On the Expressive Power of Classpects

Hridesh Rajan
University of Virginia
hr2j@cs.virginia.edu

Abstract

The most prominent feature of Aspectd and derivative lagegsia
is the aspect The aspect is a module-like construct that supports
data abstraction but that is distinct from the class in sdugays.
First, aspects support new mechanisms: notably join pgboist-
cut descriptors and advice. At the same time, they lack scege k
features of classes, namely the ability to manage aspeetniits
ation usingnew In earlier work [23, 25], we showed that it was
possible and valuable to simplify the design of such langaag
without loss of expressiveness by unifying aspects andetam

a new construct that we called tlasspectThe contribution of
this paper is the formal demonstration, using Felleiseatn of
macro—eliminable programming language extensions [ha}, the
classpect language model, realized in the Eos languageamnsd c
piler, is strictly more expressive than AspectJ in the inguatrcase
in which aspect-like modules must advise other aspect nesdul

1. Introduction

Aspect-oriented programming (AOP) has shown the potetdial
improve the ability of software architects to devise moifeaive
modularizations for some traditionally non-modular canse The
dominant family of languages in this domain is based on the As
pectd model [3,7, 14, 16, 22, 28] or what Masuhara and Kiszale
would call a Pointcut-Advice Model [21]. In this work, we sl
this model. The designs of AspectJ-like languages are eniqu
having shown that AOP can succeed in practice. Their sugsess
due in part to the careful balancing of competing pressureahe
design of the language. A major goal was industrial adopfide
pursuit of this goal led the designers of AspectJ to make itapd
early design decisions that in some cases traded agaihstgort
nality, uniformity and generality [20] in the language dgsin or-
der to make the new constructs more acceptable to poteatigl e

Kevin Sullivan
University of Virginia
sullivan@cs.virginia.edu

ally non-modular concerns such as execution tracing paioss-
module optimization, use of common thread pool, securitjcpo
enforcement, component integration, etc. Generally, &&ppro-
grams are designed in a two-layered stylbaaelayer, typically of
object-oriented code, is advised and extended by an aspext |

In previous work [25], we showed that some of the properties
of aspects in the AspectJ style make it hard to go beyond such a
two-layered style. While aspects can advise classesedassinot
advise aspects, and aspects cannot advise other aspeath in f
generality. On one hand introduction of the aspect as arytmal
category has caused people to struggle with the questionat‘w
is an aspect,” just as they struggled with the question, twha
an object, ” when object-oriented languages and methode wer
introduced. On the other hand, it has consequences thatlaie f
the form of unnecessary constraints on designers, surgrisin-
compositionality properties, undue design complexityaauiting
programs, and performance problems for which it does natapp
optimizations are readily available.

We also proposed a unified model [25], embodied by the Eos
language [23], which replaces the non-orthogonal and astniun
abstractions of aspect and class, and advice and methqucres
tively with the more orthogonal notions of classpect, mdftend
binding. Based on the Eos programming model’s ability torionp
the modularization of integration [23] [29] and higher-erdcon-
cerns [25], we made informal claims about its expressiv&nes

This paper presents formal validation of the claim that thie u
fied model is more expressive then the AspectJ language model
The validation is provided by a sound formal argument based o
Felleisen’s notion of macro-eliminable programming laagg ex-
tensions [11]. In particular, we show that key constructaspectJ
are macro-eliminable in Eos, but not the other way arounfibrin
mally, we show that Eos retains the expressive power of Adpec
in essentially all major dimensions, and that in one impurth-

adopters. Now that the model has shown promise, it make® sens mension Eos is strictly more expressive than the AspelktJiin-

to ask whether we can improve upon it by the application ofenor
traditional principles of programming language design, §3).
One specific design decision that was the subject of ouregarli

guages.
The rest of this paper is organized as follows. In the next Sec
tion, we give background on aspect-oriented programmireguni-

work [25] was to introduce aspects as a new concept and as a sepfied language model proposed in our earlier work, and Felféss

arate abstraction mechanism. AspectJ-like languagessfifijort
two related but distinct constructs for modular designssés and
aspects. Aspects are promoted as means to modularizeamadit

* This research supported in part by NSF grant FCA-0429947.

[copyright notice will appear here]

formulation of the relative expressive power of Turningrpete
languages. In Section 3, we formulate the expressivengasant.

In Section 4, we establish a representation to be used irettef
the paper. In Section 5 and 6, we sketch a proof of the expeessi
power of the unified aspect language model with respect tAshe
pectJ language model. In Section 7, we illustrate the argtsiee-
sented in Section 5 and 6 through an example. Section 8 dissus
related work, and Section 9 concludes.

2. Background

In this section, we briefly review the AspectJ and unified laagpe
model embodied by Eos. The focus is on their key differenths.
AspectJ language model is described in detail by Kiczales.et

2005/7/19

1 aspect Tracing {

2 pointcut tracedCall():

3 execution(* *(..));

4 before(): tracedExecution() {
5 /* Trace the Execution */
6 r
7}

Figure 1. A Simple Example Aspect

[16]. A complete language manual and compiler is availatdenf
the Aspect] web site [2] as of this writing. The unified larggia
model is described in detail in our earlier work [25] and thresE
compiler is available from the Eos web site [10]. We also gnes
the background on Felleisen’s work on comparing the expess
power of Turing-complete languages [11].

2.1 The Aspect] Language Model

In this subsection, we will review basic concepts in the dwnt
aspect-oriented model, namely the AspectJ model. AspaéiJ [
is an extension to Java [13]. The rest of this paper starth wit
this model. Other languages in this class include Aspect28};
AspectR [7], AspectWerkz [3], AspectS [14], Caesar [22]. et
While Eos [23] is not Aspectl-like, it is in the broader clads
Pointcut-Advice-based AO languages [21]. The central gial
AspectJ-like languages is to enable the modular represamtaf
crosscutting concerns.

AspectJ-like languages organize programs into a two-&aer
hierarchy. The concerns that can be modularized using &u-tr
tional OO modularization techniques, classes, are in teeléiyer.
The first layer is also often called the base layer [19]. Theluker-
ized representation of the crosscutting concerns, asgetin the
second layer. These aspects affect the behavior of theeslasthe
base layer.

These languages add five key constructs to the object-edent
model: join points, pointcuts, advice, inter-type dediarss, and
aspects. For the purpose of this paper, inter-type deidamtire

1 class Tracing {

2 pointcut tracedExecution():

3 execution(* *(..))&& 'within(Trace);
4 static before tracedExecution(): Trace();
5 public void Trace() {

6 /* Trace the call */

7)
8 1}

Figure 2. A Simple Example Classpect

led this problem in the following work [25], leading to a uifi
language design in which advising emerged as a generahatiter
to overriding or method invocation.

2.2 The Unified Language Model

The new language model unifies aspects and objects in thige wa
First, it unifies aspects and classesclsspectsA classpecthas
all the capabilities of classes, all of essential capédsliof aspects
in AspectJ-like languages, and the extensions to aspestieddo
make them first class objects. Second, the unified modelredites
advice in favor of using methods only, with a separate andi@xp
join-point-method binding construct. Third, it supportgeneral-
ized advising model. To the usual object-oriented meciasisf
explicit or implicit method call and overriding based onénitance
we add implicit invocation using before and after advicel aver-
riding using around advice, respectively.

To make the point concrete we revisit the example presented
in the previous section in Figure 2. A classpect (lines 1sBhilar
to the aspect in the previous section, declares a pointicgs(R-
3) to select the execution of any method and then composes it
with the within(Trace)pointcut expression to exclude the methods
in itself to avoid recursion. A static binding (line 4) bindse
method Trace (lines 5-7) to execute before all join pointscted
by the pointcut tracedExecution. Note that by binding stdly join
points in all instances are affected. A non-static bindiigdb to
instances selectively. The key difference in this impletagon is

not relevant as they remain unchanged in the unified model. A that all concerns are modularized as classpects and mefhioels

simple example is shown in Figure 1 to make the points coacret

An aspect (lines 1-7), modifies the behavior of a programmt ce
tain selected execution events exposed to such modifichyiohe
semantics of the programming language. These events deel cal
join points. The execution of a method in the program in wiheh
Tracing aspect appears is an example of a join point. A pgintc
(lines 2-3) is a predicate that selects a subset of join pdantsuch
modification — here, execution of any method. An advice(sess|
4-6) is a speciamnethod-likeconstructs that effect such a modifica-
tion at each join point selected by a pointcut. An aspeceglih-7)
is a class—like module that uses these constructs to modifgb
iors defined by the classes of a software system.

Like classes, aspects also support the data abstractiomand
heritance, but they do differ from classes. First, aspeats u«se
pointcuts, advice, and inter-type declarations. In thiseethey are
strictly more expressive than classes. Second, instamtiaf as-
pects and binding of advice to join points are wholly corealby
the Aspect language runtime. There ismawfor aspects. Aspect
instances are thus not first-class, and, in this dimenslasses are
strictly more expressive than aspects. Third, althougleespcan
advise methods with fine selectivity, they can select adbadies
to advise only in coarse-grained ways.

In earlier work [23, 24], we addressed the limits of aspects
with respect to instantiation and join point binding undesgram
control, but we left aspects and classes separate and ircabig,
and the resulting compositionality problems unresolved. té¢k-

crosscutting concerns, however, uses bindings to bind #taad
containing the implementation of the crosscutting cong¢orjoin
points.

The Aspect] dichotomy between object-oriented and aspect
modules, with the latter able to advising the former but rioev
versa promotes a two-level, asymmetric design style. Adplaes
provide limited mechanisms for aspects to advise othercaspso
two-level architecture is not strictly enforced, but it iskavard to
write aspects that advise aspects. We view advising as aalene
module composition mechanism and believe that there i®\alp-
porting it as a first-class mechanism. It is in this dimengfat we
show that Eos is more expressive than the AspectJ-like Egesu

2.3 Onthe Expressive Power of Programming Languages

In response to the lack of formal framework for specifyingl an
verifying statements about the expressiveness of prognagnlien-
guage, Felleisen in his workdn the expressive power of program-
ming languageg11] proposed a formal notion of expressiveness
and showed that his formal framework captures many informal
ideas on expressiveness. His approach adopts the ideasteom
formal systems to programming languages. In particulaadopts
the notion of expressible or eliminable systems proposddégne
[17] and extensions of Kleene’s notion by Troelstra [30].

In order to understand the adaptation in the programming lan
guage context, let us first look into the notion of expressiyls-
tems in the logic/formal systems paradigm. The next sulmsect

2005/7/19

presents essential definitions. These definitions arenatigifrom
Troelstra’s work. Felleisen adopted them to the prograngrfan-
guage context.

2.3.1 Formal Systems

A formal system L is a 3-tuple of setdExpressions(L),
Formula(L), Theorems(l) such that Fxzpressions(L) D
Formula(L) D Theorems(L). Expressions either are terms, or
generated by applying logical and non-logical operatoes ather
expressions. A formula is a recursive subset of the set afesxp
sions and satisfies well-formedness criteria. Theoremoamaula
defined to be true in the formal system.

Conservative Extensioi\ conservative extension of a formal
systeml’ is a formal system L if the following relationships hold
between the expressions, formula and theorems in thesetmaF
systems.

1. Expressions(L) D Expressions(L')

2. Formula(L) N Ezpressions(L') = Formula(L’)

3.Theorems(L) N Expressions(L') = Theorems(L")

The first relationship denotes that the conservative ekians
contains all the expressions iif and possibly more. The richer
sets of operations in the extension generate these adudiggpres-
sions. The next two relationships express the fact thatdtarand
theorems in the original formal systefi can be expressed in the
extension L.

Definitional Extension A definitional extension L ofL’, is
a conservative extension for which there exists a relafibn
Expressions(L) — Expressions(L’) such that:

1.Vf € Formula(L), R(f) € Formula(L")

2.Vf € Formula(L'), R(f) = f

3. R is homomorphic in all logical operators

4. L+t < L'+ R()

5.LFt« R(t)

The existence of the relation R that satisfies the propedies
scribed above makes the symbols that generate additiopegex
sions in the extension L eliminable. Felleisen adopted ribison

from the formal systems context to the programming language

world to assess their relative expressiveness. The nesestibn
presents the definition of programming languages and tlediiniel
tional and conservative extension from his work.

2.3.2 Programming Languages

Programming LanguageA programming language is modeled as
a 3-tuple of set{Phrases(L), Programs(L), Semanticg(jhere
these sets are defined as follows:

e Phrase§l) is a set of abstract syntax trees freely generated from
function symbolsF, Fi, . .. with aritiesa, a1,

e ProgramgL) is non-empty recursive subset of the Phrases(L).
e Semanticsevalr,, is a recursively enumerable predicate on
Programs(L). The program terminatesdifal;, holds for that

program.

Conservative Extension (Restriction) of a Programming-Lan
guage Let us assume a programming langudgés extended with
additional symbolg F1, ..., F,, ...} toyield an extension L. This
extension is represented &s= L'\{Fi,...,F,,...}, and is a
conservative extension if:

1. constructors of L are constructors of L' plus additional
{F1,...,Fn,...}.

1A mapping R from formal system L to L’ is homomorphic with resp
to some hypothetical binary logical operator kife Expressions(L),
b € Expressions(L), R(l) = o <= R(alb) = R(a)oR(b).

2. Phrases(L') C Phrases(L) with no constructs in

{Fi,...,Fn,...}.
3. Programs(L') C Programs(L) with no constructs in
{Fi,...,Fn,...}.

4. Semantics’) is a restriction of Semantics(L).

Eliminable Programming Constructs Let
L =L'\{Fi,...,F,,...} be aconservative extension bf. The
new construct§ F1, . .., F,, ...} in the language L areliminable
if there exists a mappin® : Phrases(L) — Phrases(L') such
that:

1. VP € Programs(L), R(P) € Programs(L')

2. R is homomorphic in all constructs ofL’, i.e.
R(F(e1,...,ea)) = F(R(e1),...,R(eq)) for all constructs
Fof L.

3.VP € Programs(L),evalr(e) is true — evaly (R(P)) is
true.

4. Programs(L') C Programs(L) with no constructs in
{Fi,...,Fn,...}.

5.VP € Programs(L’), evaly/(P) is true< evalr (P) is true.

Macro Eliminable Extension of a programming language
Let L = L\{Fi,...,F,, ...} be a conservative extension
of L', i.e. L' is conservative restriction of L. The constructs
{F,..., F,,...} aremacro eliminablgf they are eliminable and
if eliminating mappingR satisfies the following condition as well.

o VE € {F,..., F,,...}3a—ary syntactic abstraction, A, over
L’ suchthatR(F'(e1,...,eq)) = A(R(e1),. .., R(ea)).

In other words, the original language can locally expreshea
additional construct in the conservative extension. Ifhsan ab-
straction does not exists the language extension is notavedion-
inable, therefore it is more expressive. Felleisen deedrthis ex-
pressiveness relationship as follows:

Given two universal programming languages that only
differ by a set of programming constructs,, ¢z, . . . , ¢n,
the relation holds if the additional constructs make thgdar
language more expressive than the smaller one. hhere
expressiveneans that the translation of a program with oc-
currences of one of the construetgo the smaller language
requires a global reorganization of the entire program.

In the next section, we apply this notion of expressive pawer
compare the unified model proposed by our earlier work [28] an
the AspectJ model [16].

3. Expressive Power of The Unified Model

The unified model L z,s) proposed in this work differs from the
Aspectd model I 45) by the construct{advice, aspect, binding,
classpect, clagsas shown in the Table 1. The symb¥ldenotes
the presence of a construct in the model. For brevity, théetab
only shows the constructs of interest. The r@therdenotes other
constructs likeeventsindexers inter-type declaratioretc. that are
present in both language model.

As depicted in Table 1L 4 ; contains advice, aspect, and class
that are eliminated it g, in favor of classpect and binding. The
rest of the constructs are present in both models, so thépetibe
discussed in the rest of this section, unless relevant.4 ebnstruct
a third modelL compined, Where constructs itk compined = CON-
structs inL g,s U constructs inl 4 7. The languagé.compined €aN
be represented abcombinea = LEos \ {aspect,advice, class}

Or Lcompineda = Lag \ {classpect, binding}, i.e. as conservative

2005/7/19

eck

(eFE

Eel

ceFE

rCkE

proceed € E
jeEJC(EXEXE)

o(J)

ej € EJ

aj € AJ

ide E

reflect € E

peEP

methodezxecution € @m(J) C p(J)
adviceexecution € pq(J) C p(J)
pattern € E

(Expression)

(Method call expression)

(Advice or method body)

(Argument)

(Method return expressions)

(Proceed expression)

(Join points)

(Power set of J)

(Method execution join points)

(Advice execution join points)
(Identifier expression)

(Reflective information at the join point)
(Pointcut expression)

(Method execution pointcut designators)
(Advice execution pointcut designators)
(Pattern expression)

J = id; reflect; €

€ = ce | eje | aje

methodexecution: (pattera J) —
{ej:Vejed,ide; — pattern}

adviceexecution: 3» {aj:V aj € J}

o(J) = pm(J) U pa(J)

(Join point)
{body}
(Execution point cut matching.)

(Advice execution point cut matching.)

Figure 3. Pointcut and Join Points

ae AS (Aspects)
ceC (Classes)
ced (Classpects)
ctor € (E x E) (Constructors)
feE (Fields)
meMC (ExE) (Methods)
a€AC(TxEXE) (Advice)

T 2= before | after | around (Temporal specification)
be(rxEXEXE) (Bindings)

a = Tq Oq Pa &a Advice form
Where3 o, — reflect,, .

bu=17 pp (b 0a Binding form

Where3 oy, — reflect,, A3 o — o¢,.

m = idm Om Em
a = [aa]” [fa]” [Ma]” [pa]”
{Ctm“c]* [fe]™ [me]” [pe]”

o

¢

be]™ [ctore]” [fe]” [me]™ [pel]”

Method form
Aspects
Classes
Classpects

Figure 4. Aspect and Classpect Members

extensions of .5 and L 4 7. To support the informal claims about
expressiveness, it will be sufficient to prove the Theoreln 3.

Theorem 3.1. Lg,s is more expressive thehy ;.

Lemma 3.1. The constructs{aspect, advice, class} are
macro-eliminable from the languagd combined = LEos\
{aspect, advice, class}.

Lemma 3.2. The constructs{classpect, binding} are not
macro—eliminable from the languag€.compinea = LaJs\
{classpect, binding}.

Theorem 3.1 is self-explanatory. Informally, the Lemma 3.1

means that the extra constructs aspect, advice and classuwzin
can be eliminated because they do not add additional exygess

3.1 and 3.2 and to compose the two results. The next threilesgct
will sketch the proof. The next section provides a repres@nt of
the language models. The rest of this paper uses that repaégse.

4. Representation of the Language Models

Figure 3 shows a representation of the relevant expresgong-
cuts, and join point matching process. A join point (j) is aqa e
pression that evaluates to an identifier expression (tagdxpres-
sion that evaluates to the reflective information, and amesgion
that evaluates to the body that constitutes the join poimhethod-
execution join point (ej) is a join point that evaluates ta@ ¢qual
to the name of the method, reflective information expressaoa
an expression equivalent to the method body. An advicetgixet

ness to the combined model relative to the unified model. The join point (aj) evaluates to a tag equal to null (advice israno
Lemma 3.2 means that the constructs classpect and bindohg ad mous), reflective information expression, and an exprassipliv-

additional expressiveness to the combined model relativéhée
AspectJ model, so they cannot be eliminated without saicrifiex-
pressiveness. To prove Theorem 3.1, it suffices to proveehaha

alent to the advice body.
A pointcut expressiong) can be an execution pointcut expres-
sion or an advice execution pointcut expression. To keegadhe

2005/7/19

Table 1. Difference in Constructs

Aspectd ModelL 4 s

Unified Model: Lgos

Combined ModelLcombined
Construct Las | LEos
Advice X
Aspect X
Binding
Classpect
Class
Constructor
Field
Method
Pointcut
Others

LCombincd

x| X<

X[X X X| X X
X[X[X| x| X
XXX XX X X[X| X X

malism brief and relevant to the current discussion, we letided
other pointcut expressions except method-execution amitexd
execution join points in both models. The formalizationyoobn-
siders simple pointcut expressions. Extending it to complaEnt-
cut expressions by adding operators is trivial and not egitto the
current discussion as both Aspect model and Eos model guppo
exactly the same pointcut sub-language. An execution Qutirex-
pression evaluates to a subset of execution join points thatihe
pattern of the pointcut expression matches the tag of theutios
join point. An advice-execution pointcut expression eagds to all
advice execution join points.

There are other expressions such as method call expressio

¢, method and advice body as expressigrmethod and advice
arguments as expressiopmethod return expression r, and proceed
expression p. Thproceedexpression can only be a sub-expression
of advice body expression.

To prove the Lemma 3.1, it is sufficient to provide a textually
local translation of the constructsispect, advice, class} from
Lcompined 10 Lios. A translation from a languagé to another
languagel’ is defined as a meaning-preserving syntactically de-
fined map that transforms programs frdnto L’ [26]. To prove the
Lemma 3.2, itis sufficient to provide a translation of the stouncts
{classpect, binding} from Lcombpined t0 La s, 10 show that it is
not textually local, and to prove that any other translatidhpre-
serve this property. The next section presents a translaficon-
structs{aspect, advice, class} from Leompined 10 LEos

5. Translation from Lcompined 10 LEos

Lemma 5.1. A class is macro—eliminable ibcombined = LEos\
{aspect, advice, class}.

r:C—¢C <
VeeC3eeC
[[cto*r*c]* = [cfo*ré]*
NS = [
/\[mcl* = [me)
Alpe]” = [pe]"]

Figure 5. Translation of a Class

The translatiom : C — C, of a class to a classpect proves
the Lemma 5.1. This translation is trivial as shown in Figbre
The translation from the members of a class to equivalentiveesn
in the classpect is also trivial. In practice, this traristatis not

ven necessary in Eos as classpects are also represemtgdhési

e
r]<eywordclass As can be observed, this translation is textually local

and therefore classes are macro—eliminable in the corerva
eXtenSIOnLCornbined-

Lemma 5.2. An aspect is macro-eliminable ihcompineda =

Figure 4 presents representations of aspect, class, advice Lp,;\ {aspect, advice, class}.

classpect, and binding. The notatidfiy means that X is associ-
ated with Y and the notatiojXy]* means that one or more X’s are
associated with or contained in Y.

e An aspecta is a collection of zero or more advice constructs,
fields, methods, and, pointcuts. Note that according to the A
pectd programming guide [2hspects are not directly instanti-
ated with a new expression, with cloning, or with serialiaat
Aspects may have one constructor definition, but if so it ipeist
of a constructor taking no arguments and throwing no checked
exceptions.

e A classc is a collection of zero or more constructors, fields,
methods, and pointcuts. For simplicity, inner classes ate n
considered.

¢ A classpect is a collection of zero or more bindings, construc-
tors, fields, methods, and pointcuts.

¢ An adviceevaluates to a 4—tuple: temporal specification, advice
argument expression, pointcut expression, and body esipres
such that there exists a translation between advice argsmen
and the reflective information exposed by the pointcut esqre
sion.

¢ A methodevaluates to a 3—-tuple: identifier expression, method
argument expression, and body expression.

¢ A bindingevaluates to a 3—tuple: temporal specification, point-
cut expression, and method call expression, such that éxere
ists a translation between the binding arguments and trecrefl
tive information exposed by the pointcut expression, and be

(b x m)e]]

Figure 6. Translation of an Aspect

The translatiorl’ from an aspect in the combined language
model to a classpect in the unified model (See Figure 6) has two
parts: translatiodl of an advice to it's equivalent in the classpect
and translation of other members to their equivalent. Thersd
part of the translation is trivial, as it just requires sgtetforward
translation (in practice textual copy) of the other memterthe
classpect. The first part of the translation is non-trivéadd com-
plete aspect to classpect translation exists if and only vl
translation from advice exists. This translation is tekyuacal, so
the construct aspect is also macro-eliminable if and onhdifice
is macro-eliminable.

Lemma 5.3. An advice is macro-eliminable iLcompineda =
Lgos\ {aspect, advice, class}.

The translatiordI of an advice to an equivalent method and a
binding is shown in Figure 7. This translation exists if amdlyaf:

tween the binding argument and the argument to the method e The temporal specification of the advice is equivalent to the

call expression.

temporal specification of the binding.

2005/7/19

M:A— (BXx M) < shows that it is not textually local, and proves that any otrens-
(B x

Va € A3(b,m) € M) lation will preserve this property.
[Ta =T
Npa = po .
Ao = Em 6. Translation from Lcompined 10 Lay
NGy = idim Lemma 6.1. Classpect is not macro—eliminable itompined =
Ao = 0p Las\{classpect,binding}.

N(&. depends ome flect,, —
reflect,, — oy Areflecty, — o¢,)
N(&. depends oproceed,, —

C = {¢: ¢is aclasspegt
proceed,, — oy A proceed,, — o¢,)] Cr = {62 n((be]*) = 0 A n([ctora]") # 0}
Figure 7. Translation of an Advice :2 = {é:n([be]") # 0 An([ctors]”) =0A-HO(é)}
s = {¢ n([be]") # 0 Anl[etore]") 0 A ~HO(@)}
Ca={¢:n([be]") # 0 A n([ctore]") =0 A HO(E)}
Cs = {¢:n([be]*) # 0 An([ctore]*) #0 A HO(é)}

e There exists a translation from the pointcut in the advicénéo
pointcut in the binding.

e There exists a translation from the advice body to the method

Heren([be]*) andn([ctor:]*) are the number of bindings and
constructors irt.

body. HO(é)=3bz : [po, N{ej: ej € EJr,,,
e There exists a translation from the binding call express@on Aej — aj Aaj € AJL} # ¢
the method’s identifier expression. C=CLuCUuCsUC,UCs
¢ There exists a translation from advice parameters to thdirimn
parameters. Figure 8. Partition of Classpects
¢ In addition, if the advice body expression depends on reflec-
tive information expression @roceedexpression, there exists a A binding selects a subset of join points and binds a method to
translation from them to binding argument expression and-bi execute at these join points. Let us call these join pcntsjects
ing call expression. of binding and the bound methddandler of binding. For the
purpose of the rest of this paper, a binding lEgher-order binding
All these sub-translations, except the sub-translatiomfad- if the subjectsof the binding arehandlersof other bindings or
vice body to method body, are trivial. For example the tempo- contained inhandlersof other bindings. A classpect istagher-
ral specification of the advicbefore/after/aroundwill be textu- order classpecif it contains one or moreigher-order bindingsin
ally translated to the temporal specification of the bindivey other words, it modularizes concerns that are scatteredtsaugted
fore/after/around Only the translation from the advice body to the ~with other crosscutting concerns. We call these conchigiser-
method body is slightly involved, because AspectJ adviceusa order concerns[25]. The Boolean function/O(¢) checks the

implicit reflective variables likethisJoinPointand special forms ~ condition, Is ¢ a higher-order classpect?t checks if the set of
like proceedto invoke the inner join points. If the advice body does method execution join points selected by any binding mapnto

not use any of these special construct, the translationtivagnt advice execution join point in the current model.

to textual copy. If the advice body uses the implicit varéhlthe The translation of a classpect in the unified mogel to conitru
translation from advice body to method body has three sk, in the unified model Q) is non-trivial. The domairC, is divided
a unique argument is added to the method. Second, all oooa&se into five disjoint partitions(;, C2, Cs, andCjy, as shown in Fig-
of the implicit variable in the advice body are replaced bg tiew ure 8. This partition is based on two propertigstantiationand
argument, and third, the argument is bound to the refleatifee-i the presence diigher-order bindingsThe classpects in the parti-
mation in the binding. tion C, andCs are higher—order classpects (IO (¢) is true for

If the advice body uses the special fopmoceed the translation these classpects) and the classpects in the par@tiof, andCs
has three steps. First, a unique argument to representllel#tRin -~ 56 not. The partition; contains classpects with no bindings but
is added to the method. Second, all occurrences of the $pecia may contain one or more constructors (i.e. these classpetde
Igrm\/lgkteh?hzdxgi gg?ey :trg irr??:liciﬂe?ix tgﬁ;ﬂi%ﬂ EEZ ngmrrgen instantiated). The second partitiGh contains classpects with one
h 9 L L ' e or more bindings but no constructors (i.e. classpects teanever
is bound to the delegate chain in the binding. For advice body . tantiated). The third partitio@t. tai | ts with
with both implicit variable and binding, a combination okttwo Ins anbl.ade.)- ed Ir ptar Itl f’tﬁo? ans ctahs.sr;]ec SV(;"SSOQet or
translations described above can be used. All these ttamsare more bindings and constructors that are not higher-orasspect.

The fourth partitionC's contains classpects with one or more bind-

textually local, so the construct advice is macro-elimleatand . ; -
therefore construct aspect is also macro-eliminable pgpkemma ings but no constructors that are higher-order classpébtsfifth

5.2 and Lemma 5.3. partitionC’ contains classpects with one or more bindings and one
The Lemma’s 5.1, 5.2, and 5.3 together complete the OF more constructors that are higher-order classpectsseTparti-

proof of Lemma 3.1. If we recall, Lemma 3.1 shows that tions and corresponding translations are systematicalifyaed in

{class, advice, andaspect} can be eliminated from the combined the rest of this section. .

language model without sacrificing expressiveness. Irrotheds, Five translations2, Q2, s, Q4, and Qs map C1, Cz, Cs,

if a language model containglasspect, binding}; addition of andCy to C, AS, (C x AS), AS < {[o]" : a € AS}, and

{class, aspect, advice} to it doesn't enhances its expressiveness. (C' x AS) — {[a]" : a € AS} respectively (See Figure 8).

All new programs generated bflass, aspect, advice} can be The notatior{a] " denotes a collection of one or more aspects. The
translated to an equivalent program usigasspect, binding}. notation AS «— {[a]t : @ € AS} denotes an aspect, correct
To prove the Lemma 3.2, the next section provides a tranglati implementation of which requires changeganl™ to expose right

of the constructdclasspect, binding} from Lcoombined 10 Lag, join points.

6 2005/7/19

Q=0 U UQ304 U Q5

QliélHC

Qs : Cy > AS

Q3 : 3 — (C x AS)
Qu:Ci— AS — {[a]" :a € AS}

Qs : Cs = (C x AS) — {[o]* : a € AS}

Figure 9. Five Sub-Translations of a Classpect

e The first translation’s domain contains classpect with malbi
ings. These classpects can be translated to classes (C).

The second translation’s domain contains classpects wéloo
more bindings but that are never instantiated. These @atsp
can be translated to aspects.

The third translation’s domain contains classpects witke on
or more bindings and constructors (i.e. they are instad)at
that are not higher-order classpect. These classpectotcann
be translated to classes, because classes cannot advise. Th
cannot be directly translated to aspects, because asjpectstc

be instantiated. These classpects can be translated tass,(cl
aspect) 2-tuple, where the class handles instantiatioaspelct
handles advising.

The fourth translation’s domain contains classpects with o
or more bindings but no constructors that are higher-order
classpects. These classpects can be translated to adpscts,
successful translation requires that all join points resgiiby

this aspect are still quantifiable in the translation. Byriiia

able we mean that there exists a set of pointcut expression in
the translation to select all join points required by thesasp

The fifth translation’s domain contains classpects with one
or more bindings and one or more constructors that are
higher-order classpects. Similar, to the third transtatibese
classpects are translated to (class, aspect) 2-tuplddprbthat

all join points required by the aspect are still quantifiable

véeCidceC
[[ctore]” = [ctore]”

Figure 10. Translation of a Classpect to a Class

The translatiorf2; shown in Figure 10 is trivial. It simply maps
the members of a classpect to equivalent members in the Tlaiss
translation is textually local, so the construct classgeehacro-
eliminable if it does not contain any bindings. This resslinbt
surprising as a classpect with no bindings in the unified rmizde
equivalent to a class in the AspectJ model.

The translatiorf2, shown in Figure 11 has two parts: the trans-
lation ©; from a (method, binding) pair in a classpect to an equiva-
lent advice in the aspect, and the translation of the resteofrtem-
bers from classpect to aspect. Therefdee,exists if and only if
©; exists. This translation is textually local if and only@f; is
textually local.

The translatior®, maps a (method, binding) pair in a classpect
to an equivalent advice in the aspect. Figure 11 describss th
translation. It maps a (method, binding) pair to an adviahghat
the arguments and body expressions of the method is equiivale
to the arguments and body expressions of the advice, theotamp
specification of the advice is the same as temporal spedadficat
the binding, and the pointcut expression of the binding isvedent

Oy : Co = AS —
véeeCrJac AS

fel" = [fa]”
Ame]" = [ma]”
Apel™ = [pa]”

AO1((b;m)e)]” = [aa]”

0:1:(BXM)— A —
VbmeBxM)Jac A

ATy = Ta
APy = Pa
Nem = &a
Aoy = 04

Figure 11. Translation of a Classpect to an Aspect

to the pointcut expression of advice. All these sub-traimia are
trivial except in the following cases:

e When the binding’s temporal specification is equahtound
and the pointcut expression in the binding exposes the aeleg
chain and supplies it as an argument to the method to invoke
inner delegates. In other words, when the method bound droun
uses Eos’s equivalent pfoceedIn this case, the delegate chain
argument is eliminated from the binding’s pointcut expi@ss
and the handler method. All occurrences of the invocatien in
side the method body is replaced bpraceedcall. This trans-
lation is textually local in that it affects the code segmieside
the body.

e When the pointcut expression in the binding exposes the re-
flective variableghisJoinPoint etc. In this case, the argument
is eliminated from the pointcut expression and the handler
method. All reference to the explicit arguments are repldne
the reference to the implicit variable. This translatioraiso
textually local.

This translation is overall textually local, therefdi® is also
textually local leading to another result. The construasspect is
macro-eliminable if it is not explicitly instantiated uginewand it
is not a higher-order classpect.

Lemma 6.2. A non-higher-order classpect that can be explicitly
instantiated is not macro—eliminable.

o n([ctora]”) =0 .. [ctors]” — [ctorc]”
All instantiation capabilities have to be emulated by aslas
Aspects may not be explicitly instantiated.

wn([ac]”) = 0. [ag]" = [aa]"
All advising has to be done by a separate aspect.
Classes may not advise.

Qg:CA'gHACXAS <
Vée C13(c,a) € C x AS
[[ctore]” = [ctore]”

Alfel* = [fe]”

Alme]* = [me]”

Apel™ = [pal”
AB1((b,m)e)]” = [aa]”

Figure 12. Translation of a Classpect to a Class and an Aspect

The translatiorf2; shown in Figure 12 is subtle as it involves
partitioning of roles between an aspect and a class. Thequbén

2005/7/19

are mapped to the equivalent pointcut in the aspect. Theadeth

join point be quantifiable [12]. Note that a pointcut expresse-

binding pair in this case is mapped to an advice in an aspect by lects a join point by matching its pattern with the identiepres-

the translatior®;. The translatior®; is textually local, buts is
not textually local as it results in the classpect represtas two
abstractions an aspect and a cla8serefore, a non-higher-order
classpect with constructors (i.e. a classpect that can Iséainti-
ated) is not macro-eliminable proving Lem®2.

Lemma 6.3. Higher-order Classpect is not macro-eliminable in
Lcombineda = Lag\{classpect,binding}.

Qu:Cy — AS < {[a]" :
Vé € Cyda € AS

[vb & HOB(&)O1((b,m)e)]" = [aa]”
Vb € HOB(2)Oa((b,m)e)]* = [aa]*
AU = [fa)”

Alme]* = [ma]

Alpe]™ = [pa]”

Where,

HOB(é) ={b:be [be]”
Ny N{ej:ej € EJpp,,
Nej — aj
Naj € AJp} # ¢}

Figure 13. Translation of a Higher-Order Classpect

02:(BxM)—A—{[a":a€ A} <—

AIVb € HOB(E),¥m € X (b), 3V, Cy = idm —
Ja € [aa]*,IM’ € [ma]*,
Ta = Tor N\ Pa = pv AN ém = Emr N a = (]
Where,
X(®b)={m:Ym e M.,
3j € {po N {ej i ej € Bip,,
Nej — aj
Aaj € AJp,, },id; = idm}

Figure 14. Translation of a Higher-Order Binding

The translatiorf), (See Figure 13) exists if translatio®s and
O, exists to map (non-higher-order binding, method) and igh
order binding, method) in the classpect to correspondingced
The pointcuts, fields, and methods similarly should haver the
equivalent in the aspect. The non—trivial part of this ttatisn is
the translation®2, which translates the higher-order bindings of
the classpect. In the translation, the relatid® B(¢) yields a sub-
set of bindings of the classpeétsuch that each binding in that
subset is a higher-order binding. To recall, a binding lgher-
order if its subjectjoin points are or contained imandlersof other
bindings in the program. An important property of thesbjectss
that either they or their containers are eventually traedi#o ad-
vice constructs irL 4 ;. The relation O B(¢é) selects higher-order
bindings using this property. Note that a binding that islsjects
only parts of which are eventually translated to advice tronss,
can be split into &igher-orderand a normal binding. We call such
bindings,partial higher-order bindings

Lemma 6.4. Higher-order Binding is not macro-eliminable in
Lcompinea = Lag\{classpect,binding}.

The relationX (b) shown in Figure 14, selects tlsebjectsof a
higher-order binding. All subjects of a higher-order binding are
translated to an advice or are contained in an advice. Arcadsi
anonymous; therefore, selecting individual advice usiagouts
is not possible in general. The translation requires thastibject

sion associated with the join point. To enable quantificatising

pointcuts, an identifier expression must be associatedthatisub-

ject join points. One possible way to do it is to consistente the
delegation pattern. In this case, advice body is moved totagde
and advice just calls that method. Another possibility ia$so-

ciate distinguishing attributes with advice bodies. Theréguses
the delegation pattern as an example.

The translatior®- exists if for everyhigher-order binding and
for eachsubjectof that binding, if there are any other bindings (e.g.
b") for which thesubjectis either thehandler or contained in the
handler, then there must exist an aspecthat contains thisubject
or the method containing thisubjectand an advice such that the
advice delegates to the method.

This translation requires global changes. For each higtasr
bindingb, n(X (b)) advice constructs are to be modifiédhigher-
order binding with no constructors is thus not macro-eliafite
proving Lemma6.4. Therefore, a higher-order classpect with no
constructors is also not macro-eliminable proving Len@r& The
translationQ2; is a composition of the translatiorf3; and Q.,
therefore a higher-order classpect with constructors g alot
macro-eliminable. The proof of Lemma 6.1 follows from theqfr
of Lemma 6.2 and Lemma 6.3. If we recall, Lemma 6.1 shows that
{classpect,binding} cannot be eliminated from the combined
language model without sacrificing expressiveness. Irratbeds,
addition of {classpect, binding} enhances the expressiveness of
Lay.

In this paper we have shown that if a language model con-
tains {classpect, binding}; addition of {class, aspect, advice}
to it doesn't enhances its expressiveness. All new programs
generated by{class, aspect,advice} can be translated to an
equivalent program usingclasspect, binding}. However, if a
language model just hagclass, aspect, advice} addition of
{classpect, binding} enhances its expressiveness. The programs
generated by{classpect,binding} cannot be generated using
{class, aspect, advice}. In terms of language models, we have
proved that the combined model is more expressive then the As
pectd model and the combined model has the same expressive as
the Eos programming model. From the two results it followat th
Eos is more expressive then AspectJ.

7. Discussion

bp, = Top, Pbp, CbP,L Tbp,

mp; = idmpi Umpi gmpi

Ty, = around

pb; = pointcut to select execution of methed:,

¢y P = call expression, target methodrisp,

— reflectpbpl /* Binding arguments map to the reflective
'variables exposed by pointcuts.*/

=0, /* Binding arguments map to the arguments

of the method call expression.*/

UbPi

Obp,

Figure 15. The Retry Policy Binding and Method

In this section, we present an informal discussion of the for
malism described in the previous section. For the purpoghisf
discussion, we use a simple but representative exampleséha
notation described in Figure 3 and 4. Our example system imode
error-prone resources and fault-tolerance policies. & heen dif-
ferent types of resources in the systd®a, Ro, ..., R,. Arequire-
ment is to construct a fault-tolerant system with thesergsrone

2005/7/19

¢o =b; ctor f m;
bi = T, po,; Cb; Ob,
m; 2= idm; Om; Em;
T, = after
Py, = pointcut to select execution of methedp,
Cp, = call expression, target methodris;
ov, — reflectp,, /* Binding arguments map to the reflective
variables exposed by pointcuts.*/
O, 0, /* Binding arguments map to the arguments
' of the method call expression.*/

Figure 16. The Overhead Computation Classpect

resources. To construct a fault-tolerant system, a retligyptype
P; is defined for each resource typs.

To implement this system usinBz,s, the resource types will
be modeled as classpedts € C. For simplicity, let us assume
that each basic resource typg provides exactly one operation
op;. We can always model a resource type that provides more
then one operation as a combination of basic resource typese
operations are modeled as methods, € M. The retry policy
types are also modeled as classpégisc C. The retry policies
are implemented using an around binding and a method. Eagh re
policy classpectp, declares a bindingp, and a methodnp, as
shown in Figure 15. The bindingp, selects the execution of the
methodm., and binds the methoek p, to execute around it. When
the methodn,, is called to perform operatiosp; on resource type
R; the methodm p, bound around is invoked instead. The around
method retries the original method specified number of times

To translate this system td 47, the resource types will be
modeled to equivalent classese C' as shown in the Figure 13.
The retry policies will be mapped to equivalent aspegtse AS
such that the bindingp, and a methodh p, is mapped to an around
adviceap, essentially performing the same function as shown in
Figure 13.

Let us consider an evolution scenario in which the systerdsiee
to compute the overhead of each retry. For each retry poljpy P;
there is an associated overhead In Lg,s, to compute the over-
head for retry policy, an overhead computation module islémp
mented as a classpegs € C as shown in Figure 16. The classpect
provides a field to store the overhead, a constructor taalizé it
to zero, a binding; and a methoadn,; corresponding to each retry
policy P;. The binding binds the methad:; to execute after the
methodm p, to record the overhead.

To translate the overhead requiremenLt;, one would think
of translating the overhead classpégtto an aspecitvo with each
binding b; and methodm; pair translated to an after advies.

To pursue this straightforward implementation technigeéecting
individual advice-execution join pointsp, is required. We cannot
select individual advice-execution join points becauseacads not
a named construct. An alternative is to perform a transidtiom
ap, to another around advicer, and a methodn’p, such that
the around advice’p, calls the methodn,. Another alternative
is the upfront translation from the binding, and the method
mp, to the around advice», and the methodn’s,. Both these
translations require global changes showing that,s is more
expressive compared 10,4 ; in this dimension.

8. Related Work

To the best of our knowledge, this is the first paper to forynall
relate the expressiveness of variants of aspect-orieateglibges,
in general, or of AspectJ-like languages, in particularnili&an-
guages and approaches have been compared using Felleisen’s
tion of expressive power of programming languages. For g@m

Brogi et al. compare the expressive power of three classes-of
ordination models based on shared dataspaces [4]. Amoegsoth
Roychoudhury et al. [27] informally compare aspect-oeentan-
guages with meta-programming techniques.

There has been significant interest in formalizing aspect-
oriented programming. To name a few: Andrews [1] take a g®ce
algebraic view of AOP in which aspects are modeled as presess
and aspect interaction is modeled as process interactionémze
et al. [9] formalize aspect interaction using executiorcesa As-
pects monitor the execution traces and insert additionaliers
to it. Jagdeesan et al. [15] propose a calculus and an opeadti
semantics for AOP. Clifton et al. [8] describe a paramesetizal-
culus for AOP. Bruns et al. [6] give a name-based calculushiithv
aspect is the primitive unit of modularity amthmedadvice is
the primary unit of procedural abstraction. Most recentiand et
al. [32] give a denotational semantics for a mini-langudge €ém-
bodies most features of AspectJ-like languages. Walkelr 8
take an entirely different approach. They give semantiésa® by
defining a compact well-defined core language and a typetdule
translation from the external language to the core languBiere
core language extends lambda calculus with explicitly @efijoin
points and first-class advice.

Most of the formal models that we are aware of, subscribedo th
dominant language model of AOP in which classes and aspexts a
non-orthogonal and asymmetric. The view taken by Bruns. §6hl
is particularly interesting as it takes completely opposiiew of
aspect-oriented programming eliminating classes and adstin
favor of aspect and advice. The proposed model retains the co
pling betweernwhere the advice executasdwhat the advice does
In this work, we do not claim to formalize aspect-orienteogvam-
ming languages. Instead, we show the application of prelyale-
fined techniques to compare expressiveness of programraimg |
guages to the AO languages. We may be able to use one or more
models of AOP discussed above as a baseline for our compayiso
however, we expect that it will require some adaptation taltle to
represent the new design space created by the unificati@pett
and object-oriented constructs [25]. In addition, we exsagnifi-
cant simplification in these formal models due to the uniftcebut
we have not explored it yet.

There is another significant body of work on verifying aspect
oriented programs. For example, Krishnamurthi et al. [¥8ppse
a modular technique that does not require re-verificatioewary
change in advice constructs. Briefly, they construct a statehine
of the base program and the advice; identify labels to plustate-
machine of the advice using pointcuts, and use model chgckin
verify the program. We hypothesize that our unified modeksas
the task of this kind of verification of aspect-oriented peogs.

9. Concluding Remarks

We showed that our informal claims that the unified model isemo
expressive then the programming model of AspectJ-likedaggs

is valid. In particular, we showed that the translation oftaie
programs from a language based on classpect and binding to a
language based on class, aspect, and advice requires cain-lo
transformations in the program. The set of programs thatireq
non-local transformations contain at least two differgmes of
classpects. First, classpects that are instantiated ahtiak one or
more binding. Second, classpects that contain one or mghehi
order binding. One way to try to account for these improvetsien
is by appeal to the idea of conceptual integrity in desigradis
wrote,

...that conceptual integrity is the most important consid-
eration in system design. It is better to have a system omit
certain anomalous features and improvements, but to reflect

2005/7/19

one set of design ideas, then to have one that contains many
good but independent and uncoordinated ideas. Simplicity
and straightforwardness proceed from conceptual ingegrit
Every part must reflect the same philosophies and the same
balancing of desiderata. Every part must even use the same
techniques in syntax and analogous notions in semantics.
Ease of use, then, dictates unity of design, conceptual in-
tegrity.” [5](pp 42-44).

The additional expressive and compositional
classpects emerged when this kind of design unity is enflorite
forced aspect—like constructs to support all of the cajisgdslof
classes—notably new. It forced classes to support aspeattax
advising as a generalized alternative to traditional iation and
overriding. By driving out anonymous advice in favor of nmadk
as the sole mechanism for procedural abstraction, it alsbhgul
a previously submerged but important abstraction to the: fitre
join—point—-method binding. A binding turned to be at theecor
of the aspect—oriented advising replacing asymmetric aomd-n
orthogonal aspect and advice. What we have presented,ishem,
aspect-oriented language model that is both significarmthpler
than the AspectJ-like languages and formally more expressia
dimension that really matters.

References

[1] James H. Andrews. Process-algebraic foundations afcspiented
programming. INREFLECTION '01: Proceedings of the Third
International Conference on Metalevel Architectures argéBation
of Crosscutting Concerpngages 187-209, London, UK, 2001.
Springer-Verlag.

[2] Aspectd programming guide.
http://www.eclipse.org/aspectj/.

[3] Jonas Bonér. What are the key issues for commercial A6 u
how does AspectWerkz address them?AMDSD '04: Proceedings
of the 3rd international conference on Aspect-orientedvene
developmentpages 5-6, New York, NY, USA, 2004. ACM Press.

[4] Antonio Brogi and Jean-Marie Jacquet. On the expressise of
coordination via shared dataspaceci. Comput. Program46(1-
2):71-98, 2003.

[5] Fredrick P. Brooks.The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary EditiorAddison Wesley, Reading,
Mass., second edition, 1995.

[6] Glen Bruns, Radha Jagadeesan, Alan Jeffrey, and Janedg Ri
muabc: A minimal aspect calculus. In Philippa Gardner anduko
Yoshida, editorsCONCUR 2004: Concurrency Thegmolume 3170
of Lecture Notes in Computer Sciengeges 209-224, London,
August 2004. Springer.

[7] Avi Bryant and Robert Feldt. AspectR - simple aspecentéd
programming in Ruby, Jan 2002.

[8] Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Paeterized
aspect calculus: A core calculus for the direct study of eispe
oriented languages. Technical Report 03-13, lowa Statedsity,
Department of Computer Science, October 2003.

[9] Rémi Douence, Pascal Fradet, and Mario Sudholt. Caitipa,
reuse and interaction analysis of stateful aspectsAGSD '04:
Proceedings of the 3rd international conference on Aspeented
software developmenpages 141-150, New York, NY, USA, 2004.
ACM Press.

[10] Eos web site.
http://www.cs.virginia.edu/ eos.

[11] Matthias Felleisen. On the expressive power of prognangy
languages. In N. Jones, editéttoceedings of the third European
symposium on programming on ESOP,'96lume 432, pages 134—
151, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[12] Robert E. Filman and Daniel P. Friedman. Aspect-ogdnt
programming is quantification and obliviousness Aspect-oriented

10

power of

Software Developmenpages 21-35. Addison-Wesley Professional,
2004.

[13] James Gosling, Bill Joy, and Guy L. Steel@he Java Language
Specification Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[14] Robert Hirschfeld. Aspects - aspect-oriented progrémg with
squeak. InNODe '02: Revised Papers from the International
Conference NetObjectDays on Objects, Components, Actilmiés,
Services, and Applications for a Networked Wppdges 216-232,
London, UK, 2003. Springer-Verlag.

[15] Radha Jagadeesan, Alan Jeffrey, and James Riely. Algsalof
untyped aspect-oriented programs.Piroc. European Conf. Object-
Oriented Programmingvolume 1853 of_ecture Notes in Computer
Sciencepages 415-427. Springer-Verlag, 2003.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Keest, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
J. Lindskov Knudsen, editoECOOP 2001 — Object-Oriented
Programming 15th European Conferene®lume 2072 oflecture
Notes in Computer Sciencpages 327-353. Springer-Verlag,
Budapest, Hungary, June 2001.

[17] Stephen KleenelIntroduction to MetamathematicsNumber 1 in
Bibliotheca mathematica. North-Holland, 1952. Reviseii@d
Wolters-Noordhoff, 1971.

[18] Shriram Krishnamurthi, Kathi Fisler, and Michael Gmnéerg.
Verifying aspect advice modularlySIGSOFT Softw. Eng. Notes
29(6):137-146, 2004.

[19] John Lamping. The role of base in aspect-oriented @mogning. In
Cristina Videira Lopes, Andrew Black, Liz Kendall, and Lodjk
Bergmans, editordnt’l Workshop on Aspect-Oriented Programming
(ECOOP 1999)June 1999.

[20] Bruce J. MacLennanPrinciples of programming languages: design,
evaluation, and implementation (2nd eddolt, Rinehart & Winston,
Austin, TX, USA, 1986.

[21] Hidehiko Masuhara and Gregor Kiczales. Modular crofswm
in aspect-oriented mechanisms. In Luca Cardelli, edE@OOP
2003—Object-Oriented Programming, 17th European Confege
volume 2743, pages 2—28, Berlin, July 2003.

[22] Mira Mezini and Klaus Ostermann. Conquering aspecth saesar.
In AOSD '03: Proceedings of the 2nd international conferenne o
Aspect-oriented software developmearages 90-99, New York, NY,
USA, 2003. ACM Press.

[23] Hridesh Rajan and Kevin Sullivan. Eos: instance-lessbects for
integrated system design. ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointhh Witth
ACM SIGSOFT international symposium on Foundations oivsoé
engineeringpages 297-306, New York, NY, USA, 2003. ACM Press.

[24] Hridesh Rajan and Kevin Sullivan. Need for instanceeleaspect
language with rich pointcut language. In Lodewijk Bergmans
Johan Brichau, Peri Tarr, and Erik Ernst, edit@8®LAT: Software
engineering Properties of Languages for Aspect Technedpgiar
2003.

[25] Hridesh Rajan and Kevin J. Sullivan. Classpects: ungyaspect-
and object-oriented language designl@$E '05: Proceedings of the
27th international conference on Software engineerjrages 59-68,
New York, NY, USA, 2005. ACM Press.

[26] Jon G. Riecke. Fully abstract translations betweerctfanal
languages. IPPOPL '91: Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languapages
245-254, New York, NY, USA, 1991. ACM Press.

[27] Suman Roychoudhury, Jeff Gray, Hui Wu, Jing Zhang, andhtia
Lin. A comparative analysis of meta-programming and aspect
orientation. In41st Annual ACM SE Conferengeages 196-201,
Savannah, GA, March 2003.

[28] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröde
Preikschat. Aspectc++: an aspect-oriented extensionea+
programming language. I@RPITS '02: Proceedings of the Fortieth
International Confernece on Tools Pacjffiages 53—-60, Darlinghurst,
Australia, Australia, 2002. Australian Computer Socidtyg,

[29] Kevin J. Sullivan and David Notkin. Reconciling envimoent

2005/7/19

integration and software evolutioACM Transactions on Software
Engineering and Methodologyt (3):229-68, July 1992.

[30] Anne S. TroelstraMetamathematical investigation of intuitionistic
arithmetic and analysisvolume 344 ofSpringer LNM Springer-
Verlag, Berlin, 1973.

[31] David Walker, Steve Zdancewic, and Jay Ligatti. A theofaspects.
In ICFP '03: Proceedings of the eighth ACM SIGPLAN internasibn
conference on Functional programmingages 127-139, New York,
NY, USA, 2003. ACM Press.

[32] Mitchell Wand, Gregor Kiczales, and Christopher Dytch A
semantics for advice and dynamic join points in aspectteid
programming. ACM Trans. Program. Lang. Sys26(5):890-910,
2004.

[33] William Wulf. Trends in the design and implementatiofi o
programming language$EEE Computer13(1):14—-24, 1980.

11

2005/7/19

