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1. Introduction
Although the acronym, ADAMS, stands for Advanced DAta Management System,

ADAMS should not be viewed as a database system , but rather as a complete language based on
a formal definition of persistent data [Pfa92]. It is a way of talking about persistent data that a
user has inserted into the ADAMS data space. It is a way of describing the structure of that data,
that is the relationships between different elements of the data space, as well as a way of access-
ing, in a largely non-procedural way, elements within the data space.

Because it is a language, it has syntactic rules defining what are, and what are not, well
defined ADAMS statements. It also has rules regarding the formation and scope of names, those
symbolic tokens that denote particular elements of data, as well as rules regarding formation of
literals and other constants within the data space. Consequently, learning ADAMS is much like
learning any computer language, such as Fortran, Pascal, C, or C++. Because ADAMS is also a
programming language, knowledge of any of these languages will be of value in learning
ADAMS, but beware, there are significant differences. Similarly, because ADAMS grew out of a
database tradition, some of its terms were borrowed directly from the relational model of data
[Cod70, Mai83]. A knowledge of relational database theory will provide valuable intuition, but
again beware, ADAMS is not a relational database language, per se .

Some of the features of ADAMS are the result of deliberate design decisions, others are
merely artifacts of its developmental history; consequently, a brief description of both the goals
of ADAMS and its history can provide a useful background context for its structure. ADAMS
has been developed with four basic database goals in mind [PfF93].

First, and foremost, its purpose has been to interface many different computing environ-
ments to a common, persistent data space. This arose from an experience many years ago in a
NASA research division when we found that three groups, engineers coding in Fortran, CAD
designers using Pascal, and mathematicians doing finite element analysis in assembly language,
could not share data regarding their common project — the design and analysis of airfoils. Con-
sequently, a conscious decision was made that the applications code should be that of the pro-
grammers choice, and that ADAMS would have to interface to it. This, in turn, dictated that it be
an embedded system based on procedure calls; however, we wanted to present the programmer
with a cleaner language consisting of embedded statements which the system itself would convert
to the appropriate procedure calls.

Second, there should be different levels of data sharing and data privacy within the per-
sistent data space. Some data might be widely shared throughout the system, some data might be
common only to selected groups of users, while still other data might be completely private to a
particular user.

Third, we wanted this persistent data space to be an extension of, or even a replacement of,
the individual programmers file system. Except for archival purposes, scientific data needs do not
lend themselves to systems managed by a database administrator. Not only does a scientist want
to update existing data sets with respect to a transaction paradigm, he should be able (1) to create
and name completely new persistent data sets, (2) dynamically reconfigure existing data sets to
include new attributes or delete unnecessary attributes, and (3) dynamically create or destroy rela-
tionships between data sets. In short, individual programmers should be able to completely
manage their own, and certain portions of the shared, persistent data space.

Finally, we envisioned a situation where the kinds of application code that now access per-
sistent data within this data space, could equally well access a variety of metadata. For example,
one might have a program that could search through the entire data space for instances of data
sets which relate measurements of dissolved oxygen to stream flow.

We did not specifically design ADAMS to be a distributed, parallel database system,
although we recognized from the outset that this would probably be necessary to achieve its



design goals. Moreover, current research indicates that the approach that ADAMS has taken to
database implementation may immensely facilitate both distributed and parallel processing.

Historically, ADAMS as described in [PSF88] was implemented by a very rapid prototype
[Klu88]. Although severely limited, it established a rudimentary proof of concept. In particular
it revealed deficiencies in the language, and suggested several modifications that were included in
the version of ADAMS described in [PFG89b]. This newer version was followed by a second
prototype that made use of a preliminary storage manager [Jan89], and a preliminary preproces-
sor [Bar89] that converted source code with embedded ADAMS statements into purely host
language code. It is important to note that, because of manpower, both this earlier, and the
current, preprocessor totally ignore the context provided by the host language code. We simply
did not want to expend the effort to parse it! But, if the preprocessor did parse the surrounding
host language code, there are several places where the ADAMS syntax could be changed — in
some cases making it simpler.

These two efforts, together with several others, culminated in the version described in
[PFG89a]. Considerable experimentation and development was based on this version of
ADAMS: a Fortran version was created [Wat90], an interactive version was implemented
[Rie90], and a SQL interface developed [Cle91]. From the experience gained with these projects,
yet a third version of the ADAMS language was created, as described in [PFG91].

The language described in this report is very close to the latter, although there have still
been a few changes. Since ADAMS is an evolving language, there may still be a few more.
However, it is attaining a relative stability that makes writing a tutorial introduction worthwhile.
Current research and development has been largely devoted to changing the lower levels of the
system to make it more efficient rather than changing the language itself, as the user sees it. But
the reader is warned, there may be slight divergences between constructs described in this report
and the constructs in any particular version.

We have not yet achieved all of our design goals. There are certain constructs described in
Section 4 which have not yet been implemented, again because of available manpower. Such
unimplemented constructs are described in this report because they are part of the language, but
we indicate their incomplete status.
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2. Informal Tutorial Presentation
Because ADAMS is a language, rather than just a database system, it has a formal syntax

consisting of constructs such as <elem_desig >’s, <set_expr >’s, <value_desig >’s, and
<predicate >’s. But this syntax (c.f. Section 7) is not easy to understand out of context. It is not
the way to learn a language. This section consists of an informal presentation of basic terminol-
ogy, together with a number of simple examples. It is not complete; we will ignore more than we
will explain.

New terms, as they are introduced, will be set in bold face. Examples and code fragments
will be set in courier. ADAMS expressions included in the body of the text and references to
names and expressions within code examples will be set in italics. For the purposes of this
tutorial, we will assume that the host language is ANSI C [KeR88].

2.1. Elements, Attributes, and Classes
The basic concept in ADAMS is that of an element. An element can play many different

roles in ADAMS, but for now it is probably easiest to think of it as either a "tuple" in the rela-
tional model or an "object" in the object-oriented model. Let x , y , and z denote arbitrary ele-
ments.

Various attribute functions may be defined on ADAMS elements. Let name , age , and
gpa be attributes. Then the expressions x.name , y.age , and z.gpa denote the current values of
these attributes, respectively, on these elements. Note that in ADAMS we use the postfix nota-
tion <element >.<attribute > rather than a prefix notation, such as name (x ), age (y ), or gpa (z ),
which is much more common in mathematics and in programming languages.

A value assignment statement is used to assign host language values, either variable or
literal, to an ADAMS element attribute; to assign ADAMS attribute values to host language vari-
ables; or to assign one ADAMS attribute value to another. The assignment operator is denoted
by <- . For example,

<< x.name <- ’John Smith’ >>
<< | p_name char* | <- x.name >>
<< y.age <- | years int | >>
<< z.gpa <- x.gpa >>

are assignment statements. These are our first examples of complete ADAMS statements, and we
observe that they are enclosed by << ... >>. Because ADAMS statements are embedded within a
host language, and because we chose not to parse all source statements, there must be some
mechanism for distinguishing between ADAMS statements and host language statements. We
use << ... >> as statement delimiters.

The element names x , y , z , and the attribute names name , age , gpa are persistent ADAMS
names; they are unknown to the host language. Similarly, the variable names p_name and years
are those of the host language, and because we do not parse the host language, they are unknown
to the ADAMS preprocessor. Consequently, to correctly interpret a statement such as

<< | p_name char* | <- x.name >>

we must delimit the host variable name, p_name , with vertical bars | ... | . Similarly, the
ADAMS preprocessor cannot know what the type of p_name is, so that too must be included
within the delimiters. This need to delimit and explicitly type host language variable names with
every use is a nuisance — it could be corrected by parsing the host language statements as well as
ADAMS statements. On the other hand, because ADAMS maintains two completely separate
name spaces, one can use variable names in the host language which duplicate the persistent
names of ADAMS.
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Every ADAMS element must belong to a class which defines the properties of that element.
One such property are the attributes defined on the elements of the class. Classes are created by
the isa construct. For example,

<< PERSON isa CLASS
having attrs = { name, age } >>

defines the class of PERSON elements. Individual elements belonging to this must be instan-
tiated by a statement of the form

<< bill instantiates_a PERSON >>

ADAMS also supports class inheritance. Any person has the attributes of name and age ,
however a student also has a gpa , or grade point average, attribute. We could then declare that

<< STUDENT isa PERSON
having attrs = { gpa } >>

and instantiate mary to be a STUDENT by

<< mary instantiates_a STUDENT >>

In these examples we have been following an ADAMS convention that is quite valuable —
all classes are set in uppercase, while all elements, or instances of a class, are set in lowercase.

Attributes are also ADAMS elements, so every attribute must belong to a class. The attri-
butes name , age , and gpa can be defined by the statements

<< name instantiates_a STRING_ATTR >>
<< age instantiates_a INTEGER_ATTR >>
<< gpa instantiates_a REAL_ATTR >>

where the classes STRING_ATTR, INTEGER_ATTR, and REAL_ATTR are so ubiquitous that
they have been system defined. It is possible to define other attribute classes, such as
IMAGE_ATTR , but we will discuss that later in Section 4.2.4.

Neither bill nor mary as yet have any assigned attributes, but we would expect to have
several value assignment statements, such as

<< bill.name <- ’William Smith’ >>
<< bill.age <- ’23’ >>
<< mary.name <- | p_name char* | >>
<< mary.age <- | p_age int | >>
<< mary.gpa <- ’3.0’ >>

2.2. ADAMS Names
In the examples above, we denoted two elements by the names bill and mary , and three

attributes by the names name , age , and gpa . Further, PERSON and STUDENT are the class
names. These are ADAMS names; they are meaningless to statements in the host language.

ADAMS maintains its own space of persistent names, much like its space of persistent data.
Once a name, such as bill or mary or age , is used to denote an ADAMS element, that name can-
not be used to denote some other element. The binding of names to the elements is persistent.
But different users are likely to want to use the same name for different elements (our personal
store of appropriate mnemonic names for elements of interest is rather limited).

To mitigate the general shortage of appropriate names, and at the same time to facilitate
both data sharing and data privacy, ADAMS has a hierarchical name space, which currently con-
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sists of four levels.1 They are SYSTEM , TASK , USER , and LOCAL , which we also call visibility
scopes. Names at SYSTEM scope are visible to all ADAMS users. Those names at TASK
scope are visible to all users participating in that task. Names at USER scope are visible only to
the particular user, and consequently are private. Two different users can declare the same
ADAMS name in their USER name spaces to denote different elements or classes. Any name
occurring in one of these three name space scopes is persistent; once defined by an executing pro-
gram, it is defined for any other program which uses that name and name space. ADAMS names
function as constants in ADAMS statements.

A name declared with LOCAL scope is local to the program in which it occurs. It is non-
persistent. When the program terminates, the name, together with what it denotes, disappears.

ADAMS names can only be created by isa statements (e.g. classes) or instantiates_a state-
ments (e.g elements). In either case, a specific scope may be declared, as in

<< WORKER isa PERSON
having attrs = { hours }
scope is TASK >>

<< tom instantiates_a WORKER
scope is LOCAL >>

If no scope is specified the default assumption is USER, i.e. persistent.

A hierarchical name space provides many more names. So does the capability of subscript-
ing names, which is not discussed until Section 4.1.1. But, perhaps most important, it is not
necessary to explicitly name all ADAMS elements. One can use ADAMS variables to denote
elements, as discussed in the following section.

2.3. ADAMS Variables
An ADAMS variable, or ADAMS_var for short, is a symbolic name that can denote any

element in the persistent data space. Its function is analogous to pointer variables that denote
structures in a dynamic heap, except that we do not type ADAMS_var’s. ADAMS_var’s are
declared by the statement

<< ADAMS_var x, y, z >>

If, we now execute an element assignment of the form

<< x <- bill >>

then x denotes precisely the same element that the name bill denotes. The variable x can be used
instead of the explicit name in subsequent expressions, such as

<< x.name <- ’William Smith’ >>
<< | age int | <- x.age >>

More importantly, we can also instantiate "unnamed" (in the sense that no name is entered into
the name space) elements. For example,

<< x instantiates_a PERSON >>
<< x.name <- | p_name char* | >>
<< x.age <- | p_age int | >>

is a way of instantiating a new element, currently denoted by x , and assigning attribute values to
it. It will, by default, be a persistent element in the data space; but since it has no persistent
name, it will be accessible by other programs only if it can be referenced by some mechanism
other than its name. A common way of handling such unnamed elements is to insert them into
�����������������������������������������������������������������������

1 It is likely that more levels will be implemented in the next version of ADAMS.
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sets, as described in the next section.

2.4. Sets
Sets are fundamental in relational database systems. It is the relation, or set of tuples, on

which the relational model is based. Sets are also fundamental to ADAMS; they are the means
by which we aggregate data and a primary mechanism by which we retrieve data. The entire
"query language" aspect of ADAMS is essentially captured by a single set construct, which we
will later call a "retrieval set".

A set is an ADAMS element. Like every other element, it must belong to a class and it
must be instantiated. A set class is declared by an isa statement of the form

<< PEOPLE isa SET
of PERSON elements >>

Because elements of any class may have associated attributes, set classes may too. We might
declare the set of students by

<< STUDENTS isa SET
of STUDENT elements
having attrs = { count, avg_gpa }
scope is TASK >>

where count and avg_gpa are attributes of the set as a whole, not individual elements within the
set. Now we might execute

<< undergrad instantiates_a STUDENTS >>
<< graduate instantiates_a STUDENTS >>

to create two distinct student sets.

Elements may be inserted and removed from set elements. Earlier, mary was instantiated
as a STUDENT element, so

<< remove mary from undergrad >>
<< insert mary into graduate >>

would be appropriate code to change mary ’s status from undergraduate to graduate. However,
only elements which are conformable to the declared elements of the set may be entered. An
element is conformable if it is either the same class as, or a subclass of, the class of set elements.
For example, bill had been instantiated as a PERSON, so the statement

<< insert bill into graduate >>

would be treated as an error by ADAMS. Of course, one could insert mary into a set of PERSON
elements, because every STUDENT element is a PERSON element. However, in any subsequent
use of mary , as drawn from this set, only her PERSON attributes will be seen. Class conforma-
bility is an important issue in ADAMS, but one which can be largely ignored when first learning
the language. Reasonable usage will cause no problems, it is only there to detect and prevent
unreasonable usage.

Elements of named sets need not themselves be named, because they can always be
retrieved from the set. Rather than naming such elements we most often use code such as
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while (more_students)
{
printf ("Enter student name > ");
scanf ("%s", p_name);
printf (" Enter student age > ");
scanf ("%d", &p_age);
printf (" Enter student gpa > ");
scanf ("%f", &gpa);

<< x instantiates_a STUDENT >>
<< x.name <- | p_name char* | >>
<< x.age <- | p_age int | >>
<< x.gpa <- | gpa float | >>
<< insert x into undergrad >>

.

.
}

to enter new "unnamed" elements into the data space. Note here that the symbolic name gpa
denotes both a host variable, and an ADAMS attribute. This is permissible, because the ADAMS
and host language name spaces are disjoint; however, it is not recommended.

An enumerated set, delimited by { ... }, is one whose elements have been explicitly
numerated. Attributes are ADAMS elements, so one can have a set of attributes just as one can
have any set of conformable elements. In fact, we have been implicitly using enumerated sets of
attributes in our examples above. In the class declaration

<< PERSON isa CLASS
having attrs = { name, age } >>

we used the enumerated set { name , age } to denote the set of associated attributes.

Similarly, in the set assignment
<< friends <- { bill, mary, tom } >>

f riends denotes a set of just these 3 PERSON elements. Set assignment requires some discus-
sion. If f riends is an ADAMS variable, then it simply denotes the enumerated set on the right
side. Suppose instead, that f riends is an instantiated set of class PEOPLE, that is, of PERSON
elements. First, the existing set denoted by the left hand side is made empty, then each of the ele-
ments of the right hand set is inserted into this set. Note, that a single ADAMS element may be a
member of many different sets. Moreover, if one changes that element in anyway, say by reas-
signing a new attribute value, that change is reflected throughout all the sets to which it may
belong. This is quite different from the relational model, in which a single tuple can only belong
to one relation. An exact copy may belong to a different relation; but they are operationally
regarded as distinct tuples, changing one will not affect the other.

The standard set operators, union, intersection, and relative complement (or set differ-
ence) are defined over all sets of conformable elements. Statements such as

<< all_students <- undergrad union graduate >>
<< some_students <- all_students intersect

{ bill, mary, tom } >>
<< other_students <- all_students complement

some_students >>

are common in ADAMS code. These operators may also be used in more general expressions, as
we will see below.

A subset of the elements in an ADAMS set can be denoted by a retrieval set. Retrieval sets
in ADAMS function in much the same way that the selection operator functions in the relational
model. The general form of a retrieval set is:
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{ <ADAMS_var > in <base_set > | <predicate > }
where the boolean selection <predicate > provides the criterion for deciding whether the element
denoted by <ADAMS_var > belongs in the retrieval set. Retrieval sets can be quite complex. For
now, it will be best to simply look at a few examples, and let the details wait until Section 4.1.3.
The following are four representative retrieval sets:

{ x in undergrad | x.gpa > ’3.0’ }
{ y in graduate | y.name = ’Smith’ and y.age != ’25’ }
{ z in undergrad union graduate |

’17’ < z.age <= ’21’ or z.gpa > ’3.0’ }
{ x in { bill, mary, tom } | x.age >= | p_age int | }

The sense of each should be self-evident. We will only note that (a) the <base_set > from which
the elements are to be retrieved can be any set expression, (b) logical conjunctives and and or
behave as expected, (c) all literals are quoted, even numeric literals, (d) one may employ double
ended range search in the natural way, and (e) host variables may be used in the predicate.
Retrieval sets frequently occur in the right hand of set assignments, but they may employed in
any set expression, just like any other set.

Iteration is important in any programming language. The for and do constructions, both of
which loop over discrete sets, are familiar examples. Iteration is equally important in ADAMS.
One can iterate over a set, appropriately using each element one at a time. The general structure
of a for_each statement is:

<< for_each <ADAMS_var > in <loop_set > do
.
.
< any combination of ADAMS or host_language statements>
.
.
>>

Notice that the terminating delimiter of the f or_each statement may occur many lines removed
from the beginning of the loop. Let us consider a simple example. To display the grade point
average of all students, one might employ the code

<< for_each x in graduate union undergrad do
<< | p_name char* | <- x.name >>
<< | gpa float | <- x.gpa >>

printf ("%5.3f - %s\n", gpa, p_name);
>>

2.5. Maps
An ADAMS attribute is a single valued function, which given an element as argument,

returns a single data value. An ADAMS map is a single valued function, which given an element
as argument, returns a single ADAMS element. Because, a map is also an ADAMS element, it
must belong to a class. For example,

<< PERSON_MAP isa MAP
with image PERSON >>

defines the class of all maps, or mappings, into the class PERSON. Because entire sets are also
elements, one can have "set-valued" maps by declaring the image space to be a SET class, as in

<< PEOPLE_MAP isa MAP
with image PEOPLE >>

Like attributes, specific maps must be instantiated. If, for example, we wanted the students in our

8



running example to have an advisor, we could use the following code:

<< advisor instantiates_a PERSON_MAP >>

<< STUDENT isa PERSON
having attrs = { gpa }
having maps = { advisor } >>

Note that (a) we must have two separate associated sets, one of attributes and one of maps,
because they are not comparable elements, and (b) the attributes and maps associated with a class
declaration must be instantiated before the class itself. (This latter constraint, can be relaxed by
employing a FORWARD construct discussed in Section 4.2.3; thereby allowing the definition of
maps from a class back into itself.)

Given that the advisor map has been defined on elements of class STUDENT, one can now
perform element assignments of the form

<< mary.advisor <- bill >>

or retrieve information regarding map images, as in

<< | p_name char* | <- x.advisor.name >>
<< | p_age int | <- x.advisor.age >>

The more complex dot expressions on the right side of these assignments are worth noting.
Assuming that x is an ADAMS variable denoting a STUDENT element, then x.advisor denotes
his, or her, advisor of class PERSON, and so can be a valid argument to both the name and age
attributes. Dot expressions, as they are called in ADAMS, are always evaluated from left to right.
They can be arbitrarily long, and provide a mechanism for navigating through the ADAMS data
space.

Readers familiar with the relational model will have noticed that there has been no mention
of the relational join operator; and those familiar with the object-oriented model will be aware
that we have not discussed sub-objects, only sub-classes. The map construct provides the analo-
gue to both these important concepts. Using the object-oriented paradigm, the advisor of x can
be regarded as a "sub-element" of the element x . The ADAMS dot expressions are precisely the
same as those used in both C and C++.

Justifying the role of maps as a surrogate for the join operator is a bit more difficult. First,
if both relations have the same schema, then the join operation is an intersection operation, which
is explicitly provided by ADAMS.2 Next, we would note that "a join is lossless, if the join
attribute(s) constitute a key to either of the two argument relations", that is, at most one tuple in,
say the second, relation can join with any tuple in the first relation. In the case of such lossless
joins, the join attribute(s) function as the symbolic pointer of a many-to-one mapping. It is more
accurate to say that the ADAMS map can be used to capture the relational join operation when it
is being used to implement a lossless, symbolic pointer, join. Or equivalently, when an attribute
functions as a foreign key in a relational schema, it is replaced by a map in ADAMS. General
lossy joins can be duplicated by ADAMS code (c.f. Section 5.4), but are not supported directly by
the language itself.

�����������������������������������������������������������������������

2 One must be careful here. ADAMS intersection and relational intersection need not be the same. In
the relational model, tuple identity is "value based", that is two tuples are regarded as the same, or
equivalent, if they have identically the same attribute values. In ADAMS, element identity is independent
the element’s values; two distinct elements may have the same attribute values. ADAMS is an "object-
based" language, because the unique identity of an element is established when it is instantiated.
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2.6. Miscellaneous Details
In this section, we merely want to mention a few details that have either been glossed over

for clarity in the preceding discussion, or omitted altogether.

First, all ADAMS reserved words and constructs are delimited by "white space", where
blanks, tabs, and new lines are regarded as "white space". In addition, all commas in ADAMS
are also regarded as "white space". We frequently include commas for program readability, as in
enumerated sets, but they are never necessary.

Second, ADAMS is initiated, and terminated by two statements:

<< open_ADAMS job_id >>
<< close_ADAMS job_id >>

which must be the first, and last, executed ADAMS statements, respectively. The job_id can be
any string variable; however, while necessary for syntactic validity, it is not used in the current
implementation.

Third, there are a number of pre-defined ADAMS classes, attributes, and maps. These are
used so commonly that their definition at SYSTEM scope seems valuable. Some, we have used
in the preceding examples; others will be used in the following examples in Section 3. These are:

Predefined classes:

STRING_ATTR - class of all string valued attributes
INTEGER_ATTR - class of all integer valued attributes
REAL_ATTR - class of all real valued attributes
ATTR_SET - SET of ATTRIBUTE elements
MAP_SET - SET of MAP elements

Predefined attributes:

name_of - STRING_ATTR, the "name" of any element (if named)
class_of - STRING_ATTR, the "class" of any element
element_class_of - STRING_ATTR, the "class" of element in any set
image_of - STRING_ATTR, the "image class" of any map
codomain_of - STRING_ATTR, the "codomain" of any attribute
cardinality - INTEGER_ATTR, the cardinality (size) of the set argument

Predefined maps:

attributes_of - ATTR_SET, the set of all attributes associated with the class
maps_of - MAP_SET, the set of all maps associated with the class
element_of - class indeterminate, some (arbitrary) element of the set

Finally, we must describe the preprocessing and compilation sequence in ADAMS. Any
source file containing ADAMS statements must be suffixed with (.src). Suppose, for example,
we have a source program called test_program.src. The command

adams test_program

will convert this file into one named test_program.c. Note that the .src suffix was not
used in the adams preprocessor command. To do so will result in an error. The reader should
take the time to examine this file, in which ADAMS statements are replaced with appropriate
host language statements.

Next, the command
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cci test_program

is issued, which compiles the program, now completely in the host language, and creates an exe-
cutable file that has been linked to modules in the ADAMS run-time system. One can now exe-
cute the test_program file. Schematically, the steps to create an executable program con-
taining ADAMS statements are

cci <f ile_name >

adams <f ile_name >

<f ile_name >

<f ile_name >.c

<f ile_name >.src
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3. Simple Examples of ADAMS Code
We can put together the fragments of code developed in the preceding section, to define a

simple school structure in the data space. Initially, it will only consist of STUDENTS and
FACULTY, together with a single many-to-one relationship advisor between them. The E-R
diagram [Che76] would look like:

advisor

INSTRUCTOR: (last_name, first_name, age, rank, dept)

STUDENT:(last_name, first_name, age, gpa)

Execution of the following code creates the desired attributes, classes, and maps, which are
entered into the user’s name space.

main ()
/*
** This program creates a simple school database
** consisting of STUDENTS and FACULTY, with a
** single ’advisor’ relationship.
*/
{

<< open_ADAMS job_id >>

/* First, create appropriate */
/* attributes */

<< last_name instantiates_a STRING_ATTR >>
<< first_name instantiates_a STRING_ATTR >>
<< age instantiates_a INTEGER_ATTR >>
<< gpa instantiates_a REAL_ATTR >>
<< dept instantiates_a STRING_ATTR >>
<< rank instantiates_a STRING_ATTR >>

/* Next, declare element classes */
<< PERSON isa CLASS

having attrs = { first_name, last_name, age } >>
<< INSTRUCTOR isa PERSON

having attrs = { dept, rank } >>

<< INSTRUCTOR_MAP isa MAP
with image INSTRUCTOR >>

<< advisor instantiates_a INSTRUCTOR_MAP >>

<< STUDENT isa PERSON
having attrs = { gpa }
having maps = { advisor } >>

<< FACULTY isa SET
of INSTRUCTOR elements >>

<< STUDENTS isa SET
of STUDENT elements >>

/* Finally, create three sets */
/* in the data space */

<< faculty instantiates_a FACULTY >>
<< undergrad instantiates_a STUDENTS >>
<< graduate instantiates_a STUDENTS >>
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<< close_ADAMS job_id >>
}

Definition of a School Database Structure
Figure 3-1.

Readily, in a real database one would have many more attributes associated with both students
and faculty

Next, we must have data entry and display routines. Note that the ADAMS language, itself,
provides neither. Knowing the attributes of STUDENT elements, it is possible to write code that
is carefully tailored to the expected data entry situation. However, the constructs of ADAMS also
facilitate the coding of rather generic data entry routines, which need not know the actual names
of all the associated attributes. The following program searches the class declaration to obtain
the set of associated attributes.

main ()
/*
** This program interactively, accepts
** student data from the user, for entry
** into the data space.
*/
{
char a_name[80], a_value[80],

response[15];
<< ADAMS_var x, a, view >>

<< open_ADAMS job_id >>

<< view <- STUDENT.attributes_of >>
*response = ’y’;
while (*response == ’y’)

{
<< x instantiates_a STUDENT >>
<< for_each a in view do
<< | a_name char* | <- a.name_of >>

printf ("Enter %s > ", a_name);
scanf ("%s", a_value);

<< x.a <- | a_value char* | >>
>>

printf ("graduate or undergrad ? > ");
scanf ("%s", response);
if (*response == ’g’)

{
<< insert x into graduate >>

}
else

{
<< insert x into undergrad >>

}
printf ("More students to be entered? (y/n) > ");
scanf ("%s", response);
}

<< close_ADAMS job_id >>
}

A Student Data Entry Program
Figure 3-2.
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With very few modifications, e.g. changing the set assignment to get the attributes of FACULTY
instead of STUDENT, the same code can be used to enter faculty data. The facility for writing
still more generic programs, which do not have any "hard wired" class or attribute names is an
important aspect of ADAMS. ADAMS supports dynamic class modification, or schema evolu-
tion, in which the set of attributes associated with any class can be enlarged, or shrunk, as experi-
ence with the database dictates. However, to make this data entry program completely generic
would require several constructs which will be discussed in the Section 4.

Notice the value assignment, x.a <- | a_value char* |. One student attribute, age , is
integer; another attribute, gpa , is real. But, the code in this generic loop can’t know that. Conse-
quently, all data must be accepted as a character string. If conversion is needed, it will occur
when the value assignment is executed.

A more interesting, and complex, program is that which assigns advisors to students. If s
denotes the student element, and f denotes the faculty element, then it is sufficient to simply exe-
cute the single ADAMS statement

<< s.advisor <- f >>

The problem, as shown below, lies in determining which element s denotes the correct student,
and which element f denotes the correct faculty member.

main ()
/*
** This code assigns faculty advisors to students
*/
{
char l_name[80], f_name[80], dept[8], rank[15],

a_value[80], response[15];
int size;

<< ADAMS_var a, s, f, s_view, f_view, search_set, result >>

<< open_ADAMS job_id >>

/* attributes to disambiguate */
/* student, faculty identity */

<< s_view <- { first_name, age } >>
<< f_view <- { first_name, dept, rank } >>

*response = ’y’;
while (*response == ’y’)

{ /* First get the student element */
printf ("Enter student’s last name > ");
scanf ("%s", l_name);
printf ("graduate or undergrad ? > ");
scanf ("%s", response);
if (*response == ’g’)

{
<< search_set <- graduate >>

}
else

{
<< search_set <- undergrad >>

}
<< result <- { s in search_set | s.last_name = | l_name char* | } >>
<< | size int | <- result.cardinality >>

if (size == 1)
{

<< s <- result.element_of >>
}

else if (size > 1)
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{ /* pick correct student */
printf ("%d students have last name ’%s’\n",

size, l_name);
printf ("Pick correct one:\n");

<< for_each s in result do
printf ("\t");

<< for_each a in s_view do
<< | a_value char* | <- s.a >>

printf ("%s ", a_value);
>>

printf (" ? (y/n) > ");
scanf ("%s", response);
if (*response == ’y’)

{
<< exit_loop >>

}
>>

}
else

{
printf ("No student with last name ’%s’\n", l_name);
goto continue;
}

/* Now, get correct faculty element */
printf ("Enter advisors’s last name > ");
scanf ("%s", l_name);

<< result <- { f in faculty | f.last_name = | l_name char* | } >>
<< | size int | <- result.cardinality >>

if (size == 1)
{

<< f <- result.element_of >>
}

else if (size > 1)
{ /* pick correct professor */
printf ("%d faculty have last name ’%s’\n",

size, l_name);
printf ("Pick correct one:\n");

<< for_each f in result do
printf ("\t");

<< for_each a in f_view do
<< | a_value char* | <- f.a >>

printf ("%s ", a_value);
>>

printf (" ? (y/n) > ");
scanf ("%s", response);
if (*response == ’y’)

{
<< exit_loop >>

}
>>

}
else

{
printf ("No faculty with last name ’%s’\n", l_name);
goto continue;
}

/* assign advisor */
<< s.advisor <- f >>

continue:
printf ("More advisors to be assigned? (y/n) > ");
scanf ("%s", response);
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}

<< close_ADAMS job_id >>
}

Assigning Elements to the advisor Map
Figure 3-3.

This program illustrates a weakness of ADAMS, or one of its greatest strengths, depending on
one’s point of view. In a relational database, one simply enters the advisor’s name in the student
tuple to provide a "foreign key". It is much simpler. But, relational databases are also bedeviled
by what is called the "referential integrity problem". If the advisor’s name is misspelled, or a
variant of the first name is used, the join operation will not be able to pick up that advisors attri-
butes, or may join with some other advisor! Moreover, such discrepancies are very hard to dis-
cover.

Because ADAMS must establish the element identity, it forces the application code to take
appropriate steps to assure it, and at the same time provides mechanisms to accomplish it.
Referential integrity is a very much smaller problem in ADAMS databases than it is in relational
databases.

Finally, this program shows how host language code and ADAMS statements can be com-
bined. ADAMS was never designed to be "user friendly" in the sense of being easy for non-
programmers to use. It isn’t. It was designed to facilitate easy access to a persistent data space
by experienced programmers, who can then construct appropriate user interfaces for others to use.

It is possible to write generic programs to display data in much the same manner as the data
entry program, c.f. the show_set procedure of Section 4.2.14; but they are seldom completely
satisfactory. Typically, one wants to format the output in some appropriate way. Shown below is
a vanilla display program which lists students in the database.

main ()
/*
** Display a list of all students,
** together with their gpa’s, and advisors.
*/
{
char f_name[80], l_name[80], rank[80];
float s_gpa;

<< ADAMS_var s >>

<< open_ADAMS job_id >>
printf ("Undergraduate Students:\n");

<< for_each s in undergrad do
<< | f_name char* | <- s.first_name >>
<< | l_name char* | <- s.last_name >>

printf ("\t%s, %s", l_name, f_name);
<< | s_gpa float | <- s.gpa >>
<< | l_name char* | <- s.advisor.last_name >>

printf ("\t%5.3f, advisor: %s\n",
s_gpa, l_name);

>>

<< close_ADAMS job_id >>
}

A simple listing display
Figure 3-4.
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which might generate
Undergraduate Students:

Scott, Mary 3.600, advisor: Pfaltz
White, Bill 2.561, advisor: Grimshaw
Black, Henry 3.873, advisor:
Scott, John 2.834, advisor: French
Nix, William 3.208, advisor: Grimshaw
Talley, Mike 3.350, advisor:
. . . .
. . . .

Sample output from the listing program
Figure 3-5.

We can make two observations. First, two of the students have no advisor; so the element
designator s.advisor that is the argument for the last_name attribute must be NULL. ADAMS is
smart enough to handle this correctly. Second, although the program description says it will list
all students, the code actually only lists undergrad students. Duplication of the loop, but over
graduate will do this. But, wouldn’t you expect some sort of procedure facility to avoid this kind
of repetitive code? It exists, and will be covered in Sections 4.2.14-16.
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4. Formal Description of the ADAMS Language
ADAMS is a language for describing and accessing persistent data independent of any par-

ticular programming language. At the same time, it provides an interface to most popular pro-
gramming languages, so that applications and user interface modules may be developed and
coded in those idioms. The element concept is fundamental in ADAMS; and an underlying prin-
ciple of the language is that — although we have four different kinds of elements: garden variety
elements, attribute elements, map elements, and set elements — all elements will be treated
identically. For example, all elements must belong to a class declared by an isa statement, and
are created by instantiates_a statements; any element class can have associated attributes and
maps; the naming conventions for all kinds of elements are identical; and one can construct sets
of any kind of element. Limiting the language to just these four generic kinds of elements, with a
uniform treatment of all, has been a major design principle of ADAMS.

Like most programming languages, ADAMS consists of statements comprised of expres-
sions. However, instead of executable arithmetic and boolean expressions, ADAMS is based on
three kinds of designational expressions: (1) element designators, (2) value designators, and (3)
set designators. The typical expression in an ADAMS statement designates some relevant por-
tion of the persistent data space, hence this terminology.

In this section, we first examine each of these designational expressions in detail. Then, we
discuss each of the ADAMS statements in turn. This is a description of the complete ADAMS
language. But, not all features have been implemented in the current version. Currently unim-
plemented features will be marked by a dagger †, or otherwise indicated. The sample code in the
preceding Section 3, and in the following Section 5, represent only those features of ADAMS
which are currently implemented. All code in those sections has been compiled and executed.

4.1. ADAMS Designational Expressions
A designational expression denotes a unique ADAMS element or a unique value, where

the latter is simply assumed to be a bit string. There are element designators, value designators,
and set designators.

4.1.1. Element Designators
There are three kinds of element designator, or <elem_desig>, in ADAMS: ADAMS

names, ADAMS variables, and dot expressions. Every ADAMS name is entered into the name
space at the time the element it denotes is instantiated, and so long as it remains in the name
space, is bound to that particular element and can denote no other. ADAMS names that are used
to denote elements may be either actual names, var names, or subscripted names.

An actual name consists of character segments, each of which must contain an alphabetic
character, that are separated by underscores ’_’.

mary
3x3_matrix
attr_view

are actual names. If the actual name is known to have a particular visibility scope in the name
space, that scope may be prefixed, as in

TASK attr_view

thereby creating a scoped name. See Section 6.1 for more detail regarding the use of scoped
names.

A var name is actually a string variable of the host language whose current value is to be
treated as an actual name. The variable name is preceded by the reserved word var, as in
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var set_name

where set_name has been declared to be of type char* in the host code. The use of var names
provides the capability of manipulating ADAMS names within the host language, but since the
current value of the variable must be compared at run-time with the name space to ensure vali-
dity, execution is slower.

A subscripted name is an actual name followed by one, or more, non-negative, integer
subscripts delimited by [ ... ]. A subscript may be an integer, an actual name (which in this case
is assumed to be a host variable name), or a host language expression delimited by @...@,3 which
will evaluate to a non-negative integer. The subscript list may be optionally separated by com-
mas.

particle[x , y, z]
point[ 3 j 17 ]
particle [ 23, @i+j*3@, n ]

are subscripted names. Attribute and map names may be subscripted. Identical names, but with
different subscript values, denote different elements. Subscripted element names must be
declared when the element is instantiated (c.f. element instantiation statement), and because they
really denote a family of elements, subsequent element instantiation is somewhat different from
elements instantiated with unsubscripted ADAMS names.

Any ADAMS name may be declared to be an ADAMS variable (c.f. ADAMS_var state-
ment, 4.2.1). Such variable names are not entered into the name space, and are not bound to a
single ADAMS element. ADAMS variables may be bound to specific elements by either element
instantiation statements or by element assignment statements. The binding persists only until
rebound to another element, or until termination of the program. ADAMS variables may be sub-
scripted.†4

Finally, elements may be denoted by dot expressions. A dot expression of the form
<elem_desig > . <map_desig > denotes that element resulting from evaluating the map denoted
by the second <map_desig > term using the first <elem_desig > term as argument. Dot expres-
sions are evaluated from left to right, so <elem_desig > may itself be a dot expression

mary.advisor
x.father.father
point[i, j, k].nbhrs

are valid dot expressions that denote elements.

4.1.2. Value Designators
A value is a bit string of indeterminate length that has been represented in the data space.

Such values may be denoted by either literal expressions or by dot expressions.

A dot expression of the form <elem_desig > . <attr_desig > denotes that value returned by
the attribute function <attr_desig >, when given the <elem_desig > as element argument.
Because these values belong to the codomain (or range, or image space) of the attribute function,
we call the set of all possible values that can be designated by such a dot expression, a codomain.

A literal in ADAMS consists of any string of characters enclosed by either single quote,
’...’, delimiters or double quote, "...", delimiters. The enclosed characters must belong to the
appropriate codomain.
�����������������������������������������������������������������������

3 A much better subscript expression delimiter will be included in the next version.

†4 Subscripted ADAMS variables are not currently implemented, however they have been in earlier
versions, and will be added shortly.
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It is convenient to treat host variable expressions of the form
| <variable_name > <type > <length > |

as if they were <value_desig >’s, even though semantically they are quite different. Value desig-
nators denote values in the persistent data space, whereas host variable expressions denote values
in the program’s data space. However, they perform the same function syntactically; they denote
values. Because ADAMS does not know the program’s data space, the variable name must be
delimited in ADAMS statements with | ... | and the variable <type > explicitly given. Because
ADAMS data consists only of bit strings of indeterminate length, a <length > designator†5 may
optionally be specified to prevent overwriting string variables in assignment statements.

4.1.3. Set Designators
Since ADAMS sets are themselves elements, any element designator described in Section

4.1.1 above may denote a set. However, there are four more designational expressions which
may only be used denote set elements. The first three of these expressions, (1) enumerated sets,
(2) set expressions, and (3) retrieval sets, are derived from corresponding expressions used in
mathematics to describe sets. The sets that are so denoted are non-persistent, unless assigned to,
or otherwise included in, a persistent set. In mathematics, it is customary to require that all ele-
ments of a set belong to the same class. ADAMS enforces this same constraint. In the following
discussion of sets, we let the cose of a set denote the class of the set elements comprising the set.
Note that specific elements in the set may belong to a subclass of the cose , that is be conform-
able to the cose ; but all will be interpreted as belonging to the cose .

An enumerated set is any list of element designators delimited by {...}. The <elem_desig>
of the list may optionally be separated by commas. To facilitate the enumeration of subscripted
elements, one may denote a range of subscript values. A range subscript has the form
<subscript_value >..<subscript_value >, as in

{ mary, bill, student[ 3 .. 6 ] }

in lieu of

{ mary, bill, student[3], student[4], student[5], student[6] }

Range subscripts may be used only in enumerated sets.

The cose of the enumerated set is the least upper bound of the classes of each of the indivi-
dual elements. For example, given the class structure

DEPARTMENT

INSTRUCTORSTUDENT

PERSON

CLASS

one can form an enumerated set composed of elements of both STUDENT and INSTRUCTOR
classes. However, the cose of the enumerated set will be PERSON. This is important, because
even though it may be known that a particular element belongs to the class STUDENT, only
those attributes, maps, and properties associated with its super class PERSON may be employed
— so long as that element is referenced as a member of the enumerated set. Similarly, one may
construct an enumerated set consisting of PERSON and DEPARTMENT elements; the cose of
the enumerated set will be simply CLASS. But no attributes or maps can be employed, because
this generic class has none.
�����������������������������������������������������������������������

†5 In the current preprocessor, <length> must be a literal integer.
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Attempts to create an enumerated set of both attribute and map elements will result in an
ADAMS error, because the classes ATTRIBUTE and MAP have no upper bound. Similarly, if
one element of the enumerated set is itself a SET, then all must be of class SET. ADAMS does
not yet enforce conformability on distinct SET classes.

A set expression, or <set_expr >, is any <set_desig > or the result of applying one of the
three binary set operators union, intersect, and complement to its operands. The class of the ele-
ments comprising these sets, or cose , is dependent on the particular operation.

(1) union: The set expression <set_desig 1> union <set_desig 2> denotes those elements that are
members of either <set_desig 1> or <set_desig 2>. The cose of the designated set is the least
upper bound of the cose of the operand sets.

(2) intersection: The set expression <set_desig 1> intersect <set_desig 2> denotes those ele-
ments that are members of both <set_desig 1> and <set_desig 2>. The cose of the desig-
nated set is the greatest lower bound of the cose of the operand sets.†6

(3) complement: The set expression <set_desig 1> complement <set_desig 2> (also called set
difference) denotes those elements that are members of <set_desig 1> but not <set_desig 2>.
The cose of the designated set is the cose of the first operand.

If a set expression contains more than one operator, their virtual execution is left to right.
Set expressions may be parenthesized.†7

Sets may be denoted by rule, or by a predicate whose evaluation governs membership
within the set. Such a set is called a retrieval set in ADAMS. A retrieval set has the general
form

{ <ADAMS_var > in <set_expr > | <predicate > }
where the <predicate > is any boolean predicate in which the <ADAMS_var > is a free variable.
Conceptually, each element in <set_expr > is, in turn, denoted by <ADAMS_var >, and <predi-
cate > is evaluated to determine if this element belongs in the set. The cose of the retrieval set is
the cose of <set_expr >.

The structure of the <predicate > supports <terms >’s which may be combined with a logi-
cal and to form <conjunct >’s, which may be combined with a logical or to form <disjunct >’s.
This follows the usual pattern of boolean predicates found in most programming languages — the
reader is referred to the syntax in Section 7 for details.

Of most interest for this discussion is the different kinds of <term > that are available in
ADAMS. A term may be either (1) an element comparison, (2) a value comparison, or (3) a
quantified term. An element comparison of the form

<elem_desig 1> <elem_comp > <elem_desig 2>
where only = or != are valid <elem_comp >, is true if the two <elem_desig >’s do (do not) denote
the same element.

A value comparison may have either of two forms:
<value_desig 1> <comparator > <value_desig 2>

or
<value_desig 1> <comparator > <dot_expr > <comparator > <value_desig 2>,

where <comparator > may be any of =, !=, <, <=, >, or >=. The latter is a convenient way of

�����������������������������������������������������������������������

†6 The current preprocessor requires that cose of the operands be the same class, or at least one a
subclass of the other.

†7 Parenthesized set expressions are not yet recognized by the preprocessor.
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denoting double ended range searches.†8 An example of a retrieval set using both these kind of
terms is

{ x in graduate | ’3.0’ <= x.gpa < | max_gpa float |
and x.advisor = mary.advisor }

which denotes all graduate students whose gpa is between 3.0 and max_gpa , and who also have
the same advisor as mary .

The third, quantified term is not yet implemented. It may have the form of either
( exists <bound_var > in <set_expr > ) [ <predicate > ]

or
( all <bound_var > in <set_expr > ) [ <predicate > ]

which is true if at least one (or all) elements in <set_expr > satisfy the predicate.

We have called enumerated sets, retrieval sets, and the results of set operations, set designa-
tors because that is precisely what they are. They are not set constructors. New sets may be
added to the data space only by explicit instantiation. The usual procedure is to instantiate a set
(c.f. Section 4.2.6 below) either as a named, or unnamed set, and then assign the elements
denoted by a set designator to it, as in

<< <set_name> <- <set_desig> >>

The final set designator has no mathematical equivalent. Sets that have been associated
with element classes may be denoted using the association operator, ->, in expressions of the
form:

<class_name > -> <synonym >
(c.f. class declaration statement, 4.2.3).

4.2. ADAMS Statements
We now discuss each of the ADAMS statements, one by one. These statements provide the

mechanism by which the designational expressions of ADAMS are included in a host program-
ming language. All ADAMS statements are delimited by << ... >>.9 This presentation will begin
with a syntactic description of statement, followed by a discussion of possible variations, or
options, when available. The operational semantics may be discussed, if appropriate; but, except
for one case, not the method of implementation. This is a language. It is quite possible for dif-
ferent versions to implement it differently.

Any ADAMS statement can fail in execution. For example, an attempt to instantiate a new
element may fail because the name already exists in the name space; or an attempt to insert an
element into a set may fail because the class of the element does not conform to the cose of the
set. The preprocessor attempts to detect most such failure situations and flag them as errors. But,
static checking cannot detect all possible failure situations, particularly when the host program
employs var names to manipulate the name space. For many uncertain situations the preproces-
sor will issue a warning. When an ADAMS statement fails, a global variable _ADAMS_FAIL is
set to a non-negative error code.†10 This can be tested at any time in the host_code, and reset after
�����������������������������������������������������������������������

†8 Currently, only the comparators < and <= may be used — in any combination. The comparators >
and >= will be implemented in the next version.

9 Both << and >> are legal operators in C and C++ code. The ADAMS preprocessor can, in most
cases, distinguish their use.

†10 In the current implementation, setting _ADAMS_FAIL will, in most cases, be immediately
followed by a system abort which gracefully shuts down the ADAMS system.
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appropriate action has been taken.

4.2.1. ADAMS_var Statement
An ADAMS_var statement of the form:

<< ADAMS_var x, y, temp_set, attr >>

establishes that the symbolic names x , y , temp_set , and attr are to be regarded as ADAMS vari-
ables which can denote any element of any class. This statement, which only provides informa-
tion for the preprocessor, is not executable and may appear anywhere in the host code. There
may be multiple ADAMS_var statements in any source file.

Because, the preprocessor does not parse host language code, ADAMS_var’s are not res-
tricted to a single procedure module, as they ought to be. The declaration is valid for the entire
source code file, and hence the declaration defines such ADAMS variables globally . Redeclara-
tion of an ADAMS variable generates a warning, but no error.

4.2.2. Assignment Statement
Assignment in ADAMS is denoted by the assignment operator, <-. It may used in three

different assignment statements, all of which have similar syntax, but which have different
semantics.

A value assignment has the form:

<< <value_desig left> <- <value_desig right> >>

where the left side may be either a dot expression or a host variable expression, and the right side
may be either of these, or a literal. The value of the right side is assigned as the value of the left
side. At least one side of a value assignment must be a dot expression, so ADAMS can determine
the attribute and its associated codomain.

In assignments to, and from, host variables such as

<< | attr_value char* 10 | <- x.attr >>
<< x.attr <- | attr_value char* | >>

coercion may take place when attr is a numeric attribute. ADAMS handles this correctly.

An element assignment has the form:

<< <elem_desig left> <- <elem_desig right> >>

where the left side must be either an ADAMS variable or a dot expression, and the right side may
be any <elem_desig >. If the left side is an <ADAMS_var > then this assignment makes the
ADAMS variable denote the same element as the right side, and the class of the ADAMS variable
becomes that of the right side element. If the left side is a dot expression of the form
<elem_desig > . <map_desig >, then the image of <elem_desig > under <map_desig > is changed
to the right side element. The class of the right side element must be conformable to the image
space of the <map_desig >. In both cases, the assignment alters what the left side denotes. For
this reason, the left side <elem_desig > cannot be an ADAMS name, because ADAMS names are
invariantly bound to elements when instantiated. The exception to this is the case when the left
side is a set name, in which case the assignment is interpreted as a set assignment described
below.

A set assignment has the form:

<< <set_desig left> <- <set_desig right> >>

where the left side may be either a <set_name > or a dot expression mapping into a SET class,
and the right side may be any <set_desig >. The cose of the right set must be conformable to the
cose of the left set. Set assignment employs shallow copy semantics. All existing elements of

23



the left set (if any) are first removed, then every element in the right set is inserted into the left
set.

A special set literal, NULLSET, may be used in set assignment to empty a set. Mathemati-
cally, NULLSET denotes ∅ and its cose is conformable to any set. However, beware of assign-
ing NULLSET to an ADAMS variable, as in:

<< x <- graduate >>
.
.

<< x <- NULLSET >>

Rather than making x now denote a null set, it empties the set that x currently denotes (in this
case graduate ). To have x denote a new null set, one simply instantiates the new set with

<< x instantiates_a <set_class>,
scope is LOCAL >>

4.2.3. Class Declaration Statement
All class declaration statements have the general form:

<< <class_name> isa <super_class_list>
<class_decl_options> >>

where the <super_class_list > may be either of the four generic element classes, CLASS,
ATTRIBUTE, MAP, or SET; or the name of any class already defined in the name space; or a list
of such classes, conjoined by and. The scope of all classes named in the <super_class_list >
must be of the same, or higher, than the declared scope of the class declaration. In general, no
named component of an ADAMS declaration may have lower scope than the declaration itself.11

The new class automatically inherits the properties of all these super classes. For example, if
STUDENT and INSTRUCTOR are subclasses of PERSON as defined in Section 2.5, then

<< T_A isa STUDENT and INSTRUCTOR ... >>

defines a class of teaching assistant elements which have properties of both students and instruc-
tors, and may be used in the roles of either. This is called multiple inheritance.

We will note that classes may only be denoted by name (there is no general <class_desig >
analogous to <elem_desig >), so all classes must be explicitly named in the name space. An
optional <scope_clause > of the form

scope is [ LOCAL | USER | TASK | SYSTEM ],

allows insertion of the <class_name > at any level of the name space hierarchy.

The real interest with respect to class declaration lies in the various possible
<class_decl_options >. Any class may have one, or more, associated sets of maps or attributes
declared by an association clause of the form:

having <synonym> = <set_expr>†12 .

where the <synonym > = phrase is optional.

�����������������������������������������������������������������������

11 Due to a design defect in the preprocessor, it cannot keep track of the scopes of newly declared
classes and instantiations. Consequently, it issues many patently unnecessary warnings.

†12 The current preprocessor only accepts <set_desig> for an associated set.
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<< PERSON isa CLASS
having { name, age } >>

<< STUDENT isa PERSON
having attrs = { gpa },
having maps = { advisor } >>

Such associated sets are ADAMS elements and may be dynamically modified by element inser-
tion, deletion, or set assignment using the association operator, ->, to associate set synonyms with
class declarations, as in PERSON->attrs , STUDENT->attrs , or STUDENT->maps . Association
set synonyms must be distinct within any single class declaration, but may be repeated in
separate declarations since any ambiguity will be resolved by association with the
<class_name >.

Class membership may be restricted by means of a restriction clause†13 of the form:

provided [ <predicate> ]

where <predicate >, delimited by [ ... ], has a single free variable of the form @x. For example,
one may declare

<< ADULT isa PERSON
provided [ @x.age >= 21 ] >>

to restrict membership14 in the class ADULT to instantiated elements whose age attribute has
value ≥ 21. The free variable @x (or any single letter preceded by @) is interpreted to mean "any
element", or the "current element". The semantics of the restriction clause must be discussed.
When an element is first instantiated, as in

<< x instantiates_a ADULT >>

no age has been assigned, so it cannot possibly satisfy the restriction clause. Test of the restric-
tion clause is deferred until the smallest transaction unit enclosing the instantiation statement ter-
minates. If the restriction clause is not satisfied, both the statement and the entire transaction
fails; no change is made to the persistent data space. If the superclass(es) of a class have restric-
tion predicates, these are inherited by any subclass and their conjunction must be satisfied.

SET, ATTRIBUTE, and MAP class declarations each require an additional clause. Set
declarations must declare the class of the set elements, or cose , with the clause

of <class_name> elements .

Attribute and map declarations must declare the image space of the function with the clause

with image <codomain_name>

or

with image <class_name>.

The need to provide the <class_name > of the image class in map declarations leads to
problems in certain kinds of recursive class declarations. For example, suppose we want to define
a class called PART, which has a map is_part_of into the PART class itself. The class declara-
tion, PART, must precede the map class declaration; and the is_part_of map must be instantiated
before the class declaration. To resolve this, ADAMS provides a FORWARD option in class
declaration. The declaration

<< PART isa CLASS, FORWARD >>

�����������������������������������������������������������������������

†13 Restriction clauses have not been implemented in the current version.
14 We would emphasize that membership in a class is very different from membership in an

instantiated set. An ADAMS element can belong to only one class; but it can be a member in multiple sets.
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only enters the <class_name >, PART, together with its super class(es) in the name space, and
asserts that the complete declaration will be provided at some later time. We can now write

<< PART_MAP isa MAP,
with image PART >>

<< is_part_of instantiates_a PART_MAP >>

because the <class_name > has been defined; and then complete the PART declaration with

<< PART isa CLASS,
having attrs = { part_name, ..., cost }
having maps = { is_part_of } >>

See Section 5.1 for an application requiring the FORWARD option.

4.2.4. Class Inheritance Semi-lattices
The structure of classes and their inheritance properties may be diagrammed as a tree, as in

the figure of Section 4.1.3; or if multiple inheritance is supported as a semi-lattice. For example,
the classes we have defined so far would give rise to the semi-lattice

ADULT

CLASS

PERSON

STUDENT INSTRUCTOR

DEPARTMENT

T_A
Readily, one can develop rather complex class semi-lattices. The concept of conformability, and
cose , are all based on this class semi-lattice.

Since, for any class of element, one may have a set of these elements, the CLASS semi-
lattice induces a corresponding SET class semi-lattice of the form

ATTR_SET MAP_SET

T_A_SET

FACULTYSTUDENTSADULTS

DEPARTMENTSPEOPLE

SET

However, as can be seen, the SET semi-lattice need not be isomorphic to the CLASS semi-lattice.
For more details regarding CLASS semi-lattices and their induced SET semi-lattices, see [Pfa88].

In fact there are four class semi-lattices. Besides the CLASS and SET semi-lattices illus-
trated above, we also have ATTRIBUTE and MAP semi-lattices. But, these tend to be rather
uninteresting, shallow trees as in

ATTRIBUTE

INTEGER_ATTRREAL_ATTRSTRING_ATTR
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The semantics of inheritance in the SET, ATTRIBUTE, or MAP hierarchies is not well under-
stood at this time. It is one of important open research issues raised by ADAMS.

4.2.5. Codomain Declaration Statement
A codomain declaration statement is of the form:

<< <codomain_name> isa CODOMAIN
consisting of #<lex_expr>#>>

where the <lex_expr >, delimited by # ... #, is a lex expression [LeS75] that designates the regular
set comprising the codomain. In effect, the <lex_expr > specifies what literal strings will be
regarded as well-formed values in that codomain. A preprocessor option can be set so that
ADAMS will enforce codomain consistency for all values in every codomain.†15

To ADAMS, all values in its data space are only bit strings of indeterminate length, how-
ever it requires some additional information in order to present these values to the host program
in their expected form. The optional treat_as clause may included to specify that the value will
be treated as alphanumeric , numeric , or raw †16 by the applications code. The default treat_as
usage is alphanumeric , or simply character string.

One may optionally define what value to return if an attribute function
<elem_desig > . <attr_desig > is undefined for that element with a udf clause of the form:

udf = ’<literal>’

The default udf value is an alphanumeric string of no characters.

For example, the declaration of the REAL codomain that is predefined in ADAMS is:

<< REAL isa CODOMAIN
consisting of #[-|+]?[0-9]*.[0-9]*#
udf = ’-999999999.0’,
treat_as numeric,
scope is SYSTEM >>

4.2.6. Element Instantiation Statement
All elements are instantiated by the statements of the form:

<< <actual_name> instantiates_a <class_name> >>

<< <ADAMS_var> instantiates_a <class_name> >>

or

<< <actual_name>[<subscript_count>] instantiates_a <class_name> >>

In the first case, the <actual_name > is entered into the name space and bound to the instantiated
element. In the second case, the <ADAMS_var > denotes the instantiated element, but nothing is
entered into the name space.

In the third case, <subscript_count > simply denotes a sequence of asterisks, which are
white space delimited — often by commas, as in

<< point[*,*,*] instantiates_a POINT >> .

What has been instantiated is a family of triply subscripted element names, rather than any
�����������������������������������������������������������������������

†15 Enforcement of codomain consistency, has not been implemented in the current version, although
stubs to invoke an appropriate lex routine exist.

†16 The treat_as term raw is semantically meaningless in the current version, and is treated as
alphanumeric .
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particular element in the family. All subscripts must be non-negative integers, but there is no
upper bound declared on this family. We must emphasize that this statement does not instantiate
an array structure in the usual sense of programming languages, only a family of subscripted
names, c.f. [PfF90]. Any subsequent reference to point followed by three non-negative sub-
scripts will be assumed to denote a POINT element. Actual instantiation of this element will
occur when it is first used. For example, in the assignment

<< point[3,0,7].nbhrs <- { point[3,1,4], point[2,5,2] } >>

if point [3,0,17] had not be previously instantiated, it will be as a side effect of the assignment
and the enumerated set assigned as its nbhrs map image. Although a subscripted instantiation
does not create a vector, or array, structure in the data space, it may be used to represent such
structures as described in Section 5.2.

All instantiated elements are by default persistent, and if named, with their element name in
the USER name space. The optional scope clause may be used to enter their name in other levels
of the hierarchical name space. To instantiate a temporary, non-persistent element which will
vanish on termination of the program, it must be given LOCAL scope with a scope clause.

4.2.7. Erase Name Statement†
The statement

<< erase <ADAMS_name> from <scope> >>

will erase the class, codomain, or element name from the name space. Only the user who initially
entered the name has erasure permission. Erasure of the name from the name space will not
necessarily delete the class, codomain, or element that it denotes, unless it is referenced nowhere
else in the ADAMS system. Readily, erasure of a name from the name space can cause problems
if there remains executable programs that reference it. See the delete statement in Section 4.2.9,
or warmstart in Section 6.2, for more details regarding element deletion and name space erasure
respectively.

4.2.8. Exit_loop Statement
If the statement

<< exit_loop >>

is executed, the innermost f or_each loop containing the statement is exited, in much the same
way that break; will terminate an iteration statement in C, or C++. The <loop_variable > will
denote the same element it denoted before executing the loop exit. On normal loop termination it
is undefined.

There is no analog to the C continue; statement in ADAMS.

4.2.9. Delete Element Statement†
From time to time data elements must be deleted from the persistent data space altogether.

(Names are erased from the name space; elements are deleted from the data space.) But, there
must be constraints. Readily, an element that is the element of a set may not be deleted so long
as it is a member of the set. Similarly, an element that is named in the name space may not be
deleted so long as its name can still be referenced. Consequently, the statement

<< delete <elem_desig> >>

may have no effect whatever. In fact, it is questionable whether the statement even belongs in
ADAMS at all!

To control unwanted element deletion, an invisible ref _cnt attribute is associated with
every element which records the number of references to the element within either the ADAMS
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data space or name space. When an element is inserted into a set, or assigned as image of a map,
its ref _cnt is incremented; when it is removed from a set, replaced as a map image, or its name
(if any) erased from the name space, its ref _cnt is decremented. Only elements with ref _cnt = 0
may actually be deleted, and this may occur only after all currently executing processes (which
may have an ADAMS_var reference to the element) have terminated. Consequently, actual dele-
tion is performed by a daemon, which rechecks that the ref _cnt is still zero, sometime after the
delete statement is executed. The invocation of the deletion daemon can as well be made by any
statement which decrements the ref _cnt to zero, making an explicit delete command superfluous.

4.2.10. For_each Loop Statement
The statement

<< for_each <loop_var> in <set_desig> do
.
. <ADAMS/host language statements>
.
>>

provides a mechanism for looping over each element of <set_desig >, denoting the current ele-
ment by <loop_var >, which must have been declared to be an ADAMS variable, and performing
the intervening sequence of ADAMS and/or host language statements. On termination of the
loop (except by a loop_exit statement) the <loop_var > is undefined. Semantically, the
<set_desig > over which the loop is run is that set denoted on entrance to the loop, even though
the <set_desig > may be modified within the loop body by element insertion or deletion.

For_each loops may be arbitrarily nested, but each must have a distinct <loop_var >.
Attempt to assign to <loop_var > within the body of the loop will generate an error.

A small variant is created by use of the key word f or_all instead of f or_each , as in the fol-
lowing code that is frequently used to display elements and their assigned attribute values.

<< for_each x in graduate do
<< for_all attr in view do
<< | x_value char* | <- x.attr >>

printf ("%s ", x_value);
>>

printf ("\n");
>>

Semantically, the use of f or_each and f or_all are identical. However, the use of f or_all within
the inner loop indicates to the preprocessor that this loop may be unwound to exploit multiple
stream parallelism in environments that support it.

4.2.11. Insert Statement
The statement

<< insert <elem_desig> into <set_desig> >>

inserts the designated element into the set. The class of <elem_desig > must be conformable to
the cose of <set_desig >. If <elem_desig > is already a member of the set, the statement is inter-
preted as a no_op , not a statement failure.

4.2.12. Lock and Unlock Statements†
Because ADAMS is normally executed in a parallel processing environment, the use of

locks is discouraged. However, for some applications they are essential. The statement
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<< lock <elem_desig> >>

grants the executing process an exclusive lock on <elem_desig > until either it is explicitly
unlocked with the statement

<< unlock <elem_desig> >>

or the process terminates. If the <elem_desig > denotes a set, then every element of the set is
locked. Currently, the ADAMS syntax provides no mechanism for locking the set itself, as
opposed to locking each of its constituent elements.

4.2.13. Open_ADAMS, Close_ADAMS Statements
The ADAMS name space, data space, and runtime system are attached to an applications

program by

<< open_ADAMS job_id >>

It must precede the first executable ADAMS statement in any program. Both ADAMS_var and
ADAMS prototype statements are non-executable, and it is common to place these among other
variable and procedure declarations ahead of the open_ADAMS statement. The last executed
statement must be

<< close_ADAMS job_id >>

which shuts down ADAMS and flushes any cached elements of the data space and name space to
persistent storage.

The entire ADAMS execution, from open_ADAMS to close_ADAMS is treated as a default
transaction, whose transaction identification is denoted by the string variable job_id .†17

4.2.14. Procedure Header Statement
Host language procedures containing ADAMS statements may be separately compiled.

Such procedures need not contain an open_ADAMS or a close_ADAMS statement, unless they
will be the first, or last, executed ADAMS statements, and opening and/or closing ADAMS is not
handled by the main program. However, because the ADAMS name space and the program’s
name space are disjoint, ADAMS names and ADAMS expressions may not be passed as parame-
ters. To pass an ADAMS designator to a subprocess, one must employ an ADAMS procedure
which has a different kind of procedure header, procedure end, and procedure invocation format.

An ADAMS_procedure statement has the form:

<< ADAMS_procedure <proc_name > ( <f ormal_param_listADAMS >
$ <f ormal_param_listhost > $ ) >>

Formal ADAMS parameters must be ADAMS variables. Each entry in the
<f ormal_param_listADAMS > is a pair consisting of <class_name > and <ADAMS_var >, where
the class name declares the class of element that will be passed as actual parameter.†18 A runtime
check is conducted to ensure that the <elem_desig > passed as an actual parameter is conform-
able to this declared class. If host language parameters are also being passed to the procedure,
they must be coded in the fashion expected by the host language and delimited by $ ... $.

�����������������������������������������������������������������������

†17 Transaction management is not currently supported, however a variable name must be provided to
parse correctly. There may be several open_ADAMS or close_ADAMS statements in the source code,
but the system must first be closed before issuing another open_ADAMS statement.

†18 Currently, each <ADAMS_var> appearing in a <formal_param_list
ADAMS

> must be explicitly
declared in an ADAMS variable statement. It is anticipated that in future versions, inclusion in this list will
automatically generate the required ADAMS variable declaration code.
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An ADAMS procedure must be terminated by the procedure end statement

<< end_ADAMS_procedure >>

As an example of a complete ADAMS procedure, consider the following utility code which
displays all the attributes associated with a set of elements in a relational style.

<< ADAMS_var element_set >> /* Formal parameter */

<< ADAMS_procedure show_set ( GENERIC_SET element_set
$ FILE *outfile $ ) >>

/*
** Display ALL the attributes associated with the
** elements of ’element_set’ on in 15-character fields
** as a table (relational style) on ’outfile’.
*/
int set_size, attr_set_size;
char class_name[21], value_str[30], separator[256];

<< ADAMS_var attr_set, attr, x >>

<< | set_size int | <- element_set.cardinality >>
if (set_size == 0)

{
fprintf (outfile, "\tEMPTY SET\n");
goto exit_proc; /* NOTE: can’t ’return’ */

/* MUST exit through end */
}

/* First, get CLASS of a */
/* typical set element */

<< | class_name char* 20 | <- element_set.element_of.class_of >>
if (strcmp(class_name, "") == 0)

{
fprintf (outfile, "\tCan’t determine CLASS of elements\n");
goto exit_proc;
}

/* Now, get all attributes */
<< attr_set <- var class_name . attributes_of >>
<< | attr_set_size int | <- attr_set.cardinality >>

if (attr_set_size == 0)
{
fprintf (outfile,

"\tNo attributes defined for elements of CLASS ’%s’\n",
class_name);

goto exit_proc;
}

strcpy (separator, "");
<< for_each attr in attr_set do
<< | value_str char* 15 | <- attr.name_of >>

fprintf (outfile, "| %-15.15s ", value_str);
strcat (separator, "+-----------------");
>>

fprintf (outfile, "|\n");
strcat (separator, "+");
fprintf (outfile, "%s\n", separator);

<< for_each x in element_set do
<< for_all attr in attr_set do
<< | value_str char* 15 | <- x.attr >>

fprintf (outfile, "| %-15.15s ", value_str);
>>

fprintf (outfile, "|\n");
>>
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fprintf (outfile, "%s\n", separator);
fprintf (outfile, "\n");

exit_proc:
<< end_ADAMS_procedure >>

Show_set Procedure
Figure 4-1.

There are several interesting features of note in this procedure. First, because the class of set to
be displayed is unknown, the predefined class GENERIC_SET is specified for element_set .
Second, several predefined attributes and maps must be used to determine the actual class of
element_set , so that we can retrieve its set of attributes. Third, one must exit through the
end_ADAMS_procedure statement; one cannot use a host language return; statement in the
usual fashion.19 Fourth, a host language file pointer outf ile has been passed to direct the output
to the correct file. Finally, the usual { ... } delimiters surrounding the body of the procedure are
missing; such delimiters if needed to compile the host code are automatically provided by the
ADAMS procedure header and end_ADAMS_procedure statements.

There are no ADAMS functions, only ADAMS procedures; and no ADAMS procedure may
return a value except by making an assignment to a formal ADAMS_var parameter, in which
case the effect is identical to making the assignment to the corresponding actual parameter. Also,
because ADAMS variables are currently global to the file of source code in which they occur, one
cannot write recursive ADAMS procedures. This could be rectified with a better preprocessor.

4.2.15. Procedure Invocation Statement
ADAMS procedures are invoked by a statement of the form:

<< invoke <proc_name > ( <actual_param_listADAMS >
$ <actual_param_listhost > $ ) >>

where <actual_param_listADAMS > is a list of <elem_desig > which may optionally be comma
delimited, and <actual_param_listhost > conforms to the expected usage of the host language.

For example, the statement

<< invoke show_set ( undergrad $ stdout $ ) >>

will display all student elements in the set undergrad , whereas

<< invoke show_set ( { x in graduate | x.gpa >= 3.0 }
$ stdout $ ) >>

will display those graduate students with gpa ≥ 3.0.

4.2.16. Procedure Prototype Statement
A prototype of each ADAMS procedure must be provided in any source code which

invokes the procedure.20 The ADAMS prototype statement has the form:

<< ADAMS_prototype <proc_name > ( <class_listADAMS >
$ <type_listhost > $ ) >>

where the <class_listADAMS > consists of just the <class_name >’s used in the formal parameter
�����������������������������������������������������������������������

19 We will probably include an ADAMS_return statement in the next version to eliminate this
awkward construction.

20 Note that, with our current preprocessing approach, one cannot create an include file of all relevant
ADAMS prototype statements, because the adams preprocessor does not expand the # include
directive; cci does.
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list declaration, and <type_listhost > conforms to the expectations of the host language. The
ADAMS prototype statement is non-executable, and may occur anywhere preceding the first
invocation of the procedure.

For example, any code invoking the show_set procedure must include the prototype

<< ADAMS_prototype show_set ( GENERIC_SET $ FILE* $ ) >>

4.2.17. Remove Statement
An element may be removed from a set by the statement

<< remove <elem_desig> from <set_desig> >>

If <elem_desig > is not an element of the set, the statement is treated as a no_op , not as a state-
ment failure.

4.2.18. Rescope Statement†
ADAMS names can be moved from one name space hierarchy to another with the statement

<< rescope <ADAMS_name> to <scope> >>

where <scope > may be either SYSTEM, TASK, USER, or LOCAL. Changing name visibility
in this way can have unforeseen consequences. See the discussion in Section 6.1, or in [PFW88].

4.2.19. Start, End Transaction Statements†
The entire sequence of executable ADAMS statements, beginning with the open_ADAMS

statement and terminating with a close_ADAMS statement is a transaction. That is, either all
statements succeed or all are considered to fail. In the event of failure, all statements must be re-
executed. If transactions are nested, as in [Mos85], then only the failed transactions need be re-
executed. A nested transaction is initiated by the statement

<< tr_start <trans_id> >>

where <trans_id > is any unique character string denoting this transaction. A transaction is ter-
minated with

<< tr_end <trans_id> >>

4.3. Predefined ADAMS Classes, Codomains, Attributes, and Maps
For convenience, ADAMS provides 11 predefined classes, 3 predefined codomains, and 7

predefined attributes and maps. Because of their ubiquity in database applications, the three
codomains are STRING, INTEGER, and REAL. The first is an alphanumeric codomain, while
the latter two are numeric . The undefined constants, or udf , are "", "-999999999", and
"-999999999.0" respectively.

Three of the predefined classes are the ATTRIBUTE classes STRING_ATTR,
INTEGER_ATTR, and REAL_ATTR with STRING, INTEGER, and REAL codomains, respec-
tively. Four more classes are the generic classes GENERIC_ELEMENT, GENERIC_SET,
GENERIC_ATTR, and GENERIC_MAP, which are sometimes useful when defining formal
parameters of ADAMS procedures whose actual parameters are not known. (These are
equivalent to CLASS, SET, ATTRIBUTE, and MAP respectively, which being reserved words
cannot be used as class names.) Generic attribute and map sets are defined by ATTR_SET and
MAP_SET, and maps with these images are defined by ATTR_SET_MAP and MAP_SET_MAP.

Six predefined attributes are cardinality , name_of , class_of , element_class_of ,
image_of and codomain_of . The first is an INTEGER_ATTR, which is used to test the
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cardinality of ADAMS sets. One would very much like to have Boolean functions of the form
empty (<set_desig >) and singleton (<set_desig >), however the current preprocessing paradigm
prohibits this. ADAMS procedures cannot return a host language value, and ADAMS names (or
expressions) cannot be passed to a host language procedure. An integrated compiler could rectify
this. The latter five attributes are STRING_ATTR’s; they return the names of elements
(name_of any element, which returns "" if the element is unnamed), of classes (class_of any
element, element_class_of any set, and image_of of any map), or of codomains (codomain_of
any attribute). Since all classes and codomains must be named, these attributes are always well
defined. The class, or codomain name, can then be used as <var_name >’s (Section 4.1.1) to
designate the corresponding class, or codomain. Note that there are no general <class_desig > or
<codomain_desig > constructs, so these can only be designated by name.

Four predefined maps are element_of , random †21, attributes_of , and maps_of . The first
two, given a non-empty <set_desig > as argument, return an element from the set. The latter two
return the set of all attributes, or maps, associated with a <class_name > and its superclasses as
an ATTR_SET and MAP_SET respectively.

�����������������������������������������������������������������������

†21 Both the element_of and random maps return as their image an arbitrary element of their set
arguments. The difference is that repeated invocations of element_of will always return the same element,
whereas random will return some random sequence of elements. The map random has not yet been
implemented in the current version.
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5. More ADAMS Examples
In this section we examine several complete programs, procedures, and code fragments

which make use of the more advanced ADAMS features described in the preceding Section 4.
These include recursive class declaration, ADAMS procedures, subscripted element identifiers,
and dynamic class modification. Not all of the code is good, in the sense of representing the best
use of ADAMS. But, it will illustrate the flexibility of the language, together with many of its
capabilities. Again, all code given here has been compiled and executed.

5.1. Graphs and Relationships
General many-to-many relationships are fundamental in database design, c.f. [Che76]. For

example, if we wished to extend our school database example to include classes offered by the
university, together with student enrollment in these courses, the E-R diagram might look like:

enrollment:(term, grade)

COURSE:(c_nbr, c_name)

STUDENT:(last_name, first_name, age, gpa)

INSTRUCTOR: (last_name, first_name, age, rank, dept)

advisor

One way of representing such relationships in ADAMS is by declaring a COURSE class, together
with a COURSE_MAP class. Then an ENROLLMENT class can be declared using two maps

<< course instantiates_a COURSE_MAP >>
<< student instantiates_a STUDENT_MAP >>
<< ENROLLMENT isa CLASS

having attrs = { term, grade }
having maps = { student, course } >>

This approach simply represents a binary, many-to-many relationship as a set of ordered pairs of
many-to-one functional maps.

Mathematically, a directed graph is simply a binary relationship on the set of vertices
comprising the graph. Each ordered pair of the relationship is called an edge. We can use the
same approach to define a class of directed graphs in ADAMS.

main ()
/*
** This program defines a generic space of
** of directed graphs, whose vertices and
** edges may be labelled.
**
** As defined, the labels on both the VERTEX
** and EDGE elements are string labels, but
** either class declaration can be modified
** to provide other kinds of labels.
**
** A GRAPH is regarded as a SET of VERTEX elements
** and a SET of EDGE elements.
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*/
{

<< open_ADAMS job_id >>

<< label instantiates_a STRING_ATTR >>

<< VERTEX isa CLASS
having attrs = { label } >>

<< VERTEX_MAP isa MAP
with image VERTEX >>

<< v1 instantiates_a VERTEX_MAP >>
<< v2 instantiates_a VERTEX_MAP >>
<< EDGE isa CLASS

having attrs = { label }
having maps = { v1, v2 } >>

<< VERTEX_SET isa SET
of VERTEX elements >>

<< EDGE_SET isa SET
of EDGE elements >>

<< VERTEX_SET_MAP isa MAP
with image VERTEX_SET >>

<< EDGE_SET_MAP isa MAP
with image EDGE_SET >>

<< vertices instantiates_a VERTEX_SET_MAP >>
<< edges instantiates_a EDGE_SET_MAP >>

<< DI_GRAPH isa CLASS
having attrs = { label }
having maps = { vertices, edges } >>

<< close_ADAMS job_id >>
}

A Definition of Directed Graphs
Figure 5-1.

While the definition of directed graphs given above is a very serviceable one, an alternative,
slightly less general definition will further our exploration of the ADAMS language and its
features. If we will never associate data with individual edges, e.g. edge labels, then there is no
need to explicitly create an EDGE class. Instead, we can simply designate the set of vertices,
{ y }, for which there is an edge (x , y ) as the neighbors of x . Similarly, we will call the set of all
vertices, { z }, which are reachable by a directed path from x , its closure. This graph terminol-
ogy is extensively developed in [Pfa77]. The problem is that nbhrs is a map defined on the class
of VERTEX elements into the class of sets of VERTEX elements. It is a recursive definition. To
effect this we use a FORWARD class declaration as in the following code:

main ()
/*
** This program defines a generic space of
** of directed graphs
**
** A GRAPH is regarded as a SET of VERTEX elements
** together with a map ’nbhrs’.
*/
{

<< open_ADAMS job_id >>

<< id instantiates_a STRING_ATTR >>
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<< VERTEX isa CLASS, FORWARD >>

<< VERTEX_MAP isa MAP
with image VERTEX >>

<< VERTEX_SET isa SET
of VERTEX elements >>

<< VERTEX_SET_MAP isa MAP
with image VERTEX_SET >>

<< nbhrs instantiates_a VERTEX_SET_MAP >>
<< vertices instantiates_a VERTEX_SET_MAP >>

<< VERTEX isa CLASS
having attrs = { id }
having maps = { nbhrs } >>

<< DI_GRAPH isa CLASS
having attrs = { id }
having maps = { vertices } >>

<< close_ADAMS job_id >>
}

Alternative Definition of Directed Graphs
Figure 5-2.

To access all vertices that are reachable from from a designated vertex one could write the
following closure procedure. We observe that this is simply a generalization of the parts explo-
sion problem, where one considers VERTEX elements to be a PART elements, and the map
nbhrs to be a is_a_subpart_of map. Then the closure is the set of all parts of which the desig-
nated PART is contained_in .

<< ADAMS_var vertex, reachable >> /* formal parameter */

<< ADAMS_procedure closure ( VERTEX vertex, VERTEX_SET reachable ) >>
/*
** Determine the closure of ’vertex’,
** that is, the set of all vertices that are reachable from it,
** and return this set as ’reachable’.
*/
int bndy_size;

<< ADAMS_var v1, v2, old_bndy, new_bndy >>

/* initialize the set ADAMS_vars */
<< old_bndy instantiates_a VERTEX_SET

scope is LOCAL >>
<< new_bndy instantiates_a VERTEX_SET

scope is LOCAL >>

<< insert vertex into old_bndy >>
bndy_size = 1;
while (bndy_size > 0)

{
<< new_bndy <- NULLSET >>
<< for_each v1 in old_bndy do
<< for_each v2 in v1.nbhrs do
<< insert v2 into reachable >>
<< insert v2 into new_bndy >>

>>
>>

<< old_bndy <- new_bndy >>
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<< | bndy_size int | <- old_bndy.cardinality >>
}

<< end_ADAMS_procedure >>

A Graph Closure Procedure
Figure 5-3.

We hasten to observe that the primary purpose of ADAMS is to designate and access por-
tions of a persistent data space, not to perform computational operations within the data space
itself as this procedure does. Nevertheless, this procedure does illustrate that the ADAMS
language does possess rather powerful designational capabilities.

5.2. Arrays and Matrices
ADAMS does not explicitly provide either an array or matrix class, however the ability to

subscript element names allows the user to do so in a variety of ways. Let us consider the
definition of doubly subscripted, m ×n real matrices. The most obvious, but not necessarily best,
way to regard a matrix as a doubly subscripted set of elements, each of which has single associ-
ated real attribute, say r_val , as in:

<< val instantiates_a REAL_ATTR >>
<< REAL_MATRIX_ELEMENT isa CLASS

having attrs = { r_val } >>
<< x[*,*] instantiates_a REAL_MATRIX_ELEMENT >>

The value of any matrix element can now be denoted by
x [i ,j ].r_val .

But, this is a rather unsatisfactory approach for several reasons. The primary disadvantage is that
the matrix is not a single ADAMS element, but rather a family of subscripted elements. One can-
not easily pass the matrix as a parameter to procedures.

The approach we actually use in ADAMS is based on subscripting attributes, not the ele-
ments on which the attribute is defined [PfF90]. For example, consider the class declaration

main()
/*
** Test subscripted definitions and matrix operations
*/
{

<< open_ADAMS job_id >>

<< REAL_ATTR isa CODOMAIN
consisting of #[-|+]?[0-9]*.[0-9]*#
treat_as numeric
udf = ’0.0’ >>

<< r_val[*,*] instantiates_a REAL_ATTR >>

<< 3x3_REAL_MATRIX isa CLASS
having { r_val[1..3,1..3] } >>

<< 4x4_REAL_MATRIX isa CLASS
having { r_val[1..4,1..4] } >>

<< 3x4_REAL_MATRIX isa CLASS
having { r_val[1..3,1..4] } >>

<< close_ADAMS job_id >>
}

Declaration of Real Matrix Classes
Figure 5-4.
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which we will test below with a matrix multiplication. There are three features of interest here.
First, it is seen that a matrix is a single ADAMS element with multiple, subscripted attributes
defined on it — r_val [1,1], r_val [1,2], ..., r_val [3,2], r_val [3,3], r_val [3,4]. Second, we use
<subscript_range >’s to compactly describe these enumerated sets. Finally, in the case of sparse
matrices in which many matrix elements are zero, we do not want to specifically store a zero
value; we would prefer to simply regard the element as undefined. This is how ADAMS handles
sparse matrices. Only non-zero attributes are represented. But, this requires the re-declaration of
the REAL_ATTR codomain so that the udf value is ’0.0’, instead of the system default
For this user, REAL_ATTR will be as declared here, instead of the predefined REAL_ATTR
codomain provided by the ADAMS system. (C.f. Section 6 for a fuller explanation of this.)

Because the following code is only a test program, it instantiates the matrices x , y , and y ,
with LOCAL scope; we do not want them to be persistent. It then initializes them with arbitrary
values. Values below the main diagonal of y are undefined, or zero. The two matrices are then
displayed, as initialized, multiplied, and the result z displayed.

main()
/*
** Test matrix multiply.
*/
{
char jobid[10];
int i, j, k;
float x_value, y_value, z_value, sum;

<< open_ADAMS job_id >>

<< x instantiates_a 3x3_REAL_MATRIX scope is LOCAL >>
<< y instantiates_a 3x4_REAL_MATRIX scope is LOCAL >>
<< z instantiates_a 3x4_REAL_MATRIX scope is LOCAL >>

/* initialize matrix ’x’ */
for (i=1; i<=3; i++)

{
printf ("");
for (j=1; j<=3; j++)

{
x_value = -5 + 2*i + 3*(i-j);
printf ("%6.1f ", x_value);

<< x.r_val[i,j] <- | x_value float | >>
}

printf ("0);
}

/* initialize matrix ’y’ */
/* as upper diagonal */

for (i=1; i<=3; i++)
{
printf ("");
for (j=i; j<=4; j++)

{
y_value = 4 + 3*i - 2*(j-i);
printf ("%6.1f ", y_value);

<< y.r_val[i,j] <- | y_value float | >>
}

printf ("0);
}

/* display ’x’ and ’y’ */
printf ("x =0);
for (i=1; i<=3; i++)
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{
printf ("");
for (j=1; j<=3; j++)

{
<< | x_value float | <- x.r_val[i,j] >>

printf ("%6.1f ", x_value);
}

printf ("0);
}

printf ("y =0);
for (i=1; i<=3; i++)

{
printf ("");
for (j=1; j<=4; j++)

{
<< | y_value float | <- y.r_val[i,j] >>

printf ("%6.1f ", y_value);
}

printf ("0);
}

/* ’z’ <- ’x’ * ’y’ */
for (i=1; i<=3; i++)

{
for (j=1; j<=4; j++)

{
sum = 0;
for (k=1; k<=3; k++)

{
<< | x_value float | <- x.r_val[i,k] >>
<< | y_value float | <- y.r_val[k,j] >>

sum += x_value * y_value;
}

<< z.r_val[i,j] <- | sum float | >>
}

}
/* display ’z’ */

printf ("z =0);
for (i=1; i<=3; i++)

{
printf ("");
for (j=1; j<=4; j++)

{
<< | z_value float | <- z.r_val[i,j] >>

printf ("%6.1f ", z_value);
}

printf ("0);
}

<< close_ADAMS job_id >>
}

A Matrix Multiply Program to Test ADAMS Subscripting
Figure 5-5.

which generates as output
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x =
-3.0 -6.0 -9.0
2.0 -1.0 -4.0
7.0 4.0 1.0

y =
7.0 5.0 3.0 1.0
0.0 10.0 8.0 6.0
0.0 0.0 13.0 11.0

z =
-21.0 -75.0 -174.0 -138.0
14.0 0.0 -54.0 -48.0
49.0 75.0 66.0 42.0

Again, we would emphasize that ADAMS is not intended to be a computational language; it
should not be used for matrix operations. But, this example does illustrate some of the more
interesting possibilities that subscripted identifiers provides.

It also illustrates a major deficiency in the language as it now exists!

One would like to be able to define and implement generic matrix operators whose dimen-
sions m and n are variable. One would like to have parameterized class declarations of the form

<< $1_x_$2_REAL_MATRIX isa CLASS
having { r_val[1..$1,1..$2] } >>

where a macro substitution of the parameters $1 and $2, say by 3 and 4, as in the class name
3_x_ 4_REAL_MATRIX denotes the corresponding element class. In the formal syntax of Section
7, we find that class names can contain parameter segments, or <param_seg >, which constitute
stubs for developing this capacity in the next version, but for now they are not implemented.

5.3. Dynamic Schema Modification
Because attributes are ADAMS elements, because elements may be added and deleted from

sets, and because the attributes associated with class declarations are sets, one may dynamically
alter class declarations in ADAMS. This is sometimes called dynamic schema evolution. A sam-
ple program that we use to modify existing class declarations in large applications, without
recompiling and reloading the entire database is:

main()
/*
** This program adds new attributes to CLASS->attrs
*/
{
char class_name[80], attr_name[80];

<< open_ADAMS job_id >>
<< ADAMS_var a, a_set >>

printf ("enter CLASS to be modified (# to quit) > ");
scanf ("%s", class_name);
while (*class_name != ’#’)

{
<< a_set <- var class_name->attrs >>

printf ("\tcurrent attributes in %s->attrs\n{ ",
class_name);

<< for_each a in a_set do
<< | attr_name char* | <- a.name_of >>

printf (" %s", attr_name);
>>

printf (" }\n");

printf ("enter attribute to be added to class ’%s’ > ",
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class_name);
scanf ("%s", attr_name);

<< insert var attr_name into var class_name->attrs>>

printf ("\tcurrent view of associated %s attributes\n\t{ ",
class_name);

<< a_set <- var class_name->attrs >>
<< for_each a in a_set do
<< | attr_name char* | <- a.name_of >>

printf (" %s", attr_name);
>>

printf (" }\n");

printf ("\tcurrent view of ALL %s attributes\n",
class_name);

printf ("\t\tincluding superclass attributes\n\t{ ");
<< for_each a in var class_name.attributes_of do
<< | attr_name char* | <- a.name_of >>

printf (" %s", attr_name);
>>

printf (" }\n");

printf ("enter CLASS to be modified (# to quit) > ");
scanf ("%s", class_name);
}

<< close_ADAMS job_id >>
}

Dynamic Addition of Attributes to a Class Declaration
Figure 5-6.

Readily, similar code can be written to delete attributes, or to add and delete maps from a declara-
tion.

Addition of new attributes or maps cannot invalidate existing application code; but deletion
can cause problems if the attribute/map is explicitly named. Care must be taken.

5.4. Relational Joins
The most important relational joins are lossless joins. As discussed in Section 2.5, a join

r s is lossless if the join attribute(s) constitute a key to one of operand relation sets, say of s ;
that is if the join attribute(s) function as a symbolic pointer to a unique element in s , or foreign
key. In ADAMS, such joins are represented, not by symbolic attribute value(s), but rather by a
map function declared on the class R of tuples in r into the class S of tuples in s . The advisor
map, defined in Figure 3-1, is representative of such a many-to-one relationship from STUDENT
elements to INSTRUCTOR elements, which in the relational model would typically be imple-
mented by an equi-join of an advisor attribute in STUDENT tuples with the last_name attribute
in INSTRUCTOR tuples. In ADAMS, the corresponding INSTRUCTOR element is obtained by
the <elem_desig >

t.advisor

An important advantage of representing such symbolic pointers by maps is that maps can be
concatenated in designational expressions, thereby eliminating the need for multiple joins. For
example, if in the development of the school database we had created a DEPARTMENT class to
represent individual department elements at the university, we could replace the dept attribute in
the INSTRUCTOR class with a dept map. Now the E-R diagram would look like
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dept

DEPARTMENT: (name, bldg, school)

INSTRUCTOR: (last_name, first_name, age, rank)

advisor

STUDENT:(last_name, first_name, age, gpa)

and we could obtain a student’s major department, that is the department of his, or her, advisor by
the expression

t.advisor.dept

and the name of that department by the expression

t.advisor.dept.name

All CS students could be denoted by

{ t in students | t.advisor.dept.name = ’CS’ }

No joins have been required.

Moreover, to change the structure of the database as we have just done does not require a
reformating of the INSTRUCTOR elements. It is sufficient to simply remove the dept attribute
from the set of attributes associated with the INSTRUCTOR class and insert a dept map into the
associated set of maps, as described in Section 5.3 above.

While virtually all of the join operations required in the relational model can be replaced by
map constructs, there may occur cases where one wants to execute a natural join given a rela-
tional model. The following code, although complex, does so with considerable efficiency when
there is only one join attribute. Its primary purpose is to illustrate that it is possible to completely
emulate the relational algebra in ADAMS, and thus ADAMS has at least the power of a relational
database.

<< ADAMS_var r, s, join >> /* Formal parameters */

<< ADAMS_procedure nat_join ( GENERIC_SET r, GENERIC_SET s,
GENERIC_SET join ) >>

/*
** This procedure implements the natural join of ’r’ with ’s’,
** (i.e. over all common attributes) to form ’join’
** Note that both ’join’ and its associated classes are
** LOCAL, i.e. non-persistent.
*/
char class_name[81], r_value[81], s_value[81];
char JOIN_TUPLE[21], JOIN_SET[21];
char generate_name();
int tuples_join;

<< ADAMS_var r_tuple, s_tuple, s_tuples, R, S, RS >>
<< ADAMS_var a, join_attrs, t >>

/* First determine the schema */
/* R and S of ’r’ and ’s’ */

<< | class_name char* 80 | <- r.element_of.class_of >>
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<< R <- var class_name . attributes_of >>
<< | class_name char* 80 | <- s.element_of.class_of >>
<< S <- var class_name . attributes_of >>

<< join_attrs <- R intersect S >>
<< | size int | <- join_attrs.cardinality >>

if (size == 0)
{
printf ("\tthe join operands have no attributes in common\n");
printf ("\treturning a NULLSET\n");

<< join <- NULLSET >>
goto exit_proc;
}

/* Now, declare the join_set */
/* and join_tuple classes */
/* NOTE! We must generate new */
/* names for every invocation */

strcpy (JOIN_TUPLE, generate_name());
strcpy (JOIN_SET, generate_name());

<< RS <- R union S >>
<< var JOIN_TUPLE isa CLASS

having RS
scope is LOCAL >>

<< var JOIN_SET isa SET
of var JOIN_TUPLE elements
scope is LOCAL >>

if (size == 1)
{ /* Better, indexed retrieval join */

/* ’a’ is the unique join attr */
<< a <- join_sttrs.element_of >>
<< for_each r_tuple in r do
<< s_tuples <- { s_tuple in s | s_tuple.a = r_tuple.a } >>
<< for_each s_tuple in s_tuples do

/* concatenate with r_tuple */
<< t instantiates_a JOIN_TUPLE,

scope is LOCAL >>
<< for_each a in R do
<< t.a <- r_tuple.a >>

>>
<< for_each a in S do
<< t.a <- s_tuple.a >>

>>
<< insert t into join >>

>>
>>

}
else

{ /* Brute force, iteration join */
<< for_each r_tuple in r do
<< for_each s_tuple in s do

tuples_join = 1;
<< for_each a in join_attrs do
<< | r_value char* 80 | <- r.a >>
<< | s_value char* 80 | <- s.a >>

if (strcmp(r_value, s_value) != 0)
{
tuples_join = 0;

<< exit_loop >>
}

>>
if (tuples_join)

{ /* concatenate with r_tuple */
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<< t instantiates_a JOIN_TUPLE,
scope is LOCAL >>

<< for_each a in R do
<< t.a <- r_tuple.a >>

>>
<< for_each a in S do
<< t.a <- s_tuple.a >>

>>
<< insert t into join >>

}
>>

>>
}

exit_proc:
<< end_ADAMS_procedure >>

char *generate_name ()
/*
** Generate a unique name on each iteration
*/
{
static char name[5] = "abcd";
static char prefix = ’a’;

*name = prefix++;
return name ;
}

A General Relational Join Procedure
Figure 5-7.

Of greatest interest in this code is the need to declare the JOIN_TUPLE and JOIN_SET classes
on the fly. But, classes must be named; and the name must be distinct for every invocation. Con-
sequently the code generates synthetic names and uses the var <host_variable > construct
described in Section 4.1.1. Equi-joins over different attributes, or more general theta-joins, could
be similarly coded, by passing the appropriate join attributes as formal parameters.
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6. The ADAMS Name Space
Although we have repeatedly been using class and element names in our code and exam-

ples, and have mentioned the ADAMS name space, we have really said very little about it. And
yet, it is at the heart of the ADAMS language — it is what makes ADAMS more than just another
database system. In this section, we examine the nature of the ADAMS name space.

It should be evident that, at a fundamental level, all access to data requires the existence of
symbolic names that denote data elements. The most familiar example is the use of symbolic
variable names to denote the data values used in a host language process or procedure. Of course,
not all data elements need to be so named. In many languages, storage can be dynamically allo-
cated to create linked structures of considerable complexity in which constituent elements may be
unnamed. Use of the ADAMS statement

<< <ADAMS_var> instantiates_a <class_name> >>

is in many ways analogous to the use of

<pointer_var> = (<type> *) malloc (sizeof(<type>));

in C, or

new (<pointer_var>);

in Pascal. It instantiates an unnamed element of the appropriate class to which <ADAMS_var >
points (or denotes). Nevertheless, every process requires at least one symbolic variable name, it
might be root or current_node in the case of a tree structure, to gain access into the linked struc-
ture itself. In [KhC86], Khoshafian and Copeland make clear that there exist a large variety of
other mechanisms for denoting data elements, that is for establishing element identity, without
explicitly naming them. For example, individual elements (or tuples) in a set (or relation) may be
denoted by iterating over the set or by retrieval on a key attribute. This is true; but the set itself
must be named, or its identity eventually derived from a set expression involving symbolic
names.

One can never eliminate symbolic naming. In many respects it is what make a program-
ming system into a "language".

A cardinal rule of programming is that symbolic names should be mnemonic, not artificial.
But this may be difficult to achieve. Humans have a relatively small set of meaningful words for
most concepts. Frequently, the same mnemonic name is appropriate for different data elements.
In scientific programming, x, f, and i are heavily overworked names for real numbers, functions,
and subscripts respectively. However, every symbolic name must be uniquely bound to a single
element that it denotes. In particular, the same persistent name cannot be arbitrarily reused in dif-
ferent programs. Consequently, our store of appropriate mnemonic names is quickly exhausted.

A technique that is commonly used to expand a name space and provide for name reusabil-
ity is to partition it. The same symbolic name appearing in distinct subsets of the partition are
assumed to denote different elements; they are, in fact, different names. In traditional program-
ming languages, the variable x declared in two separate procedures denotes different variables.
The name space is implicitly partitioned with respect to the procedure names, and, if it is a recur-
sive language, with respect to different procedure invocations. Because of this, the same sym-
bolic name, say x , may be used in two different programs, or in two different invocations of the
same program, to denote different data elements. Partitioning the variable name space with
respect to individual procedures is so convenient that we almost do it instinctively.

6.1. Name Space Hierarchy and Task Partitions
ADAMS provides for both an explicit partitioning of its name space to allow use of identi-

cal data names by different users, and for a hierarchical subdivision to facilitate sharing of other
data names. Currently, the persistent ADAMS name space consists of three levels, called

46



visibility scopes. Names at SYSTEM scope are visible to all users and all processes. Names of
USER scope are only visible to a single user. Both the user, and his name space, are identified by
his login id. Consequently the data name x declared by user mrj2p is invisible to user rfh2y, and
distinct from any name x declared by rfh2y. In between the USER and SYSTEM scopes is a
TASK scope consisting of various named tasks. Names in a particular TASK name space may be
visible to some users, but not necessarily all users. In addition, there is a non-persistent LOCAL
scope consisting of those names which are visible only to the executing process. Schematically, a
snapshot of the ADAMS name space might look like

stu_enter test_mult

system

adams matrixschool

jlpmrj2p rfh2yjcf7e

LOCAL

USER

TASK

SYSTEM

Snapshot of the ADAMS name space
Figure 6-1

when users mrj 2p and jlp are executing a student entry program and test of matrix multiply,
respectively. Each of the users jcf7e, mrj2p, rfh2y and jlp has his own private USER name space.
The data names, and hence corresponding data elements, in the subspaces of the TASK partition,
school and adams are visible to both jcf 7e and mrj 2p ; only those in adams are visible to
rf h 2y ; while all TASK name space partitions a visible to jlp . The task partition adams is visi-
ble to all users, by default. An ADAMS statement embedded in a host language procedure may
reference any symbolic name that is visible to that procedure.

When an ADAMS name, or <actual_name >, is encountered in an ADAMS statement, say
in the process test_mult , it is first compared with the list of known ADAMS variables. If it is not
one of these, the LOCAL name space and then the USER name space are examined. If the name
is not found here, a TASK name space is examined; and if not found here, the SYSTEM name
space is examined. All <actual_name > resolution follows this kind of bottom-up search through
the hierarchical name space.

When names are created as the result of either a isa or instantiates_a statement, the name
may be entered into the name space at any scope by means of a <scope_clause >, as in

<< mary instantiates_a STUDENT
scope is TASK >>

The appropriate portion of the name space is examined to verify that the name, in this case mary ,
does not already exist. If it does, at the time a preprocessing, a preprocessor ERROR is gen-
erated. If by chance, between the time of preprocessing and execution, the name has been entered
into the name space by a different process, a run-time failure occurs, and in the current version
execution aborted with an ERROR message.

Because the same symbolic name, for example type , may appear in two different TASK
partitions, say in matrix and adams , with different denotational meanings (e.g. one may denote
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an attribute, while the other denotes a map), there is a possibility of ambiguity when it is used in
an ADAMS statement. To resolve this ambiguity, a program containing ADAMS statements can
only refer to one TASK partition. This is established when the code is first interpreted by the
preprocessor. If, for example, jlp is compiling an matrix program he would use the command

adams -t matrix <source_file_name>

If the school name space is to be used, the command

adams -t school <source_file_name>

would resolve ADAMS names with respect to that name space. The simple preprocessor com-
mand

adams <source_file_name>

that we saw in Section 2.6, makes use of a default adams TASK name space to which all users
are attached. Thus, at the time of preprocessing ADAMS code, a unique path through the name
space is established, and the interpretation of all symbolic ADAMS names is resolved along this
path.

All names visible along any particular path can be displayed by the utility viewpath , which
also displays their scope and general nature, e.g. CLA(ss), COD(omain), or INS(tance). The
same symbolic name may appear in different portions of the name space with different meanings.
For completeness, we must note that the same name may be used to denote a class, a codomain,
and an element instance, all within the same portion of the name space. ADAMS will differen-
tiate on the basis of syntactic usage — however, we heartily disapprove of this practice!

The ability to enter the same name, but with different denotational meanings, at different
levels of the name space can be quite powerful. We say that the lower level name masks the one
at higher scope. This is why we were able to redefine the meaning of the codomain name REAL
in the declaration of MATRIX classes in Figure 5-4. This definition of the REAL codomain was
installed in the USER name space, and so became the definition that was used when the name
REAL was resolved in subsequent code. But, name masking can also cause problems. We may
want to use the name at the higher scope. If it is known that the desired meaning of an ADAMS
name is one at a higher level in the name space and we suspect possible masking, the default
bottom-up method of name resolution may be circumvented by using a scoped name, in which
the desired scope preceeds the name. For example, if in the matrix applications we wanted to
declare some real attributes of class R_ATTR with respect to the system defined REAL
codomain, we could declare

<< R_ATTR isa ATTRIBUTE
with image SYSTEM REAL >>

The programmer has considerable freedom to control the resolution of ADAMS names with their
denotational meanings.

Because the ADAMS name space is dynamic, name masking can lead to other problems.
Entry of a persistent name at one scope, may mask another at higher scope that had hitherto been
used in run-time lookup. A working program may begin to fail. Similarly, erasure of a name
may unmask a name at higher scope, resulting in erratic behavior. Rescoping a name from one
scope to another can also cause both masking and unmasking problems. ADAMS can determine
when entry, erasure, or rescoping of a name will change the name masking along a visibility path,
and it can broadcast a message to all users who might be affected.†22 But, it cannot prevent com-
piled code from behaving anomalously. This characteristic of dynamic, persistent name spaces
remains an open research issue.
�����������������������������������������������������������������������

†22 This is not currently implemented.
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The structure of the ADAMS name space is also dynamic. Any ADAMS user can create a
new subspace at the shared TASK scope with the command newtask. For example, jcf7e might
create the task graph to store the class declarations of various graph procedures, so that the per-
sistent name space now would look like

graph

system

adams matrixschool

jlpmrj2p rfh2yjcf7eUSER

TASK

SYSTEM

Persistent ADAMS name space
after jcf7e creates a new graph task

Figure 6-2

No user "owns" a task, nor any of the data denoted by names in a task or system subspace. These
names, and this data, are by definition "shared". In its current incarnation, any ADAMS user may
invoke addtask to make the data names, and data elements, of any task at available to his pro-
cedures. In a more widely distributed, commercial version some control, based on permissions,
must be incorporated in the addtask facility. Currently, the only implemented permission regards
name erasure. Shared names may only be erased by their creators.

6.2. Name Space Utilities
There are a number of command line utilities that can be used to view and manipulate the

name space. As ADAMS evolves, we expect there will be more. The existing utilities are:

newuser - Create a new USER name space
newtask - Create a new TASK name space partition
addtask - Add a user to a task, i.e. make it visible

namespace - Display all portions of the name space visible to the user
viewpath - Display the name space visible along a single path

warmstart - Erase selected entries in the name space, made by the user

The warmstart utility is of considerable value when developing new applications. It provides for
the selective erasure of names, especially class declarations, that have been made by the user that
are incorrect for some reason. However, like all erasure, it does not delete any associated struc-
tures and so may leave unaccessible detritus in the ADAMS data space.
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7. Syntax of ADAMS
This section presents the formal syntax of ADAMS as a phrase structure grammar, such as

might be used by a parser like yacc [Joh75], to accept ADAMS statements. To assure correct-
ness, it is, in fact, the yacc grammar that our preprocessor currently uses. Those constructs which
will be parsed correctly, but for which no code generation is as yet provided, are again marked
with †.

7.1. Lexical Tokens
The following is a table of the tokens of the language, together with the source code strings

that generate them. All reserved ADAMS words, such as intersect , f or_each , isa , are included
here, together with certain kinds of delimited strings.

We would note that the current version of ADAMS is case insensitive; the source code
strings f or_each , FOR_EACH , and For_Each will all be interpreted as the FOR_EACH token.
In some cases, other alternative strings, such as f or_all , may also be recognized as a token.
These alternative strings have been indicated.

lex TOKEN Corresponding String (all are case insensitive!)
______________ ____________________
ABORT abort
A_UID_OF A_uid_of
ADAMS_PROC ADAMS_procedure
ADAMS_VAR ADAMS_var
†ALL all
AND and
ASSIGN_OP <-
ATTRIBUTE ATTRIBUTE
ATTRIBUTES_OF attributes_of
BAR |
CARDINALITY cardinality
<string>CHARS [a-zA-Z0-9]+
CLASS_OF class_of
CLASS_TOKEN CLASS
CLOSE close_ADAMS
CODOMAIN CODOMAIN
COLON :
COMPLEMENT complement
CONSISTING consisting (or consisting of)
DELETE delete
<string>DIGITS [0-9]+
DO do
ELEMENTS elements
ELEMENT_OF element_of
END_ADAMS_PROC end_ADAMS_procedure
EQUAL =
ERASE erase
EXIT_LOOP exit_loop
†EXISTS exists
FOR_EACH for_each (or for_all)
FORWARD forward
†<string>FREE_VAR @[a-zA-Z]
FROM from
GREATER_EQ >=
GREATER_THAN >
HAVING having
<string>HOST_EXPR_STR @[a-zA-Z0-9 _+*/-%]*@
<string>HOST_PARAM_STR $[a-zA-Z0-9 {}()[]&,_:.|+*/-"0]*$
IMAGE image
INSERT insert
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INSTANTIATES_A instantiates_a
IN in
INTERSECT intersect
INTO into
INVOKE invoke
ISA isa
L_CURL {
LESS_EQ <=
LESS_THAN <
<string>LITERAL_VALUE ’[#"a-zA-Z0-9_,;:@!~ {}()[]<>?.|$+*/-%’

or "[#’a-zA-Z0-9_,;:@!~ {}()[]<>?.|$+*/-%"
†LOCK lock
L_PAREN (
L_SQUARE [
LOCAL_TOKEN LOCAL
MAP_TOKEN MAP
MAPS_OF maps_of
NAME_OF name_of
NOT_EQ !=
NULLSET nullset
OR or
OPEN open_ADAMS
†<string>PARAM $[1-99]
PERIOD .
PROTOTYPE ADAMS_prototype
PROVIDED provided
R_CURL }
R_PAREN )
R_SQUARE ]
†RANDOM random
RANGE ..
REMOVE remove
†RESCOPE rescope
<string>REG_EXPR #["’a-zA-Z0-9_,;:@!~ {}()[]<>?.|$+*/-%#
SEMI ; NOTE, ; is illegal in any ADAMS statement (except string)
SCOPE scope (or scope is)
SET_TOKEN SET
SET_ASSOC_OP ->
STAR *
STMT_BEGIN <<
STMT_END >>
SYSTEM_TOKEN SYSTEM
TASK_TOKEN TASK
TREAT_AS treat_as
†TR_START tr_start
†TR_END tr_end
<string>TYPE int, float, double, char*, or UID
UDF udf
UKN ukn
UNDER _
UNION union
†UNLOCK unlock
USER_TOKEN USER
VAR var

7.2. Grammar Productions
The following productions have been stripped from the yacc parser, and slightly modified

for readability, and grouped according to their general purpose. All presume the tokens of the
preceding section.
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adams_body: ∈ empty body
| adams_body adams_stmt

adams_stmt: STMT_BEGIN attr_decl_stmt STMT_END
| STMT_BEGIN a_proc_decl_stmt STMT_END
| STMT_BEGIN a_proc_end_stmt STMT_END
| STMT_BEGIN assign_stmt STMT_END
| STMT_BEGIN class_decl_stmt STMT_END
| STMT_BEGIN close_stmt STMT_END
| STMT_BEGIN codomain_decl_stmt STMT_END
| STMT_BEGIN element_inst_stmt STMT_END
| STMT_BEGIN exit_loop_stmt STMT_END
| STMT_BEGIN insert_stmt STMT_END
| STMT_BEGIN a_proc_invoke_stmt STMT_END
| STMT_BEGIN looping_stmt STMT_END
| STMT_BEGIN map_decl_stmt STMT_END
| STMT_BEGIN open_stmt STMT_END
| STMT_BEGIN a_prototype_stmt STMT_END
| STMT_BEGIN remove_stmt STMT_END
| STMT_BEGIN set_decl_stmt STMT_END
| STMT_BEGIN ADAMS_var_stmt STMT_END

Open, Close Statements:

open_stmt: OPEN actual_name

close_stmt: CLOSE actual_name

Codomains:

codomain_decl_stmt: dict_class_entry ISA CODOMAIN membership_clause
cod_decl_options

membership_clause: CONSISTING REG_EXPR

cod_decl_options: ∈ empty options
| cod_decl_options cod_decl_opt

cod_decl_opt: undefined_clause
| unknown_clause
| treat_as_clause
| scope_clause

treat_as_clause: TREAT_AS actual_name

undefined_clause: UDF EQUAL literal

unknown_clause: UKN EQUAL literal

codomain_name: actual_name
| param_seg
| scope codomain_name
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Class and Element Declarations:

class_decl_stmt: dict_class_entry ISA super_class_list
class_decl_body

class_decl_body: ∈ empty class declaration
| class_decl_options

class_decl_options: class_decl_opt
| class_decl_options class_decl_opt

class_decl_opt: scope_clause
| association_clause
| restriction_clause
| FORWARD

association_clause: HAVING set_desig
| HAVING actual_name EQUAL set_desig

†restriction_clause: PROVIDED L_SQUARE predicate R_SQUARE

super_class_list: CLASS_TOKEN
| class_name
| super_class_list AND class_name

element_inst_stmt: dict_inst_entry INSTANTIATES_A class_name
opt_scope_clause

opt_scope_clause: ∈ empty clause
| scope_clause

Attribute and Map Declarations:

attr_decl_stmt: dict_class_entry ISA ATTRIBUTE
IMAGE codomain_name
class_decl_options

| dict_class_entry ISA ATTRIBUTE
IMAGE codomain_name

map_decl_stmt: dict_class_entry ISA MAP_TOKEN
IMAGE class_name
class_decl_options

| dict_class_entry ISA MAP_TOKEN
IMAGE class_name

Set Declarations, Operators, and Loops:

set_decl_stmt: dict_class_entry ISA SET_TOKEN set_type ELEMENTS
class_decl_options

| dict_class_entry ISA SET_TOKEN set_type ELEMENTS

insert_stmt: INSERT element_desig INTO set_desig

remove_stmt: REMOVE element_desig FROM set_desig

looping_stmt: loop_prefix loop_body

loop_prefix: FOR_EACH ADAMS_var IN set_expr DO

loop_body: %prec error empty body is error
| adams_stmt
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| loop_body adams_stmt

exit_loop_stmt: EXIT_LOOP

set_type: class_name
| ATTRIBUTE
| MAP_TOKEN
| SET_TOKEN

Assignment Operators and Expressions:

assign_stmt: host_var ASSIGN_OP value_desig
| left_side ASSIGN_OP host_var
| left_side ASSIGN_OP literal
| left_side ASSIGN_OP element_desig
| left_side ASSIGN_OP set_expr

left_side: element_name
| dot_expr

dot_expr: element_desig PERIOD element_name
| †free_var PERIOD element_name

set_expr: set_desig
| L_PAREN set_expr R_PAREN
| set_expr COMPLEMENT set_expr
| set_expr INTERSECT set_expr
| set_expr UNION set_expr

Predicates:

predicate: disjunct
| predicate OR disjunct

disjunct: conjunct
| disjunct AND conjunct

conjunct: term
| L_PAREN predicate R_PAREN
| †quantifier L_SQUARE predicate R_SQUARE

term: domain_comparison
| element_desig EQUAL element_desig
| element_desig NOT_EQ element_desig
| †free_var EQUAL element_desig
| †free_var NOT_EQ element_desig

domain_comparison: value_desig comparator value_desig comparator value_desig
| host_var comparator value_desig comparator host_var
| value_desig comparator value_desig comparator host_var
| host_var comparator value_desig comparator value_desig
| value_desig comparator value_desig
| host_var comparator value_desig
| value_desig comparator host_var

comparator: EQUAL
| NOT_EQ
| LESS_THAN
| LESS_EQ
| GREATER_THAN
| GREATER_EQ
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†quantifier: L_PAREN ALL bound_var IN set_desig R_PAREN
| L_PAREN EXISTS bound_var IN set_desig R_PAREN

†free_var: FREE_VAR

bound_var: ADAMS_var

Element, Set, and Value Designators:

element_desig: element_name
| dot_expr

set_desig: element_desig
| enumerated_set
| retrieval_set
| class_name SET_ASSOC_OP actual_name
| NULLSET

enumerated_set: L_CURL enumeration_list R_CURL
| L_CURL R_CURL empty enumerated set

enumeration_list: enumeration_element
| enumeration_list enumeration_element

enumeration_element: actual_name may also be ADAMS_var
| scope actual_name
| subscripted_name_range
| enumeration_element PERIOD enumeration_element

retrieval_set: L_CURL bound_var IN set_expr BAR predicate R_CURL

value_desig: dot_expr
| literal

literal: LITERAL_VALUE

ADAMS Names:

char_seg: CHARS

param_seg: PARAM

actual_name: actual_name UNDER char_seg
| actual_name UNDER DIGITS
| char_seg

†param_name: param_seg
| actual_name UNDER param_seg
| param_name UNDER CHARS
| param_name UNDER DIGITS
| param_name UNDER param_seg

class_name: actual_name
| scope actual_name
| VAR actual_name

host_var: BAR host_var_name specifier BAR

host_var_name: actual_name
| actual_name PERIOD actual_name
| STAR actual_name PERIOD actual_name
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specifier: var_type
| var_type DIGITS

var_type: TYPE

subscripted_name: actual_name L_SQUARE subscript_list R_SQUARE
| scope actual_name L_SQUARE subscript_list R_SQUARE

subscripted_name_range: actual_name L_SQUARE range_subscript_list R_SQUARE

range_subscript_list: range_subscript_list range_subscript
| range_subscript

range_subscript: subscript_value RANGE subscript_value
| subscript_value

subscript_list: subscript_value
| subscript_value subscript_list

subscript_value: integer
| host_var_name
| HOST_EXPR_STR
| †param_seg

subscript_pattern: actual_name L_SQUARE subscript_count R_SQUARE

subscript_count: STAR
| subscript_count STAR

integer: DIGITS

ADAMS_var: actual_name

ADAMS_var_list: ADAMS_var
| ADAMS_var_list ADAMS_var

ADAMS_var_stmt: ADAMS_VAR ADAMS_var_list

element_name: actual_name may also be ADAMS_var
| scope actual_name
| VAR actual_name
| subscripted_name
| reserved_attr_name

reserved_attr_name: NAME_OF
| CLASS_OF
| CARDINALITY
| ATTRIBUTES_OF
| MAPS_OF
| ELEMENT_OF
| †RANDOM
| A_UID_OF
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ADAMS Name Space:

dict_class_entry: actual_name
| †param_name
| VAR actual_name
| †VAR param_name

dict_inst_entry: actual_name
| VAR actual_name
| subscript_pattern

scope_clause: SCOPE scope

scope: SYSTEM_TOKEN
| TASK_TOKEN
| USER_TOKEN
| LOCAL_TOKEN

ADAMS Procedures:

a_prototype_stmt: PROTOTYPE proc_name L_PAREN class_prototypes R_PAREN

class_prototypes: class_list host_param_list
| class_list
| host_param_list

class_list: class_name
| class_name class_list

a_proc_decl_stmt: ADAMS_PROC proc_name L_PAREN formal_proc_params R_PAREN

formal_proc_params: a_formal_param_list host_param_list
| a_formal_param_list
| host_param_list

a_formal_param_list: a_formal_param
| a_formal_param a_formal_param_list

a_formal_param: class_name actual_name

host_param_list: HOST_PARAM_STR

a_proc_end_stmt: END_ADAMS_PROC

a_proc_invoke_stmt: INVOKE proc_name L_PAREN actual_proc_params R_PAREN

actual_proc_params: a_actual_param_list host_param_list
| a_actual_param_list
| host_param_list

a_actual_param_list: a_actual_param
| a_actual_param a_actual_param_list

a_actual_param: element_desig

proc_name: actual_name
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