
PIPELINE DESCRIPTIONS FOR RETARGETABLE
COMPILERS:

A Decoupled Approach

A

Proposal

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

Christopher W. Milner

June 1998

Abstract

A good optimizing compiler must have detailed information about the target processor’s execution
pipeline in order to generate and schedule code with high levels of instruction-level parallelism. Current
state-of-the-art pipeline descriptions are tediously constructed on an instruction-by-instruction basis. These
descriptions often fail to capture important instruction scheduling constraints so artificial resources are
introduced to enforce these constraints. The result is a pipeline description that is difficult to maintain and
reuse; retargeting the compiler means retargeting each instruction and rethinking the purpose of each
artificial resource.

To address the above problems, the proposed research will develop a new, powerful approach for
describing modern instruction pipelines by separating the pipeline description from the instruction set
description. The proposed approach uses a graphical description of the pipeline and an accompanying
annotation language to describe the relevant behavior of the machine’s execution pipeline. Using the
descriptions of the pipeline and an existing description technique for instruction sets, it will be possible to
generate instruction scheduler information automatically. Furthermore, this decoupling of the pipeline
description from the instruction set description eases the burden of retargeting the compiler as new
instruction set extensions and new pipeline implementations appear.

1

PIPELINE DESCRIPTIONS FOR RETARGETABLE
COMPILERS:

A Decoupled Approach

1 Introduction
Modern processors use a variety of techniques, such as superpipelining and multiple instruction issue, to
exploit instruction level parallelism. A good optimizing compiler for this type of processor must have an
instruction scheduler to produce high performance code: studies have shown that even processors with
dynamic scheduling perform better with scheduled codes [LPU95, DH96]. Currently, instruction schedulers
are produced in one of two ways. Schedulers are either written in a systems programming language to
enforce ad hoc rules, or automatically generated from a pipeline description. As scheduling rules are
becoming more complex, compiler writers are abandoning the hand-coded approach in favor of generating
scheduling information from a pipeline specification.

There are problems with using pipeline descriptions to generate instruction schedulers. First, the
descriptions are written on an instruction-by-instruction basis. Modifying these descriptions is a tedious and
error prone process but is required when a new implementation of a processor is introduced. Second, there
are no clear rules about how to write these descriptions. This can lead to schedulers that permit
overconstrained or underconstrained schedules.

At first blush, the process of writing descriptions is straightforward: each instruction is described in
terms of the pipeline resources used and the specific cycles in which the resources are used. However, the
pipeline descriptions that result from this exercise are rarely easy to decipher. Because all instructions or
instruction classes must be specified, there is a tendency on the part of the compiler writer to use the sparest
of descriptions. When revisiting the specification, it is often unclear why one resource was used when
another was not. Also, when the architecture is modified, such as when a new pipeline stage is introduced,
the specification for each instruction must be carefully rewritten to reflect the change in the underlying
implementation.

Writing pipeline descriptions that result in correct schedulers is not a well delineated cookbook
exercise. In practice, a first cut at describing a pipeline will result in an instruction scheduler that does not
fully capture resource and ordering constraints. To remedy these shortcomings, the pipeline description is
often augmented with artificial resources. Artificial resources come with their own set of problems.
Artificial resources can make the description confusing as they do not correspond directly to resources in
the pipeline. Also, there are no clear rules about how to introduce resources to add a desired constraint. The
trial and error method of introducing resources is used to bring about changes in constraints enforced by the
scheduler. There is always the danger of adding resources that introduce unintended constraints that are very
subtle to detect.

To summarize, pipeline descriptions are tedious to write and maintain and they force the compiler
writer to reason about resource interactions, rather than scheduling constraints. What is needed is new way
to describe pipelines and a more direct way to express ordering constraints for instruction schedules.

The thesis of this research is that the description of execution pipeline is too closely interwoven with
the instruction set description of the machine: this research will decouple the pipeline description from the
instruction set description. The annotated pipeline graph is proposed to extend resource vector pipeline
descriptions to address the aforementioned shortcomings. The pipeline graph descriptions will resemble
pipeline diagrams in architecture manuals. In addition, an annotative language of regular expressions will
be developed; these annotations will specify scheduling constraints not reflected in the pipeline graph. With
this research we will develop the analysis and algorithms necessary to generate instruction scheduler
components automatically from the graph diagram. This approach is designed to encourage intuitive

2

descriptions of pipelines that are easy to write, easy to modify for purposes of experimentation and precise
enough to model current implementations of processors.

2 Instruction Schedulers
The purpose of an instruction scheduler is to arrange a sequence of instructions in such a way as to minimize
execution time while preserving program correctness. Obstacles to this purpose include the delay of
instruction execution due to dependencies on data availability (data hazards), delays due to dependencies
on instruction availability in the presence of branches (control hazards) and delays due to microarchitectural
resource availability (structural hazards). The instruction scheduler generally calls upon a contention query
module (CQM) to assist in determining the presence of structural, control and data hazards.

The CQM generally works in one of two ways. In the first method, the instruction scheduler calls
the CQM to test each new instruction to be scheduled. The CQM looks back over a list of already scheduled
instructions and checks for a conflict with the new instruction. This method usually relies upon hand-coded
rules to maintain pipeline constraints. For instance, the vpo compiler contains a single hand-coded rule for
the SPARC processor that prevents scheduling a conditional branch on the cycle immediately following a
floating-point compare [BD94]. While this method is sufficient for simpler pipelines it consumes greater
amounts of time as the pipeline constraints increase. Furthermore, this portion of the scheduler must be
rewritten with each new implementation of the pipeline.

The alternative method of checking for conflicts involves modeling the actual resource usages of
the instructions as they progress through the pipeline. When two or more instructions try to use the same
resource in the same cycle a structural hazard is detected and the offending schedule must be changed. This
type of pipeline model is usually generated automatically from a pipeline description.

Automatic generation of pipeline modeling tools is very appealing and widely used. As the
proposed research will build upon this type of model, the next section is devoted to explaining pipeline
descriptions, how scheduling components can be generated from them and the shortcomings of these
components.

3 Pipeline Modeling via Resource Vectors
The pipeline model depends on each instruction or instruction class being represented by a resource vector.
The resource vector indicates all microarchitectural resources used by the instruction and the cycle in which
the resource is used. The pipeline itself is represented by a reservation table which is a vector composed of
all resources used by instructions occupying the pipeline. As the cycles lapse the old instructions are shifted
out of the reservation table and new instruction vectors are composed with the new pipeline configuration.

a. This figure shows control lines (dotted lines) as well as data lines. Part of the research will be to determine
if the control lines are really needed.

FIGURE 1: Pipeline diagram for the PIPE processora

Instruction decode Memory Write BackInstruction fetch Execute

PC

=0
?

ir1

rf:
(integer
register

file)
=rf[]

rf:
(integer
register

file)
rf[]=

Data
MEM
=[],[]=

mux
ir0

NPC
bralu

+br

alu0
<<,+

pc
add

Data
MEM
=[],[]=

Data memory
=M[],M[]=

instruction
memory

=i[]

alu1
+va

LEGEND

 control
 data

3

Consider the simple five stage dual-issue processor, called PIPE, depicted in Figure 1. This type of
pipeline diagram is representative of those found in manufacturer-supplied architecture manuals. The PIPE
processor has two ALUs. alu0 is labeled with the operations it can perform, such as addition and shifting.
alu1 is used exclusively for generating virtual addresses for loads and stores. This processor has two
instruction registers labeled ir0 and ir1 to indicate that two instructions may be issued simultaneously. The
control path from ir0 to alu0 indicates that all add and sll operations must be issued from the first
instruction slot in a group of two instructions. Similarly, all loads, stores and branches must be issued from
the second instruction slot. The diagram is labeled with the five pipeline stages: instruction fetch, instruction
decode, execution, memory and write back. PIPE is a toy processor and has only five instructions, as shown
in Table 1.

The first step in building a pipeline model is to derive resource vectors for each of the instructions.
This is done by examining each stage in the pipeline and listing all resources used by the instruction in the
stages. Some resources may be accessed simultaneously by multiple instructions: these are called counted
resources [BR97]. The PC (and all resources in the instruction fetch stage) and the register file fall in this
class. To simplify the discussion we avoid counted resources and focus on resources that are used by a single
instruction per cycle. We return to counted resources in Section 3.2.

The resource vector for the add instruction is constructed in the following manner. In the
instruction fetch stage, all resources are ignored because they are counted resources; in the instruction
decode stage, ir0 is used and the register file is ignored because it is counted; in the execution stage, alu0 is
used; and in the write-back stage, the register file is written (but ignored). The resource vectors for the five
PIPE instructions are shown in Table 2. Note that ld and st use the same resources in identical patterns.
For this reason they have been combined into the ldst instruction class.

A reservation table is used to model the processor pipeline. The reservation table is initialized to an
empty state to represent an empty pipeline. An instruction may be legally scheduled if its resource vector
can be composed (a UNION operation) with the reservation table without oversubscribing a resource. A
scheduler for a multi-issue processor will try to schedule as many instructions in the cycle as possible. Once
no additional instructions can be issued, the reservation table is in a “cycle-advancing” state. To simulate
the advance of the clock the leftmost set of resources is removed and all other resources are shifted forward.
This corresponds to instructions advancing in the pipeline.

instruction description

add rx,ry,rz # r[z] <- r[x] + r[y]

sll rx,ry,rz # r[z] <- r[x] shift logical left r[y]

ld rx,ry,rz # r[z] <- M[r[x]+r[y]]

st rx,ry,rz # M[r[x]+r[y]] <- r[z]

bez rx,LBL # PC <- (r[x]==0):NPC+LBL:NPC

TABLE 1: Instruction set for the PIPE processor

instruction
instruction
fetch
(cycle 0)

instruction
decode
(cycle 1)

execute
(cycle 2)

memory
(cycle 3)

write back
(cycle 4)

add - ir0 alu0

sll - ir0 alu0

bez - ir1+bralu

ldst (ld/st) - ir1 alu1 M M

TABLE 2: Resource vectors for PIPE processor instructions

4

The reservation table in Table 3 demonstrates scheduling an add, a ldst, an sll and a concluding
add on an empty pipeline. The final add instruction causes a hazard on ir0 and alu0 and so it cannot be
legally scheduled.

There are two major problems with using the reservation table method to check for pipeline
contention. First, it can be slow. Each time a query is made to the CQM, a bitwise comparison on several
long words must be performed. When a “cycle-advancing” state is reached in the reservation table, more
bitwise operations must be performed to advance the simulation of the instructions in the pipeline. Second,
it can consume a great deal of space. Each resource vector requires #resources X length of longest pipeline
in stages bits to model the instruction. The MIPS R3000 processor has 23 modeled resources and a division
instruction that may take up to 36 cycles; each resource vector would require 828 bits! For more advanced
scheduling it is sometimes necessary to save the state of the pipeline after each instruction is scheduled. To
move an already scheduled instruction, such as when attempting code motion, the state of the pipeline after
instruction I is scheduled must be known so that instruction I’s resources may be unsubscribed as the
instruction is unscheduled and moved.

To address these concerns an approach based on finite-state automata can be used. The key insight
into building a scheduling FSA is that what is wanted is a tool to reason about strings in the language of
structural hazard-free instruction schedules [Mül93]. An FSA is built at compile-compile time that
considers all possible schedules of instructions. Once the FSA is built, the resource vectors and the
reservation table can be discarded. Using an FSA to recognize legal instruction schedules is fast. To check
the legality of scheduling an instruction, a table lookup of the sort FSA[state][instruction] is
made: bitwise OR’ing of the resource vector and reservation table is no longer required because it has been
done at compile-compile time. The next section outlines the process for building instruction scheduling
FSA.

3.1 Finite-State Automata for Scheduling
Constructing the scheduling FSA directly from the reservation tables is inefficient. Each state in the FSA
corresponds to a reservation table with the initial state corresponding to the empty reservation table. To start,
a resource vector for an instruction is composed with the empty reservation table. If the instruction does not
cause hazards with the state, then a new state is produced and the transition from the initial state to the new
state is labeled with the instruction. This process is repeated for all instructions. If all of the instructions
cause hazards with the state, then the reservation table for the state is shifted left to simulate the
advancement of a cycle. This construction continues until no more states can be produced. This procedure
is slow because collisions between instructions are rediscovered as each new state is produced.

instruction cycle 1 cycle 2 cycle 3 cycle 4 comment

empty reservation table Ø Ø Ø Ø

add ir0 alu0 Ø Ø

new reservation table ir0 alu0 Ø Ø empty + add

ldst ir1 alu1 M M

new reservation table ir0+ir1 alu0+alu1 M M pipeline+ldst

No more instructions can be scheduled in this cycle, advance the cycle by shifting the reservation table

shifted reservation table alu0+alu1 M M Ø

sll ir0 alu0 Ø Ø

new reservation table ir0+alu0+alu1 alu0+M M Ø pipeline+sll

add ir0 alu0 Ø Ø

new reservation table ir0 hazard alu0 hazard M not legal

TABLE 3: Scheduling [add, ldst, sll, add] on a dual-issue pipeline using reservation table and
resource vectors.

5

To overcome this inefficiency a data structure known as a collision matrix (CM) is computed to determine
all instruction interaction hazards and when they happen. The collision matrix can be viewed as a function:

CM: instruction X instruction X cycles → boolean.

Given two instructions, inst1 and inst2 and an interval, intv, the CM will specify whether there is a hazard
when inst1 and inst2 are scheduled intv cycles apart. Once the CM is built, an FSA can be constructed by
using the CM to determine all instructions which have a legal transition out of a particular state in the FSA.

Constructing the collision matrix

The collision matrix entry for instructions, inst1, inst2 and interval, intv is set to 1 if issuing inst2 intv cycles
after issuing inst1 results in a structural hazard. The collision matrix is computed as follows [PF94]:

For instance, to calculate the CM entries for instruction inst1= add and inst2=add, as in Table 4, start by
composing the resource vector for add with the reservation table of an empty pipeline. Call the resulting

reservation table RTorig. To determine if a conflict occurs at intv=0, initiate a second add instruction by
composing its resource vector with RTorig. Since hazards arise, CM[add,add,0]=1. To determine if a
conflict occurs at intv=1, shift RTorig by one cycle, and try to initiate a new add instruction. In this case, no
conflict arises, so CM[add,add,1]=0. This procedure of shifting RTorig by intv and composing resource
vectors with it continues until RTorig shifted by intv is empty. Table 5 lists the conflict matrices for all
instructions in the PIPE processor.

Constructing the scheduling FSA

Constructing a scheduling FSA based on the collision matrix is similar to constructing one from reservation
tables; in this case, each state in the FSA corresponds to a conflict matrix. The first state in the FSA is

instruction cycle 1 cycle 2 cycle 3 cycle 4 comment

add in pipeline ir0 alu0

second add ir0 alu0

new reservation table ir0 hazard alu0 hazard CM[add,add,0]=1

Remove second add from the reservation table. Shift the reservation table to simulate advance of a cycle.

shifted vector alu0

add ir0 alu0

new reservation table ir0+alu0 alu0 CM[add,add,1]=0

TABLE 4: Constructing the collision matrix CM[add, add,time]. Conflict arises when two adds are
scheduled in same cycle. No such conflict occurs if two adds are scheduled one cycle away.

Instruction CM[A,B,intv] Instruction CM[A,B,intv]

A B intv=0 1 2 3 A B intv=0 1 2 3

add

add
sll
bez
ldst

1
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

ldst

add
sll
bez
ldst

0
0
1
1

0
0
0
1

0
0
0
0

0
0
0
0

sll

add
sll
bez
ldst

1
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

bez

add
sll
bez
ldst

0
0
1
1

0
0
0
0

0
0
0
0

0
0
0
0

TABLE 5: Collision Matrix for all instructions of PIPE processor

CM inst1 inst2 intv, ,[]
1 x such that inst1 x intv+ inst2 x∩ ∅≠∃

0 otherwise

=

6

constructed by starting with a CM for an empty pipe (a zero in every position for all instructions and all
cycles). The collision matrix for an instruction, such as add, is composed (OR’ed) with that of the empty
pipeline. Figure 2a demonstrates this composition. This new matrix represents a new state in the pipeline.
A transition from State 0 to State 1 is labeled with the instruction that produced the new state.

The 1’s in the first column of State 1 indicate that neither an add instruction nor an sll instruction
may be issued from this state, since either would result in a conflict: only ldst and bez may be issued
from this state. Composing the collision matrix for the bez instruction with the matrix for State 1 results in
a new State 2 (Figure 2b). 1’s in the whole first column indicate that no instructions may be issued from this
state. This is known as a “cycle-advancing” state and is indicated by a gray shading over the state. To model
the advancing of a state, the collision matrix is shifted forward by a column. The resulting collision matrix
is now composed of all 0’s. Because this is just State 0 a transition from State 1 to State 0 is labeled with the
bez instruction and State 0 is marked as cycle advancing (Figure 2c). State 2 is deleted.

The process of generating new states and labeling transitions continues until no new states can be
generated. The constructed finite-state automaton recognizes the language of sequences of instructions
which are free of structural hazards.1The constructed FSA recognizes legal instruction sequences in basic
blocks.

3.2 Extensions to the scheduling FSA
Modern processors often have multiple copies of identical resources, such as adders, shifters, ALUs, etc.,
and resources which allow multiple simultaneous accesses, such as multiported register files. These sorts of

1. Because add and sll have the same collision matrix, they result in the same transitions from state to state.
The FSA in Figure 2d reflects these instructions classes.

(a) collision matrix (CM) of add is OR’ed
with CM of State 0 to produce State 1.

(b) State 2 produced from OR’ing CM of State 1 and
bez. State 2 is cycle advancing.

(c) CM from State 2 shifted forward one col-
umn to produce CM of State 0.

(d) complete FSA for instruction classes shown in
Table 3.

FIGURE 2: Construction of a pipeline modeling finite-state automaton.

0000
0000
0000
0000

State 0 1000
1000
0000
0000

State 1

1000
1000
0000
0000
add

0000
0000
0000
0000

State 0 1000
1000
0000
0000

State 1

add

1000
1000
1000
1000

State 2

0000
0000
1000
1000
bez

0000
0000
0000
0000

State 0 1000
1000
0000
0000

State 1

add

bez
0000
0000
0000
0000

State 0

1000
1000
0000
0000

State 1

add/sll

0000
0000
1000
1000

State 2

bez

0000
0000
1000
1100

State 3

ldst

bez

0000
0000
0000
1000

State 4
ldst

add/sll

add/sll

bez

1000
1000
0000
1000

State 5

add/sll

bez

7

functional units are called counted resources because the scheduler behaves as if there is a counter
associated with each of them.

Counted resources can be modeled by multiple resource vectors [BR97]. If an instruction can use
one of two identical resources, then a separate resource vector for each of the two resources will be written
for the instruction. For instance, suppose the PIPE processor is extended, as in Figure 3, so that any

instruction may be issued from any instruction register and alu1 is changed so that it can execute add
instructions. The add instruction for this processor will have four resource vectors to reflect the different
combinations of counted resources. These four resource vectors are shown in Table 6. To avoid duplication

we adopt a shorthand notation for multiple resource vectors. To denote a counted resource res with two
copies, we write res[0-1]. The resource vectors for the extended PIPE processor are shown in Table 7.

From these multiple resource vectors a nondeterministic FSA (NFSA) can be built. The NFSA is
then converted into a deterministic FSA by standard subset construction techniques [HU79]. The original
degrees of freedom represented by the nondeterministic transitions in the NFSA allow the scheduler to
“select” the right resource at the right time. For instance, the instruction sequence [add, sll] is legal
because the scheduler selects the resource alu1 for instruction add so that instruction sll can use alu0.

FIGURE 3: Modified PIPE processor. This processor can issue any instruction from any slot and has the
capability of issuing two adds simultaneously.

instruction
instruction
decode stage

execute
stage

memory
stage

write back
stage

add1 ir0 alu0

add2 ir0 alu1

add2 ir1 alu0

add4 ir1 alu1

TABLE 6: Multiple resource vectors for add instruction on the modified PIPE processor.

instruction
instruction
decode stage

execute
stage

memory
stage

write back
stage

add ir[0-1] alu[0-1]

sll ir[0-1] alu0

bez ir[0-1]+bralu

ldst ir[0-1] alu1 M M

TABLE 7: Resource vectors for the modified PIPE processor. The [0-1] notation indicates a
nondeterministic “choose one” semantics.

ID C WBIF

inst
MEM
=i[]

EXE

PC

=0
?

ir1

rf:
(integer
register

file)
=rf[]

rf:
(integer
register

file)
rf[]=

mux
ir0

NPC
bralu

+br

alu0
<<,+

pc
add

Data MEM
=M[],M[]=

alu1
+,+va

LEGEND

 control
 data

8

3.3 Shortcomings of Resource Vector Schedulers
While there is a certain elegance in using resource vectors to generate scheduling components, this approach
can become quite cumbersome when writing realistic compilers for realistic processors. Instruction-by-
instruction descriptions give little sense of the structure of the pipeline. Additionally, the “cut and paste”
mentality that arises from the repetition of specifying each instruction makes it easy to omit some crucial
resource that differentiates one instruction from another.

For purposes of architectural experimentation these descriptions are very burdensome. If new
instructions are proposed for a processor, the pipeline description gives little information about whether
such an instruction can be supported by the current pipeline implementation. Conversely, if the pipeline
implementation changes, then each instruction resource vector must be inspected to reflect the change in
stages. This is not always simply a matter of moving resources from one stage to another.

Often artificial resources are added to a resource vector to introduce ordering constraints in the
scheduling FSA. For example, suppose the issue logic of the modified PIPE processor prohibits issuing an
add before an sll in the same cycle.1 This restriction can be expressed for the case of two instruction issue,
as indicated in Table 8b, but the mechanism for enforcing this constraint is subtle. If the pipeline is extended
to issue three instructions per cycle, this mechanism no longer enforces the “no add before an sll in the
same cycle” constraint. Notice, too, that the counted resource notation no longer completely applies to the
add instruction and that it requires several resource vectors to be explicitly spelled out.

Generation of scheduling components from resource vector pipeline descriptions is a very powerful
technology for retargetable compilers. The current state-of-the-art supports scheduling for multiple
instructions per cycle and for multiple functional units. The pitfalls of using resource vector pipeline
descriptions are:

1. The machinery for maintaining instruction-by-instruction descriptions is cumbersome and error-prone;

2. The descriptions do not support experimentation with either the instruction set architecture or the archi-
tectural implementation;

3. The descriptions can contain subtle “logic tricks” that help introduce ordering constraints in the FSA;
these constraints may be hard to maintain should the pipeline implementation change.

The purpose of this research is to address these three shortcomings of resource vector pipeline descriptions.

4 Proposed Solution - Annotated Pipeline Graphs
The central thesis of this research is that pipeline descriptions will be easier to use, more accurate and more
amenable to experimentation if the pipeline description is decoupled from the instruction set architecture
description.This research will separate the pipeline description from the instruction set architecture by

1. This example is taken from the issue logic of the UltraSPARC I&II[Sun97].

instruction
instruction
decode

execute memory instruction
instruction
decode

execute
mem-
ory

add ir[0-1] alu[0-1]
add(slot0)
add(slot1)

ir0
ir1

alu0
alu[0-1]

sll ir[0-1] alu0 sll ir[0-1] alu0

bez ir[0-1]+bralu bez ir[0-1]+bralu

ldst ir[0-1] alu1 M ldst ir[0-1] alu1 M

a) Unconstrained resource vector
b) Constraint added that an add may not be
issued before a sll in the same cycle

TABLE 8: Unconstrained and constrained resource vectors for the modified PIPE processor.

9

developing the annotated pipeline graph. The annotated pipeline graph is similar in appearance to diagrams
found in architecture manuals in that it depicts the functional units in the processor, the operations
performed by the units and the stages in which these functional units are used. Regular expressions are used
to annotate the graph with additional scheduling constraints. From the annotated pipeline graph and an
existing instruction set description, an FSA can be generated for inclusion in an instruction scheduler.

4.1 Pipeline Graphs
The pipeline graph for the extended PIPE processor, shown in Figure 3, is representative of the proposed
pipeline graph. The graph is partitioned into pipeline stages. Each stage is labeled with the name of the stage
and each stage contains diagrams of functional units that are used in the stage. Each functional unit is named
and contains a list of operations that the functional unit executes. Functional units are connected by means
of control flow and data flow edges.

The task of generating resource vectors from this pipeline graph can be carried out in a mechanical
way. Pick an instruction, e.g. sll, and identify the functional units it uses in each stage of the pipeline.
Figure 4 shows one path (heavy line) of the sll instruction through the pipeline.1 For those stages in which
more than one unit is used, collect all of the units by joining them with the “+” operator. For instance, in the
instruction decode stage, the instruction uses instruction slot ir0 and the register file rf. The only ALU
capable of sll operations is alu0, so the execution stage portion of the resource vector is: alu0. The
completed resource vector for sll is shown in Table 9.

To perform this process automatically, what is required is a method to discover the functional units
that an instruction uses and the control and data paths required to carry out the execution of the instruction.
The next section outlines a process for automatically discovering the resource vector from the pipeline
graph.

1. The instruction fetch stage and associated resources are ignored to simplify the example.

FIGURE 4: Pipeline graph highlighting functional units, control flow and data flow of sll
instruction through the pipeline. Several of the control and data lines have been labeled. Additionally, ir0
has been labeled with several data field operands. These include the operands .rx, .ry, and .rz (to
determine source and destination registers).

instruction inst fetch stage inst decode stage exec stage mem stage write back stage

sll N/A ir0+rf alu0 rf

TABLE 9: Resource vector for the sll instruction.

Instruction Decode Memory Write BackInstruction Fetch Execute

out2

PC

=0
?

ir1

rf:
 (integer
reg file)

=r[]

rf:
(integer
reg file)

r[]=

mux

ir0
.rx
.ry
.ry

NPC
bralu

+br

out1

out1alu0
<<,+

pc
add

instruction
memory

=i[]

Data memory
=M[],M[]=

alu1
+,+va

outx outy

outz

LEGEND

 control
 data

10

4.2 Derivation of Resource Vectors from the Pipeline Graph
This research will apply “instruction selection” compiler technology to the problem of automatically
generating resource vectors from pipeline graphs. The approach taken here will be to take existing tree-
based descriptions of instructions and match patterns derived from the pipeline graph against them. As a
pattern is matched and a tree rewritten, resources uses are generated based on the matched pattern. In the
following description we will use tree pattern matching technology similar to iburg [FHP92], but there
are many similar rewriting technologies which could be applied to the problem should iburg not prove
flexible enough.

This research will use instruction descriptions based on register transfer lists (RTLs). RTLs are a
machine independent way of representing the changes to the instruction set architecture (ISA) that occur as
a result of executing an instruction. Register references appear as r[n], while memory references appear
as M[addr]. Table 10 lists RTLs for all of the PIPE processor’s instructions.

To perform the pattern matching it is convenient to have the RTLs in tree form, known as TRTL.
Figure 5 shows TRTLs for the PIPE processor. TRTLs can be derived from the machine description of the
vpo compiler. With TRTLs, the nodes are either terminal operands or interior operators. The interior
operators evaluate their children. These operators include accessing the register file and memory file,
addition, shifting and addition for branching and addressing memory. The terminal operands are constants,
such as register numbers, constant numerals or labels.

Tree patterns are derived from the functional units and their operations, the data paths and control
paths. TRTLs have a specific shape that we can exploit. Interior nodes are operators that have one or more
children and terminal nodes have zero children. The following algorithm will generate tree patterns for
operator nodes. It works by scanning the pipeline graph for functional units and generating patterns for all
of the operations that the functional units perform.

Register Transfer List ISA instruction comment

r[z] <- r[x] + r[y] add rx,ry,rz add

r[z] <- r[x] << r[y] sll rx,ry,rz shift logical left

r[z] <- M[r[x]+r[y]] ld rx,ry,rz load

M[r[x]+r[y]] <- r[z] st rx,ry,rz store

(r[x]==0):PC=NPC+LBL:NPC bez rx,LBL branch on r[x]==0

TABLE 10: RTL’s for the PIPE processor instructions.

FIGURE 5: Tree RTLs corresponding to RTLs in Table 6 for the PIPE processor. The sll and add
trees are very similar. The .r notation indicates a register field of an opcode.

=r[] =r[]

.rx .ry

<<

r[]=

.rz

a)�sll rx,ry,rz

RIGHT

COND

d)�bez rx,LBL

<-

PC= =NPC

<-

PC= +

=NPC LBL

=r[]

.rx

==0?

=r[] =r[]

+va

r[]=

=M[].rz

.rx .ry

b)�ld rx,ry,rz

M[]=

=r[]

=r[] =r[]

+va

.rx .ry

.rz

c)�st rx,ry,rz

11

The algorithm generates patterns and actions that are to be applied when the pattern is matched. To
illustrate the use of this algorithm, it is applied to the highlighted portion of the pipeline graph in Figure 4
and the TRTL in Figure 5 to yield the interior and terminal node patterns shown in Table 11.

Tree pattern matching algorithms are applied to the tree RTL and the pipeline graph patterns. The
pattern matcher rewrites the tree and generates resources for the resource vector. When a “cover” for the
instruction tree is found the process is complete. Figure 6 illustrates the process of matching pipeline
patterns against the RTL tree for the sll instruction. Table 12 shows the portion of the resource vector that
is generated by this matching.

Obviously the patterns in Table 11 are not complete. For instance, there are several questions left
unanswered: how are resources such as instruction memory accounted for that don’t directly match an RTL

Input. A collection of tree RTLs (TRTL) and the pipeline graph
Output. A collection of tree matching patterns and their associated actions.
Method. First build the nonterminal (interior node) tree matching patterns, then build the tree matching patterns for
terminals.
1. For each operation, op, specified in the TRTL do the following.

for each functional unit, fun_unit, specified in the pipeline graph with the operation label op
for each stage, stg, in which fun_unit is labeled with op

 if the functional unit fun_unit has any outputs {
for each output, out, from fun_unit

 for each combination of inputs, input0..inputn, into fun_unit
 generate pattern fun_unit.out: op(input0..inputn)
 generate action res_vec[stg] := res_vec[stg] ∪ fun_unit

} else, if the functional unit has no outputs in a stage {
 for each combination of inputs, input0..inputn, into fun_unit

 generate pattern fun_unit: op(input0..inputn)
 generate action res_vec[stg] := res_vec[stg] ∪ fun_unit

}
2. For each terminal, term, specified in the TRTL do the following.

for each functional unit, fun_unit, that is labeled with term
for each stage, stg, in which term labels fun_unit

for each output, out, from fun_unit
generate pattern fun_unit.out: term
generate action res_vec[stg] := res_vec[stg] ∪ fun_unit

ALGORITHM 1: Generating tree matching patterns from TRLT and the pipeline graph

Pattern Action

1 rf: r[]=(alu0.out1,ir0.outz) res_vec[WB] =res_vec[WB] ∪ rf

2 alu0.out1: <<(rf.out1,rf.out2) res_vec[EXE] =res_vec[EXE] ∪ alu0
3 rf.out1: =r[](ir0.outx) res_vec[ID] =res_vec[ID] ∪ rf

4 rf.out2: =r[](ir0.outy) res_vec[ID] =res_vec[ID] ∪ rf

5 ir0.outx: .rx res_vec[ID] =res_vec[ID] ∪ ir0
6 ir0.outy: .ry res_vec[ID] =res_vec[ID] ∪ ir0
7 ir0.outz: .rz res_vec[ID] =res_vec[ID] ∪ ir0

TABLE 11: Interior and terminal node patterns for instruction sll. The actions indicate which
resources should be added to the resource vector (res_vec) and the stages in which they should be
inserted. Note: spurious patterns, such as those indicating inputs to functional units from multiple
instruction registers, have been elided.

12

operator? What sort of discipline or interface must be developed so that the RTL specifier and the pipeline
specifier refer to the same operations and resources? How are branch and conditional execution instructions
handled?

While there are significant portions of this research still undone, it does represent a realistic
approach to automatically generating resource vectors from pipeline graphs.

4.3 Annotation Language
This section describes a mechanism for annotating pipeline graphs with additional instruction scheduling
constraints. The pipeline graph and the annotations are combined at compile-compile time to produce an
instruction scheduling component that accurately models the processor pipeline.

To build the pipeline graph the compiler writer consults an architecture manual with information
about the numbers and kinds of functional units, pipeline stages, register files and the like. The instruction
scheduler components are then generated from this specification. Often, however, there are scheduling
constraints that arise from properties of the pipeline that are not apparent from the manufacturer’s pipeline
specification. These constraints are often given in the form of “guidelines” for code generation. Such
guidelines specify forbidden instruction sequences and the penalties for using them.

To accommodate these additional instruction scheduling constraints, we propose an annotation
language based on regular expressions. The constraints can be expressed in terms of acceptable or forbidden
sequences of instructions. In addition to the usual expressions, the annotative language will include the
means to express set intersection(&), difference (-), union (|), concatenation, repeated concatenation(^)
and Kleene star(*) [MMR98].

FIGURE 6: Tree pattern matching against tree RTL for sll. Shaded ovals indicate the tree pattern
being matched and rewritten. a) Patterns #5 and #6 are matched and replaced - add instruction register ir0
to resource vector (res_vec) in instruction decode stage. b) Patterns #3 and #4 are matched and replaced
- add the register file (rf) to res_vec in the instruction decode stage. c) Patterns #7 and #2 are replaced -
add ir0 to res_vec in instruction decode stage (redundant) and add alu0 to res_vec in the execute
stage. d) Pattern #1 is replaced - add rf to res_vec in the write back stage.

instruction inst fetch stage inst decode stage exec stage mem stage write back stage

sll N/A rf+ir0 alu0 rf

TABLE 12: Resource vector for the sll instruction. This resource vector (res_vec) has been derived
from the pipeline graph.

=r[] =r[]

.ra .rb

<<

r[]=

.rz

a)

c)

<<(rf.out1,rf.out2)

r[]=

.rz r[]=(alu0.out1,ir0.outz)

d)

<<

r[]=

.rz

b)

=r[](ir0.outx) =r[](ir0.outy)

13

To illustrate, consider a scheduling constraint found in the UltraSPARC II processor [Sun97]. This
processor penalizes the execution of schedules containing an add followed by an sll instruction in the
same group. As mentioned in Section 4.1.1, this constraint is hard to model using resource vectors. Using
regular expressions, this constraint is the difference of the existing language and the sequence [add sll].

The pipeline graph and the regular expression annotations are combined in the following way. First,
the pipeline graph is converted to resource vectors and an FSM for recognizing legal instruction sequences
is constructed: call this machine FSMpipe. Second, an FSM is generated for each annotation regular
expression: these are called FSMRE[0-N]. Third, each annotation FSMRE is composed with FSMpipe. Figure
7 shows a finite-state machine for recognizing legal instruction sequences for the extended PIPE pipeline
shown in Figure 3. The new composed FSM preserves the accepting state semantics of the original FSM
while combining states where possible. For instance, states 1 and 2 from FSMpipe have been combined into
one, state 1, in the new composed machine FSMpipe - [add sll]. Similarly, states 6 and 7 have been
combined to produce state 5 in the new machine.

5 Related Work
The Marion system is one of the first retargetable compilers to incorporate information about the pipeline
in the machine description [BHE91, Bra91]. Each instruction is accompanied by a resource vector
description. Any modification of the pipeline would require a rewrite of each instruction.

Davidson, Shar, Thomas and Patel introduced the use of automata for scheduling processor
pipelines. Their work uses a 3D FSA [DSTP75]. If instruction i can be issued c cycles after state n without
causing a hazard, then a new state would be returned by the FSA. Müller developed the idea of using the
FSA to assist in instruction scheduling [Mül93]. In his paper, Müller gives a postpass method for
minimizing the FSA. Proebsting and Fraser construct the minimal FSA directly [PF94].

Bala and Rubin extend the FSA to accommodate processors with multiple instruction issue
capabilities [BR97]. They demonstrate how the FSA can be extended to schedule instructions while
avoiding hazards which reach across basic block boundaries. They combine a forward and a reverse FSA to
assist in global code motion.

Eichenberger and Davidson propose reduced machine descriptions [ED96]. In this scheme,
instructions are fully described and no attempt is made to hand optimize the descriptions. The machine
description is reduced and a synthesized machine description is produced that preserves all of the scheduling
constraints of the original description, but requiring only 20-90% of the space of the original. They argue

(a) FSMpipe before constraints are considered (b) Composed FSM: FSMpipe - [add sll]
FIGURE 7: FSM for extended PIPE pipeline graph from Figure 5 on page 9.

State 0

State 1

add

State 2
sll

State 3

bez

State 4
ldst

add/sll/bez

State 5
ldst

add/bez

ldst

add/sll

ldst

add/sll/bez

State 8
bez

State 6

add

State 7

sll

add/sll

add/sll/bez

add/bez

State 0 State 1add/sll

State 2bez

State 3
ldst

add/bez

State 4ldst

add/sll ldst

add/sll/bez State 5
add/sll

State 6

bez

add/bez

add/sll

14

that this reduction in space requirements make using the reservation table at compile time feasible and fast.
They also argue that the automata required for Bala and Rubin type schedulers can get very large unless the
compiler writer intervenes to reduce the FSA by hand.

Gyllenhaal, Hwu and Rau propose AND/OR-trees for storing the resource vectors for machines
with multiple functional resource units [GmWHR96]. The data structure helps the CQM prune away many
bad scheduling attempts. They, like Eichenberger and Davidson, claim that CQM components based on
finite-state automata do not support advanced scheduling techniques such as iterative modulo scheduling.

Recently, Gupta and Önder have proposed the Architecture Description Language (ADL) for
specifying processor microarchitectures [GÖ98]: these specifications are used to generate cycle level
simulators and assemblers. Their research is similar to the proposed research in that they attempt to separate
the microarchitecture description from the ISA description but they do not completely decouple the two
descriptions; their approach is to put those actions common to all instructions in the microarchitecture
description and put the instruction-specific actions in the ISA description.

6 Research Agenda and Expected Contributions

6.1 Research Agenda
The research agenda for the proposed dissertation has five elements:

1. Determine how the pipeline graphs and their components will appear, what features and constructs the
annotation language will include and how to integrate the annotations into the pipeline graph specifica-
tion. With respect to the pipeline graph, these questions need to be answered:

• How will the components be specified? Multicycle operations are different from fully pipe-
lined operations; how can the two be differentiated? Some multicycle operations prevent the
dispatch of any subsequent instructions until they complete; how can this be indicated? When
is a result ready to be used and by what functional units?

• What resources can be ignored? There must be a mechanism for marking functional units
“ignorable”.

The annotation language must be fully specified. Its design raises these questions:

• What do the instruction sequences look like? What is the notation for indicating groups of
instructions in a cycle?

• Is it useful to give a weight to a sequence of instructions that indicates its desirability? Is there
some general mechanism and interface for returning information beyond the simple predicate
“this is a legal instruction sequence”?

• The method of integrating the annotations into the pipeline graph needs to be resolved. How
can that be done in a natural and useful way?

The graphic interface requires work but there are several programmable graph manipulation tools avail-
able, such as VISIT and Lefty [DK91]; this portion of the research is not expected to take very long to
resolve.

2. Develop the analysis to produce resource vectors from the pipeline graphs and RTLs. Work has begun
on this goal, as indicated in Section 4.2, but several subgoals remain:

• refine the algorithm for generating tree patterns from the graph.

• modify iburg to generate resource vectors from the tree covers.

3. Develop the analysis to compose the resource FSM with the annotation FSM.

15

• define language of instruction sequences, cycles, breaks in cycles.

• develop a parser for the language that recognizes annotations, produces FSM and composes
original FSM with annotation FSM.

4. Integrate the resulting scheduling component into vpo.

5. Describe several representative pipeline implementations including superscalar processor(s), an out-of-
order processor and a CISC processor.

6.2 Expected Contributions and Artifacts
Contributions

The proposed research will make several contributions to the compiling community. This work is the first
to separate the pipeline description from the instruction set. Because of this decoupling, the compiler writer
will be able to describe the processor pipeline in an intuitive, integrated way; the tool will be responsible for
matching each instruction with its appropriate pipeline resource usage. In addition to the tool, another
contribution will be the analysis required to apply code generation techniques to the problem of
reestablishing this match between instruction and pipeline implementation.

Another contribution will be the introduction of an annotation language based on regular
expressions to directly specify needed scheduling constraints. This annotation language will allow the
compiler writer to refine the pipeline description in a natural way instead of using awkward synthetic
resources. We will develop the analysis required to merge the annotations with the pipeline graph to produce
instruction scheduler components.

Artifacts

As a practical contribution, the WYSIWYG tool will add structure to the pipeline description process by
guiding the user through the description, offering a library of often used components and disallowing certain
illegal or unlikely connections and components.

 From the annotated graph we will produce scheduler components such as contention query
modules. We will implement an instruction scheduler which uses the produced module and integrate this
with the vpo compiler. We will test the portability of the pipeline description tool by targeting several
disparate processors. Subject to availability, we will target both direct issue machines and dynamically
scheduled processors. We will measure the performance increase gained by using the more accurate pipeline
descriptions.

7 Summary
In spite of architectural trends towards dynamic scheduling, processors continue to rely on compilers to get
peak performance. Compilers, in turn, rely on ever more detailed machine descriptions to produce good
instruction schedules. Our experience with microarchitecture level machine descriptions indicates that there
is room for improvement. Currently, machine descriptions are based on resource vectors and are written on
an instruction-by-instruction basis. This method is tedious and repetitious — it does not take advantage of
the structure of the pipeline and is too closely tied to the instruction set description of the processor.

To address the above problems, the proposed research will develop a new, powerful approach for
describing modern instruction pipelines by separating the pipeline description from the instruction set
description. The proposed approach uses a graphical description of the pipeline and an accompanying
annotation language to describe the relevant behavior of a machine’s execution pipeline. Using the
descriptions of the pipelines and an existing description technique for instruction sets, it will be possible to
generate instruction scheduler information automatically. Furthermore, this decoupling of the pipeline
description from the instruction description will ease the task of retargeting the compiler as new instruction
set extensions and new pipeline implementations appear.

16

References

[BD94] Manuel E. Benitez and Jack W. Davidson. Target-specific global code improvement: Prin-
ciples and applications. Technical Report CS-94-42, Department of Computer Science,
University of Virginia, November 4 1994.

[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The Marion system for retargeta-
ble instruction scheduling. In Proceedings of the ACM SIGPLAN’91 Conference on Pro-
gramming Language Design and Implementation, volume 26, pages 229–240, Toronto,
Ontario, Canada, June 1991.

[BR97] Bala and Rubin. Efficient instruction scheduling using finite state automata. IJPP: Interna-
tional Journal of Parallel Programming, 25, 1997.

[Bra91] David Gordon Bradlee. Retargetable instruction scheduling for pipelined processors. Tech-
nical Report TR 91-08-07, University of Washington, 1991.

[DH96] David A. Dunn and Wei-Chung Hsu. Instruction scheduling for the HP PA-8000. In Pro-
ceedings of the 29th Annual International Symposium on Microarchitecture, pages 298–
307, Paris, France, December 1996. IEEE Computer Society TC-MICRO and ACM SIG-
MICRO.

[DK91] D. Dobkin and E. Koutsofios. LEFTY: A two-view editor for technical pictures. In Pro-
ceedings of Graphics Interface ’91, pages 68–76, June 1991.

[DSTP75] E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel. Effective control for pipelined
computers. In COMPCON 75, pages 181–184, NY, 1975. IEEE.

[ED96] Alexandre E. Eichenberger and Edward S. Davidson. A reduced multipipeline machine
description that preserves scheduling constraints. In Proceedings of the ACM
SIGPLAN ’96 Conference on Programming Language Design and Implementation, pages
12–22, Philadelphia, Pennsylvania, 21– May 1996.

[FHP92] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple, efficient code gen-
erator generator. ACM Letters on Programming Languages and Systems, 1(3):213–226,
September 1992.

[GmWHR96] John C. Gyllenhaal, Wen mei W. Hwu, and B. Ramakrishna Rau. Optimization of machine
descriptions for efficient use. In Proceedings of the 29th Annual International Symposium
on Microarchitecture, pages 349–358, Paris, France, December 2–4, 1996. IEEE Computer
Society TC-MICRO and ACM SIGMICRO.

[GÖ98] R. Gupta and S. Önder. Automatic generation of microarchitecture simulators. In Proceed-
ings of the IEEE International Conference on Computer Languages, May 1998.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, N. Reading, MA, 1979.

[LPU95] A. Leung, K. Palem, and C. Ungureanu. Run-time versus compile-time instruction sched-
uling in superscalar (RISC) processors: Performance and tradeoffs. Technical report, New
York University, Computer Science, 1995.

17

[MMR98] Fernando C. N. Pereira Mehryar Mohri and Michael Riley. A rational design for a weighted
finite-state transducer library. In Lecture Notes in Computer Science, page 1. Lecture Notes
in Computer Science (to appear), Springer Verlag, 1998.

[Mül93] T. Müller. Employing finite automata for resource scheduling. In Proceedings of the 26th
Annual International Symposium on Microarchitecture (MICRO’93), volume 24 of SIG-
MICRO Newsletter, pages 12–20, Los Alamitos, CA, USA, December 1993. IEEE Com-
puter Society Press.

[PF94] T. A. Proebsting and C. W. Fraser. Detecting pipeline structural hazards quickly. In ACM,
editor, Proceedings of 21st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 280–286, New York, NY, USA, 1994. ACM Press.

[Sun97] Sun Microsystems. UltraSPARC I&II User’s Manual. Sun Microsystems, Mountain View,
CA, USA, 1997.

