriented program-
ming languages. Instead, we show the application of previously de-
fined techniques to compare expressiveness of programming lan-
guages to the AO languages. We may be able to use one or more
models of AOP discussed above as a baseline for our comparisons,
however, we expect that it will require some adaptation to beable to
represent the new design space created by the unification of aspect-
and object-oriented constructs [25]. In addition, we expect signifi-
cant simplification in these formal models due to the unification but
we have not explored it yet.

There is another significant body of work on verifying aspect-
oriented programs. For example, Krishnamurthi et al. [18] propose
a modular technique that does not require re-verification onevery
change in advice constructs. Briefly, they construct a state-machine
of the base program and the advice; identify labels to plug-in state-
machine of the advice using pointcuts, and use model checking to
verify the program. We hypothesize that our unified model eases
the task of this kind of verification of aspect-oriented programs.

9. Concluding Remarks
We showed that our informal claims that the unified model is more
expressive then the programming model of AspectJ-like languages
is valid. In particular, we showed that the translation of certain
programs from a language based on classpect and binding to a
language based on class, aspect, and advice requires non-local
transformations in the program. The set of programs that require
non-local transformations contain at least two different types of
classpects. First, classpects that are instantiated and that has one or
more binding. Second, classpects that contain one or more higher-
order binding. One way to try to account for these improvements
is by appeal to the idea of conceptual integrity in design. Brooks
wrote,

...that conceptual integrity is the most important consid-
eration in system design. It is better to have a system omit
certain anomalous features and improvements, but to reflect

9 2005/7/19

one set of design ideas, then to have one that contains many
good but independent and uncoordinated ideas. Simplicity
and straightforwardness proceed from conceptual integrity.
Every part must reflect the same philosophies and the same
balancing of desiderata. Every part must even use the same
techniques in syntax and analogous notions in semantics.
Ease of use, then, dictates unity of design, conceptual in-
tegrity.” [5](pp 42-44).

The additional expressive and compositional power of
classpects emerged when this kind of design unity is enforced. It
forced aspect–like constructs to support all of the capabilities of
classes–notably new. It forced classes to support aspect–oriented
advising as a generalized alternative to traditional invocation and
overriding. By driving out anonymous advice in favor of methods
as the sole mechanism for procedural abstraction, it also pushed
a previously submerged but important abstraction to the fore: the
join–point–method binding. A binding turned to be at the core
of the aspect–oriented advising replacing asymmetric and non–
orthogonal aspect and advice. What we have presented, then,is an
aspect-oriented language model that is both significantly simpler
than the AspectJ-like languages and formally more expressive in a
dimension that really matters.

References
[1] James H. Andrews. Process-algebraic foundations of aspect-oriented

programming. InREFLECTION ’01: Proceedings of the Third
International Conference on Metalevel Architectures and Separation
of Crosscutting Concerns, pages 187–209, London, UK, 2001.
Springer-Verlag.

[2] AspectJ programming guide.
http://www.eclipse.org/aspectj/.

[3] Jonas Bonér. What are the key issues for commercial AOP use:
how does AspectWerkz address them? InAOSD ’04: Proceedings
of the 3rd international conference on Aspect-oriented software
development, pages 5–6, New York, NY, USA, 2004. ACM Press.

[4] Antonio Brogi and Jean-Marie Jacquet. On the expressiveness of
coordination via shared dataspaces.Sci. Comput. Program., 46(1-
2):71–98, 2003.

[5] Fredrick P. Brooks.The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Addison Wesley, Reading,
Mass., second edition, 1995.

[6] Glen Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely.
muabc: A minimal aspect calculus. In Philippa Gardner and Nobuko
Yoshida, editors,CONCUR 2004: Concurrency Theory, volume 3170
of Lecture Notes in Computer Science, pages 209–224, London,
August 2004. Springer.

[7] Avi Bryant and Robert Feldt. AspectR - simple aspect-oriented
programming in Ruby, Jan 2002.

[8] Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parameterized
aspect calculus: A core calculus for the direct study of aspect-
oriented languages. Technical Report 03-13, Iowa State University,
Department of Computer Science, October 2003.

[9] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition,
reuse and interaction analysis of stateful aspects. InAOSD ’04:
Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 141–150, New York, NY, USA, 2004.
ACM Press.

[10] Eos web site.
http://www.cs.virginia.edu/ eos.

[11] Matthias Felleisen. On the expressive power of programming
languages. In N. Jones, editor,Proceedings of the third European
symposium on programming on ESOP ’90, volume 432, pages 134–
151, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[12] Robert E. Filman and Daniel P. Friedman. Aspect-oriented
programming is quantification and obliviousness. InAspect-oriented

Software Development, pages 21–35. Addison-Wesley Professional,
2004.

[13] James Gosling, Bill Joy, and Guy L. Steele.The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[14] Robert Hirschfeld. Aspects - aspect-oriented programming with
squeak. InNODe ’02: Revised Papers from the International
Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World, pages 216–232,
London, UK, 2003. Springer-Verlag.

[15] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus of
untyped aspect-oriented programs. InProc. European Conf. Object-
Oriented Programming, volume 1853 ofLecture Notes in Computer
Science, pages 415–427. Springer-Verlag, 2003.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
J. Lindskov Knudsen, editor,ECOOP 2001 — Object-Oriented
Programming 15th European Conference, volume 2072 ofLecture
Notes in Computer Science, pages 327–353. Springer-Verlag,
Budapest, Hungary, June 2001.

[17] Stephen Kleene.Introduction to Metamathematics. Number 1 in
Bibliotheca mathematica. North-Holland, 1952. Revised edition,
Wolters-Noordhoff, 1971.

[18] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg.
Verifying aspect advice modularly.SIGSOFT Softw. Eng. Notes,
29(6):137–146, 2004.

[19] John Lamping. The role of base in aspect-oriented programming. In
Cristina Videira Lopes, Andrew Black, Liz Kendall, and Lodewijk
Bergmans, editors,Int’l Workshop on Aspect-Oriented Programming
(ECOOP 1999), June 1999.

[20] Bruce J. MacLennan.Principles of programming languages: design,
evaluation, and implementation (2nd ed.). Holt, Rinehart & Winston,
Austin, TX, USA, 1986.

[21] Hidehiko Masuhara and Gregor Kiczales. Modular crosscutting
in aspect-oriented mechanisms. In Luca Cardelli, editor,ECOOP
2003—Object-Oriented Programming, 17th European Conference,
volume 2743, pages 2–28, Berlin, July 2003.

[22] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar.
In AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 90–99, New York, NY,
USA, 2003. ACM Press.

[23] Hridesh Rajan and Kevin Sullivan. Eos: instance-levelaspects for
integrated system design. InESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 297–306, New York, NY, USA, 2003. ACM Press.

[24] Hridesh Rajan and Kevin Sullivan. Need for instance level aspect
language with rich pointcut language. In Lodewijk Bergmans,
Johan Brichau, Peri Tarr, and Erik Ernst, editors,SPLAT: Software
engineering Properties of Languages for Aspect Technologies, mar
2003.

[25] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect-
and object-oriented language design. InICSE ’05: Proceedings of the
27th international conference on Software engineering, pages 59–68,
New York, NY, USA, 2005. ACM Press.

[26] Jon G. Riecke. Fully abstract translations between functional
languages. InPOPL ’91: Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
245–254, New York, NY, USA, 1991. ACM Press.

[27] Suman Roychoudhury, Jeff Gray, Hui Wu, Jing Zhang, and Yuehua
Lin. A comparative analysis of meta-programming and aspect-
orientation. In41st Annual ACM SE Conference, pages 196–201,
Savannah, GA, March 2003.

[28] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-
Preikschat. Aspectc++: an aspect-oriented extension to the c++
programming language. InCRPITS ’02: Proceedings of the Fortieth
International Confernece on Tools Pacific, pages 53–60, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society,Inc.

[29] Kevin J. Sullivan and David Notkin. Reconciling environment

10 2005/7/19

integration and software evolution.ACM Transactions on Software
Engineering and Methodology, 1(3):229–68, July 1992.

[30] Anne S. Troelstra.Metamathematical investigation of intuitionistic
arithmetic and analysis, volume 344 ofSpringer LNM. Springer-
Verlag, Berlin, 1973.

[31] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects.
In ICFP ’03: Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, pages 127–139, New York,
NY, USA, 2003. ACM Press.

[32] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
semantics for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Program. Lang. Syst., 26(5):890–910,
2004.

[33] William Wulf. Trends in the design and implementation of
programming languages.IEEE Computer, 13(1):14–24, 1980.

11 2005/7/19

