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1. Introduction

We are concerned in this paper with solution of the large sparse linear system
Ax=b (1.1)

by the conjugate gradient method with SSOR or incomplete Cholesky (IC) preconditioning. We

assume that the system (1.1) arises from the discretization of a Poisson-type equation of the form
V(K- Vu)=f (1.2).

in two or three dimensions. Here K is a given vector-valued function of the spatial variables
such that (1.2) is elliptic. For simplicity, we will restrict ourselves to rectangular or
parallelpiped domains and Dirichlet boundary conditions, although many of the considerations
are more general, We also assume that finite difference discretizations are done in such a way
that A is symmetric positive definite, and has the usual five-diagonal structure in two dimensions

and seven-diagonal structure in three dimensions.
The preconditioning step in the conjugate gradient method requires solving a subsidiary
system of equations

Mr=r (1.3)

to obtain a modified residual vector r. M is the preconditioning matrix, assumed to be
symmetric positive definite, and for many commonly used preconditioners, such as SSOR or IC

factorization, has the form



M=LDLT (1.4)
where L is lower triangular and D is diagonal. Thus, the solution of (1.3) requires the solution of
triangular systems with coefficient matrices L and LT, In many cases, for example, SSOR and
no-fill IC factorization, L. will have the same non-zero structure as the lower triangular portion of
A itself. The problem, then, is how to solve such triangular systems effectively on parallel and

vector architectures.

There have been two main approaches to this problem. The first is to reorder the unknowns
so that the coefficient matrix takes the form A =PAP' for some permutation matrix P. The

classical such reordering is the red-black ordering (Young [1971]) in which

A

A= (1.5)

Dy T
C D,

where Dy and Dy are diagonal. The use of the red/black ordering for carrying out the SOR
iteration on parallel and vector machines dates back to the early 1970’s (Erickson [1972],
Lambiotte [1975]). More recently, various multicolor orderings (see, e.g. Ortega [1988] for a
review) have been used for both Poisson-type equations or more general equations with more
general finite element or finite difference discretizations. For a multicolor ordering, the

coefficient matrix takes the form

Dy Cy - - : Cer ]
Cu Dy
A=| _ (1.6)
CZc—i
Ca - - Cee-1 D

where, again, the D; are diagonal, and c is the number of colors. For a multicolor ordering, the



solution of a lower triangular system Lx = d of the same structure can be computed by

i =Di' i~ LLyx), i=1 ¢ (1.7)

j<
Since the D; are diagonal, the solution has been reduced to matrix-vector multiplys, which are

potentially ideal for parallel and vector machines. In particular, for the red-black ordering, (1.7)

reduces to
xp =D7' (dy -Cxy) (1.8)

For regular problems, C consists of only a few non-zero diagonals and the multiplication Cx; is

efficiently executed by multiplication by diagonals (Madsen et al. [1976]).

Multicolor orderings exhibit a high degree of parallelism but may have a deleterious effect.
on the rate of convergence of iterative methods. For SOR itself, the asymptotic rate of
convergence for the red/black ordering is the same as the natural ordering (Young [1971}) and
the same result extends to many multicolor orderings (Adams and Jordan [1985]). Moreover,
the use of multicolor orderings seems to enhance the rate of convergence in practice.
Unfortunately, there has been growing evidence that the rate of convergence of the conjugate
gradient method may be degraded, sometimes seriously, when such orderings are used for
preconditioners (Poole and Ortega [1987], Ashcraft and Grimes [1988]). For example, for the
equation (1.2) on a 63 x 63 x 63 grid (250,000 unknowns), Harrar and Ortega [1990] reported
162 iterations for SSOR preconditioned conjugate gradient using the red/black ordering and 38
iterations using the natural ordering. Moreover, the red/black ordering is the basis for the
reduced system conjugate gradient method (see, e.g., Hageman and Young [1981]), and since
this method is mathematically equivalent to SSOR preconditioning on the original system (see,

e.g., Harrar and Ortega [1990]), it suffers from the same rate of convergence problem.



A number of other reorderings have been considered but with, mostly, similar results. Duff
and Meurant [1989] reported on an extensive set of experiments using incomplete Cholesky
preconditioning for the problem (1.2) on a 30 x 30 grid in two dimensions, with problems
containing anisotropy, discontinuous coefficients, etc. They considered 16 different reordering
strategies of which only six gave rates of convergence comparable to the natural ordering on all

problems, and three of these orderings are equivalent to the natural ordering.

The second main approach to solving the triangular systems effectively is to obtain what
parallelism is available in the natural ordering. The basic idea is exemplified by the diagonal

ordering shown in Figure 1.1 in two dimensions.
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Figure 1.1 Diagonal Ordering of Grid Points

In carrying out SOR with a five point stencil the unknowns on each diagonal can be
updated in parallel, or with vector operations whose lengths are the number of points in a
diagonal. This is true because the five-point stencil couples unknowns only from different
diagonals. However, the updates produced from this ordering are exactly the same as with the
natural ordering. For example, the update at point 5 in Figure 1.1 depends only on the updated
values at 2 and 3 and the old values at 8 and 9; thus, it makes no difference whether all the
unknowns on the first row are updated before 5 is or not. This basic idea extends to three
dimensions and is also related to multicolor orderings, as will be discussed in the next section.
In two dimensions, this diagonal ordering was studied in Young [1971] as an example of a

consistent ordering and discussed as a possible paradigm for vectorization by Hayes [1978]. It



has been explored in increasingly sophisticated ways by van der Vorst {19831, [1989a], [1989b],
Schlichting and van der Vorst [1989], and Ashcraft and Grimes {1988], in both two and three
dimensions. We will discuss the diagonal ordering in more detail in the next section, including

extensions to more general discretizations.

Given the experimental results that certain orderings may degrade the rate of convergence,
the question is why this is the case. One attempt at an explanation was Melhem [1986] and the
concept of "zero-stretch.” He observed that orderings, such as the red/black ordering, that
moved elements of the matrix away from the main diagonal tended to degrade the rate of
convergence. However, we follow here the lead of Duff and Meurant {1989}, who computed the
"remainder matrices" for their different orderings. We discuss in Section 4, for a few particular
orderings, the structure and size of these remainder matrices. Prior to that, we collect in Section

3 some results on estimation of the condition number as a function of reorderings.

2. Diagonal and Related Orderings

In this section, we expand on the discussion of diagonal orderings, as exemplified by Figure
1.1. As observed by Poole and Ortega [1987], the fact that points on a diagonal are not coupled
with themselves implies that the ordering of Figure 1.1 is a multicolor ordering if we assign a
separate color to each diagonal. The coefficient matrix in this ordering has the form shown in
Figure 2.1, which is taken from Stotland [1990]. Note that this ordering is just the Cuthill-
McKee (CM) [1969] ordering for bandwidth/profile minimization. Duff and Meurant [1989]
also consider the reverse CM ordering, in which the numbering proceeds from the opposite
vertex of the grid, as well as a block CM ordering. These are also equivalent to the natural

ordering,
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Figure 2.1 Matrix for Diagonal Ordering (Two Dimensions}

Figure 2.1 illustrates the vectors that can be used to carry out the multiplications of (1.7).
In particular, the vector lengths are 1, *~-, N~1, N, N—1, +-,1 on an N X N grid. These are
considerably smaller than the corresponding vector lengths in the red/black ordering, which are
O(N?/2). But Ashcraft and Grimes [1988] have given results on a CRAY X- MP indicating that
the diagonal ordering is superior to the red/black ordering on that machine. However, Elman
and Agron [1989] and Chan et al. [1989] have shown that the red/black or multicoloring
orderings will probably be superior on highly parallel machines. In particular, the first of these
two papers gives theoretical results for a hypercube architecture, and the second gives theoretical
and computational results for a Connection Machine. Thus, the situation seems to be that the
diagonal ordering will be superior on machines requiring only a modest degree of parallelism or
vectorization but as the parallelism of the architecture increases, red/black or multicoloring

orderings may become relatively more competitive.

We next discuss a problem with the diagonal ordering and a way to alleviate it that was
observed by van der Vorst [1989a). For the reordered matrix of Figure 2.1, we no longer have
the long diagonals of the naturally ordered matrix to use in the matrix-vector multiply in the

conjugate gradient mcthod; In particular, there are breaks in the diagonals, corresponding to the



=

different By of (1.6). On the other hand, v?e can leave the matrix in the naturally ordered form
and still carry out the updates according to the diagonal ordering paradigm. This is the approgch
taken by Ashcraft and Grimes [1988], but the vectors now have stride N—1, which may cause
memory bank conflicts on Cray machines. Thus, in the natural ordering, the data is arranged
optimally for the matrix multiply but not for the preconditioning and vice-versa for the diagonal
ordering. However, as observed by van der Vorst [1989a], we can circumvent this problem by
means of the Eisenstat modification [1981], which eliminates the need for the matrix multiply.
‘Thus, we can use the diagonal ordering of Figure 2.1 so as to have suitable vectors for the

preconditioning.

Ordering by diagonals is a special case of wavefront methods, which can be applied to
more general triangular systems; see, Greenbaum [1986] and Saltz [1990]. Rather than the
general case, we next discuss another particular discrefization. Consider the nine point stencil
shown in Figure 2.2, which is used for fourth order approximations to Poisson’s equation or for
equations containing a mixed derivative uyy. A multicolor "diagonal” ordering for the nine-point

stencil is also shown in Figure 2.2,

1 12 13 14 15 16 17
9 10 11 12 13 14 15
7 8 9 10 11 12 13
5 6 7 8 9 10 11
34 35 6 7 8 9
i 2 3 4 5 6 7

Figure 2.2. Nine-Point Stencil and Multicolor " Diagonal" Ordering

Again for SOR, unknowns corresponding to grid points of the same number in Figure 2.2

can be updated simultaneously. For example, after unknowns 1 and 2 have been updated, both



of the unknowns labeled 3 can be updated simultaneously since the only updated unknowns they
depend on are 1 and 2. The only difference between this situation and the previous one with the
five-point stencil is that now the set of grid points of color i is no longer a diagonal of adjacent
grid points but, rather a bent "diagonal" of points separated by a "knight’s move", as shown in

Figure 2.2.

If the unknowns are ordered corresponding to the multicoloring of Figure 2.2, the

coefficient matrix is again a multicolored matrix and takes the form

Dy Ly Liz Ly

N

A = (2.1}

Symm

The D; are diagonal: Dy and D, are 1 x 1 matrices, Dy and Dy are 2 x 2, and 5o on to the
maximum size, which is O(N/2), after which they decrease in size. More precisely, on an N x N
grid, if N is even, there are 3N -~ 2 colors (i.e. ¢ = 3N — 2 in (1.6)) and the maximum size of the
D; is N/2, which is taken on by N+2 of the D;. I N is odd, ¢ = 3N and the maximum size of the

D; is (N + 1)/2, which is taken on by (N+3)/2 of the D;.

The off-diagonal matrices L;;,, and L ;43 in (2.1) each have a single non-zero diagonal
whose length is the same as the corresponding D;. Except for the 1 x 1 matrix Lj,, the matrices
L; ;z1 each have two non-zero diagonals and the precise structure depends on whether i is odd or

even as shown in (2.2) and (2.3).
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Liel = i odd, = X - 2.2)
. i1
Lie1 = i even, 5 X 5 +1  (2.3)

Thus, L; ;4.1 has diagonals of length i/2 if i is even, and (i+1)/2 and (i—-1)/2 if i is odd; this holds
until the L; ;1 reach their maximum size and then start decreasing. Note that L j,; is square if i
is odd but rectangular if i is even, as shown by the matrix sizes given in (2.2) and (2.3). This is

illustrated in Figure 2.3, which shows the first few blocks of a typical matrix.
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Figure 2.3 Structure of Matrix

We next comment on the differences in vector lengths between the five-point and nine-

point stencils. With the nine-point stencil we have noted that the maximum size of a D; is
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O(N/2); this is the maximum vector length if we don’t aftempt to couple diagonals between
adjacent blocks. This contrasts to the maximum vector length of O(N) for the five-point stencil.
Thus, the use of the nine-point stencil approximately halves the vector lengths, as compared with
the five-point stencil. This is analogous to the use of the red/black ordering for the five-point
stencil which gives vector lengths of O(N?/2) compared with a four-color ordering for the nine-
point stencil, which gives vector lengths of O(N?/4), nominally half the vector length of the

red/black ordering.

We next consider three-dimensional problems. For simplicity we will restrict ourselves to
Poisson-type equations (1.1) and the seven-point stencil. This stencil is the natural extension to

three-dimensions of the five-point stencil for two dimensions.

Ordering the grid points by diagonals in two dimensions extends in a natural way for three
dimensions to ordering by diagonal planes. (See Ashcraft and Grimes [1988] and van der Vorst
[1989a].) This is illustrated in Figure 2.4 for a 3 x 3 x 3 grid. Only two diagonal planes are
shown in Figure 2.4 but there are 7 such planes, including two which consist of only a single
point. The grid points in these seven planes are shown in Figure 2.5. The first three planes in
Figure 2.5 correspond to thé planes shown in Figure 2.4, including the first plane which contains

only one point.

Figure 2.4 Ordering by Diagonal Planes; 3 x 3 x 3 grid
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Figure 2.5 Grid Points in Diagonal Planes: 3 x 3 x 3 grid

Points in a plane are assigned the same color. For the 3 x 3 x 3 example, there are 7 planes
and, hence, 7 colors. For an N x N x N grid there are 3N-2 planes and 3N-2 colors. If we order
the grid points, and therefore the unknowns, corresponding to these diagonal planes, we again
obtain a multicolor block tridiagonal matrix. The detailed structure of the matrix in the case of a

4 x4 x 4 grid is shown in Figure 2.6, which is taken from Stotland [1990].
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Figure 2.6 Mafrix for Diagonal Ordering - Three Dimensions - 4 x 4 Grid

The maximum number of grid points in a plane is 3N?/4 if N is even and (3N2+1)/4 if N is
odd. Since all points in a plane can be updated by SOR in parallel, the maximum degree of

parallelism is O(3N?/4). However, an examination of Figure 2.6 shows that the same is not true
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of the vector lengths. Consider one of the off-diagonal blocks of maximum size. Although there
is one long diagonal, the other diagonals break up into lengths that are associated with two-
dimensional problems. There is some over-lapping of the diagonals across the submatrices
corresponding to the two dimensional problems so that some vectors of length greater than N
can be obtained. Moreover, the gather operation can be used on some of the shorter vectors.
However, in three dimensions the vectorization properties of the diagonal ordering are not as

good as the parallel properties. This is in contrast to the two dimensional situation.

19 20 21 46 30 29 28 19 20 22 39 31 29 28
22 23 24 47 33 32 31 21 23 25 43 34 32 30
25 26 27 48 36 35 34 24 26 27 47 36 35 33
37 38 39 49 42 41 40 40 44 48 49 46 42 38
7 8 9 45 18 17 16 6 8 9 45 18 17 15
4 3 6 44 15 14 13 3.5 7 41 16 14 12
12 3 43 12 11 10 i 2 4 37 13 11 10
() (b)

Figure 2.7 Domain Decomposition Orderings

We next consider orderings based on domain decomposition. Figure 2.7a shows a standard
4-domain ordering, in which the points in each subdomain are ordered row-wise in such a way
that within each domain the ordering proceeds from the outer corner inward. In Figure 2.7b, the
subdomain points are ordered diagonally, so that vector or parallel properties of the diagonal
ordering can be used within each subdomain. Duff and Meurant [1989] attribute these orderings
within the subdomains to H. van der Vorst. In either case, the points in the separator set are

numbered last and with these orderings the coefficient matrix takes the familiar arrowhead form
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Ay Bf |
A, B]
A= As B 2.4)
A4 B
”Bl B, Bs By Ag

Domain decomposition orderings have potentially good parallel properties, and were
suggested by Farhat [1986] as a way to parallelize the SOR iteration. They can be used in the
same way for SSOR or IC preconditioning. In particular, if there are p processors, it would be
convenient to have p subdomains. Consider, for example, SSOR. In the solution of the

corresponding lower triangular systems, each processor could solve one of the systems
Lixi = di (25)

and form its contribution B;x; to the final system

p
Lsxs =bs — ¥ Bi X (2.6)

=l

Note that the additions in the right hand side of (2.6) require a fan-in, and the parallel solution of

(2.6) is somewhat of a bottleneck.

In conjunction with SSOR or IC preconditioning, it is not necessary to have the separator
set. If the separator points in Figure 2.7 are incorporated into the four subdomains and the

subdomains are numbered counterclockwise, the coefficient matrix now takes the form

A; BT 0 B]
By A, B; 0
0 B, A; BI
By 0 Bz A4

2.7)

t

where the A; and B; are not the same as in (2.4). For such non-separator domain decomposition



i4

orderings, Duff and Meurant [1989] reported at least as good convergence results as for the
natural ordering. (These orderings are called vdvl and vdv2 in that paper, corresponding to row
wise or diagonal ordering within the subdomains.) Unfortunately, without the separator sets, the
natural parallelism of (2.4) is lost. However, it is still possible to work separately within each
subdomain. For example, on the forward sweep of SSOR, SOR may be applied separately in
each subdomain. When values from an adjacent subdomain are needed, the old ones are used.
This is no longer SSOR on the whole domain, however; it is block Jacobi with respect to the

subdomains and SSOR within each subdomain. Thus, the splitting of A for the forward SOR

sweep is
Dy -1y 1+ [u -BT o -B}
DZ - I—Q -B 1 Uz -"‘Bg 0
A= D3 -1, "l 0o -B, Us -B3 2.8)
Dy ~Ly -By 0 -By U

where D; — L; — U; is the splitting of A; into its diagonal and strictly triangular parts. Although
this approach has perfect parallelism, the rate of convergence is likely to be inferior.

3. Condition Numbers

In this section, we collect some basic results on the condition number of the preconditioned

matrix. If Mis the preconditioning matrix, define the remainder matrix R by
A=M-R (3.1)

Intuitively, the "smaller” R, the better M approximates A and the smaller the condition number

of the preconditioned matrix, M1 A, should be. More precisely,

MIA=1-M1R (3.2)
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and if the spectral radius p(M™'R) is small, then the eigenvalues of M~ A will all be close to 1,
so that M—' A will be well-conditioned. Note that M™IR is the iteration matrix for a stationarf
linear iteration x*T =M™ 'R x* +d generated by the splitting (3.1), and rapid convergence of
this iteration is equivalent to a better conditioned matrix M™'A. We next give a more precise

relation between the condition number of M~} A and the eigenvalues of M™'R.

If A and M are symmetric positive definite, then the eigenvalues of M* A are positive, and

cond(M™A) = %’:mi"; (3.3)

where Apax and Ay, are the maximum and minimum eigenvalues of MlA. (Note that ML A is
not necessarily symmetric but it is similar to the preconditioned symmetric matrix M2 A M™"
and it is customary to write cond(M ™ A) as the I, condition number of M7A M"”V"'). For the
following theorem, recall that (3.1) is a regular splitting (Varga [1962]) ifM20andR =0, and

a weak regular splitting (see, €.g. Ortega and Rheinboldt [1970]) if M2 0 and MR = 0.

Theorem 3.1. If A and M are symmetric positive definite and p(M~ 1R) < 1, then

1~ Wy

condM1A) = =
max

(3.4)
where Wmay and i are the maximum and minimum eigenvalues of M™!R, If, in addition, A is
an M-matrix and (3.1) is a weak regular splitting, then
condM ' A) =1+ p(A™ R)] (1 ~ panin) (3.5)
Proof. By (3.2), the eigenvalues A of M A and it of M™!R are related by
A=1-p

Since the eigenvalues of M~ A are all positive and since p(M~1R) < 1, the eigenvalues of MR
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lie in the interval [0,1). Hence

Amin = 1= Hmax » Amax =1 — Hin
and (3.4) follows. For the second part, by a theorem in Varga [1962] (proved for regular

splittings but the same proof holds for weak regular splittings)

-1
pMIR) = AR _ (3.6)
1+p(A~'R)
Thus,
1 um Pen] ..u............_.._]‘___..._
T 1+ p(ATIR)

and (3.5) follows. This completes the proof.
One can make the estimate
1= i €1+ [fin | S1+pM'R) 3.7)

and obtain the following corollary that was proved by Axelsson and Eijkhout [1989] under the
weaker assumption that A and M are not necessarily symmetric but the eigenvalues of MR are

real.
Corollary 3.1. Under the assumptions of Theorem 3.1,

condMA) <1+ 2p(A7IR) (3.8)
The proof of this corollary follows from (3.7) and (3.5) by using (3.6) to obtain the identity

-1
L+p(uriR) = TE2ATR)
+p(A™'R)

Meijerink and van der Vorst [1977] showed that a no-fill ILU factorization of an M-matrix

is a regular splitting. The same is true for the SSOR splitting with = 1:
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M=DO-L)yD'®-LT), R=LDILT (3.9)

where L is the strictly lower triangular part of A and D the diagonal part. Thus, if A is
symmetric positive definite, Theorem 3.1 and Corollary 3.1 apply to both of these

preconditioners. Moreover, for (3.9) we can obtain a much sharper result.

Corollary 3.2, If the conditions of Theorem 3.1 hold and R is positive semidefinite, then

condM1A) £ 1+ p(A~'R) (3.10)

and if R is singular
condMA) =1+ p(A~IR) (3.11)

In particular, (3.11) holds for (3.9)

Proof: The eigenvalues of R, and hence MR, are nonnegative so that 1 - lp, < 1; thus, (3.10)
follows from (3.5). If R is singular, then Wy, = O so that (3.11) is (3.5) in this case. Finally,
since L in (3.9) is strictly lower triangular, R is singular.

We note that Corollary 3.2 does not apply to incomplete Cholesky factorization, even when
R = 0, since R need not be positive semi-definite. Moreover, the weaker but sufficient condition
that the eigenvalues of MR be non-negative does not necessarily hold either, as is seen by the

simplest example of the Poisson equation and no-fill incomplete factorization.

4. Effect of Ordering

We now wish to consider the effects of ordering on the rate of convergence. Let Ay be the
coefficient matrix in the natural ordering and Ac = PANPT, where P is some permutation matrix.

If Ay = Mn ~ Ry and Ac = Mc — R are the corresponding splittings (3.1), then

AT'Rc = (PANPT) ™ R = PAY PTRcP P! (4.1)
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Thus, AE;IRC and and Aﬁl PTRCP are permutationally similar so that
P(AT'RC) =p(ANP'ReP), [AT'RC], =[|ANPTRcP], @2
Therefore, the difference in the estimates (3.8)

cond (M Ax) < 1+2p(ANRy) < 1+2 |AR, IRl (43)

cond (Mc' Ac) S 1+ 2p(AN'P'RcP) < 1+2 [ AW, IR, (4.4)

depends only on the difference between IIRN]]2 edeRCH2 in the case of the norm estimates,
However, these norm estimates may be overly pessimistic and the more critical factors are
p(qu1 Rn) and p(Aﬁ1 PTReP). This is especially the case when Corollary 3.2 applies so that we

have the exact condition numbers.

We first consider under what conditions

P(AN'RN) = p(AN PTRCP) 4.5)
Clearly, a sufficient condition is
Ry =PTRcP (4.6)
which is equivalent to
My =P McP 4.7)

and we will use (4.7) and (4.6) interchangeably. We note that, in fact, the eigenvalues of

Mt Ay and M Ac are the same if (4.7) holds for any non-singular matrix P since
Mt Ax = PTMcP) ! (PTACP) = P IMc AcP
so that M Ay and Mc! Ac are similar,

We next consider an example of when (4.6) holds. For the SSOR splitting (3.9), where

AN = DN - Ly~ L§ and A¢c =D¢ ~L¢ - L&, (4.6) may be written as
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LyDR LY =PT LcPPTDEPPTLEP | (4.8)

Since Dy = PTDcP, (4.8) holds if
Ly =PTLcP (4.9)

For incomplete Cholesky factorization, we have a similar condition; in this case, if Ly and L¢

are the factors, then

- =T - T
RN mLNLN_AN’ Rc =LCLC ""AC
so that (4.6) is

-~ -T - ~T
InLy = An =PTLeP P Lo P—PTACP
Thus a sufficient condition for (4.6) to hold is
Ly =P L¢P (4.10)

For a no-fill incomplete factorization, f,N will have the same nonzero off-diagonal structure as
Ln, and similarly for ic and L. Thus, (4.10) will hold if (4.9) does. Young [1971] has a
defined a permutation matrix P to be non-migratory if (4.9) holds, and has shown that the
permutation matrix that transforms the natural ordering to the diagonal ordering of Figure 1.1 is

non-migratory. Hence, these ordering are equivalent (as is intuitively clear).

We can characterize the relation (4.9) in the following way, in terms of the Gauss-Seidel

iterations
Dyuf? - Lyul?! - Unuf = by (4.11)
Deuf! ~Le uf? - Ucu =be (4.11b)
We can rewrite (4.11b) as
PTDCP PTuf™ - PTLcP PTuf™ — PTUCP PTug = Plbe (4.12)

Thus, if (4.9) holds (and, consequently, Uy = PTUcP also ), then (4.12) becomes
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DPTul? - LyPTuk™ - UnPTu = by (4.13)

Therefore, provided that uON = PTu%, (4.11a) and (4.13) generate exactly the same sequences

uiif and PTu§ so that
K _pok
uf =P ug (4.14)

On the other hand, if (4.9) does not hold, (4.11a) and (4.11b) will not generate sequences
for which (4.14) holds, and the rates of convergence may be much different. Duff and Meurant
[1989] tabulated the maximum element of R and the Frobenius norm of R ( = (3} r%—)%) for
several different orderings on some two-dimensional Poisson-type model problems of the form
(1.2) using ICCG. While these numbers are interesting, they are only qualitatively related to
differences in the rates of convergence. The key quantity is p(A~'R), as discussed in the
previous section. Figure 4.1 compares these quantities for SSOR (@ = 1) preconditioning on the
problem (1.2) for 7 x 7 and 15 x 15 grids. In this case, (3.11) holds and thus 1 + p(A‘1 R) gives

the exact condition number,

1+p(AT'R)  maxjryl [[R[_

Nat(7x7) 3.99 125 85
RB(7x7) 6.83 25 2.56
Nat(15x15) 137 125 47
RB(15x15) 236 25 13.7

Figure 4.1. SSOR preconditioning

As seen in Figure 4.1, max |r;; | gives very little indication of the difference in the condition
numbers. ||R || p Bives a better indication in that it increases as the condition number increases,

but it is of marginal value in ascertaining the size of the condition number.
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Even though R by itself does not determine the condition number accurately, it is certainly
a key factor and we would like to understand how and why R changes for different orderings. In
the sequel, we will assume that A arises from the 5-point discretization of the Poisson-type

problem (1.2) on a N x N grid, and that M has the form

M=@®-L)D ' @-L" (4.15)

where D is diagonal and L is the strictly lower triangular part of A. This will be the case for no-
fill Cholesky factorization (van der Vorst [1982]) or symmetric Gauss-Seidel (SGS), but not for

SSOR with w# 1. Then
- —1
R=M-A=D-D+LD LT (4.16)
where D is the main diagonal of A. Note that in the case of SGS, D =Dsothat R = LD"ILT,

—1
We next obtain the structure of R by performing the multiplications LD LT in the
— ]
following way. The ith row of LD 1L'r is e;rLD LY, where ¢; is the ith unit vector. In the

natural ordering, the ith row of L has two non-zero elements and may be written as
T
e;rL = @ -1 e?:.l +a; i N €{N 4.17)
where the a; are off-diagonal elements of A. Then

- -1 -1 —1 T -7
elLD LT=a;;, dijef LT +ai;n dineinLl

Now

T T
e};m1LT =aji-1 € T AN-1i-1 €iN-1

and

T +T T, T
ei-NL' = 8iNs1,i-N €iNs1 F 35N €
Thus
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—1 w—1 T -1 7
eflLD LT =a§7’,i_1di_1ei + 83,51 Ai4N-1,i-1Ai-1 € 1N+ (4.18)

-1 7 2 T
+ 8; +-NA-N+1,i-NdiNeiN+1 T afi-ndiNei

—-1
The expression (4.18) for the ith row of LD LY shows thatRis a three-diagonal matrix, in
which the two off-diagonals are at a distance N—1 from the main diagonal; that is, they are
shifted one position in, relative to the outer-most diagonals of A itself. The magnitudes of the

clements of R are given by (4.18) and (4.16):

, —1 1
off—diagonals: a; i 12uN-1¢-1di-1- 3i-N-N+1diN (4.192)

] —_—] =
diagonal: a?;_ydi; +afindin *+di —aj (4.19b)
Consider next the red/black ordering in which
by T _lo o
A= [c Dg] » L= {c o]
so that

R=D-D+ |0

0 b, T

Elman and Golub [1988] have computed the reduced system C D§1 CT for a somewhat
different equation but their general conclusions hold here also. In particular, C 5;1(3T is a
nine-diagonal matrix corresponding to the stencil shown in Figure 4.2. (Note that the points of
the original five-point stencil, except for the center point, do not appear in the stencil for R. This

would not be the case, however, for SSOR with @ = 1.)
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i+2N
HN-1 N+
e R
i-N-1 N+l
2N
Figure 4.2 Nine-point Stencil for R: Red/black ordering

The number of non-zero elements in CﬁwlcT is 0(—%~N2 - 8N). Thus, R has either this

2
number of non-zero elements or 0(-1%-) more in case D% Dy, In contrast, R for the natural

ordering has O(3N? — 2N) non-zero elements, so that the red/black remainder matrix has about
50 percent more non-zero elements, for large N. Moreover, the magnitudes of the non-zero

elements in the red/black remainder matrix are larger, as we now discuss.

The elements of R for the natural ordering are given by (4.19). For the red/black ordering,
we will not give the elements precisely but will indicate their magnitude as follows. The
elements of 5“1 LT are of the form d‘la, where a is an element of A and d is an element of D,
When 5"1LT is multiplied by e{ L, the elements of D ILT are multiplied by another element of
A to give terms of the form dlaa, The important thing is that some of these terms may add
together. In particular, the diagonal elements of Lﬁ_l LT will consist of a sum of four terms.
Elements in the ith row corresponding to the four grid points ixN+£1 in Figure 4.2 will consist of
a sum of two terms, and the elements corresponding to the grid points it2N and i+2 consist of a
single term. Comparing this with (4.19), we would expect that, roughly, the diagonal elements

of R corresponding to L]—)MILT for the red/black ordering will be twice as large as the diagonal
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elements of R for the natural ordering, and half of the off-diagonal elements will also be twice as
large. If we assume that the elements of the R for the natural ordering all have the same

magnitude r, then the Frobenius norm is f|R ”F Nat = V3 Nr, based on the estimate of O(3N?)

elements in R. For the red/black ordering, we would have 0(%N2) elements with magnitude 4r,

0(2N?) with magnitude 2r and O(2N?) with magnitude r. Thus, |R ] FRB =18 Nr so that the
ratio of the Frobenius norms is about 2.5. This very rough estimate agrees quite well with the
data in Figure 4.1 for SSOR preconditioning, in which the ratios are about 3 and with three of
the four problems in Duff and Meurant [1989] for ICCG for which the ratios are about 2. (The

fourth problem has very strong anisotropy and the ratio is 43).

We comment on the difference of SOR and SSOR in terms of the remainder matrix.

Consider the Gauss-Seidel splitting
A=@D-L)-LT

Here, in analogy to the splitting A =M ~R, D — L corresponds to M and LT corresponds to R.
In terms of the natural and red/black orderings, LY and Lxp have the same number of elements
and, in the case of Poisson’s equation, exactly the same elements, just in different positions.
Hence, the ordering has no effect on the "size" of R. For SSOR (o = 1), however, the remainder

matrices
- - T
Oy —Lx) DN ®On -L%),  (Drs —Lgs) DRE(Ors —~Lke)
are very different, as we have just seen, with the red/black remainder matrix having many more,
as well as larger, elements.

We consider one more class of orderings, those based on domain decomposition as

discussed in Section 2. Consider first the ordering of Figure 2.7a with four domains and a
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separator set, so that the coefficient matrix A is given by (2.4). Then the strictly lower triangular

part of A is

By Bz By By Ls

—1
when L; is the strictly lower triangular part of A;. The diagonal blocks of LD LT are then

—1 . —] 4 o) S o
LD; LT, i=1,,4, LsDs L§+ ¥ BiD; Bj (4.20)

Bl
and the off-diagonal blocks are
L,D/BY, i=1, -, 4, BD; L], i=1,~,4 (4.21)
For simplicity, we will assume that each subdomain has Nj; xN; grid points so that
N =2Nj + 1, and there are 4N; + 1 points in the separator set.

-1 . .
The matrices 1L;D; L;r , i=1, -, 4, have the three-diagonal structure for the natural

order, as discussed earlier. The matrix Ls has the form

where each Ls; is lower bidiagonal (with zero main diagonal) and the v; are column vectors
] . g .
with a non-zero element in the last position. It follows that LsDs LI is diagonal: each diagonal

element is zero or of the form d " aa except the last element, which is a sum of four such terms.
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As before, a denotes some element of A, and d some element of D.

The matrix BiT gives the connections of the points of domain i with the separator points and
the only non-zero rows comrespond to interior grid points adjacent to the separator points.
Consider By ; the situation for the other B; is similar. The non-zero rows of By corresponding to

points along the vertical and horizontal separator sets are
ael, i=N;, 2N;, -, N%, aef, i=N{, Nf -1, Nf-N; +1 4.22)

where the element a of A is different in each case. Thus, B; may be expressed as a sum of rank

one matrices of the form a e e;r, where i is one of the indices of (4.22) and j denotes the position
. . -1 T

of the corresponding row in By. Therefore, B) D; B1 is a sum of terms of the form

“lo. ele. ed
aad e, e e, €

and these matrices are non-zero only when i; =iy =1, where i is one of the indices of (4.22).

—] . n . :
Hence, B;D; B} consists of 2N; non-zero elements of the form aad™. Likewise, the other

matrices Bi"ﬁi—lB'ir have 2N; non-zero elements.
Finally, consider the matrix LIIS?B?. The ith row of Lil_);l is, in general, of the form
ad?! e;ﬂl +a d‘ie;{N,
Thus, the ith row of LiﬁIIB'f is a linear combination of the (i—1)st and (i-Nj)th rows of B].
But both of these rows cannot be simultaneously non-zero so that L;]S;IBT has no more non-

—-1
zero elements that By itself. Similarly, the other L;D; BT have no more non-zero elements than

B;.
. |
If we add the number of non-zero elements of each submatrix in LD LT, we have at most

4:3N? + (4N; +4 - 2Np) + 8- 2N; = 12 N? + 28N (4.23)
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non-zero elements, The first term in (4.23) gives the number of non-zero elements in the first
four matrices of (4.20), the second term is for the last matrix of (4.20), and the third term is fo?
the eight matrices of (4.21). We have previously shown that the remainder matrix for the natural
ordering has approximately 3N° non-zero elements. Since N=2N 1+ 1, this gives
12N% + 12N + 1 which is only slightly smaller than (4.23) for large N. Thus, the remainder
matrices for the natural and domain decomposition orderings have roughly the same number of
non-zero elements. Although the above discussion has only been for the case of four

subdomains, one would expect that the same conclusions would hold in more generality,

Suppose, next, that we remove the separator sets so that A has the form (2.7). In this case

Ly i
By I,

L= 0 By, Ls
Bs O Bs Ly

and the remainder matrix has the following submatrices

— — ——1 . 1 =-1,T =S7lnT
LIDSL’{, LD; LF +B. Dr1Bly, i=2,3, L,D; L] +B,Ds B +B3D; B3 (4.24)

] . =1 =1
LD; Bf, i=1,2,3, L;D; B}, B;D; BJ (4.25)

| —=1
plus the transposes of the matrices in (4.25). The L;D; L{ have the same natural order structure
as before, and the B; have the same general structure as in the separator case since they provide
the connections along the horizontal and vertical interfaces of the subdomains. A rough estimate

of the non-zero elements in LD iLT is then
3N? 4+ 2(3N7 +2Np) + 3N7 +2 - 2N; + 10 - 2N; = 12N? + 28N, (4.26)

Since now N =2N;, 3N? = 12N? is an estimate of the number of non-zero elements in the

natural order remainder matrix. Again, for large N, this is very close to the estimate (4.26). This
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tends to explain why Duff and Meurant [1989] obtained essentially the same number of
iterations for their domain decomposition orderings (the "vdv" orderings) as for the natural

ordering.
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