The Isotach Messaging Layer:
Ironman Design

Michael N. Lack, Perry N. M. Myers
Paul F. Reynolds, Craig C. Williams

Technical Report CS-2000-17
Department of Computer Science
University of Virginia
Charlottesville, VA22903
E-mail: [mnlI3j, pnm2h pfr, ccw]@cs.Virginia.EDU

May 9, 2000

mailto:mnl3j@cs.Virginia.EDU
mailto:pnm2h@cs.Virginia.EDU
mailto:pfr@cs.Virginia.EDU
mailto:ccw@cs.Virginia.EDU

Contents

Contents i

1. Introduction 1
1.1. SYStEM OVEIVIEW ...ttt eeeeaaanns 1
1.2. DeSIgN GOAISccoiiiiiiiiiee e 2
1.3. DOCUMENT OVEIVIEWcvviiiieeeieiiiie et e et e e e eeeees 2

2. Isotach Messaging Layer Overview 4

3. Protocol Overviews 8
3.1. NON-ISOtACh OVEIVIEWiiiiiiiiiiieeeeeeii et 8
3.2. Non-Isotach Group CommMUNICALION...........uuieeiiiiiiiiieeeeeeeii e 9
3.3. Isotach Message Based Model OVerviewcceeeeveeveenneennnnnn. 10
3.4. Isotach Shared Memory Model OVerviewcccoeeevvevviinneenee. 14
3.5. Isotach Group COMMUNICALION.veeiieeiiiieee e 18
3.6. FIOW CONrol ... 20
3.7. Network Interface Unit Send/Receive Path.......................... 23

4. Messaging Layer Shared Data Structure 26
4.1. Host mLayer Shared Data...........ccceuvuiiieiiiiiiiiiieeeeeeii e 26
4.2. Host/NIU mLayer Interface Shared Data................ccceevvvnnnn. 30

5. Host Manager (hostman) Layer 32
5.1. Host Manager (hostman) Module..............ccoovviiiiiiiiiiiiiiiieeeeeee 32
5.2. Isotach Program Initialization...............ccooveeiiiiiiiniiiiiiiii e 35
5.3. Network Status Tablecoooviiiiiiiii e 36
5.4. Allocation of Pinned MemOrY..........ccouuuuiiiieiiiiiiiiiie e 36
5.5. SYNCNAIONIZALIONoevviiii e e 37
5.6. Putting It Al Together ..o 38
5.7. Isotach Program Termination............ccooeevvevviinnieeeeeiiiine e 39

6. Application Programming Intexte (API) Layer 40
6.1. Non-Isotach Send (send) Module..............coooviiiiiiiiiiiiiiii e, 40
6.2. Isotach Send (iso_send) Modulecccooeiiiiiiiiiiiiiiiii e, 41
6.3. Non-Isotach Barrier (barrier) Module.................ooooviviiiiiniinninnn, 45
6.4. Isotach Signal (iso_signal) Module............cccooeiiiiiiiiiieiiiiiiine 47
6.5. Isotach Barrier (iso_barrier) Moduleccoooovviiiiviiiiiceennnnn. 50
6.6. Isotach Retrieve (iso_retrieve) Module..............c.coovveiieviiiinennnnnn. 54
6.7. Non-Isotach Delivery (deliver) Module..............coovviiiiniieiiinnnnnn. 54
6.8. Isotach Delivery (iso_deliver) Module...............ccocovviiivieiinnnnnnnn. 56

7. Processing Layer 59
7.1. Non-Isotach Flow Control (flow) module............cccccooeiiiiiinnnnn. 59
7.2. Isotach Flow Control (iso_flow) Module..............cccccceeiiieviinnnnnn. 62
7.3. Isotach Ordering Module (IOM)ccooeiiiiiiiiiiiiee e 66

7.4. Isotach Shared Memory Manager (Sshmem)ccccooveevveiiiiinnnnn. 69

8. Network Interface Unit (NIU) Layer 72
8.1. Non-Isotach Shipping (shipping) Module..................ocoovviiinneee. 72
8.2. Isotach Shipping (iso_shipping) Module.............ccccccooiiviiiiinnnen. 73
8.3. Non-Isotach Receiving (receive) Module.............ccccceeveeeeenns 73
8.4. Isotach Receiving (iso_receive) Module............cccoeeevvivinnnnn. 76
9. Network Manager (netman) Layer 78
9.1. Internal FUNCLIONSiiiiiiiiii e 78
9.2. Exported Data StrUCIUIES.iiiiiiiiiiii et 78
9.3. Internal Data SIrUCIUIESoceiiiiiiiiie e 79
0.4, TASKS ..t 79
10. Performance Results and Analysis 83
10.1. OVEIVIEW OF TESES ...iiiieiiiiie et 83
10.2. TESIDEA. 83
10.3. RESUIS ..ot e e eaa 84
10.4. Bottleneck ANAIYSIS.uiiiiiiiiiiiiiiee e 85
11. Conclusions and Future Work 89
11.1. State Of the SYSIEMuiiiiiieii e 89
I T g (0] 07T (o = 89
11.3. FULUrE WOTK ... 89
References 91
Glossary 92
Appendix A. Isotach API 94
A.1. Initialization/Shut-dOWN ... 94
A.2. System housekeeping and status functions.............ccccceeeieeeeeennns 95
A.3. Non-Isotach Message Based Model..............cccceveeviiiieiiineeeennnn. 96
A.4. Non-Isotach Group CommuniCatioN.............uuvieiieiiiiiinieeeeeninenn. 97
A.5. Isotach Message Based Modelccooevviiiiiiiiiiiiiiie e, 98
A.6. Isotach Shared Memory Model ..o, 99
A.7. Message functions common to the Isotach SMM and MBM.... 100
A.8. Isotach Group Communication (GC)...........uucvviiieiiiiiiiiinnneeen. 100
Appendix B. Packet Formats 104
B.1. Network Packet FOrmats...........covviiiiiiiiiiiiiieeeeeeii e 104
B.2. Internal Packet Data StruCtUresScooovvvivviiiiieeiiieiiiie e 107
Appendix C. Isotach Implementation Constants 109
Appendix D. Performance Testing Data 112
Appendix E. Configuration Files 113
Appendix F. Development Environment 115
F.1. DIreCtOry StHUCTUIE.......uuiiieiiiiiiie e 115
F.2. Module COMPONENTS........cuuuiiieiiiiiiiiie e 115

F.3. MaKE IO . e 116

F L. SCIIPES e 118
F.5. Queue Macro FUNCHONS...........uiiiiiiiii e eeeen e e e e 119
F.6. LANai Debugging TOOIS.........cooviiiiiiiiiiiieieei e 119
F.7. APl DESIgN ISSUES.....uiiiiiiiiiiiie ettt e 120
Appendix G. Programming Conventions 122
G.1. Programming StTYIE........couuuiiiiiiiiiiiiiiie e 122
G.2. CommENtiNg StYIE......ooviiiii i 123
G.3. Version CONIOl.........uiviiiiiiiiiie e 124
Appendix H. Isotach Computers and Myrinet Drivers 126
H.1. Installation of the Isotach File Server...........cccccovviiiiiiiiiiiiiinnnnn. 126
H.2. Installation of the Isotach Client Computerscccevvvvnnnnnn. 128
H.3. If the Myrinet Driver does not loadccooeeevviiiiiiiiineeineenn, 129
H.4. Modification of bigphysareaccccvviiiiiiiiiiiiiiiiii e 129
H.5. Modification of the Myrinet Driversocovvvviiiiiieeeeeeinnnnn, 130
H.6. Recompilation of the Myrinet Drivercccccviiniieeeeeiiinnnnn. 130
H.7. Manual Reloading of the Myrinet Drivercccooevvvivvinnnn. 131
H.8. TheCRT.O Module for the LANai Compiler.................cccoe.... 131
Appendix I. Installation and Configuration Scripts 132
Appendix J. Isotach Source Code 141

1. Introduction

This document specifies the Ironman design of the Isotach prototype messaging layer. Ironman
builds on both the Tinman [Wil99] and Strawman [BSV99] designs previously proposed, and
represents the current development state of the Isotach messaging layer. Everything described in
this document has been implemented, debugged and tested with the exception of the Isotach
Shared Memory Model.

1.1. System Overview

The following information is provided only as a brief overview. It is assumed that the reader has
a working knowledge of both Isotach systems and Myrinet networks. More information can be
found in [Bar99], [Reg99], [RWW97], [Sza99], [Wil93], [Myr01], [Myr02], [Myr03].

1.1.1. Isotach Systems

In traditional parallel and/or distributed systems, synchronization among nodes requires relatively
expensive mechanisms such as locks and barriers. An Isotach network inexpensively provides
strong guarantees regarding message delivery order, thus allowing for sequential consistency and
atomicity at a much lower cost.

Isotach ordering is an extension of Lamport’s [Lam78] logical time algorithm. Every host in the
network is aware of a logical time that is advanced through a token passing mechanism. The
Isotach invariantstates that a message issued by host A intended for host B at logical time T will
be delivered at logical time T+D, where D is the logical distance between A and B. Thus,
messages travel through the network at the rate of one unit of logical distance per unit of logical
time. Assuming fixed distances between hosts, a sender can predetermine the exact logical
delivery time of an issued message. This is the basis for the Isotach concurrency control
mechanisms.

1.1.2. Myrinet Networks

Ironman has been implemented on a Myrinet network. A Myrinet network is switched Gb/s low
latency network that is practically error free. Additionally, the network provides point-to-point
FIFO packet delivery.

The Myrinet interface card contains a general-purpose microprocessor called the LANai. The
LANai executes its own control program that can be written in a high-level language (such as C),
and compiled into executable format. Additionally, the interface card contains 1MB of high
performance SRAM and three different DMA engines: one to transfer data to the network from
SRAM, one to transfer data from the network to SRAM, and one to transfer data between SRAM
and the physical memory on the host. Additionally, the host can access SRAM through
programmed 1/O.

1.1.3. Custom Hardware

Although the initial Isotach prototype was developed entirely using software techniques, it has
been determined that a substantial increase in performance can be obtained by moving some of the
functionality to custom hardware devices. Two such devices — a token manager (TM) and a
switch interface unit (SIU) — have been designed and debugged. The TM is connected directly to
a switch, and is responsible for advancing logical time. The SIU is situated between the network
interface on a host and a switch, and is primarily responsible for communicating with the TM,
computing delivery times for messages, and determining the delivery order of incoming messages.
Further performance testing will need to be done in order to determine whether the custom
hardware devices significantly improve the performance of Isotach networks.

Ironman has been designed and implemented to work seamlessly with both the TM and SIU, and
relies on their functionality. There is currently no support within the messaging layer for an all
software Isotach implementation.

1.2. Design Goals

[ronman has been designed as a modularized system that is optimized to perform well with the
hardware token manager and switch interface units. The ultimate goal is a fast, efficient
messaging layer that provides Isotach functionality, as well as a baseline Non-Isotach
functionality. Our goal is to design and implement a Non-lsotach messaging layer that is
comparable in performance to other available messaging layers. Along with this goal, we wish to
show that that Isotach guarantees should not generate an overhead of more than twice the latency
and one half the throughput of a comparable protocol. Ironman is an attempt to demonstrate the
correctness of these hypotheses. Preliminary results indicate that we have achieved most of these
goals. Further information on performance testing is given later in this documentCh&ser

10

1.3. Document Overview

The main purpose of this document is to supply a complete description of the current Isotach
prototype. Section 2 provides a brief overview of the messaging layer. Section 3 is a high level
overview of the different protocols and send/receive paths within the messaging layer. Section 4
is a summary of data structures that are shared among different modules in the messaging layer.
Sections 5-9 give a detailed description of the design of each layer and module. Section 10
describes our performance tests and results, along with an analysis of potential bottlenecks in the
system. Finally, we conclude with some preliminary performance results and a description of
future work.

Additional information about the system can be found at the end of the document in the glossary
and appendices. Appendix A specifies the API for all supported protocols. Appendix B describes
the format of packets both internally and out on the network. Appendix C provides a list of

tunable system parameters. Appendix D contains our performance testing data. Appendix E
describes the format of the configuration files that the messaging layer utilizes. Appendices F, G
and H outline the development environment and coding conventions used to implement Ironman.

Finally, appendices | and J contain the source to various configuration scripts and the messaging
layer source itself. This document has been developed as a hyper linked document so that
following a link will lead the reader to additional information about a particular topic.

2. Isotach Messaging Layer Overview

The mLayer supports the following application level interfaces fggeendix A for details):

noniso MBM; noniso GC (group communication), iso MBM; iso SMM; and iso GC. To
implement these interfaces, the mLayer can send several types of packets. There are two basic
packet types: Isotach and noniso. Isotach packets are ordered by the SIU’s. Noniso packets are
not. Each packet type is further divided into subtypes as summarized in Figure 1. Noniso MBM
interface messages are sent by the mLayer using noniso packets of sohtypembm . Each

Isotach MBM message is sent by the mLayer as a pair of packets: a noniso packet of subtype
ordered that contains the message payload and an Isotach packet of Sabtyménter

that contains a pointer to the ordered packet and controls the order in which ordered packets are
delivered at the receiving node. Isotach SMM memory accesses are sent using Isotach packets of
subtypeiso_read ,iso_write ,iso_assign , oriso_sched . Responses to reads are noniso
packets of subtypesad_response . The mLayer services GC calls from the application by
sending Isotach packets of subtype marker (for Isotach signals and barriers) or subtype
barrier (for noniso barriers). The former packets are barrier-signal markers that go to the
neighboring SIU. The credit packets are used in flow control and the sync packets are used
during initialization. SeeAppendix B for a full description of internal and external packet
formats.

mLayer Packet Subtypes

noniso_mbm Ordinary Non-Isotach packets
The payload of Isotach messages are sent as Non-Isotach
ordered
packets
Responses to Isotach reads are sent as Non-Isotach
read_response
packets
credit Used in Non-Isotach flow control
Non-Isotach | iso_credit Used in Isotach flow control
Packets | barrier Non-Isotach barrier packets.
credit_request Used in Non-Isotach flow control
sync Used in synchronization
sync_ack Used in synchronization
sync_done Used in synchronization
iso_pointer A pointer to an ordered packet, used for Isotach Message
- Based Model (MBM) messages
iso_read
!SO—W”t.e Isotach Shared Memory Model (SMM) sRefs
Isotach iso_assign
Packets !so_sched
iSo_marker Isochron marker sent back by the SIU
eop_marker End of pulse marker sent back by the SIU
bs_marker Barrier/Signal information sent to the SIU

Figure 1 - Packet Types and Subtypes

In structure, the mLayer consists of several layers representing the different stages of a packet’s
journey through the mLayer. Each layer is further divided into modules that perform a task
specific to that layer. In addition, each module exports functions and data structures to the other
modules. The relationship between modules is shown in Figure 2. In outline, the mLayer
structure is as follows:

Host mLayer
- Hostman (host mLayer manager): initializes and shuts down host mLayer and loads the
NIU mLayer. Exports thepoll() , open_net() , try close_net() , and system
status API functions.

API layer
Supports functions visible to the Isotach API (8eeendix A).
Send (noniso send): performs initial send side processing of noniso messages.
- Iso_send (Isotach send): performs initial send side processing of Isotach messages and
memory accesses.
- Iso_barrier: handles (registers, clears, and participates in) Isotach barriers.
- Iso_signal: handles (registers, clears, and sends) Isotach signals.
- Iso_retrieve: returns to the application the result of previously executed read accesses to
Isotach shared memory variables.
- Delivery: delivers noniso messages to the application.
- Iso_delivery: delivers Isotach messages and barrier/signal-notices to the application.

Processing layer
Manages flow control, group communication, and Isotach ordering.
- Flow (noniso flow control): implements flow control for noniso protocol packets.
- Iso_flow (Isotach flow control for Isotach packets): implements Isotach-based flow
control.
- Barrier (noniso): implements noniso barrier.
- IOM (Isotach ordering module): sorts Isotach packets and bs-notices into Isotach logical
time, separate packets that should go to the shmem from those that go to the application.
- Shmem (shared memory module): executes locally and remotely issued accesses to local
portion of Isotach shared memory; generates read responses to remotely issued reads.

NIU interface layer
Sends packets to the NIU and receives packets from the NIU.

- Shipping: looks up and appends routes to packets and writes noniso packets into the
noniso send buffer on the NIU.

- Iso_shipping: looks up and appends routes to packets and writes Isotach packets into the
Isotach send buffer on the NIU.

- Receiving: processes received noniso packets (including ordered packets), i.e., check the
CRC, garner the credit information, and enqueue a pointer to the message in the noniso
delivery queue.

- Iso_receliving: performs initial receive side processing on Isotach packets (checks the CRC
and passes the packets to the IOM.)

NIU mLayer
- Netman (network interface unit manager): initializes the NIU mLayer, puts packets onto
the wire, receives packets from the wire, and transfers received packets from on-board

memory into pinned memory on the host.

HOST
iso_send
send barrier iso_barrier iso_signal iso_deliver iso_retrieve deliver
| mBM || sum |

AL

LA

shmem

\ 4 >

A 4 A 4 \ A 4 on
flow
l l] TTT
shipping iso_shipping iso_receiving receiving
NIU
send_packets receive_packets
noniso

iso
noniso iso
Legend

I Non-Isotach MBM (noniso) \

B

| Network Traffic (noniso / iso)

| Ordered (noniso)

[Read Response (noniso)

I | Barrier (noniso)

I sotach MBM (iso)
I sotach SMM (iso)
[1sotach GC (iso)

Figure 2 - MLayer Module Block Diagram

Flow of control
The modules are designed as independently executing processes communicating through buffers.
This design separates the flow of control from the flow of information (packets).

For good performance, the application must frequently hand the mLayer control. It does so by
calling the poll() function or by sending/receiving a message/access. The latter way
(sending/receiving a message/access) is an indirect version of the former (poll) since each API
function for sending/receiving a message/access pall§ after performing the specified
request.

When poll() is called, the hostman module, which expged() , calls each of the poll
functions in the other modules in the host mLayer. Each module, in general, does as much work
as it can before relinquishing control.

Programming note

The use of the term “module” is not intended to imply use of an object-oriented programming
language. The implementation language is C. A measure of modularity can be achieved by using
separate files and static declarations of functions and external variables. See Appendices E and F
for more information.

3. Protocol Overviews

This section gives an overview of the different protocols that the messaging layer utilizes. It also
describes flow control for each of these protocols and the functioning of the Netman module.
The five different protocols discussed are:

Non-Isotach Message Based Model (noniso-MBM)

Non-Isotach Group Communication (noniso-GC)

Isotach Message Based Model (iso-MBM)

Isotach Shared Memory Model (iso-SMM)

Isotach Group Communication (iso-GC)

abrowbdPE

For further information on these application programming iatexd, please ség@pendix A

3.1. Non-Isotach Overview
3.1.1. Send Path

The application initiates a send by executingead() function call giving a pointer to the
message to be sent, the receiver id, and the message length.

To execute theend() function, the send module first determines whether there is room in the
host's noniso send buffesend_buf . If not, the call tosend() fails. Otherwise, the send
module copies the message istmd_buf leaving room for headers, fills in several of the header
fields, and passes the packet to the flow module by incremesetinigt .

The flow module implements specific sender-based flow control. Informatiavercontrol for
Non-lsotach packetand the data structures referenced here are available later in this chapter.
The flow module approves packets for shipping in FIFO order. If the packet at the head of the
flow control segment ofend_buf can be sent, flow assigns the packet to the tail slot of the
remote buffer (by writingemote_t[j] into packet’'s DMA base, wheije is the destination

node, and incrementingmote_t[]). Flow piggybacks send credit information onto the packet
and passes the packet to the shipping module by incremeatidgflow_ptr

Shipping transfers packets frosand_buf to the NIU. For each packet, it looks up the route

for the packet, writes the route into the packet’s route field and then transfers the packet into the
tail slot ofniu_send_buf , the NIU’s send buffer, incrementisgnd_t andsend_h to reflect

the transfer.

The NIU DMA'’s packets imiu_send_buf onto the network in FIFO order. After sending a
packet, the NIU releases the space held by the packet by incrementing the send buffer's head
pointer.

3.1.2. Receive Path

The NIU continually checks for packets incoming from the network. It DMA’s a received packet
into the tail slot of niu_receive_ buf , the NIU's receive buffer, and increments
niu_receive_t

The NIU then DMA’s noniso packets imu_receive_buf in FIFO order into the location
starting at the physical address in pinned memory indicated by the packet’'s DMA base field. The
length of the packet to be DMA'd is determined by the packet interface hardware as the packet is
read in. The NIU records this length in the packet. After it DMA’s the packet, the NIU enqueues
a pointer to the packet’s physical address (the DMA base) in the tail element of
niu_delivery_q and incrementsiu_delivery _t

Receiving acknowledges new incoming packets by incremeniinglelivery_h . It converts

the physical address it read offi_delivery q to a virtual address, checks the CRC of the
packet, extracts credit information and passes the information to flow via a call to
update_credit() . In the case of a packet of subtymmiso_mbm , receiving writes a pointer

to the packet into the tail slot aklivery_ g and incrementgelivery t . In the case of a
packet of subtypeordered , receiving registers the receipt of the packet by incrementing
ord_receive_t[s]

Delivery module exportseceive() to the application. In response torexeive() call,

delivery removes the pointer at the headi@ivery_g (thus incrementingelivery_ h) and

passes the application the id of the packet’s sender, a pointer to the packet’s application payload,
and the application packet length. The next time it gets control, delivery deletes the packet it
delivered on the lastceive() call via a call tadelete_packet() . Delivery delays deleting

the packet to ensure that the application has a chance to see the packet before it is overwritten.

The delete_packet() function is exported by flow. On a call tizlete_packet() , flow
incrementsreceive_buf_h[s] , Wheres is the sender of the deleted packet. This new value
will be written in the credit info field of the next packet sentstoWhen necessary (see flow
module), flow constructs an explicit credit packet that it passes to shipping through a call to
ship_packet()

3.2. Non-Isotach Group Communication

Non-Isotach barriers (noniso barriers) are currently the only implementation of group
communication for the noniso protocol. This barrier construct was created to allow the
synchronized termination of Non-Isotach applications (i.e. those applications that do not use any
feature of the Isotach Protocols). The barrier is implemented using a simp&smmunication

between all hosts. Each host must participate in the barrier, and receive n-1 barrier messages (one
from every other host), in order for the barrier to complete. Currently, the only use for noniso
barrier packets is during system shutdown, where a barrier is initiated upon a call to
try_close_net() . This function is called repeatedly. When the barrier completes,
try_close_net() returns SUCCESS and the application can safely terminate.

3.2.1. Send Path

A noniso barrier packet is created through a call to the funittitate barrier() (which
is also implicitly called through the first call toy close_net()). The barrier packet
bypasses flow control by being placed directly on the LANai's send buffer.

3.2.2. Receive Path

A noniso barrier packet is received by the LANai and placed in a special control slot in the
sending host’s area in pinned memory. A pointer to this location is placed in the NIU delivery
gueue. The receiving module on the host reads the pointer from the NIU delivery queue, and
processes the barrier packet by calling a function in the barrier module. The applectivesr
notification of the completion of a barrier by callihgrrier_completed() , which will return

a success code when a barrier has finished.

3.3. Isotach Message Based Model Overview

This section gives an overview of the send and receive paths for Isotach MBM messages.

3.3.1. Send path

The application initiates a send by executingsansend() function call giving a pointer to the
message to be sent, the receiver id, and the message length.

To send an Isotach MBM message (other than a self-message, discussed later), the iso_send
module will produce two packets:
» ordered packet a noniso packet of subtypedered which contains the message as the
application payload.
* iso-pointer— a small Isotach packet of subtyipe_pointer that contains a pointer to
the receive buffer slot to which the corresponding ordered packet is assigned.

In response to aiso_send() call, iso_send first determines whether there is room in both
ord_send_buf , the send buffer for ordered packets, @udsend_buf , the send buffer for
Isotach packets. If either buffer is full, the calido_send() fails.

Otherwise, iso_send constructs the ordered packet in the tail slet sénd_buf , copying the
message into the application payload and filing in several header fields, and then passing the
packet to iso_flow by incrementirgd_send_t

Iso_send constructs the iso-pointer in the tail slos@fsend_buf . Since the Isotach prefix
differs depending on whether the packet is a start of Isochron (SOI), mid-Isochron, or end of
Isochron (EOI) packet, iso_send tracks Isochron boundaries, updating the shared variable
mid_net_isochron . Before it can advanceo_send_t to make the new packet visible to
iso_flow, iso_send must determine whether the packet is an EOI packet. If the application calls
iso_send() with the argumentlast_in_isochron set to TRUE iso_send can advance
iso_send_t immediately after constructing the iso-pointer. Otherwise, iso_send advances the

10

pointer only after the EOI status of the packet is determined. (For a more complete discussion,
see the note on EOI status in the iso_send section.)

Iso_flow approves Isotach and ordered packets for shipping. If the Isotach packet at the head of
the flow control segment aéo_send_buf can be sent and the packet is an iso-pointer, the
corresponding ordered packet will be at the head of the flow control segneedt ©nd_buf

Iso_flow performs the following tasks:

1.) assigns the DMA base to the ordered packet (see discussiodecéd flow controlater
in this chapter)

2.) writes the same (physical) address into the pointer field of the iso-pointer

3.) incrementsso_flow_ptr

4.) incrementsrd_flow_ptr (if the packet orso_send_buf was anso_pointer) to
approve both the iso-pointer and the corresponding ordered packet for shipping.

If the packet at the head of the flow control segmeidcosend_buf can be sent but is not an
iso-pointer, iso_flow performs only step 3. When necessary, iso_flow constructs an explicit
Isotach credit packet, which it passes to shipping through a chiltgoacket()

Iso_shipping transfers packets frasn_send_buf to the NIU’siso_niu_send_buf in the

same way shipping transfers packets feamd_buf andord_send_buf . It looks up the route

for the packet, writes the route into the packet’s route field and then transfers the packet into the
tail slot ofiso_niu_send_buf , incrementingso_send_h andiso_niu_send_t to reflect

the transfer.

The NIU DMA'’s packets iniso_niu_send_buf onto the network in FIFO order. After
sending a packet, the NIU releases the space held by the packet by incrementing the send buffer’s
head pointer. (Analogous to send path for noniso packets)

3.3.2. Receive path

The receive path for ordered packets is the same as for other noniso packets except that instead of
enqueuing a pointer to the packet on a delivery queue, receiving increments

ord_receive_t[s] , Wheres is the id of the packet’s sender. Incrementing the tail pointer into
s’s ordered packet receive buffer allows iso_delivery to determine whether the ordered packet
corresponding to the iso-pointer at the headsofdelivery g has been received. The

remainder of this section discusses the receive path for iso-pointers.

The NIU continuously checks for packets incoming from the net. The NIU reads in the first word
of an incoming packet to determine the packet’s type. If it is an Isotach packet, the rest of the
packet is then read directly into tl®_niu_receive_buf . The tail pointer to this buffer is
incremented when the packet has completely arrived. The NIU also detects Isochron markers (by
their size) and labels them for the host (for details seB¢h@man modulelescription).

11

When the NIU copies an EOP marker irdo_niu_receive_buf or when the queue is full, it
DMA’'s the contents of the buffer intdgso_receive_buf in pinned memory, updates
iso_receive_t to reflect the transfer and resets niu_receive_buf

Iso_receiving (on the host) acknowledges receiving newly incoming Isotach packets by
incrementingso_receive_h . Iso_receiving also checks the CRC of each packet and passes a
pointer to the packet to IOM. Since iso_receiving deletes the packet after the call to
bucketize() returns, IOM must copy all the information from the packet that it needs. For
each packet it is passed other than an EOP marker, the IOM creates a shortened version (a
packet-core-3 structure, se@ppendix B. A copy is performed in this case because the size

of the copied data is very small and, without the copy, freeing spase_neceive_buf

would be complex since deletions occur in Isotach order, which is not the same as the insertion
order.

The IOM maintains an array of buckets, one for each timestamp. If the pointer passed in a call to
bucketize() refers to an iso-pointer or Isochron marker, the IOM enquepaskat-core-

3 structure containing the subtype and the source fields and pointer field (iso-pointer) or iso_id
field (Isochron marker) in the bucket specified by the packet’'s TS field. If the pointer refers to an

EOP marker, the IOM uses the sort vector to move the packet-core structures to

iso_delivery _q

Iso_delivery delivers packets to the application in Isotach order. v amceive() call,
iso_delivery determines whether the ordered packet corresponding to the first iso-pointer on the
iso_delivery_q has arrived. If the item on the head of tbe@ delivery q is not an
iso_pointer , then it is as_notice or a self-message. See the sectionsotach GCand

the following section on self messages for more information. for more information. If it has,
iso_delivery hands the application a pointer to the application payload of the ordered packet, the
length of the packet and the id of the sender. The next time it gets control, delivery deletes (via a
call toiso_delete_packet()) the packet it delivered in the lasb_receive() cal. The

delay in deleting the packet is to ensure that the application has a chance to see the packet before
it is overwritten.

3.3.3. Self-Messages and Isochron Markers

A self-message/packet is an Isotach message/packet sent by the issuing node to itself. A network
message/packet is an Isotach message/packet sent to a remote node. An Isochron that contains
only self-packets is a self-lsochron. An Isochron containing one or more net-packets is a net-
Isochron (even if it also contains self-packets).

Self-messages are useful in the Isotach MBM protocol as a way to order local actions in relation
to remote actions. A self-message that is part of an Isochron containing net-messages will be
executed locally at the same logical time that the net-messages are executed remotely. A self-
message issued after an Isochron will be executed at a logical time no earlier than the Isochron.
In an SMM computation, local hits to Isotach shared variables are an important special case of
self-packets called self-refs.

12

One way to implement the ordering required for self-messages is to send the messages into the
network with a loop back route (and the appropriate logical distance). The SIU would then
assign logical times to self-messages and include references to self-messages in the sort vector.
The mLayer implements an alternative approach of holding self-messages within the host. The
host enforces the same ordering guarantees for self-messages as for Isotach net-messages:

- Isochronicity self-messagen is executed at the same logical time as other messages in the
same Isochron (whether they are self-messages or net-messages).

- Sequential consistencgelf-messagen is executed at a logical time no earlier than the
logical time of any Isotach message issued by the same host imefore

Since the SIU, not the host, assigns logical times to messages, enforcing these ordering
constraints requires communication between the SIU and host. For every net-Isochron that the
host sends, the SIU returns an Isochron marker informing the host of the logical receive time it
assigned to the Isochron. When this logical time arrives (signaled by the arrival of the EOP
marker for that pulse from the SIU), the host executes/delivers all self-messages issued in the
same Isochron as well as all self-messages issued by the host after the Isochron but before the
next net-Isochron, that contains any net-messages. (We say these two classes of self-messages
are executedvith the Isochron marker.) The first class of self-messages are executed with the
Isochron marker to enforce isochronicity; the second, to enforce sequential consistency.

The host thus requires a data structure that allows it find the self-packets that are to be executed
with a given Isochron marker. This data structure is calledithg and is internal to the IOM.

It has an entry called asochron-slot for each locally issued net-isochron. The isochron-slot

is a placeholder for the isochron marker that the Sillreturn. Isochron markers and isochron-

slots “match up”, i.e., the order in which isochron-slot appedriton is the same as the order

in which the corresponding isochron markers become executable. (This property holds only if the
SIU is enforcing sequential consistency over all Isotach messages). Each isochron slot contains a
self-count field that gives the number of self-packets that are to be executed with the
corresponding isochron marker. Since self-packets are stored in FIFO issue order (in another
data structure: thbit_buf for MBM self-packets) and should be executed in FIFO order, the
IOM does not need to store self-packets or pointers to self-packetshin the. A simple count

of the number of self-packets that should be executed with each net-Isochron’s isochron marker is
sufficient. The self-packets that should be executed are at the Headof

When the application issues a self-message (i.e., when itscaliend() with target my id),
iso_send constructs the packet directly into the buffer from which it will be hialolyf

At the end of each isochron, iso_send qallst_isochron() to tell the IOM:
1.) whether the isochron is a net-isochron
2.) the number of self-packets in this isochron

3.) if the isochron is a net-isochron, the isochron id (for use in a removable assertion claiming
that isochron-slots and isochron markers match up).

13

If the isochron is a net-isochron, the IOM enqueues an isochron-slot forhit_gn with the

self count field set to the self-count passed in as the second argument. Otherkiiseq, if

is empty, the self-packets in the isochron are executable. The IOM enqueues an isochron-slot
with the specified self-count at the tail ieb_delivery _q . Finally, if the isochron is a self-
isochron anchit_g is not empty, the self-packets should be executed with the isochron marker
corresponding to the isochron-slot at the tahiofqg . The IOM adds the count passed in as the
second argument to theelf count field of the existing isochron-slot. As a result of this
procedure, there is an isochron-slot bin g for each outstanding net-isochron and each
isochron-slot has the count of the number of self-packets that should be executed with the
corresponding isochron marker.

When iso_receiving gets an isochron marker, it passes it to the IOM, which adds an item (a
packet-core-3 structure of subtypésochron_marker) in the bucket for the marker’s
timestamp.

When the EOP marker for that bucket is received, the IOM handles the items in the bucket in
order by sender. To handle an isochron marker, the IOM moves the isochron-slot at the head of
hit g toiso_delivery q

Each isochron-slot iiso_delivery q representself_count packets irhit_buf available
for delivery to the application. When the item at the headootielivery q is an isochron-
slot, iso-delivery delivers the first packet lit_buf and decrementself count . When
self_count goes to zero, the isochron-slot is deleted fiondelivery q

3.4. Isotach Shared Memory Model Overview

The Isotach SMM interface supports four Isotach SMM access functismsread()
iso_write() , iso_sched() andiso_assign()). These functions access shared memory.
The interface also supporiso_retrieve() , a function that does not itself access shared
memory, but returns the value returned by a previmgead()

NOTE: At the time of writing this document, Isotach SMM had not been fully implemented yet.
See future work in the conclusion chapter for more details.

Each Isotach SMM access function call generates one or shared referenceésRefs). An
iso_read() call generates a single sRef on the closest copy of the accessed wariable
change(iso_write() , iso_assign() oriso_sched()) generates one sRef for each copy

of V. There are four basic sRefs (split operations): read, write, sched, and assign. (Actually there
are only three. The write is an optimization for the case where a process can issue an assign
together with the corresponding sched.)

For a given sched, theorresponding assigis the assign that supplies the value that is to be
written in the slot inV's history reserved by the sched. Similarly, for a given assign the
corresponding sched the sched whose value the assign supplies. Operationally, an assign
corresponds to a sched if it presents a version identifier) (that matches the schedlsl . We

14

use thepld for the process that issued the sched asithefor the sched. We assume that the
corresponding assign for each sched is issued by the same process that issued the sched and that
each process has at most one unsubstantiated sched per variable. Awsthdosisintiated the
corresponding assign has not been executed. An assign is always issued, received, and executed
after the corresponding sched.

A postis a sched or a write. For each read, dbeesponding posis the post whose logical
receive time most closely precedes that of the read. The read retuuaduh@ssociated with

the corresponding paost(In the case of a write, the associated value is the value written. In the
case of a sched, this value is the value supplied by the corresponding assign.) A Wasiable
unsubstantiatedf the last post to/ is an unsubstantiated sched. VIfs substantiated, the SIU
executes a read in the normal way, by returning the valwe of V is unsubstantiated, the SIU
executes the read by recording the read in association withdthef the corresponding sched.
When the assign with thatid is received, the SIU completes the execution of the read by
returning the value assigned.

Simplifying Observations:

- A sched tov may be discarded if is not the last posv¥tand no reads t@ were executed
while the sched was the last postwto

- The order among sched’s dpreceding the last post tbdoes not need to be retained.

Any subsequent read will return the value corresponding to the (current or future) last
post.

- An assign that does not correspond to the last post or to a pending read corresponds to a
sched that was discarded and can itself be discarded. (This observation requires the
assumption that an assign is received after the corresponding sched and is the reason that
assigns are sent as Isotach packets.)

Requirements for implementing sRefs
- For each variable, a way to record the status of each variable (i.e., whether it is
substantiated). Each shared variable a structure containing two fieldsl , V's value;
andunsub , set to 1 to indicate thatis unsubstantiated
- For each unsubstantiated variable, a way to determingldheof the last sched. If a
variable is unsubstantiated, the value inwvle field is thevid .
- Away to find the reads pending on a given assign.

The shmem maintains a read pending table. Gwemd thevid of a sched/assign, the read
pending table finds the corresponding reads (i.e. the reads that are waiting for wdr3ioh Vv

to be substantiated. This discussion does not specify the implementation of the read pending
table. It is probably best implemented as a hash table (hashingronconcatenated withid).

In the v.1 mLayer, the read pending table is scanned linearly. In the worst case, thenetan be
read_cap entries . Another implementation would use r tables, one for each of r partitions

of shared memory.

15

Pseudo-code for each access

read(V, Ivar, pld) ::

I the shmem executes read misses from remote nodes as well as from the local node

if (V.unsub) 1if V is unsubstantiated
e = allocate entry in PENDING READ; I create an entry in PENDING READ cache
e.variable = V's address;
e.vld = V.Val; ! !'since V 1s unsub, V’s value 1s a vid
e.lvar = lvar;
e.reader = pld; ! unique identifier for reader
else

if pld is my_id call handle_read_response()
else send a read response packet to node pld;

sched(V, pld) :

set V.unsub;
V.val = pld;
assign(V,vid,val)::
if (V.unsub AND V.val = vid) I corresponding sched was last post to V so val is now V's value fnd
V.val = val; 1V is now substantiated

reset V.unsub;
for each perfect match (both variable name & vid) in PENDING READ
if reader is remote
send a read response packet;
else
call handle_read_response();
deallocate the entry in PENDING READ;

write(V,val) ::
reset V.unsub;
V.val = val;

Retrieving values returned by reads

When the application callso_read() , it specifies a local variable into which the mLayer
should write the value returned by the read, but it cannot read that local variable immediately
since the call toiso_read() returns immediately without waiting for the response to be
returned. To retrieve the value returned, the applicationisallgetrieve() with the local
variable as the argument. The calido retrieve() is blocking, that is, it returns only after

the value for the correspondiie® _read() has returned. After a@so_retrieve() call, the
application can read the specified local variable. The value of the local variable will remain valid
until the application reuses it, either by writing to it or by using it as the local variable argument to
anotheriso_read() call.

3.4.1. Send path

When the application issues an Isotach SMM access, iso_send looks up the variable accessed in
shmem_mapto determine the number of sRefs it will generate in executingdbess and the
location of the copies of the variable. A redsb (read()) results in a single sRef on the
nearest copy. Ahange(iso_write() , iso_assign() , oriso_sched()) results in one

sRef per copy (i.ecopy_count sRefs). SRefs on the local copy are self-refs. SRefs on remote
copies are net-refs.

16

Iso_send builds each sRef required by the call. It builds self-reésfimef_buf and net-refs
iniso_send_buf (the format is shown iAppendix B. Ifiso_send_buf orself _ref buf

do not have enough room for all the sRef that will be generated by the call, iso_send returns a
failure code.

Iso_send otherwise treats SMM accesses in the same way as MBM packets. In particular, for
each isochron, it maintains a count the numbesetf refs in the current isochron and, at the

end of the isochron, calfsst_isochron() , to allow the IOM to track the number of self-refs

that are to be executed with the isochron marker.

Iso_flow approves sRefs for shipping using the same rule as iso-pointers, but does not take any of
the special actions specific to iso-pointers (it does not approve an ordered packet for shipping
since there is no corresponding ordered packet in the case of an sRef.)

SRefs follow an identical to that followed by iso-pointers through iso_shipping and the NIU.

3.4.2. Receive path

The receive path for sRefs is the same as for iso-pointers from the NIU through iso_receiving.

The IOM maintains an array of buckets, one for each timestamp. If the pointer passed in a call to
bucketize() refers to an sRef, the IOM enqueues in the bucket specified by the packet’s
timestamp field apacket-core-3 structure containing the subtype, the source field, and
shadder and operand fields. When emptying a bucket (upon the arrival of the EOP marker for the
bucket), the IOM enqueues sRefs and isochron-slotsharem_buf. Each isochron-slot on
shmem_buf representsself_count self-refs that the shmem finds at the head of the
self_ref _buf

The shmem executes sRefs in the order in which they appsamam_buf. The pseudo-code
for each sRef was shown above.

After executing a net-ref, shmem deletes it by calliegete iso_packet() exported by
iso_flow. After executing a self-ref, shmem deletes it by incremesgifigef _h

3.4.3. Read responses

When the shmem executes a read sRef to a substantiated, variable it sends a read response packet
to the read’s sender, if the sender is remote. When it executes an assign for which there were
reads pending, it sends a read response packet for each remotely issued read. A read response
packet is a noniso packet of subtypad_response . The response is sent as a noniso packet
because it does not need the guarantees Isotach provides. (The value to be returned is determined
by the time the timestamp of the read and is not changed by the order in which read responses are
returned.) Each read response identifies the local (at the host that issued the read) variable to
which the value returned should be written.

17

The receiving module handles a read response limgcaandle read_response() , a

function exported by the iso_retrieve module. Iso_retrieve writes the returned value in the local
variable specified in the receive response packet and sets the state of the local variable to valid.
When the application callso_retrieve() with local variabldvar as the argument, the call
returns immediately ifvar is valid. Otherwise, iso_retrieve stays in a polling loop until it
becomes valid.

3.5. Isotach Group Communication

Isotach Group Communication consists of Isotach barriers and signals. These barriers and signals
are subject to the ordering guarantees that Isotach enforces, just as any other Isotach message.
This section will give a description of how the Isotach barrier mechanism and signal mechanism
work. For more details about the actual iso_barrier and iso_signal modules, please see the
sections later in this document.

The mLayer will grant the application permission to use a GC resource only if the mLayer has not
been configured to use the resource itself. The application can register and release (clear) GC
resources dynamically.

3.5.1. Isotach Barriers

The GC interface supports two types of barri@SRONGand WEAK An execution of a weak

barrier can complete only after all processes that registered the barrier have participated in the
execution of the barrier. A strong barrier makes the additional guarantee that all Isotach

messages issued by a participating process prior to participation are received at a given host
before the barrier completes at that host. In other words, after completion of a strong barrier at
hosth, hosth will not receive any Isotach messages issued before the sender participated in the
barrier.

An Isotach barrier is initiated through a call to iso_barrier(). However, before an iso-barrier can
be sent, the barrier must be registered to the application and in the proper state. The following
notes describe the mechanism used for determining state information about Isotach barriers.

A barrier can be in any of five states and can be registered to the application (+) or unclaimed (-).
If the barrier is unclaimed (a - barrier), iso_barrier participates in a - barrier to make the barrier
usable by other hosts. Thus, when a - barrier completes, iso_barrier promptly returns a bs-
marker. This activity complicates barrier registration because iso_baillieypically not be

holding a barrier credit when it executes e register_barrier() call.

Initially, iso_barrier sets the barrier state $&NDto prompt sending the initial bs-marker.
Subsequent state transitions are shown in Figure 3. A “+” before the state name indicates that the
state can only occur when the application has registered the barrier. A “+/-” indicates ownership
may either be + (application) or - (unclaimed). The notes to the right of state diagram give the
condition enabling the transition and [in brackets] any action taken in making the transition.

18

14 start

+ HOLDING i +/- SEND = 1) iso_send_buf not full, [send bs-marker]
3 11 10) 1 2) -barrier completes []
* <A ? * 3,7,9) +barrier completes [3:enqueue bs-notice]
4,6) iso_barrier() []
5,8) register_barrier() [set owner to +]
10-14) clear_barrier() [set owner to -]

Figure 3 - Isotach Barrier States and Transitions

The five barrier states are:

NOT-HOLDING iso_barrier does not hold a barrier credit. It has sent a bs-marker but the
barrier has not completed. Ownership may be either + or - (application or unclaimed).

SEND iso_barrier is ready to send a bs-marker. It holds a barrier credit but has not sent out
the next bs-marker. Ownership may be either + or -.

HOLDING iso_barrier holds a barrier credit but cannot send a bs-marker until the application
makes ariso_barrier() call. Ownership is +.

TRANSITION: A transitional state in registering the barrier. Iso_barrier_man does not hold a
barrier credit and the application has registered the barrier recently (since the last time
iso_barrier sent a bs-marker). In this state, iso_barrieaealpt anso_barrier() call.
Normally, to enforce the rule that the application can start a barrier only if the last instance of
the barrier is complete, it acceptsism barrier() call only inHOLDINGstate. When it

first registers for a barrier, the host does not know and is not informed of the completion of
the previous barrier (a -barrier, i.e., a barrier started when ownership was -).

READY A second transitional state in registering a barrier. The application has registered a
barrier and issued aBo_barrier() call while iso_barrier is awaiting completion of the
previous - barrier.

Barriers can also be owned by the mLayer. A barrier claimed by the mLayer can be in one of two
states:NOT_HOLDINGor SEND Only transitions 1 and 2 apply. Themplete_barrier()

call occurs after some triggering event that depends on the use the mLayer makes of the barrier:
e.g., for Isotach flow control, the call occurs when the mLayer has delivered (or removed from
the receive buffer) all Isotach packets received before the barrier and for tolerating lost messages,
when the mLayer has ACK'd all previous messages. For now, the mLayer treats its barrier
channel in the same way as an unclaimed barrier (except it does not allow the application to
register it). NOTE: The implementation of mLayer iso-barriers is incomplete, which means that
the mLayer cannot initiate its own barriers. Only the application can initiate barriers.

19

3.5.2. Isotach Signals

Sending a signal propagates a single bit of information to all application processes that have
registered that signal. All processes receive the signal at the same logical time. Furthermore, all
Isotach messages a process sends before sending a signal etdeied before that signal is
received. If multiple processes send a signal on the same channel concurrently (so that the signal
arrives in the same epoch), only one signal willdzeived.

3.5.3. Send Path

Isotach barriers and signals traverse the same send path. Upon a call isceibaetier()

or iso_signal() a barrier or signal (respectively) is created inishesend_buf as a packet

with subtypebs_marker . Flow control automatically clears ahg_marker packets. These
packets are not subject to flow control themselves, but they need to be FIFO with respect to all
other Isotach traffic. Therefore, an Isotach MBM or SMM packet blocked on send credits in
front of abs_marker will hold up thebs_marker from being sent out.

Once iso_flow has cleared thes_marker , iso_shipping copies the packet to the NIU's
iso_send_buf and the NIU proceeds to send out the packet.

3.5.4. Receive Path

Isotach barriers and signals traverse the same receive path. A barrier/signal is received by the
LANai in an EOP Marker. The EOP Marker hasita field that contains the barrier/signal bits

that have been set. The EOP Marker is transferred up to the host and placed onto the
iso_receive_buf for iso_receiving to process. Iso_receiving passes the EOP Marker to the
IOM module, which calls functions exported by the iso_barrier and iso_signal modules to inform
them that barrier/signal bits have arrived. Afterwards, IOM passes the barrier/signal bits to the
application by enqueueing k&s_notice (Note: bs_notice andbs_marker share the same
subtype in this implementation) on tise_delivery _q

3.6. Flow Control

Flow control is a major task in the mLayer. Each major packet class (noniso, ordered, and
Isotach) has its own receive buffers. The noniso class uses specific sender-based flow control, in
which each node manages its receive buffers at each remote node. When it sends a packet, the
node specifies the address of the slot into which the receiver should write the packet. The Isotach
protocol uses non-specific flow control. Each node tracks the number of send credits it has at
each remote node, but it does not specify the slot into which its messages are to be written when
received. Flow control for ordered packets is based on Isotach flow control in a wayll thet w
explained below.

3.6.1. Non-Isotach Flow Control

The noniso protocol uses specific sender-based flow control. Each node manages its remote
receive buffers as though they were local (except that it gets delayed reports of deletions).

20

Initially, each node allocates to each other node a receive buffer for noniso packets and it gives
the node the beginning address and slot count of its receive buffer in an initial sync packet.

Each node tracks the head and tail pointers into its remote receive bufiemadia_h[] and
remote_t[] , respectively). When nodesends a message to ngde 's flow module holds the
packet (by not incrementingend_flow_ptr) if the remote buffer is full. Otherwise, flow
assigns the packet to the tail slot of the remote buffer (by wniingpte _t[j] into the
packet's DMA base field and then incrementiegnote_t[jj) and approves the packet for
shipping (by incrementingend_flow_ptr).

Slots become available as ngdelelivers node 's messages to the application, deleting packets
from the receive buffer allocated itoatj . After it delivers a packet froin, j s delivery module
informs the flow module (through a call tdelete_packet()) and flow increments
receive_hli] . Whenj sendsi a packetj s flow module writesreceive_hli] into the
packet’s credit info field. To cover the case in which traffic is sparse in one dirgcsdigw
module can send nodean explicitsend credit packdb update 's view ofremote_h([j]

1) i sends a packet to j
permitted only if i's receive buffer at j is not full

4: update_credit I's flow increments remote_t[j]

node i

| flow | | receive | 2) delete_packet() callinj
called by j's deliver after delivering i's packet
j's flow increments receive_hl[i]

A

1 3

v 3) j sends a packet to i with new credit info

| - packet's credit info field = receive_h[i]
receive | | flow |

node | 4) update_credit() call in'i
/ called by i's receive upon receiving j's packet
2: delete_packet i's flow Updates remote_h(j] to equal the
- packet's credit info field

Figure 4 - Flow Control for Non-Isotach Packets

3.6.2. Ordered Flow Control

Flow control for ordered packets is based on Isotach flow control. For each Isotach packet that
nodei can send to node j allocates ta a slot inj ’s receive buffer for ordered packétsThus

if nodei can send an iso-pointer (see overview of Isotach protocol) tojnatean send the
corresponding ordered packet.

Each node tracks the tail pointer for each of its remote ordered packet receive buffers, but not the
head pointer (since it relies on Isotach flow control to ensure that the assigned slot will be
available when the packet is sent). When nodends an ordered packet to npde’s iso_flow

module assigns the packet to the tail slot of its ordered receive buffer (By writing
ord_remote_t[j] into the packet’'s DMA base field and incrementing_remote_t[j]).

YIn the current implementation of the Isotach mLayer, the function athatates pinned memory each host does not
differentiate between Isotach SMM and MBM interfaces. Therefore, even if Isotach SMM were selected (which requires no
ordered packets), space will still be allocated for ordered packets.

21

When i’s iso_flow module approves the iso-pointer for shipping it also approves the
corresponding ordered packet.

Piggybacking ordered flow control on Isotach flow control in this way is possible only because of
the point-to-point FIFO assumption for messages. Although ordered packets may be consumed in
an order that differs from the order in which they are received, ordered packets @igena
sender are consumed in the order in which they are received, allowing ordered receive buffers to
be treated as queues.

3.6.3. Isotach Flow Control

Flow control over Isotach packets uses a non-specific sender-based flow control approach. The
sender tracks credits, not specific slots in the receive buffer. However, the non-specific approach
can be made to look very much like the specific approach to take advantage of the existing
mechanisms for specific sender-based flow control.

Isotach flow control is illustrated in Figure 5. Instead of maintaining an array of pointers into
remote receive queues, each node tracks the number of its Isotach credits used at each remote
node (inmy_credits_used][]) and freed at each remote noderin credits_freed[]).

Each counter has a range determined by the number of slots for Isotach packets the node has been
assigned at the remote node. Tihe credits_used][] andmy_credits_freed][] counters

are analogous to themote_t[] andremote_h[] pointers, respectively. Thus a sender is out

of credits at nodg if my_credits_used[j]+1 = my_credits_freed[j] mod the

counter range. Node regains credits atj when j’s iso_delivery module calls
iso_delete_packet() , after delivering an Isotach packet fram In executing the call,’s

iso_flow module incrementgur_credits_freed]i] , and the new value of this counter gets

sent toi in the credit info field of the next packgtsends ta . Nodei 's iso_receiving calls
iso_update_credit() when it receives the packet, resulting in the updating of
my_credits_freed]]

1) i sends a packet to j
permitted only if i has unused credits at j

4:iso_update_credit i's iso_flow increments my_credits_used[j]

node i

iso_flow iso_receive 2) iso_delete_packet() call in j

| - | | — | called by j's iso_deliver after delivering i's packet
j's iso_flow increments your_credits_freed([i]

1 3

A 4
|iso_receive| | iso_flow |

node j 4) iso_update_credit() call in i
called by i's iso_receive upon receiving j's packet
i i i's iso_flow updates my_credits_freed[j] to equal the
2: iso_delete_packet packet's credFi)t info fielﬁ_ freedlijto ed

Figure 5 - Flow Control for Isotach Packets

3) j sends a packet to i with new credit info
packet's credit info field = your_credits_freed]i]

Flow control for Isotach packets proteds®_receive buf from overflow. Unless each
bucket in the IOM is sized to hold all the Isotach packets in every node’s allocation, these buckets
are protected only probabilistically. An alternative form of flow control based on host level time

22

(see ~ccwi/group/flowcontrol.fm) would protect the buckets themselves and not require sending
credit information.

Markers (isochron and EOP) complicate flow control because they are sent by the SIU outside of
the constraints of flow control. Currently, a slack in the buffer is introduced to allow for these
packets. The amount of slack allocated is a tunable system parameter.

3.7. Network Interface Unit Send/Receive Path

The send/receive model is designed to prevent Myrinet's hardware flow control from being
triggered and to keep the DMA engines on the LANai as busy as possible. Hardware flow control
causes incoming packets to be truncated and corrupted quickly. Thus, the design is heavily biased
towards receiving, to prevent packets from sitting on the wire. To ensure that there is space to
receive these packets, the toHost DMA engine on the LANai is continually kept busy transferring
packets up to the host.

3.7.1. Sending

The LANai is capable of placing one packet onto the network at a time. When control is
transferred to the send routine, if there are packets to send, it will send one noniso packet and one
Isotach packet and then return control to the main loop in the LCP. Furthermore, while the
packet is being transferred to the wire, the LANai attempts to keep receiving, thus helping to
prevent hardware flow control from being triggered. Due to limitations of the LANai, and the
fact that routes may not begin on a word boundary, the routing flits need to be sent out
independently of the rest of the packet. Unless the number of routing flits can be fixed at compile
time (i.e. every node is always x hops away), it is impossible to put the route and the packet on
the wire in a single transfer.

3.7.2. Non-Isotach Receiving

As noniso packets are read in from the network, they are enqueued in a receive buffer on the
LANai. The LANai is aware that the packet being received is noniso by reading in the first word
of the packet and looking at the packet type field. Then, if the toHost DMA engine is free, the
head packet will be DMA’d up to the host. If not, it will be sent the next time the DMA engine is
free. With this system, noniso packets can continually be received from the network without
having to wait for the previous packet to be sent to the host. If the receive buffer on the LANai is
full, a toHost DMA will be forced, thus freeing up a slot for the incoming packet. With a large
enough receive buffer, this situation is rare, and the corresponding detst wesult in dropped
packets.

3.7.3. Isotach Receiving

Isotach packets are read into a special receive buffer on the LANai. They are accumulated in this
buffer until an EOP marker is received, or until the buffer is full. At this point, the receive buffer

is DMA'd up to the Isotach receive buffer on the host. To ensure that Isotach packeilslEan st
received during this transfer, there are actually two separate Isotach receive buffers on the LANai.
This allows a pipelining effect, in that while one buffer is being transferred to the host, Isotach

23

packets can be received from the network and stored in the second buffer. Then when the second
buffer is being transferred, incoming packets can be stored in the first.

When transferring an Isotach receive buffer up to the host, there is the problem of queue
wraparound. This occurs when the entire buffer on the LANai cannot fit in the remaining space at
the end of the Isotach buffer on the host. Thus, before performing transfer LANai must
calculate if the next transfen (+ 1) will fit in the space remaining after transfar It knows if

there is enough space for transferH 1) if a full Isotach receive buffer would fit in the host’s
Isotach buffer.If transfem + 1 would not fit, then the LANai appends a special “stop” packet to
the end of transfen, begins the transfer, and then sets the tail pointer into the host’s receive
buffer back to the beginning. The “stop” packet informs the host that the next packet will appear
at the beginning of the buffer so that it can reset its head pointer.

3.7.4. Managing the DMA engine

In order to satisfy the constraints of continually receiving packets from the network and keeping
the toHost DMA engine as busy as possible, it is necessary for these operations to proceed in
parallel. Thus, only in extreme circumstances will the LANai stopiving and wait for a toHost

DMA transfer to finish. This is accomplished by keeping track of the state of the DMA engine,
and periodically checking its status.

The DMA engine initially begins in an idle state. Once a transfer is initiated, its state is set to
reflect what type of transfer is occurring (noniso or Isotach). Then, during the periodic checks of
the DMA engine, if a transfer has finished, pointers into buffers can be updated properly
depending on the state which is then set back to idle.

3.7.5. Summary of Receiving

Whereas packets are only sent out one at a time, the LANai keeps receiving packets while they
are available from the network. In order to prevent receiving from completely starving sending,
there is a preset limit of how many packets the LANai earive in a single call to receive.

When a packet arrives, the LANai must first read the first word to determine what type of packet

it is. Then, based on that determination, the first word is copied to the appropriate receive queue

and the remainder of the packet is then read into the correct queue. One alternative is to read the
entire packet off the network, examine its type, and then copy the entire packet to the appropriate

gueue. It is believed that this double copy is more costly than reading in the packet in two steps.

24

Once the packet type has been determined, the correct receive path is followed. The receive
algorithm can be summarized as follows:

While there is something to receive from the network:
Check the status of the from-net DMA engine;
Read the first 2 bytes;

If it is a noniso packet:
If the noniso receive buffer is full:
Force a noniso DMA to free up a slot;
Read the rest of the packet into the noniso receive buffer;
If the to-host DMA engine is idle:
Begin transferring a noniso packet to the host;

Else it is an Isotach packet
Read the rest of the packet into the current Isotach receive
buffer;
If the packet was an EOP marker or the buffer is full:
Wait for the to-host DMA engine to be idle;
Begin transferring the current buffer to the host;
Switch to the other buffer for receiving off the network;

Check the status of the from-net DMA engine;
If there are packets in the noniso receive buffer:
If the to-host DMA engine is idle:
Begin transferring a noniso packet to the host;
End

25

4. Messaging Layer Shared Data Structure

This section describes shared data in the mLayer. Shared data is data that is accessed by more
than one module. The description of shared data is divided into two sections: shared data in the
host mLayer, and shared data that makes up the host/NIU interface.

Most of the shared data structures are packet queues and buffers. The shared queues and buffers
support the strategy of passing pointers to packets in place of copying packets. For each queue
the following information is given: location; the modules that access the queue, count (number of
elements), element type, element size; names of pointers into the queue, and for each pointer the
name of the module that updates the pointer and the interpretation of the pointer (e.g., address,
slot number, offset from a base location).

4.1. Host mLayer Shared Data

Packet queues in the host mLayer are shared to facilitate the strategy of passing pointers to
packets instead of copying the packets themselves.

send buf

The send buffer on the host. The host mLayer copies messages irdendhéuf before

transferring them to the NIU.

location - host, ordinary (nonpinned) memory

exporting module shipping

accessing module send, flow, shipping, and the shmem

count- 1024. On overflow, send calls by the application fail.

element type Each element is a slot for a packet. Each packet is of type nonistp{seedix
B).

element size size of a noniso packet

associated pointers(See Figure 6)
send_t : updated by send and the shmem after writing a new packet into the buffer; points to
the next slot into which send should copy or construct a packet.
send_flow_ptr : updated by flow after assigning the current packet a slot in the receive
buffer; points to the next packet that flow should consider
send_h : updated by shipping after transferring the current packet to the NIU; points to the
next packet isend_buf that shipping should transfer to the NIU; read by send and shmem.

26

Key

[— send_t: next packet issued goes here slot containing a packet not yet
cleared for shipping

flow control
segment

[€«—— send_flow_ptr: next packet for flow slot containing a packet
- - cleared for shipping
shipping

segment send_h: next packet for shipping to the NIU

Figure 6 - send_buf Pointers

ord send buf

A send buffer for ordered messages used by the Isotach protocol. This buffer is the same as
send_buf except:

* It contains messages of subtypdered instead ohoniso_mbm .

* Itis accessed by iso_send and iso_flow instead of send and flow.

associated pointers
ord_send_t : updated byso send after writing a new packet into the buffer; points to the
next slot into whichso_send should copy or construct an ordered packet.
ord_flow_ptr: updated by iso_flow after assigning the current packet a slot in the receive
buffer; points to the next ordered packet that iso_flow should consider
ord_send_h: updated by shipping after transferring the current packet to the NIU; points to
the next packet inrd_send_buf that shipping should transfer to the NIU

iso send buf

A send buffer for Isotach packets used by the Isotach protocol.

location- host, ordinary (nonpinned) memory

exporting module iso_shipping

accessing modulesiso_send, iso_barrier, signal and iso_shipping

count- 1024 On overflow, send calls by the application fail. The application must retry the send.
element typeiso_sendframe

element size size of ariso_sendframe

associated pointers

iso_send_t: updated by iso_send after writing a new packet into the buffer; points to the
next slot into which iso_send should copy or construct an Isotach packet.
iso_flow_ptr: updated by iso_flow after approving an Isotach packet for shipping; points

to the next Isotach packet that iso_flow should consider
iso_send_h: updated by iso_shipping after transferring the current packet to the NIU;
points to the next packetigo_send_buf that iso_shipping should transfer to the NIU

27

receive_g

An array ofn receive buffers, one for each sender. Although the LANai DMA’s packets into

these buffers, this space is visible as a buffer only to local and remote flow modules. It is listed as

a shared data structure because modules pass packets through it even though they do not see it as

a buffer.

location - host’s pinned memory.

exporting module flow

accessing modules Receiving, delivery and flow. Flow is the only local module to which the
buffer is visible as an array of buffers. (The flow module at each remote node also sees its
part of flow as a buffer.)

count- determined based on packet size and number of hosts. Cannot overflow due to sender-
based flow control. Size of each buffer determines the number of packets each sender can
have outstanding to each receiver.

element type Each element is a packet of type noniso fggeendix B.

element size size of a noniso packet

associated pointers

receive_t[]: doesn't exist locally. The tail pointer into a receive buffer is maintained at
the node to which that receive buffer has been allocated.
receive_h[]: local to flow.

ord receive buf

The receive buffer for ordered noniso messages sent by the Isotach protacular t8
receive_buf . An array of n receive buffers, one for each sender.
associated pointers

ord_receive_t[n]: incremented by receiving to register an ordered packet’s arrival and
read by iso_delivery. The pointers are physical address pointers.
ord_receive_h[]: doesn't exist.

hit buf

Buffer for ordered self-packets (see Glossary).

location - host’s ordinary (nonpinned) memory. The buffer's pointers are virtual memory
addresses.

exporting module iso_send

accessing modulesso_send, iso_delivery

count- 512.

element type Each element is a packet of subtype ordered (see App. B).

element size size of a noniso packet

associated pointers
hit_t: incremented by iso_send after it enqueues a self-packet.
hit_h: incremented by iso_delivery to delete a delivered self-packet.

28

self_ref_buf (SMM)

Buffer for self-refs (see Glossary).

location - host’s ordinary (nonpinned) memory. Might be an overlapifobuf since only one
(hit_buf orself _ref buf) will be used.

exporting module iso_send

accessing modulesso_send, shmem

count- start with 256.

element type packet-core-3 structure

element size3 words

associated pointers

self ref t: incremented by iso_send after it enqueues a self-ref.
self_ref_h: incremented by shmem after it executes a self-ref.
delivery g

A queue containing pointers to received packets.

location - host’s ordinary (nonpinned) memory.

exporting moduledelivery

accessing moduleseceiving, delivery.

count - On overflow, the program crashes. Since the consequences of overflow are bad, the
element size is small, and the type of memory required (nonpinned memory) is cheap, the
array is big enough to hold everything that can be sent.

element type pointer to a received message.

element sizeword

associated pointers
delivery_t: incremented by receiving after enqueuing a new pointer in the queue
delivery_h: incremented by delivery after passing a packet to the application.

iso delivery q

A queue of packet-core-2 structures (seeAppendix B in the order in which the

corresponding Isotach messages or bs-notices should be delivered (Isotach logical time order).

location - host’s ordinary (nonpinned) memory.

exporting module iso_delivery.

accessing moduled©M

count- 16384. On overflow, the program crashes. Since the consequences of overflow are bad,
the element size is small and the type of memory required (host’s nonpinned memory) is
cheap, the queue is quite large.

element type Each element is @aacket-core-2 structure of subtypéso_pointer or
bs_notice

element size 2 words

associated pointers

iso_delivery _t: incremented by iso_receiving after enqueuing a new descriptor in the
queue
iso_delivery_h: incremented by iso_delivery after passing a packet to the application.

29

4.2. Host/NIU mLayer Interface Shared Data

The host mLayer and NIU mLayer must communicate in order to transfer outgoing messages
from the host to the on-board memory in the NIU (the SRAM) and incoming messages from the
SRAM to pinned memory in the host. This section describes the data structures supporting that
communication. Most of the data structures are located in a mapped portion of the SRAM.
Memory on the SRAM can be mapped to the mLayer address space so that a read (write) by the
host to a mapped address reads (writes) the associated location on the NIU.

4.2.1. Send-side shared queues

On the send-side, the shipping module in the host mLayer must communicate with the LANai to
transfer messages from the host to the SRAM on the NIU. The send-side interface is the
niu_send_buf and associated pointers (all located on the NIU in mapped SRAM):

niu send buf

NIU's send buffer for noniso packets. The host mLayer copies packets from send_buf into
niu_send_buf using PIO.
location- NIU’'s SRAM memory, mapped into application’s address space
accessing modulesshipping
count- Start with 64. On overflowsend_buf in the host would start to back up because the
host would not be able to transfer packets to the NIU.
element type Each element is a packet of type noniso fggeendix B.
element size size of a noniso packet
associated pointers
niu_send_t: Points to the next slot into which the host can write a packet. Written by host;
read by NIU and host. The host (shipping) incremeinissend_t after it PIO’s a packet
into theniu_send_buf
niu_send_h : Points to the next packet to be DMA'd out onto the network. The host reads
niu_send_h (andniu_send_t) to test for overflow. The LANai incrementai_send_h
when it finishes DMA'ing a packet onto the network.

iso niu send buf

The NIU’s send buffer for Isotach packets. It is the sameilasend_buf except that each
element is a slot for an Isotach send frame.

4.2.2. Receive-side shared queues

The LANai must communicate with the receiving and iso_receiving modules when it DMA’s
messages into pinned memory. The Isotach and non-Isotach receive side paths are different.

30

niu delivery g

A queue of pointers to newly arrived noniso packets in pinned memory that have not yet been

acknowledged by the host mLayer. When the LANai DMA’s a packet into pinned memory it

writes intoniu_delivery q the pointer to the physical address in pinned memory to which it

DMA'd the packet. The receiving module reails delivery g to locate incoming packets.

location- NIU’'s SRAM memory, mapped into application’s address space

accessing modulegeceiving

count - 8192. The element size is small and the consequences of overflow are bad. On overflow,
the NIU would not be able to transfer messages to the host, thus niu_receive_buf would begin
to back up. Imiu_receive_buf overflows, the network would back up. Thus, to ensure
that this queue is somewhat protected by flow control, set it to the maximum number of
packets that can be received by a host (determined by packet size and the length of the noniso
and ordered buffers).

element type Each element is a pointer (physical address) to a packet in pinned memory.

element sizeword (address size)

associated pointers
niu_delivery_t: Points to the element into which the LANai will write the next pointer.
Incremented by the LANai after it DMA’s a new noniso packet into pinned memory. Read by
receiving to test for and locate new incoming packets.
niu_delivery_h: Points to the next packet descriptor that receivindj process.
Incremented by receiving to acknowledge packets.

iso receive buf

A buffer of Isotach packets DMA'd by the NIU to the host. When the LANai DMA'’s packets

into this buffer it adjust&o_receive_t accordingly. The host processes packets in this buffer

in FIFO order. As it finishes processing a packet, it deletes it from the buffer by incrementing

iso_receive_h

location- Host’s pinned memory

accessing modulesso_receiving

count- Calculated based on how many hosts are on the network and message size.

element type word

element size4 bytes

associated pointers
iso_receive_t: updated by the LANai after writing a batch of Isotach packets into the
buffer. Points to the word into which the LANai will write the first word of the next batch.
The LANai increments this pointer by the number of words in the batch after it DMA'’s a batch
into the buffer. The host reads this pointer to determine if there are new incoming Isotach
packets. (this pointer is located on the LANai).
iso_receive_h: updated by iso_receiving to delete packets from the buffer as they are
processed. Points to the first word in the next Isotach packet that iso_recdivprgagss.
Receiving increments this pointer by the number of words in the packet when it has finished
processing the packet (it may increment the pointer once for several packets). The packet may
then be overwritten by the LANai. (this pointer is located on the host)

31

5. Host Manager (hostman) Layer

This section describes the hostman module, as well as some issues pertaining to this module.

5.1. Host Manager (hostman) Module

Hostman performs initialization, shutdown, and housekeeping functions for the host mLayer and
loads the NIU mLayer.

5.1.1.Functions Exported

get_my_node_number()

API function that returns the node number of the current host.
get_number_of _hosts()

API function that returns the total number of hosts in the system.
get_max_payload()

API function that returns the maximum payload size of a packet for this configuration of the

Isotach system.
get_SIU_state()

API function that returnRUEIf hardware SIU support is enabléehLSE otherwise.
get_ MBM_ver()

API function that returns the current version number of the IOM module.
get_node_number()

API function that returns the node number of the host given as the argument.
Arguments:char* hostname (a valid short form hostname of a machine on the Myrinet
network)

open_net()
API function that initializes the mLayer and performs system wide reset. Must be called
before any other API functions. For more information, see the section on Program
Initialization.
Arguments: int mode (the Application programmer actually only calls this function with NO
parameters. The function is changed by the preprocessor during Application compilation to
give the proper parameter based upon the header files that are included. For more

information, see the section on Preprocessor Trickgpendix B
try_close_net()

API function that attempts to shutdown the mLayer. Must be called repeatedly, until it
returns SUCCESS When this happens, the mLayer is completely shutdown and the

application may exit safely.
iso_poll()

Corresponds to the API functigmll() . This function is called implicitly whepoll() is
called in an application that is configured to use any Isotach functionality. This should never
be called directly by the application.

32

noniso_poll()
Corresponds to the API functigmll() . This function is called implicitly whepoll() is
called in an application that contains no Isotach functionality. This should never be called
directly by the application.
get_lanai_sym()
This function is a Myrinet function, which maps a variable name (specified as the first

argument) to an address memory mapped to the LANai SRAM.
callback()

This is a dummy function necessary for the lanai_load_and_reset() function.
print_out_packet()

This function takes a packet as an argument, and prints out the relevant fields. Useful for
debugging.
print_out_iso_packet()
Same as above function but takes an iso_packet as a parameter.
print_out_iso_marker()
Same as above function but takes an iso_marker as a parameter.
subtracttime()
Takes 2 time values and produces the difference. Useful for performance testing and timing.
shutdown()
This function terminates the mLayer and calls the de-initialization function for hostman. It can
either be called by a module in the mLayer (during an unrecoverable error) or during normal
shutdown by the signal interrupt handler. For more information, see the section on Program
Termination.

5.1.2. Functions Called

module init()
Each module’s initialization function. Called isbtach_init() duringopen_net() to
initialize all data structures.

module deinit()

Each module’s de-initialization function. Called iisotach_deinit() during
shutdown() to terminate the mLayer.
module poll()
Each module’spoll() function (if it has one). Called in eithéso_poll() or
noniso_poll() to perform work for the module, if necessary.
iso_send_mLayer_signal(RESET_SIGNAL)
Called inisotach_init() to send out the initial reset signal, when an Isotach system is

being used along with hardware SIU functionality.
initiate_barrier()
Called intry_close_net() to create a barrier so that all hosts can synchronize when
shutting down. Used when Isotach functionality is not requested by the application.
barrier_completed()
Called intry_close_net() to inform the mLayer that the shutdown barrier has completed,
and the application may exit. Used when Isotach functionality is not requested by the
application.

33

iso_mlLayer barrier(SHUTDOWN_ BARRIER, STRONG)
Called intry_close_net() to initiate an Isotach barrier so that all hosts can synchronize
when shutting down. Used when Isotach functionality is requested by the application.

5.1.3.Internal Functions

allocate_pinned_memory()
This function takes the size of pinned memory (as reported by the Myrinet driver) and
partitions pinned memory appropriately. For more information, see the sectidiocation
of Pinned Memory

Argumentsint max_length
initialize_configuration_table()

This function reads in the fileetwork.cfg from disk, and creates the Network Status Table
(NST) from it. Information about host names, routes and node numbers are read in from this

file. For more information, see the sectionNatwork Status TablandAppendix E
synchronize()

This function synchronizes with all of the running hosts, and exchanges pinned memory
information with each host. Aifter synchronization, each host should have a completed NST.
For more information, see the section®mchronization

isotach_init()
This function is called duringpen_net() and initializes each module by llcey their
respective init functions. If the system requests Isotach functionality, an Isotach barrier is
initiated by host 0 and completed here by all hosts. For more information, see the section on

Program Initialization
isotach_deinit()

This function is called duringhutdown() and de-initializes each module bylliog their
respective deinit functions. The LANai is also reloaded with the LANai Control Program
(LCP) to prevent garbage data from being erroneously sent out on the network in the case of
abnormal program termination. For more information, see the sectio®rogram

Termination
print_network_configuration()

This prints out the network configuration for the currently running system. Called from
open_net()

print_config()
This prints out the pinned memory layout. Called figran_net()

5.1.4.Exported Data Structures

SYS TYPE
Can have the valuessSOTACH NONISOTACHr BOTH Describes the current state of the

system.
number_of_hosts
An integer that stores the total number of hosts in the running system.
host_node _id
~Aninteger that stores the node number of the current host.
init_stage
A variable used for during LANai/host synchronization and initialization.

34

ISO_PINNED_SIZE

Stores the size of the Isotach region of pinned memory (in bytes).
ISO_RECV_SIZE

Stores the size of the Isotach receive buffer (in bytes).
ISO_CREDITS

Stores the total number of Isotach credits assigned to this node.
NONISO_CREDITS

Stores the total number of Non-Isotach credits assigned to this node.
offset

Stores the offset value to convert physical memory addresses into virtual memory addresses.
5.1.5.Internal Data Structures

LCPFILE

The location of the LANai Control Program (LCP)
CONFIG_FILE

The location of the network configuration fieegwork.cfg).
nst

The Network Status Table. Stores the following information about each host: node id, host
name, route, alive and pinned memory information for both remote and local buffers.
iso_base_ptr
The virtual address of where the Isotach region begins in pinned memory.
SIU_SLEEP_TIMER
The SIU cannot have messages IMMEDIATELY sent to it following a system reset. A brief
pause (approx. 2 seconds) must elapse between finishing a hardware reset and beginning

message sending.
netman_hostbase

The physical address used by the LANai that points to the base of host’s pinned memory.
hostman_hostbase

The virtual address used by the host that points to the base of pinned memory.
maxlen

Stores the size of pinned memory as returned by the Myrinet driver.
NIU_SYS_TYPE

A copy of SYS_TYPEthat exists in LANai SRAM.
netman_maxlen

A copy of themaxlen variable. This variable exists on the LANai SRAM.
niu_iso_recv_base

The base address in pinned memory ofitberecv_buf

5.2. Isotach Program Initialization

Prior to running any Isotach applications, it is necessary to ensure that the network is free of any
unwanted packets. When a Myrinet driver is initialized on a Linux system, the card’s SRAM
contains random data, which causes the LANai to send out garbage packets on the network.
These packets can disrupt the functioning of the hardware SIU’s and any other connected hosts.
Specifically, hosts will not synchronize properly if one of the other hosts connected to the
network is sending out garbage packets. To ensure that there is no garbage on the network, the
LANai SRAM must be cleared immediately after its driver is loaded. This is done by loading a
‘dummy LCP’ (LANai Control Program) that simply loops infinitely.

35

Initialization of the messaging layer begins when the application calls the API function
open_net() . This host loads the LCP onto the LANai, data structures are initialized and the
hosts synchronize. After synchronization is completedisthach_init() function is called.

This function calls each of the module’s initialization functions, and if the system is using either
Isotach MBM or SMM performs the Isotach reset procedure. If the current host is node 0 on the
network, it sends out a bs-marker with the reset bit set and both barrier bits set (to prime the
Token Manager with barrier credits). All other hosts wait until the reset bs-marker is received
indicating that the Isotach reset is complete.

5.3. Network Status Table

Both the network configuration and the allocation of pinned memory are stored in a data structure
called the Network Status Table. This table is passed by Hostman to many of the modules’
initialization routines. The table is implemented as an array of structures. Each structure contains
the following information about a particular host:

* node_id —node number of the host as specified in the configuration file
* host_name - short name of the host (iligs)

* route —word containing route from yourself to that particular host

» alive - flag indicating that the particular host is alive

* local_noniso — structure containing pinned memory information for that host’'s Non-
Isotach receive buffers on the local host

* local_iso — structure containing pinned memory information for that host's Ordered
receive buffers on the local host

* remote_noniso — structure containing pinned memory information for the local host’s
Non-Isotach receive buffers on that particular host

* remote_iso — structure containing pinned memory information for the local host’s

Ordered receive buffers on that particular host

Note that the first three fields can be determined from the network configuration file. The alive
flag is set to false for all hosts except the local host. The “local” pinned memory structures can be
set to the values determined during the allocation of pinned memory. The “remote” fields require
information from the other hosts in the system This information is provided during
synchronization.

5.4. Allocation of Pinned Memory

Currently, the Myrinet drivers are configured to use 4MB of physical memory on the host. These
pages are “pinned” so that the operating system cannot swap them out. This provides fixed
physical addresses for the DMA engine on the LANai to copy data.

Note that since pinned memory on every host in our system is configured in the same manner, these fields could be
determined prior to synchronization time. However, to provide greater flexibility, each host will wait to be told where its
receive buffers are located on the other hosts. On different systems, the bigphysarea pinned memory region may reside at
different addresses.

36

As the Ironman design calls for sender specific flow control, this region of pinned memory must
be divided among all of the hosts, and among Isotach and Non-Isotach traffic. Furthermore, the
Isotach section must be divided into Isotach and Ordered traffic. In the design, many of the
parameters are configurable at compile time. These include the size of pinned memory, the ratio
specifying how it is divided between Isotach and Non-Isotach traffic, and a percentage specifying
how much space to allocate for Isotach markers (Isochron and EOP), which are not protected by
software flow control.

These parameters, coupled with the packet size and the number of hosts allows the system to
compute the maximum size of a Non-Isotach receive buffer and an Isotach receive buffer. Please
see the source code for a description of the set of linear equations that are solved. Once the sizes
of the receive buffers are computed, it is a simple manner to compute the location of each hosts
receive buffers in pinned memory.

Pinned memory is split at a point determined by the Iso/Nonlso ratio. The first section of pinned
memory is used to store Non-Isotach traffic, and is divided into a series of regions — one for each
host on the network. Within that region, the first few packet slots are designated as control slots,
where specific mLayer messages will lmzeaived. These include credit packets, requests for
credit packets, barrier packets, etc. The remainder of the region is the Non-Isotach receive buffer
for a particular host.

The second section of pinned memory is used to store Isotach and Ordered traffic. Based on the
size of the region, the size of ordered packets, and the percentage of slack allocated for markers,
the system can compute how much memory is allocated to Ordered traffic and how much is given
to Isotach traffic. Please see the source code for a more detailed description of this calculation.
The ordered region is partitioned similarly to the Non-Isotach region, except that no slots are
reserved for mLayer traffic. The Isotach region is not partitioned by host, and is left as a “chunk”
of memory starting and ending at particular physical addresses.

Note that a receive buffer is allocated for the local host; so that hosil Kcwually contain

receive buffers for host N. The allocation algorithm could be modified fairly simply to remedy
this situation, however for debugging and sanity reasons, it has been simpler to have every host
divide its pinned memory in the same manner.

5.5. Synchronization

Before hosts can begin exchanging messages, each host must know that every other host on the
network is alive, and it must receive informatiolirig it where its eceive buffers are located on
the other hosts. To accomplish this, Ironman provides a synchronization routine:

The local host loops, and sends out a synchronization packet to every other host on the network.
This synchronization packet contains information about each hosts receive buffers on the local
host. The local host waits until it has received acknowledgement packets from all of the hosts it
has sent synchronization packets to. It also waits to receive synchronization packets from every
other host, and sends out acknowledgement packets to any host that has sent it a synchronization
packet.

37

Once this host has received all synchronization packets (and responded to them) from every other
host, and has sent out its own synchronization packets (and gotten responses back from other
hosts) it is assured that every other host is alive, and that every other host knows that it is alive.

However, in a system with more than two hosts, a subset of the hosts can finish synchronizing
before the rest of the hosts. Thus, a simple barrier is initiated at the end of synchronization to
ensure that every host on the network has finished synchronizing.

The packets used in synchronization are Non-Isotach packets, however they do not follow the
send/receive path described in the design. Instead, outgoing packets are copied directly into a
region of the LANai's SRAM. During synchronization, the LANai continually scans this region
looking for packets to send out. Packets that are received by the LANai are DMA'd into pinned
memory in successive regions. Thus, during synchronization, all of pinned memory is treated as a
simple queue.

5.6. Putting It All Together

The following table illustrates the full initialization and synchronization process on the host and
LANai:

Host LANai

Read the symbol table from the LANai Contyol
Program and map pointers on the host| to
variables in the LANai's SRAM. Not running yet

Seed the beginning of pinned memory with a
set value for a test of the DMA engine

Load the LANai with the control program

Write the value of the beginning of pinned Spinning
memory into the LANai's SRAM

1)
—

Initialize a small region of SRAM with a s
Spinning value
DMA from SRAM to pinned memory

Check pinned memory to ensure that the DMA

o : Spinning

engine is working properly
Spinning Initialize all necessary variables in SRAM

Read in network configuration file
Allocate pinned memory Spinning
Initialize network status table
Enter host synchronization routine Enter LANai synchronization routine
Initialize all modules of the mLayer Spinning
If Isotach System, send out initial Reset
Marker.
Return to application Enter main event loop

Table 1 - Initialization and Synchronization Steps

38

5.7. Isotach Program Termination

Normal termination of an Isotach program is done with a non-Isotach or Isotach Barrier. This is
initiated through thery close_net() function provided by the hostman module. Each host
waits on the barrier. When the barrier is complete, all hosts calkdteh_deinit()

function. This function calls each module’s de-initialization function to free up memory, and close
down the messaging layer. Finally, the LANai is reloaded with the LCP to prevent it from
erroneously sending out packets on the network after application termination.

If the application needs to be terminated abnormally the application should be stopped with the
CONTROL-C sequence. The messaging layer has a signal handler set, waiting to intercept this
keystroke and allows the system to be exited in a slightly better state than if the process was just
aborted. The signal handler calls the mLayer functfandown(0) . This function simply calls

the isotach_deinit() function. This is particularly important because abnormal application
termination may cause the LCP to enter a state in which it sends out packets on the network after
host level application termination. Using CONTROL-C, which implicitly callsstingdown()
andisotach_deinit() functions reloads the LCP and prevents this behavior. However, there
still could be problems in an Isotach network that uses hardware SIU’s. If an application is
terminated abnormally, the LANai will be reloaded, but it may have been reloaded in the middle of
sending a packet. This means that the host’s SIU will be waiting indefinitely for the end of the
packet (which will never come). In addition, if the host was in the middle of an Isochron, the SIU
will be waiting indefinitely for an End of Isochron packet. In either of these casesedessary

to manually reset each SIU and Token Manager in the Isotach network.

One possible solution to these problems would be to allow the LCP to send out everything in its
buffers before allowing the host to reload the LANai. This would involve a locking mechanism
between the host and LANai and should be simple to implement. A fake EOI packet would also
need to be sent out, to ensure that the SIU was not waiting for an end of Isochron when the
system stopped.

39

6. Application Programming Interface (API) Layer

This layer offers functions visible to the application.

6.1. Non-Isotach Send (send) Module

Send provides the interface to the application for sending noniso MBM messages and does the
initial processing required to send such messages.

6.1.1.Functions exported

send_init()
Initialization function used by hostman. (stub function — performs no actions)
send_deinit()

De-initialization function used by hostman. (stub function — performs no actions)
send()

API function that performs a Non-Isotach MBM send.
Argumentsint target ,void *data , int size

6.1.2.Tasks

On a call tosend()
» |If send_buf is already full, calpoll() and then return a failure code to the application to
signal failure
» Check arguments. If either argument is invalid, walll) and then return a failure code
- target should be a valid receiver id. In the noniso protobot node id is an
invalid argument.
- length should be no greater thstAX_PAYLOAD_SIZE
» Construct the packet in the tail slotsghd_buf .
- Write the receiver id into the last two bytes of the route field.
This is a temporary use of the route field. The next module down, flow, needs the
receiver id.
- Write noniso_mbm into the packet subtype field.
- Write the sender id into the sender field.
- Write the packet length (supplied as an argumeseétnd()) into the payload length field
- Copy the message into the application payload.
* Incrementsend_t
» Callpoll()

40

6.2. Isotach Send (iso_send) Module

Iso_send provides the interface to the application for sending Isotach messages/accesses. It does
the initial processing required for sending Isotach messages.

6.2.1.Functions Exported

iso_send_init()

Initialization function used by hostman.
iso_send_deinit()

De-initialization function used by hostman. (stub function — performs no actions)
iso_send()

API function that performs an Isotach MBM send.
iso_read()

APl function that performs an Isotach SMM Read on a shared variable. NOT
IMPLEMENTED
iso_write()

APl function that performs an Isotach SMM Write on a shared variable. NOT
IMPLEMENTED
iso_sched()

APl function that performs an Isotach SMM Sched on a shared variable. NOT
IMPLEMENTED
iso_assign()

APl function that performs an Isotach SMM Assign on a shared variable. NOT
IMPLEMENTED
iso_end()

API function that signifies that the end of Isochron (EOI) has occurred.

6.2.2. Functions Called

post_isochron()
Exported by the IOM. Called at the end of each isochron.
Argumentsmid_net_isochron , self_count , net_isochrons_sent

6.2.3.Internal Functions

EOI_found()
Called at the end of each isochron. Determines whether a packet should be an end of
Isochron (EOI) packet and posts the Isochron if any net messages have been sent.
start_iso_packet()
This function performs some tasks common to enqueuing an Isotach packet in
iso_send_buf . It assumes that it has already been determined that there is room for the

packet in the buffer.

6.2.4.Exported Data Structures

HIT_BUF_SIZE
The maximum number of messages that can be stored in the hit buffer. Initially set to 512.

41

mid_net_isochron
Set toTRUEIf we are currently in the middle of sending out a network Isoch¥ahSE
otherwise.
hit_buf[HIT_BUF_SIZE]
This buffer stores any locally executed messages. For each self-message sent, there is an entry
in this buffer.
Pointershit_h , hit_t

6.2.5.Internal Data Structures

EOI_decided
A Boolean set td’RUEIf the EOI status (see discussion under Notes) of the item in the tall
slot ofiso_send_buf has been determined orisb_send_buf is empty and td~FALSE
otherwise. Initially,EOI_decided is TRUE It is set toFALSE when a packet is constructed

iniso_send_buf and is set tdRUEwhen the EOI status of the packet is determined.
seqg_con_set

A Boolean initially set to 1 and flipped each time an Isotach packet is sent. To maintain
sequential consistency, the bit must flip with each packet, so that the bit is set in alternating
Isotach packets. See the Isotach specification for a description of its purpose.
net_isochrons_sent
A counter (range 0-255) used to generate and track isochronal id’s. Initialized to O.
Incremented for each Isochron.
self_count
The number of self-packets in the current Isochron.
shmem_map
A table read in from a configuration file that gives the copy set for each page of Isotach
shared memory. NOT CURRENTLY IMPLEMENTED.

6.2.6.Tasks (Common to Both Isotach MBM and SMM)

On a call toso_send_init()

* Initialize local and exported variablesef_con_bit = TRUE, net_isochrons_sent

=0, EOI_decided = TRUE, self _count = 0, mid_net_isochron = FALSE)
» Initialize the head and tail pointers into the hit buffer.
* Initialize thesender , subtype andtype fields for all entries of the hit buffer.

On a call toeOI_found()

* If EOI_decided isFALSE
- Set the EOI bit (bit 3, starting with 1) in the Isotach prefix of the packet in the tail slot of
iso_send_buf
- Incrementiso_send_t
- SetEOI_decided toTRUE
e Call post_isochron() with mid_net_isochron and self_count as arguments. If
mid_net_isochron is TRUE indicating the current Isochron is a net-lsochron, pass the

42

value ofnet_isochrons_sent as the third argument, and otherwise pass in a -1 as the
third argument.
* If mid_net_isochron iISTRUE
- Incrementnet_isochrons_sent (mod isochron_allowance)
- Setmid_net_isochron to FALSE
e Setself count to 0.

On a call tostart_iso_packet()

This function assumes the buffer has room for the packet.
» If EOI_decided is FALSE, the packet in the tail slot is not an EOI packet (Event 2 in
Notes). Incrementso_sent_t , passing the previously enqueued Isotach packet to flow
control.
* SetEOI _decided toFALSE
» Zero out the Isotach prefix.
* If mid_net_isochron is FALSE, this is an SOI (start of Isochron) message
- Setmid_net_isochron to TRUE
- Write 0000b110 into the first byte of the Isotach prefix, whére seq_con_set and
flip seq_con_set

- Write net_isochrons_sent into the next byte in the Isotach prefix (the
isochron_id field)

- If send deltas are being used (currently, they are not), write the send delta into the prefix
here.

On a call taso_end()

» CallEOI_found()
» Callpoll()

6.2.7.Tasks (Specific to Isotach MBM)

On a call taso_send()

* Check arguments. If any argument is invalid, gall) and then return a failure code
- length should be no greater thstAX_PAYLOAD_SIZE
- target should be a valid receiver idhost_node_id is a valid target.

* If target = host_node_id (self-message case)
- If hit_buf is full, call poll() and return a failure code to the application to signal
failure.

- Construct the packet in the tail slothif buf and incrementit_t
Write the packet length (supplied as an argument) into the payload length field
Copy the message into the application payload.
Ignore route field. Ahit_buf packet should look like anrd_receive_buf
packet.

- Incrementself_count

43

* Else (net-message case)
- If EOI_decided isFALSE
If either theord_send_buf is full or theiso_send_buf (after incrementing the
iso_send_t by 1) is full
Callpoll() and return a failure code.
- Else IfEOI _decided isTRUE
If either theord_send_buf is full or theiso_send_buf s full
Callpoll() and return a failure code.
- Callstart_iso_packet() to begin construction of a packetiso_send_buf
- Finish constructing the iso-pointerigo_send_buf
Write the receiver id into the route field
Write iso_pointer into the packet subtype field
- Construct the packet in the tail slot @fd_send_buf and incremenbrd_send_t
Same as in send except:
Useord_send_buf and associated pointers insteadefd_buf
Ignore packet type, packet subtype and sender fields — they are already initialized.
e If last_in_isochron is TRUE callEOI_found()
» Callpoll()

6.2.8. Tasks (Specific to Isotach SMM)

On a call taso_read()

» Determine whether the node has a local copy of the variable.

- Look upshadder inshmem_mapto determine the location of nearest copy.

- If shmem_map has no entry feitadder , callpoll() and return a failure code.
» Ifthe copy is local (self-ref case)

- If self_ref_buf is full, callpoll() and return a failure code.

- Construct the packet self_ref buf

- Incrementself_count
» Else (net-ref case)

- Ifiso_send_buf isfull, callpoll) and return a failure code.

- Callstart_iso_packet() to begin construction of a packetigo_send_buf . If the

call fails, callpoll() and return a failure code to the application.
- Finish constructing the sRefiso_send_buf

e If last_in_isochron is TRUE callEOI_found()
» Callpoll()
On a call taso_write() , iso_assign() oriso_sched()

» Check arguments.

* Return a failure code iso_send _buf andself ref buf do not have room for the
packets the call will generate.
- Look up the variable ishmem_map

44

- Return a failure code if any copy is local and self-ref buffer is full @oifsend_buf
does not have room foemote_copy _count additional packets
» Ifthe node has a local copy of the variable (self-ref case)
- Construct the self-ref iself_ref_buf
- Incrementself_count
* For each remote copy

- Callstart_iso_packet() to begin construction of the net-refiso_send_buf
- Finish constructing the sRefiso_send_buf

e If last_in_isochron is TRUE callEOI_found()

» Callpoll()

Notes

* hit_buf andord_send_buf initialization - For every slot in each buffer, initialize the
packet type toNONISQ the packet_subtype to ordered , and the sender to
host_node _id

* iso_send_buf initialization - For every slot in the buffer, initialize the packet typésto
and the sender field toost_node_id

» EOI status - A packet should be marked EOI if and only if it is the last net-packet sent in its
isochron. Unfortunately, deciding whether a given message is the last net-packet may require
looking at subsequent messages. Consider a given net-packet m. If m is sent with the
argumentast_in_isochron set toTRUE(the easy case), m is an EOI packet. Otherwise,
m’'s EOI status is undecided until the first of the following events occurs: 1) the application
callsiso_end() (mis an EOI packet); 2) the application cédls send() to send a net-
message (m is not an EOI message); or 3) the applicatiorisoaiend() to send a self-
packet with last_in_isochron set to TRUE (m is an EOl message). While the
application callsso_send() with target = host_node_id andlast_in_isochron
= FALSE, the EOI status of m cannot be decided.

« The third argument ngt_isochrons_sent) is passed out in the call to
post_isochron() only to support an assertion in the IOM and can be dropped if and when
the assertion is removed.

6.3. Non-Isotach Barrier (barrier) Module

Noniso barriers are implemented usimgn communication, i.e., every node informs every other
node that it is at the barrier. The noniso barrier is used by the mLaygrdivse net()
can also be used by the application.

6.3.1.Functions Exported

barrier_init()
Initialization function called by hostman.
barrier_deinit()

De-initialization function called by hostman.
initiate_barrier()

45

API function (also called byry close net()). No arguments. Returns O if the barrier
could be initiated. Returns 1 (failure) if the barrier could not be initiated. The call fails if

another barrier is in progress.
barrier_completed()

API function (also called byry close net()). No arguments. Called to determine
whether the current barrier has completed. Returns O if the barrier is complete, 1 if there is no

current barrier or if the current barrier is not complete.
process_barrier()

Called by receiving on receipt of a barrier message. Argument: the id of the barrier message’s
sender.

6.3.2. Functions Called

ship_packet()
Called to ship a barrier message directly to the LANstsd_buf . Barrier packets are not
subject to flow control.

6.3.3.Internal Data Structures

barrier_recv[n]
Boolean array indicating whether a barrier has been received frarththest. Set tEALSE
initially and when a barrier completes. Barrier Sedsrier_recv[s] to TRUE when

notified of receipt of a barrier from node(via aprocess_barrier() call).
barrier_packet_base[n]

Array that stores for each remote node the physical address to which this node should address
its barrier messages. The array is initializecetoote_noniso_base[n] + 2

in_barrier
Boolean indicating whether last barrier initiated is incomplete. A call to
initiate_barrier() fails if in_barrier iISTRUE

6.3.4.Tasks

On a call tabarrier_init()

» Create space for thiearrier_recv[] and barrier_packet_base by malloc’ing the
right amount of space.

e Setin_barrier to beFALSE

e Set the barrier_recvlil] = FALSE for each host, and initialize the
barrier_packet_base array.

On a call tabarrier_deinit()

* Free the space fdarrier_recv]] andbarrier_packet_base

46

On a call tanitiate_barrier()

o If in_barrier is TRUE return a failure code.
e Setin_barrier to TRUE
e Setbarrier_recv[host_node_id] to TRUEto represent sending a barrier message to
yourself.
» Construct the skeleton of a barrier packet.
* Send barrier packets. For each remote host target
- Set the route field to target.
- Set the address field tarrier_packet_base[target]
- Callship_packet() with the barrier packet as the argument until the call is successful.
* ReturnSUCCESS

On a call tabarrier_completed()

» Callpoll()
o If in_barrier is FALSE, return a failure code.
* Loop through all elements barrier_recv |, returning if any element BALSE.

» If all elements ar&@RUE the barrier is complete
- Setin_barrier to FALSE
- Set each element barrier_recv to FALSE
- ReturnSUCCESS

On a call to process_barrier()

The argumens is the id of the sender of the barrier message.

» Assert thabarrier_recv[s] iS FALSE.
NOTE: There is a condition in which the above value will not be FALSE. If one node
completes a barrier before another node, the node that has completed can initiate a new
barrier. However, because the other node had never finished the barrier the new barrier
message will be lost by the node that hadn’t finished the first barrier. This situation would be
rare, but could happen.

* Setbarrier_recv[s] to TRUE

6.4. Isotach Signal (iso_signal) Module

Iso_signal exports functions for registering, clearing, and sending Isotach signals. (The application
receives notice of incoming signals through iso_delivery)

6.4.1.Functions Exported

iso_signal_init()
Initialization function called by hostman.
iso_signal_deinit()
De-initialization function called by hostman. (stub function — performs no actions)

47

iso_register_signal()
API function that registers a signal for use with the application.
Argumentsint channel
iso_clear_signal()
API function that clears the registration for a signal channel.
Argumentsint channel
iso_send_signal()
API function that sends a signal on a previously registered signal channel.
Argumentsint channel
iso_send_mLayer_signal()
Function to allow the mLayer to use signals for SIU hardware reset.
Argumentsint channel
iso_signal_poll()
Housekeeping function for use by hostman which hostman calls as part of a poll.
iso_signal_notify()
Called when a signal is received.
ArgumentsiUCHAR bits (the bits from the EOP marker when a signal is received)

6.4.2.Internal Functions

enqueue_signals()
Enqueue a bs-markeriso_send_buf

6.4.3.Exported Data Structures

RESET_SIGNAL

The signal, which is registered to be the reset signal. Should be set to 5.
reset_count

The number of resets that have occurred since system startup.

6.4.4.Internal Data Structures

NUM_SIGNALS

The total number of signals usable by the mLayer and Application. Set to 6.
INITIAL_RESET_SIGNAL

The first reset signal must have the reset signal bit set, and have both barrier bits set in the
same packet. Therefore, this was created to do both in the signal module, instead of having to

use both the barrier module and signal module together. This isGs&3to
signals[INUM_SIGNALS]

Array giving ownership APPLICATION, MLAYER UNCLAIMED of each signal. Initialize to
[MLAYER UNCLAIMED UNCLAIMED UNCLAIMED UNCLAIMED MLAYER meaning the

reset signal and signal 5 are claimed by the mLayer.
signal_accumulator

Bit vector of length 8 representing a signal/barrier field. Remembers signals to be enqueued
for sending the next timeo_send_buf has room. The first 6 bits are signal bits, the last 2
bits are barrier bits and are always 0. Initialize to zeros.

48

6.4.5.Tasks

On a call taso_signal_init()
e Set thesignal_accumulator andreset_count to O.
On a call toenqueue_signals()

* |Ifiso_send_buf s full, return a failure code.
e Create a bs-marker in the tail slotied_send_buf
- Write 010xxxxx into the first byte to identify the packet as a bs-marker.
- Ignore the second byte (so will the SIU, unless a barrier bit is set).
- Write signal_accumulator into the signal/barrier field.
- Zero outsignal_accumulator
- Incrementiso_send_t

On a call taso_register_signal()

The argument names the signal the application is requesting.

* If channel is out of the range-5] or if signal[c] does not equaJNCLAIMED return a
failure code.

* Setsignal[c] to APPLICATION.

On a call taso_clear_signal()

The argument names the signal the application is releasing.
* If c is out of the rangf®-5] return a failure code.
» If signal[c] = APPLICATION , Setsignal|c] to UNCLAIMED

On a call taso_send_signal()

The argument names the signal the application is sending.
» If signallc] does not equadPPLICATION or if mid_net_isochron is TRUE return a
failure signal. No signal should be sent if iso_send has sent the SOI, but not the EOI, packet
in an Isochron because the SIU must not receive a bs-marker while it is receiving an Isochron.
e Set bitc in signal_accumulator
e Callenqueue_signals()

On a call taoso_send_mLayer_signal()
+ Same asso_send_signal() except check thatignallc] equalsvLAYER

* Also, if this is the first reset signal to go out, pldtETIAL_RESET_SIGNAL onto the
signal_accumulator

49

On a call taso_signal_notify()

For each signal that is contained in the argumesits
* |If signal[c] = MLAYER

- Ifc=RESET
If reset_count = 0, reset_count = 1 {hostman will be checking this
variable}
Else (this is a real resetit
 Else if signallc] = APPLICATION enqueue a bs-notice for the signal in

iso_delivery _q
On a call taso_signal_poll()

» If any bit insignal_accumulator is set, calenqueue_signals()

6.5. Isotach Barrier (iso_barrier) Module

Iso_barrier exports functions for registering, clearing, and participating in Isotach barriers. (The
application receives notice of barrier completion through iso_delivery).

6.5.1.Functions Exported

iso_barrier_init()

Initialization function called by hostman.
iso_barrier_deinit()

De-initialization function called by hostman. (stub function — performs no actions)
iso_register_barrier()

API function that registers a barrier for use by the Application.

Argumentsint channel, UCHAR bmode
iso_clear_barrier()

API function that clears a previously registered barrier that the Application has used.
Argumentsint channel

iso_barrier()
API function that sends out a barrier on the specified barrier channel.
Argumentsint channel, UCHAR bmode

iso_mLayer_barrier()
This function is the same as tlw_barrer() function above, except it is used by the
mLayer, and not the Application.

Argumentsint channel, UCHAR bmode
iso_barrier_notify()

Called by IOM when an EOP marker is received that has one or more barrier bits set. The
argument is an 8 bit value where the last two bits represent barrier channels 0 and 1.

ArgumentsUCHAR bits
iso_barrier_poll()

Housekeeping function for use by hostman which hostman calls as part of a poll.

50

6.5.2.Internal Functions

enqueue_barrier()
Enqueue a bs-marker for the specified barrier chanied isend_buf
Argument:int channel

6.5.3.Exported Data Structures

SHUTDOWN_BARRIER
This is the default barrier to be used by tilgeclose_net() function in hostman. Set to

a value of 0.
barrier_mode

An enumerated type which creates the constsViEK, STRONG, TICK andMAX

6.5.4.Internal Data Structures

NUM_BARRIERS

Defines the number of barriers available to the system. Set to 2.
NUM_BARRIER_MODES

Defines the number of different barrier modes available to the system. Set to 4.
MIN_BARRIER_COUNT

Defines the minimum number of barrier ticks that must elapse for a barrier to complete.
MAX_BARRIER_COUNT

Defines the maximum number of barrier ticks that can elapse in a barrier.
barrier_state

An enumerated type which creates the constan@®LDING, NOT_HOLDING, SEND,

TRANSITION and READY .
barriersfINUM_BARRIERS]

Array of barrier resource structures. Each one contains a structure with the following fields:
owner (APPLICATION, MLAYER, UNCLAIMED)
mode WEAK, STRONG, TICK, MAX)

state HOLDING, NOT_HOLDING, SEND, TRANSITION, READY)
barrier_countiNUM_BARRIER_MODES]

Constant array of barrier counts indexed by mode internahdaeue_barrier() . The
array has 4 elements giving the barrier countVii#AK STRONGTICK (host level logical

time), andvAXmode barriers. Constants:
barrier_count{WEAK] = network_diameter+1;
barrier_count{STRONG] = barrier_count{WEAK] (because the send delta is zero);
barrier_count[TICK] = 2;
barrier_count[MAX] = 37.
network_diameter

The maximum number of hops between any two nodes.

6.5.5.Tasks

On a call taso_barrier_init()

* Check the route between each host to determine what the maximum number of hops between
each host is. This is tmetwork_diameter

* Initialize thebarriers array to the following:

51

barriers[0].owner = MLAYER;

barriers[1].owner = UNCLAIMED;

barriers]i].state = SEND;

barriers[il.mode = MAX;
barriersfSHUTDOWN_BARRIER].state = HOLDING;
barriersfSHUTDOWN_BARRIER].mode = STRONG,;

Initialize each of théarrier_count entries
barrier_countfWEAK] = network_diameter + 1;
barrier_countf[STRONG] = barrier_count{WEAK];
barrier_count[TICK] = MIN_BARRIER_COUNT;
barrier_countfMAX] = MAX_BARRIER_COUNT;

On a call toenqueue_barrier()

The argument names the barrier channel the bs-marker should set.
Assert (removable) thatrrier[c].state is SEND

If iso_send_buf s full, return a failure code.

Create a bs-marker with barrier biset in the tail slot oko_send_buf

- Write 010xxxxx into the first byte to identify the packet as a bs-marker.
Set thebarrier_count field to barrier_count[barrier[c].mode]

Clear the third byte (the signal/barrier field).

- Set barrier bit in the barrier field.

- Incrementiso_send_t

Setbarrier[c].state to NOT_HOLDING

On a call taso_register_barrier()

The argument names the barrier channel the application is requesting. The argumuets
indicates whether the barrier33RONGr WEAK

Check arguments. It is out of range[0-1] , barrier[c].owner does not equal
UNCLAIMED or bmode does not equ8TRONGIr WEAKreturn a failure code.

Setowner field of barrier[c] to APPLICATION andmode field to bmode.

Assert (removable) that stateN©OT_HOLDINGor SEND If state = NOT_HOLDING , set
state to TRANSITION. Otherwise, set state HOLDING

On a call taso_clear_barrier()

52

The argument names the barrier the application is releasing.
If ¢ is out of the rangf®-1] , return a failure code.

If barrier[c].owner iS NOtAPPLICATION, return normally (clearing an unclaimed barrier
is a NOP).

Setowner field of barrier[c] to UNCLAIMEDandmode field to MAX

If barrier[c].state is TRANSITION or READY set state ttNOT_HOLDING If state is

HOLDING set state t&END
Else tate NOT_HOLDINGdr SEND, state does not change.
If barrier[c].state is SEND callenqueue_barrier(c)

On a call taso_barrier()

The argument is the name and argumeode is the type of the barrier in which the
application intends to participate.

» |If ¢ is out of the rang@-1] or bmode does not agree with the registered mode, i.e., if it
does not equddarrier[c].bmode , return an error code.

* If barrier[c].owner is NOtAPPLICATION, return a failure code.

e If mid_net_isochron iS TRUE return a failure code.

* If barrier[c].state = HOLDING
- Setstate to SEND
- Callenqueue_barrier(c)

» Else ifbarrier|c].state = TRANSITION , Setstate to READY

» Else return a failure code.

On a call taso_barrier_notify()

The argumenbs_field is an 8-bit value in which the last two bits (6 and 7) represent the
barrier channels. The return valuebss field with any non-application barriers masked

out. Note that a barrier bit should be masked out when it represents the completion of a
barrier that was initiated as avNCLAIMEDbarrier completes even if it has since been
registered to the application.

For each barrier bit that is set ibs_field , a barrier on channelhas completed.

» Assert (removable) th&farrier[c].state is neitherSENDNnor HOLDING

* If barrier[c].state is TRANSITION or (barrier[c].state is NOT_HOLDINGand
barrier[c].owner iS APPLICATION)
- If barrier[c].state iSNOT_HOLDINGcallenqueue_barrier(c)
- Setstate toHOLDING

* Else if barrier[c].state is READY or (barrier[c].state is NOT_HOLDINGand
barrier[c].owner iS NOtAPPLICATION)

- Setstate toSEND
- Callenqueue_barrier(c)

* If barrier[c].owner is not APPLICATION or if barrier[c].state is READY or
TRANSITION
- The application should not be notified of this barrier completion. cSet0 to mask it
out.

* Returnbs_field

On a call taiso_barrier_poll 0
e If barrier[0].state is SEND callenqueue_barrier(0)
e If barrier[1].state is SEND callenqueue_barrier(1)

53

6.6. Isotach Retrieve (iso_retrieve) Module

The iso_retrieve module exports a function to the application that allows a process to receive the
result of its previously executed read access to an Isotach shared memory variable.
NOTE: This module is not implemented yet.

6.6.1. Functions Exported

iSo_retrieve_init()

Initialization function called by hostman.
iso_retrieve_deinit()

De-initialization function called by hostman.
iso_retrieve()

API function. The application callso_retrieve() to receive the value returned by a

previously issuedso_read()
handle_read_response()

Called by the receiving module upon receiving a read response packet andhgdimipon
substantiating a locally issued read. The function has two arguwventghe value returned,
andlvar , a pointer to the local variable to which the value should be written.

6.6.2. Tasks

On a call taso_retrieve()

« If lvar isvalid, return the value dfar .
e Otherwise calpoll() untillvar is valid.

On a call to handle_read_response()

» Assert that the state tbhar is invalid.
» Assign the value returned by the read responsato.
» Set the state dfar to valid.

6.7. Non-Isotach Delivery (deliver) Module

Deliver delivers noniso MBM messages to the application.

6.7.1.Functions Exported

deliver_init()
Initialization function called by hostman
deliver_deinit()
De-initialization function called by hostman
receive()
API function, which returns a message to the application if there is one available.

54

6.7.2. Functions Called

delete packet()
Exported by flow. The call will increment the head pointer for #eeive buffer containing
the packet, resulting in the packet’s deletion.

6.7.3.Exported Data Structures

DELIVERY_SIZE

The size of thelelivery g
delivery_q

Messages are placed on this queue for delivery to the application. The application reads
messages off this queue through callestive()
Pointersdelivery_h , delivery _t

6.7.4.Internal Data Structures

last_packet

pointer to the last packet delivered.
packet_sender

sender id of the last or current ordered net-packet delivered.

6.7.5.Tasks
On a call tadeliver_init()

» Determine the value dELIVERY_SIZE by multiplying thenumber_of _hosts by the size
of the noniso region in pinned memory.

* Allocate space for theelivery g

» Initialize the head and tail pointers into thedivery q

* Setlast_packet = NULL

On a call tadeliver_deinit()
» Free the space occupied by tiedivery q
On a call toreceive()

» Ifthe last packet delivered has not yet been delédsd packet '= NULL), delete it.
- Calldelete_packet() with last_packet ~ andpacket_sender as the arguments
- Setlast_packet to NULL.

» Callpoll()

» |If delivery_q is empty, return a failure code.

» Assign the value of pointer at the headieffvery q to last_packet (virtual address).

» Dequeue the head packet fraelivery q

* Return the success code and return the following to the application:n@niso_mbm
structure)

55

- pointer to the start of the application payload

- the payload length in bytes, found by de-referenizisg packet
- packet_sender

6.8. Isotach Delivery (iso_deliver) Module

Iso_deliver delivers Isotach messages and bs-notices to the application.

6.8.1.Functions Exported

iso_receive_init()

Initialization function called by hostman
iso_receive_deinit()

De-initialization function called by hostman (stub function — performs no actions)
iso_receive()

API function, which returns an Isotach message to the application if there is one available.

6.8.2. Functions Called

iso_delete packet()
Exported by iso_flow. Restores an Isotach credit.
Argument: id of the packet’s sender.

6.8.3.Exported Data Structures

ISO_DELIVERY_SIZE

The size in bytes of thieo_delivery q . Please see notes in Chapter 4 on this variable.
iso_delivery _q

The Isotach delivery queue. Messages are placed onto this queue for delivery to the

application. The application reads messages off this queue through calls to
iso_receive()
Pointersiso_delivery_h , iso_delivery_t

ord_receive_t
An array of tail pointers into the ordered receive buffers

6.8.4.Internal Data Structures

last_packet

pointer to the last ordered packet delivered.
packet_sender

sender id of the last or current ordered packet delivered.

6.8.5.Tasks

On a call taso_receive_init()

e Setlast_packet = NULL
* Initialize the pointers into thiso_delivery q

56

On a call taso_receive()

» Ifthe last packet delivered has not yet been delédsd packet '= NULL), delete it:

- If packet_sender == host_node_id the last packet was a self-packet

Increment hit_h to delete the self-packet

- Else calliso_delete_packet() with packet_sender as the argument.

restores credit for the iso-pointer (and ordered packet).
- In either case, sédist_packet to NULL
» Callpoll()
« |Ifiso_delivery _q is empty, return a failure code.

This call

* Assert (removable) that the item at the headsofdelivery q IS an iso-pointer, an

isochron-slot with self-count > 0, or a bs-notice.
* On aniso_receive() call in which the item at the head ieb_delivery _q
pointer.

iS an iso-

- Assignlast_packet the value from the pointer field, converted to a virtual address, and
assignpacket_sender the value from the sender field of the iso-pointer in the head slot.
- Determine whether the ordered packet pointed tdabl packet has arrived and

return a failure code if it has not:

- If ord_receive_t[s] = last_packet , resetlast_packet to NULL and return

a failure code.

Explanation: Since Isotach order, receive order, and send order are the same for
packets from the same sendest_packet will point to the packet at the head of

ord_receive_buf[s] . This packet has been received unless the buffer is empty.
Sincelast_packet = ord_receive_h[s] , We can test for emptiness by testing
ord_receive_t[s] and last_packet for equality. (Alternatively, we can use

valid/ invalid tags in the ord buffer slots.)
- Dequeue the iso-pointer froiso_delivery q

- Create the iso_mbm message to be sent back to the application:
data->1SO_MBM
data->info.msg.data = last_packet.data

data->info.msg.length = ntohs(last_packet.payload_length)

ntohs is to switch the byte ordering)
data->info.msg.sender = packet_sender

- Remove the message from tke_delivery _q

* On aniso_receive() call in which the item at the head @_delivery q
isochron- slot, return the item at the head of hit_buf.
- Write hit_h intolast_packet
- Write host_node_id into packet_sender
- Decrement self_count
If the self count=0 , dequeue the isochron-slot fraso_delivery q

- Create the iso_mbm message to be sent back to the application:
data->1SO_MBM
data->info.msg.data = last_packet.data
data->info.msg.length = last_packet.payload_length
data->info.msg.sender = packet_sender

(the

is an

57

* On aniso_receive() call in which the item at the head i8b_delivery g is a bs-
notice.
- Dequeue the bs-notice from iso_delivery g
- Copy the signal and barrier bits from the bs_notice intdgsthenbm structure.
- Return the success code andeambm (seeAppendix B with tagbs_notice
- Remove the message from tke_delivery _q

58

7. Processing Layer

These modules are in the middle layer of the host mLayer and perform tasks related to flow
control, group communication, and ordering.

7.1. Non-Isotach Flow Control (flow) module

Flow handles outgoing packets in FIFO (issue) order. A packet blocked for send credit will block
packets issued after it. The noniso protocol is not required to block subsequently issued messages
except packets sent to the same receiver as the blocked message, but FIFO handling is expected
to benefit the performance/maintainability by simplifying the common case (in which packets are
not blocked).

7.1.1.Functions Exported

flow_poll()

Housekeeping function which hostman calls as part of a poll.
flow_init()

Initialization function for use by hostman
flow_deinit()

Shutdown function for use by hostman
update_credit()

Called by receiving when it receives a packet and used by flow to update the head pointer to
the receive buffer it manages at the specified remote node. Arguments: a modadda

pointer to the head of the local node’s remote receive buffer atinode
delete_packet()

Called by delivery after it delivers a packet to the application. Argument: a pointer to the
packet to be deleted, and the id of the packet’s sender. The call increments the head pointer

into the specified remote receive buffer and may result in sending a credit packet.
send_credit_packet()

Called by receiving when handling an expliciedit_packet_request and internally
when an explicit credit packet needs to be sent to a node. The argument is the id of the node to
which the credit packet should be sent.

7.1.2.Internal Data Structures

remote_t[n]
Array that stores the tail pointers (physical address) for the noniso receive buffers allocated to
the local node at remote nodes, i.e., the array stores for each remote node, the last slot

allocated to a noniso MBM packet bound for that node.
remote_h[n]

Array that stores the head pointers (physical address) into the noniso receive buffers allocated
to the local node at remote nodes. These values determine whether a packet can be sent.

59

remote_q[n]
Array that stores the pointers (physical address) to the beginning of the noniso receive buffers
allocated to the local node at remote nodes. These values are used to handle resetting head and
tail pointers for queue wrap around.

remote_buf[n] andremote_noniso_size
Defines the physical address bounds for the local node’s noniso receive buffer at each remote
node.

receive_h[n]
Array that stores the head pointers (physical address) into the local receive buffers of remote
nodes. These values are piggybacked on packets to inform remote nodes of the state of their
receive buffers at the local node. On a calldiete packet() , flow increments the
pointer for the packet’s sender.

receive_q[n] andREMOTE_NONISO_SIZE
Defines the bounds for each remote node’s local noniso receive buffer. These are physical (not
virtual) addresses. Needed for incrementewgive_h

receive_last_h[n]
Array that stores in elementthe last value inserted by flow in the credit info field of a packet
to remote nodé. Initialize to the initial value of the head pointer forThese values are used
in determining whether to piggyback credit information and in determining when to send credit

packets.
credit_packet_base[n]

Array that stores in elementthe address that should be written into the DMA base field of a

send credit packet sent to nade
credit_packet_threshold

Threshold used in determining when to send a credit packet. When the head pointer into the
local receive buffer of a remote node advanmesit packet_threshold slots beyond
the point at which the location of the pointer was last communicated to the remote node, send

a credit packet.
CREDIT_PACKET_THRESHOLD_PERCENTAGE

Float (range O to 1). Theredit_packet_threshold = number of slots in a receive

buffer * CREDIT_PACKET_THRESHOLD PERCENTAGE
credit_packet_slot

Template for a credit packet. All the fields that remain constant over all credit packets sent by
this node should be initialized to the appropriate value: the packet @x@6®&0 ; the subtype

field is credit ; the sender isy_id ; the length is O.
send_attempts

A counter with the range 0 tMAX_SEND_ATTEMPTSThe counter is initialized to 0, is
incremented when a packet cannot be cleared for sending due to lack of send credits and it
reset to O when: 1.) the packet is cleared for sending or 2.) an explicit credit request packet is
sent. This variable is declared as static witlow_poll.

MAX_SEND_ATTEMPTS
Number of timedlow_poll should attempt to ship a packet before a credit request packet is
sent. Set to 50 now.

60

7.1.3.Tasks

On a call toflow_init()

Malloc() space for all of the data structures. Use the information passed in by hostman to
initialize all arrays of pointers to their correct values. Calculate
credit_packet_threshold . Complete the pre-determined fields of
credit_packet_slot

On a call toflow_deinit()
Free all malloc’d data structures.
On a call tosend_credit_packet()

Construct a packet icredit_packet_slot . Write destinto the last two bytes of the route
field (flow will look up the route)gredit_packet_base[dest] into the DMA base field;
and receive_h[dest] into the credit info field. Calltsp_packet() with a pointer to
credit_packet_slot until the call succeeds.

On a call toupdate_credit()

Updateremote_h[] . The arguments topdate_credit() are a node idhode_idand the
head pointemew_headfor the local node’s remote receive buffer at nodde_id Write
new_headnto remote_h[node_id] . The assignment updates the local node’s view of the
space available to it in the receive buffenatie_id

On a call todelete_packet()

The arguments tdelete_packet() are the pointepacketto the packet to be deleted and

sender the sender id.

- Test point-to-point FIFO assertion
Assert (removable) thggacketpoints to the packet at the headsenders receive buffer.
i.e., assert thapacket = receive_h[sender] (after receive_h[sender] IS
converted to a virtual address). The assertion should hold because for any two noniso
packets received from the same sensendey packets should be received and thus
deleted in the same order as they are sent (and thus assigned slots in
receive_buf[sender]).

- Deletepacketfrom the receive buffer allocated to sender.
Incrementreceive_h[sender]

- If the difference betweereceive h[sender] andreceive_last_h[sender] is
greater thasend_credit_threshold , callsend_credit_packet(sender)

61

On a call toflow_poll()

Attempt to process all packets in the flow control segmesed_buf , returning when the
segment is empty (8end_t = send_flow_ptr) or when a packet cannot be sent due to
lack of send credits. For each packet:
- Determine whether the packet can be sent.

A packet can be sent to nodeaunless the receive buffer allocated to this nodeiatfull,

i.e., a packet can be sent unlessiote t[i] + 1 (mod remote_noniso_size)

= remote_hl[i]
- Ifthe packet can be sent

Resetsend_attempts to 0

Write remote_t[i] into the packet’'s DMA base field and incremesmhote _t[i]

Piggyback credit information if the credit information has changeckcHive hli]=
receive_last_h(i] , write null_credit into the packet’'s credit info field. This
special value indicates to the receiver that the head pointer to its receive queue at the
sender has not changed since the last packet from this sender. Otherwise write
receive_hli] into both the packet’s credit info field and inezeive last_hli]

Incrementsend_flow_ptr as the final step. (shipping can now send the packet out.)

- Else (the packet cannot be sent)
Incrementsend_attempts

If send_attempts > MAX_SEND_ATTEMPTS
call send_credit_packet() with the id of the packet’s receiver as the argument
Resetsend_attempts to zero.

7.2. Isotach Flow Control (iso_flow) Module

Iso_flow is the flow control manager for Isotach packets. Iso_flow handles packets in
iso_send_buf in FIFO order. A packet blocked for lack of send credits blocks subsequently
issued packets.

7.2.1.Functions Exported

iso_flow_poll()
Housekeeping function which hostman calls as part of a poll.

iso_flow_init()
Initialization function for use by hostman

iso_flow_deinit()
Shutdown function for use by hostman

iso_update_credit()
Called by receiving when it receives a packet and used by flow to update the head pointer to
the receive buffer it manages at the specified remote node. Arguments: a nodie id and
the number of Isotach send credit®dit_info that the local node has at the remote
receivenode _id

62

iso_delete_packet()
Called by iso_delivery after it delivers a packet to the application and by shmem after executing
a net-ref. Argumentnode_id , the id of the packet’'s sender. The call frees an Isotach credit
for node_id .

7.2.2.Internal Data Structures

my_credits_used[n]
Array of counters for the Isotach credits used by the local node at remote nodes. (Analogous

toremote_t[] in noniso.)
my_credits_freed[n]

Array of counters for Isotach credits restored to the local node at remote nodes. (Analogous to
remote_h[] in noniso.)

my_credits[n]
For each remote node, the total number of Isotach credits allocated to the local node by that

remote node. The range of tiney credits_used]i] and my_credits_freed]i]
counters is determined by the valuenof _credits]i] . (Analogous taemote_q[n] and
remote_buf_limit[n] in NONIso.)

your_credits_freed[n]
Array of counters tracking the number of Isotach credits restored to remote nodes. These
values are piggybacked on packets to inform remote nodes of the state of their receive buffers
at the local node. On a callign_delete_packet() , iIso_flow increments the counter for
the packet’s sender. (Analogousrégeive _h[n] in NONIso.)

your_credits[n]
For each remote node, the number of Isotach credits allocated to the node by the local node.
The range ofour_credits_freed[n] is determined by the value ydur_credits][i]

(Analogous taeceive_buf_base[n] andreceive_buf_limit[n] in NONIso.)
your_credits_freed_last[n]

Array of counters used to remember the last credit info sent to each remote node. Initialize to
0. Update when piggybacking credit info. These values are used in determining whether there
is new credit info to piggyback on packets and in determining when to send credit packets.
(Analogous taeceive_last_h[n] in NONIso.)

iso_credit_packet_base[n]
Array that stores in elementthe physical address that should be written into the DMA base

field of any Isotach send credit packet sent to riade
iso_credit_packet_threshold

Threshold used in determining when to send an Isotach credit packet.
ISO_CREDIT_PACKET_THRESHOLD_PERCENTAGE

Float (range 0 to 1). Theo_credit_packet_threshold = number of slots in a receive

buffer * ISO_CREDIT_PACKET_THRESHOLD_ PERCENTAGE
iso_credit_packet_slot

Template for an Isotach credit packet. All fields that remain constant over all Isotach credit
packets sent by this node should be initialized to the appropriate value: the packet type is
0x0620 ; the subtype field i&o_credit ; the sender isy_id ; the length is O.

ord_remote_q[n] andREMOTE_ORD_SIZE
Used to define the bounds for the local node’s ordered packet receive buffer at each remote
node. Needed for incrementing the pointersré remote_t[]

63

ord_remote_t[n]
Array of tail pointers into the local node’s ordered packet receive buffer at each remote node.
Need for assigning slots to outgoing ordered packets.

7.2.3.Tasks

On a call taso_flow_init()
Malloc() space for all of the data structures. Use the information passed in by hostman to
initialize all arrays of pointers to their correct values. Calculate

iso_credit_packet_threshold . Complete the pre-determined fields of
iso_credit_packet_slot

On a call taso_flow_deinit()
Free all malloc’'d data structures.

On a call taso_update_credit()

The arguments taiso_update_credit() are a node idnode_id and an integer
credit_info , taken from the credit info field of incoming packet from nadee_id .
Assert (removable) that credit_info is within the range 0 to

my_credits[credit_info]
Write credit_info into my_credits_freed[node_id].
- This assignment lets the local node send more packatsiéoid .

On a call taso_delete_packet()

The argument tiso_delete_packet() is a node ichode_id , representing the sender of
a delivered/executed Isotach packet.
Incrementyour_credits_freed[node_id]

- Restores an Isotach send credit to node_id.

Send credit packets when appropriate. If the difference between
your_credits_freed[node_id] and your_credits_freed_last[node _id] is
greater thaiiso_send_credit_threshold , send an Isotach credit packet.

- Construct the packet iso_credit_packet_slot . Write node_id into the last two
bytes of the route field (low will look up the route);
iso_credit_packet_base[node_id] into the DMA Dbase field; and
your_credits_freed[node_id] into the credit info field. Calship_packet()

with a pointer tdso_credit_packet_slot

64

On a call taso_flow_poll()

Attempt to process all packets in the flow control segment of iso_send_buf, returning when
out of packets (iso_send_t = iso_flow_ptr) or when a packet blocks on send credits. For each
packet:
» If the packet is a bs-marker (i.e., if the packet’s Isotach tag (first 3 bits) = 010), it is sent
unconditionally.
- Incrementiso_flow_ptr to approve the packet for shipping.
* Otherwise
- Determine whether there are send credits for the packet.
A packet can be sent to nodeif the local node has at least one credit atFor
example, unlessmy_credits_used]i] + 1 (mod remote_iso_size) =
my_credits_freed[i]

- Ifthe packet can be sent
Incrementmy_credits_used][i]

Piggyback credit information if the credit information has changed.
If your_credits_freed]i] = your_credits_freed_last[i] , write
null_credit into the packet’s credit info field. This special value indicates to
the receiver that its credits freed counter at the sender has not changed since the
last packet from this sender. Otherwise weiteir_credits_freed]i] into
both the packet’s credit info field and infour_credits_freed_last][i]

If the packet’s subtype iso_pointer

The corresponding ordered packet is at the head of the flow control segment of

ord_send_buf
Write ord_remote_t[i] into the DMA base field of this
packet.

Write the same value into the iso-pointer.
Incrementord_remote_t[i]
Increment ord_flow_ptr to approve the corresponding ordered packet for
shipping.
In any case, incremeiso_flow_ptr to approve the Isotach packet for shipping.

Notes.

Although bs-markers are not subject to flow control requirements, a bs-marker should not
leave the processor before previously issued Isotach messages. (Isotach messages can leapfrog
over barriers/signals, but not vice versa.) Thus, markers and messages must follow the same
send path.

65

7.3. Isotach Ordering Module (IOM)

The IOM orders messages/accesses so that they can be delivered in Isotach receive order.
Iso_receiving hands the IOM a pointer to each Isotach packet received at the node in the order in
which they are received. The IOM must be able to handle Isotach packets of several types: iso-
pointers or sRefs (depending on mode), EOP markers, and isochron markers. The IOM stores
isochron markers and iso-pointers/sRefs in buckets by TS. When the EOP marker for a bucket
arrives, the packets in the bucket become executable. In MBM mode, the IOM hands executable
Isotach messages to iso_delivery. In SMM mode, the IOM hands executable sRefs to the shmem.
If any signal and/or barrier bits are set in the EOP marker, the IOM notifies signal and/or
iSo_barrier.

Currently, there are two versions of the IOM implemented: version 1 and version 2. Version 1
does not support Isotach ordering, and merely forwards messages on to the application as soon as
they are received. This version does not support self-messages. Version 2 supports full Isotach
ordering and self-messages. Version 2 still needs to be enhanegipootshe Shared Memory

Model.

7.3.1.Functions Exported

iom_init()
Initialization function for use by hostman
iom_deinit()
Shutdown function for use by hostman
bucketize()
Called by iso_receiving to hand the IOM an Isotach packet.
Purpose pass a newly received Isotach packet to IOM.
Arguments pointer ptr, pointing to an Isotach packet iiso_receive_buf , and
pkt_subtype, a byte indicating what type of Isotach packet this is (EOP marker, Isochron
Marker, I1so-pointer, or SMM).
Caveat IOM must extract all information needed to order Isotach packets and find the corre-

sponding ordered packets. Aftarcketize() returns, the pointer may no longer be valid.
post_isochron()

Called by iso_send at the end of each isochron.

Purpose inform the IOM that the application has issued an isochron so that it can ensure that
self-packets issued in the isochron or subsequent to the isochron are delivered/executed at a
logical time no earlier than the TS that will be assigned to the isochron. The IOM inserts a
placeholder for an isochron markerin g

Argumentsnet_isochron is a Boolean indicating whether this isochron is a net-isochron;
self_count gives the number of self-packets in the isochnan;isochrons_sent ,isa

value in the range O througdochron_allowance -1. If this isochron is a net-isochron, this
value equals the isochron id field of the SOl message for the isochron and thus will be the
value in the isochron id field of the corresponding isochron marker sent by the SIU after it has
assigned a TS to the isochron. The third argument is passed in only to support an assertion.

66

7.3.2. Functions Called

iso_signal_notify()

Called when any bit is set in the EOP’s signal field.

iso_barrier_notify()

Called when any bit is set in the EOP’s barrier field.

7.3.3.Internal Functions

process_bucket_entry()

Called as a bucket is being drained. This function examines the type of the entry and
processes it accordingly.

7.3.4.Internal Data Structures
bucket[]

An array ofbucket_count buckets; where each bucket is a queugazket-core-3

structures. The bucket array stores the core of iso-pointers, isochron markers, and sRefs
pending the arrival of the EOP marker enabling their delivery/execution. At the time an EOP
marker for the buckeh is processed by the IOM, buckewill contain only one generation of
packets, i.e., all the packets in the bucket belong to the same pulse and not merely to pulses
that map to the same bucket due to wrap.

count - (number of entries per bucket)n overflow, print an informative error message and

exit. If we find that buckets are highly variable, we may have to use link in arrays to extend
buckets dynamically.

element type Each element is gacket-core-3

element size 3 words

bucket_t[] :an array of tail pointers, one for each bucket.
hit_q

Stores isochron-slots representing locally issued Isochrons.

Caveat: This organization éft_q assumes that the mLayer is maintaining sequential consis-
tency over all messages/accesses sent by the application. A more complex structure would be
required to reflect partial orderings.

count- 8192. On overflow, print an informative error message and exit.

element type Each element is a packet-core-2 of subtypslot.

element size 2 words (size of @acket-core-2 struct)

7.3.5.Tasks
On a call tabucketize()

(Version 1 of IOM -- NO ORDERING OR SELF-MESSAGES)

If the packet is an EOP marker, check for any signal bits and pass them to
iso_signal_notify()

If the packet is an Isochron marker, ignore it.

Else assert (removable): the packet is of subiypepointer . (Later the IOM will see
packets of subtype smm as well.)

67

* Enqueue apacket-core-2 structure containing the packet subtypso (pointer),
sender, and pointer fields from the iso-pointer into the tail slsbotielivery q

(Version 2 of IOM -- ORDERING AND SELF-MESSAGES)

* |If the packet is an isochron marker with timestamp b, assert that bucket[b] has not
overflowed. Then copy all information out of the marker and into the tail slot of bucket[b].

» Else if the packet is an iso-pointer timestamp b, assert that bucket[b] has not overflowed.
Then copy all information out of the iso-pointer and into the tail slot of bucket[b].

* Else handle the EOP marker.

- Assert (removable) that the number of items in bucket[b], where b is the EOP
marker's TS, equals the EOP marker’s count field.

- If the count is less than or equal ¢ort_vector_count , use the sort vector to
process each bucket entry.

- Else, disregard the sort vector and re-sort the bucket. For such a small number of
items, it is faster to resort, rather than try to merge the two sections of the bucket.
Additionally, since the number of senders is currently smaller than the number of
bucket entries, the most efficient sort is to loop through the bucket for each sender s,
processing every entry for s as it is encountered.

- Once all of the entries in the bucked have been processed, examine the EOP marker
for barrier and signal bits, and pass them to the appropriate modules via
iso_signal_notify() andiso_barrier_notify() . Then, pass signals and
barriers to the application by enqueueing a bs_notice for each at the end of
iso_delivery _q

On a call to internal functioprocess_bucket_entry() (Version 2

Examine the subtype of the bucket entry:
* Ifthe entry is an iso-pointer, enqueue it ontoitlee delivery_queue
» Ifthe entry is an sRef, enqueue it ostomem_buf.
» Ifthe entry is an isochron marker,
- Assert (removable) that the isochron id of the isochron-slot at the hédtdpf is the
same as the isochron id of the isochron marker in the bucket.
- Move the isochron-slot from the head lof g to the tail of the destination queue if
there are self messages to be delivered.
- Incrementnet_isochrons_executed

On a call topost_isochron() (Version 2
e If net_isochron is TRUE enqueue a packet-core-3 structure of subtype
isochron_slot in the tail slot ofnhit_ g . Fill in the self_ count andisochron_id

fields from the second and third arguments passegaiisochron
» Else, ifhit_g is empty the self-packets in the current isochron are executable
- If the item at the tail ofso_delivery q is an isochron-slot adsklf count to the
self_count field of the existing isochron-slot.

68

- Otherwise, enqueue a packet-core-2 structure of suidypieron_slot at the tail of
iso_delivery _q . Fill in self_count field from the argument passed into
post_isochron . (Fields other thasubtype andself count can remain “as is”)

* Else, addelf count to theself count field of the isochron-slot at tail oit_q

Notes

* When the IOM moves an iso-pointer from a bucket ontasthelelivery q , It is moving
a 3 word structure into a 2 word structure. This works because the last word of a packet-
core-3 structure is pad except in the case of an sRef and the IOM never moves an sRef onto
iso_delivery _q . (sRefs are passed to the shmem.)

7.4. Isotach Shared Memory Manager (shmem)

The shmem executes sRefs on the locally stored portion of shared memory. The sRefs are stored
in Isotach logical time order oshmem_buf, a buffer ofpacket-core-3 structures. The
shmem handles the items siimem_buf in order. Each item is @acket-core-3 structure of

subtype iso_read , iso_assign , iso_write , iso_sched , or isochron_slot . Each
isochron_slot has a count fields€lf_count) giving the number of self-refs that the shmem
should execute from the headseff ref buf to process thisochron_slot

NOTE: This module is currently not implemented

7.4.1. Functions Exported

shmem_poll()

Housekeeping function.
shmem_init()

Initialization function for use by hostman
shmem_deinit()

Shutdown function for use by hostman

7.4.2. Functions Called

handle_read_response
Exported by iso_retrieve. Called by the shmem to return responses to locally issued reads on
locally stored shared variables.

7.4.3. Internal Functions

The argument to each function excephd_read_response() IS p, a pointer to gacket-
core-3 structure of the appropriate subtype (eigp read for read_remote() or
read_local()). Theread_remote() andassign() functions return a failure code if they
cannot send a required a read response (due to serdll buf). The other functions always
succeed.

69

read()
Handle a read to the locally stored portion of Isotach shared memory. May fail in the case of a

remotely issued read.
write()

Handle a write to the locally stored portion of Isotach shared memory.
assign()

Handle an assign to the locally stored portion of Isotach shared memory. May fail.
sched()

Handle a sched to the locally stored portion of Isotach shared memory.
send_read_response()

Enqueue a read responsesémd_buf . The arguments are tpéd of the reader, the value to
be returned, and a pointer to the local variable into which the value returned should be written.

7.4.4. Internal data structures.

* The locally stored portion of Isotach shared memory. (See current implementation)

* Pending reads. A table (see discussion in SMM overview) that allows retrieval of pending
reads given the variable address and vid on which the reads are pending. Each entry identifies
the variable and vid on which the read pends and gives the reader (pld of the read’s sender)
and the local (at the reader) variable in which the value read should be written once returned.

7.4.5. Tasks

On a call toshmem_poll()

Process each item shmem_buf in order, stopping when the buffer is empty oreéid() or
assign() fails (indicatingsend_buf is full when a read response must be sent).
+ Ifthe item at the head ahmem_buf is of subtypésochron_slot
- If self_count > 0 process the first accesseif ref buf
De-referenceelf_ref h to find the type of access.
Depending on the access type, call internal functad() , write() , assign() , or
sched() withself ref h as the argument.
If the call succeeds (it may not in the case of an assign)
Decremenself_count field in the isochron_slot
Incrementself_ref_h to delete the self-ref just processed
- Else 6elf_count is 0) incremenshmem_hto delete thésochron_slot
» Else (the head itemis &b_read ,iso_write ,iso_assign , oriso_sched)
- Call the appropriate internal function wéhmem_has the argument.
- If the call succeeds (it may not in the caseeafi() orassign()) incrementshmem_h
to delete the sRef.

On a call to internal functioread()
« IfV (the variable accessed) is unsubstantiated, create an epényding_reads

- Allocate the entry and record in the entry V’'s address, V's vidythe field of the read,
and the pld of the sender

70

 Else ifp = self ref_h (self-ref case), calhandle_read_response() with V’s value
and thdvar field in theiso_read structure as arguments and return.

» Else (the source is remote) call the internal functiend_read_response() with V’s
value, and theource andlvar fields of theiso_read structure as the arguments. Return
the code that call returns (féil the call tosend_read_response() fails).

On a call to internal functiosched()
» Mark V (the variable accessed) unsubstantiated.
» Assign the source pld to V’s value/vid field.

On a call to internal functioassign()

» If V(the variable accessed) is unsubstantiated and V’s value/vid equals the source field from
the iso_assign structure pointed to by, the assign corresponds to the last post to V.
Assign the value transmitted to V and mark V as substantiated
» For each perfect match (both variable name and viggriding_reads
- If the reader is remote
Call the internal functiosend_read_response()
If the call fails, return a failure code

- Else (local reader), cdlandle_read_response()

- De-allocate the entry ipending_read

On a call to internal functiowrite()

* Mark V (the variable accessed) substantiated.
» Assign the value transmitted to V’s value field.

On a call to internal functiosend_read_response()

The first argumenis val , the value to be returned; the seconaésler the pld of the process
to which the read response is sent; the thirdh&m@ , a pointer to the reader’s local variable in
which the value returned should be written.
e If send_buf is full, return a failure code
» Otherwise, construct@ad_response packet in the tail slot afend_buf .

- Writereader into the last two bytes of the route field.

- Writeread_response into the packet subtype field.

- Writemy_id into the sender field.

- Write 8 into the payload length field (the payload of a read response is 2 words)

- Write theval into thedata field (first word of payload) antvar into thelvar field

(second word of payload).

* Incrementsend_t

71

8. Network Interface Unit (NIU) Layer

The modules in the NIU interface layer send packets to the NIU and receive packets from the
NIU.

8.1. Non-Isotach Shipping (shipping) Module

Shipping fills in the route field in outgoing noniso packets and transfers packets to the NIU.
Shipping takes packets frosand_buf andord_send_buf

8.1.1.Functions Exported

shipping_init()
Initialization function for use by hostman
shipping_deinit()
Shutdown function for use by hostman
shipping_poll()
Housekeeping function which hostman calls as part of a poll.
ship_packet()

Called by flow to send out credit packets and barrier and credit requests. The argument is a
pointer to the packet to be shipped.

8.1.2.Internal Data Structures

routes[n]
An array of words representing the route (in network byte order) from the local host to every
other host on the network.

8.1.3.Tasks
On a call toshipping_init()

* Malloc space for routes[n] and copy the routes from the network status table.
* Map pointers for the send buffer on the LANai

* Initialize the host’s send buffers

» Fillin all static information for every slot in the ordered send buffer

On a call toshipping_deinit()

* Free the space allocated for routes[n].

On a call toship_packet()

* Return a failure code ifiu_send_buf is full
* Look up packet’s route in routes and write the route into the route field

72

* Move the packet into the tail slot iu_send_buf (incrementinghiu_send_t)
On a call toshipping_poll()

Transfer all packets in the shipping segmentseafl_buf andord_send_buf , returning when
both shipping segments are empty or whignsend_buf is full. As two different queues are
being emptied, it is important that one queue not starve the other. This is accomplished with
three different loops. The first loop executes while there are packets remaining in both queues.
The second loop executes while there are packets waitsenih buf , and the third executes
while there are packets waiting and_send_buf . Notice that only one of the final two loops
will execute. Withineach loop, for each packet:
» Determine whether current packet can be sent.

- A packet can be sent unless the NIU’s send buffer is full.
» If the packet can be sent

- Look up the packet’s route in routes and write the route into the route field

- Move the packet into the tail slot afu_send_buf (incrementniu_send_t and the

head pointer for the buffer from which the packet was taken).

Notes

» Shipping does not need to read the memory mapped poiateend_h each time it checks
for room inniu_send_buf . Shipping can read the value into a local variable and reread
niu_send_h only when using the local yields a finding that the buffer is full.

» Similarly, shipping does not need to write the memory mapped paoiiniesend_t each
time it sends a packet, but can instead write to a local. However, moving the pointer only
once for several packets prevents the NIU from processing the packets until the pointer is
moved. [Initially assume that shipping updates send_t for each packet.]

8.2. Isotach Shipping (iso_shipping) Module

Iso_shipping performs the same functions as shipping, except that iso_shipping moves packets
fromiso_send_buf toiso_niu_send_buf . Each time it gets control, iso_shipping transfers
the packets in the shipping segmenisof send_buf unless the shipping segment is empty.

Additionally, routes are stored differently for Isotach packets. The hardware SIU expects routes
to range from two to six bytes. As the noniso protocol supports up to four routing bytes, Isotach

packets are currently limited to that as well. To implement this, Isotach packets contain two

different route fields — one that is two bytes long, and one that is four bytes long. Depending on
the length of the route (one to four bytes), these fields are populated in a specific manner. A
more detailed explanation of this scheme is available indbece code

8.3. Non-Isotach Receiving (receive) Module

Receiving performs initial receive-side processing on all types of noniso pacéeiso(mbm ,
ordered , credit , credit_request , barrier | iso_credit , read_response) received
from the NIU. Receiving reads packet pointers firom delivery q , checking the CRC and

73

extracting credit information from each new incoming packet. In the casenafisb_mbm

packet, receiving enqueues the pointer into delivaidglsrery q . In the case of an ordered
packet, receiving increments the tail pointer to the sender’s local receive buffer and drops the
pointer (the pointer that is read afti_delivery g , hot the tail pointer it just incremented).

8.3.1.Functions Exported

receive_poll()

Housekeeping function which hostman calls as part of a poll.
receive_init()

Initialization function for use by hostman
receive_deinit()

Shutdown function for use by hostman

8.3.2. Functions Called

update_credit()
Exported by flow. Gives flow information (the head pointer for the remove receive buffer)

about this node’s noniso receive buffer at the specified remote node.
send_credit_packet()

Exported by flow. Called by receiving when it receives an expliedit_request to send

an explicit credit packet. The argument is the id ottkdit_request packet’s sender.
process_barrier()

Exported by barrier. Called to when a barrier packet is received.
handle_read_response()

Exported by iso_retrieve. Called to hand the information from a read_response packet to
iISO_retrieve.

8.3.3.Internal Data

ord_receive_buf[n] andord_receive_buf_limit[n]
The base and limit arrays f@ach remote node’s local ordered receive buffer. These are

physical (not virtual) addresses. Needed for incrementihgeceive_t[]).
this_packet

pointer (virtual address) to the current packet

8.3.4.Tasks

On a call toreceive_init()

* Map pointers into the delivery queue on the LANai

» Allocate space for the arrays of pointers into the ordered receive buffers

» Initialize these pointers using the information contained in the network status table

On a call toreceive_deinit()

* Free space used by the arrays of pointers into the ordered receive buffers

74

On a call toreceive_poll()

Receiving processes all the packets that the NIU has DMA'd into pinned memory up to the time
of the call (but not beyond). New packets are available unéssdelivery h =
niu_delivery_t . Receiving readsiu_delivery _t when it gets control, but does not
rereadniu_delivery t until the next time it gets control.

» For each new incoming packet

- Obtain the virtual address of the next pacliet_packet = niu_delivery g
[niu_delivery_h] + offset (to calculate the virtual from the physical address).

- Acknowledge the packet by incrementinig_delivery_h . Note that since this is
stored on the LANai in network byte order, it is necessary to make a copy of the head
pointer, switch the byte ordering, increment it, switch the byte ordering back, and then
store the value on the LANai.

- Checkthis_packet's CRC. Ifit is bad, print an informative message to the user and
gracefully terminate execution.

- Extract credit information. If the credit info field has a value other tlaéincredit ,
pass the information to flow via a cadlo_update_credit() for iso_credit
packets andipdate_credit() otherwise. The arguments to the credit updating
function are the packet’s sender and the value of the credit info field.

- For eachhoniso_mbm packet

Write this_packet into the tail slot otielivery_ q and incrementlelivery_t
If delivery_q s full, print an informative error message and exit.
- For each ordered packet
Assert (removable) thahis_packet = ord_receive_t[s] . The assertion

should hold because ordered packets issued by the same sender to the same receiver

should be received in issue order.
Increment ord_receive_t[s] , Where s is the packet's sender, found by de-
referencinghis_packet
- For each credit or iso_credit packet
Drop the packet. The useful information has already been extracted.
- For each barrier packet
call process_barrier(s)
- For each credit request packet
call send_credit_packet(s)
- For each read response packet
callhandle_read_response(this_packet)

Notes
» Eventually receiving should acknowledge packets in batches (i.e., updadelivery_h
once for a batch of instead of once for every packet) whenelivery q IS near empty.

* Upon review of the design, it appears that many potential bottlenecks occur in this module.
Incrementing the head pointer is expensive (as noted above). Furthermore, as PIO reads are
more expensive than writes, having to read a pointer in the LANai's SRAM for every noniso
packet received appears to be costly. A potential solution is to use valid flags within the

75

receive buffers which the host can check at each invocatioeceifze_poll() . For a

large number of potential senders, this may be expensive, however, for smaller number of
hosts, it would most likely be more efficient than doing expensive reads over the PCI bus.
The delivery queue would still beecessary for mLayer packets, however these packets are
relatively rare. Further investigation into this matter is necessary.

8.4. Isotach Receiving (iso_receive) Module

Performs initial receive side handling of all incoming Isotach packets. Isotach packets include the
following: iso-pointers, Isotach SMM packets, EOP markers, and isochron markers.
Iso_receiving handles packets iso_receive_ buf in FIFO order, extracting credit
information from each new incoming packet (except markers), and checking CRCs. Iso_receiving
hands each packet to the IOM via a calbtaketize()

8.4.1.Functions Exported

iso_receiving_poll()

Housekeeping function which hostman calls as part of a poll.
iso_receive_init()

Initialization function for use by hostman
iso_receive_deinit()

Shutdown function for use by hostman

8.4.2. Functions Called

bucketize()
Exported by the IOM. Call to pass an Isotach packet to the IOM.

iso_update_credit()
Exported by iso_flow. Gives iso_flow information (the head pointer for the remote receive
buffer) about this node’s Isotach receive buffer at the specified remote node.

8.4.3.Internal Data

iso_recv_buf

Pointer (virtual address) into the Isotach receive buffer in pinned memory.
iSo_recv_h
~ Head pointer (virtual address) into the Isotach receive buffer
ISO_recv_t

Tail pointer (physical address) into the Isotach receive buffer (stored on the LANai)
iSo_recv_start
~ Pointer (physical address) into the Isotach receive buffer (stored on the LANai)
ISO_recv_size

Size of the Isotach receive buffer (stored on the LANai)

76

8.4.4. Tasks

On a call taso_receive_init()

Map symbols into the LANai's SRAM
Initialize head and tail pointers

On a call taso_receive_deinit()

Nothing to do.

On a call taso_receive_poll()

Process all the packets that the NIU has DMA'd iato receive_buf up to the time of

the call (but not beyond). A packet is available unléss receive h =
iso_receive_t . IsO_receiving readso_receive_t when it gets control, but does not
rereadiso_receive_t until the next time it gets control.

The LANai is in charge of handling queue wrap around. When it is about to reset the tail
pointer, it enqueues a special “stop” packet into the Isotach receive buffer. When this stop
packet is encountered, the head pointer is reset back to the beginning of the buffer.

For each packet iiso_receive_buf

- Check the CRC of the packet. If the packet is bad, print an informative error message

and exit.

- Extract returned credits. For each packet other than a marker, if the credit info field has
a value other thamull_credit , pass the information to iso_flow via a call to
iso_update_credit() . The arguments to the credit updating function are the

packet’s sender and the value of the credit info field.

- Call bucketize() with a pointer to the packet and the packet’s subtype

- When bucketize() returns, delete the packet fromso_receive buf by
incrementingso_receive_h by the packet size.

77

9. Network Manager (netman) Layer

The netman layer consists of a single module that is responsible for communicating with both the
host and the network. It receives packets from the host to put out on the wire, and also receives
packets from the network and transfers them up to the host.

9.1.Internal Functions

main()

Initial function executed when the LANai Control Program starts.
synchronize()

Serves as an interface between the host and the network for synchronization packets.
send_packets()

Places packets onto the wire.
check_dmal()

Checks to see if a toHost DMA transfer has completed. Updates all necessary pointers.
noniso_dmay()

Attempts to initiate a DMA transfer of a noniso packet up to the host. If the toHost DMA

engine is busy, simply returns.
force_noniso_dmay()
_ (guar(c;mtees that a noniso packet will be transferred to the host before the function returns.
ISO_dma

Initiates a DMA transfer of the Isotach receive buffer on the LANai up to the host.
receive_packets()

Receives packets from the network.

9.2.Exported Data Structures

niu_send_buf(]
Buffer for outgoing noniso packets.
niu_send_h
Head pointer into the noniso send buffer.
niu_send_t
Tail pointer into the noniso send buffer.
iso_niu_send_buf[]
Buffer for outgoing Isotach packets.
iso_niu_send_h
Head pointer into the Isotach send buffer.
iso_niu_send_t
Tail pointer into the Isotach send buffer.
niu_delivery_q(]
Queue of pointers to noniso packets that have been received and transferred to the host.
niu_delivery_h
Head pointer into the noniso delivery queue.
niu_delivery_t
Tail pointer into the noniso delivery queue.

78

iSo_recv_t
Tail pointer into the Isotach receive buffer on the host. Used by the host to determine when
new Isotach packets are available.

9.3.Internal Data Structures

niu_receive_buf[]
Buffer for incoming noniso packets.
niu_receive_h
~ Head pointer into the noniso receive buffer.
niu_receive_t
Tail pointer into the noniso receive buffer.
niu_iso_recv_bufO[]
A buffer for incoming Isotach packets.
niu_iso_recv_buf1[]
A second buffer for incoming Isotach packets.
niu_iso_buffer(]
Contains the starting addresses of each of the Isotach receive buffers on the LANai.
niu_iso_thresh([]
Contains the high water mark for each of the Isotach receive buffers on the LANai. Used to
indicate when to transfer the current Isotach receive buffer up to the host.
cur_niu_iso_buf
Index into the array of buffer addresses indicating which Isotach buffer is currently being used
to receive packets.
niu_iso_tail_ptr
Tail pointer into the current Isotach receive buffer.
iso_recv_buf thresh
High water mark for the Isotach receive buffer on the host. Used to indicate when queue
wraparound is about to occur.
new_iso_recv_t
Location of the tail of the Isotach receive buffer on the host once the current Isotach DMA

transfer has completed.
buffer

Used to store the first word of an incoming packet that is read in separately from the rest of

the packet.
state

Indicates the state of the toHost DMA engine. Possible valud®laee DMA_NONISQor
DMA_ISQ

9.4.Tasks

On a call tomain()
» Perform a simple test of the toHost DMA engine.
» Initialize all buffers and head/tail pointers. Calculate all threshold values.

» Callsynchronize()
* Enter into the main event loop (loops forever):

79

- Check to see if a toHost DMA transfer has completed. If so, update all necessary
pointers.

- Check to see if there are noniso packets waiting to be transferred to the host. If so,
attempt to initiate a toHost DMA transfer.

- Call send_packets()

- Call receive_packets()

On a call tosynchronize()

» Send out all sync packets generated by the host.

* Receive all incoming sync packets using a pipelined scheme. One slot stores the incoming
packet while a second slot is being transferred up to the Host.

» Transfer received packets up to the host using all of pinned memory as a single buffer.

On a call tosend_packets()

» Ifthere is a noniso packet to send:
- Send the route independently. Check to see how many bytes the route is by checking
for 0x00 inside the word containing the route.
- Transfer the remainder of the packet onto the wire.
- While waiting for that transfer to finish, call receive_packets.
» Ifthere is an Isotach packet to send:
- If the packet is a Barrier/Signal marker, simply write the word onto the wire.
- Otherwise, it is a regular Isotach packet. First, write the word containing the prefix
directly onto the wire.
- Calculate how much of the route needs to be sent out (see the code for a more detailed
explanation), and write it directly onto the wire.
- Transfer the remainder of the packet onto the wire
- While waiting for that transfer to finish, cadlceive_packets()

On a call tocheck_dmay()

» If the current transfer has not completed, return the state of the DMA engine.
* If a noniso transfer has completed:

- Enqueue a pointer to the packet onto the delivery queue.

- Advance the tail pointer into the delivery queue.

- Advance the head pointer into the noniso receive buffer

- Set the state of the DMA enginel@LE .

- returnDMA_NONISO
» If an Isotach transfer has completed:

- Set the tail pointer into the hosts Isotach receive buffer to the value calculated by

iso_dma.
- Set the state of the DMA enginel@LE .
- returnDMA_ISQ

80

On a call tononiso_dma()
» IftoHost DMA engine is busy, simply return.
* Otherwise, initiate a transfer to the host:
- The address of the data on the LANai is simply the head of the noniso receive buffer
- The destination address on the host is stored in the packet.
- Check to ensure that the transfer is not outside the bounds of pinned memory
- The size of the transfer is contained within the packet ipate field.
- Set the state of the DMA engineD®A_NONISO

On a call toforce_noniso_dma()

* Wait for the DMA engine to finish its current transfer.
» Call check_dma.
» If the transfer that just finished was a noniso, begin a new noniso transfer and return.
» Otherwise, the previous transfer was an Isotach transfer.
- Initiate a noniso DMA transfer
- Wait for the transfer to complete.
- Begin a new noniso transfer and return.

On a call taso_dma()
» If the DMA engine is busy, wait for it to finish, its current transfer andcbaltk_dma()
» Calculate where the tail pointer into the host’s buffer will be after this transfer has completed.
» If the new tail pointer is greater than the previously calculated threshold
- Write a stop packet at the tail of the LANai's Isotach receive buffer
- Set the new value of the tail of the Host's receive buffer back to the start of that buffer
* Initiate a transfer to the host:
- The address of the data on the LANai is the beginning of the current receive buffer
- The destination address on the host is the tail pointer into the host’s receive buffer
- The size of the transfer is the size of the current receive buffer on the LANai
- Set the state of the DMA engine to DMA_ISO
» Switch to the other Isotach receive buffer on the LANai to keep receiving packets while this
transfer is occurring.

On a call toreceive_packets()

While there are packets waiting on the wire and less than the preset limit of packets has been
received:
e Callcheck _dma()
* Read in the first word of the packet off the wire to determine what type it is.
* If the new packet is of type noniso:
- If the noniso receive buffer is full, call force_noniso_dma.
- Write the previously read in first word into the tail slot of the receive buffer.
- DMA the remainder of the packet into the tail slot
- Calculate the size of the packet and store it ipthR2 field

81

82

Increment the tail pointer into the noniso receive buffer
Call noniso_dmay()

Otherwise, the new packet is of type Isotach:

Write the previously read in first word into the tail slot of the current Isotach receive
buffer.
DMA the remainder of the packet into the tail slot of the buffer
Calculate the size of the packet
If the size of the packet indicates that it is an Isochron marker:
Logically “or” the Isochron CRC in with Myrinet’'s CRC
Write ISO_MARKER into the subtype field
Increment the tail pointer into the current Isotach receive buffer
Else if the packet is an EOP marker:
Find the CRC (it may be in the sort vector), and store it in the CRC field in the
structure
Increment the tail pointer into the current Isotach receive buffer
Else, the packet must be either an iso-pointer or an sRef:
Increment the tail pointer into the current Isotach receive buffer
If the current Isotach receive buffer has grown past the threshold, or the received packet
was an EOP marker, cab_dmay()

If the toHost DMA engine is busy, caleck_dmay()
If there are noniso packets waiting to be transferred to the hostowialh _dmal()

10. Performance Results and Analysis

As previously stated, our design goals were to design a baseline messaging layer that is
comparable in performance to other available messaging layers, as well as implementing Isotach
functionality with a minimal loss in performance. For the most part, we have realized these goals.

10.1. Overview of tests

We chose to measure the throughput and latency of our messaging layer for various
configurations, and compare it using tests previously designed [Bar99] FastMessages and the
initial Isotach prototype. The tests for Ironman were designed to match the previous tests as
closely as possible. They were run for a variety of packet payload sizes — 64, 128, 256, 512, and
1024 bytes.

10.1.1. Latency

Our latency test sent 500 round-trip messages one at a time between 2 hosts. Once a message
was returned by the server, it was copied into the applications address space. The clock was
started immediately before the first message left the application running on the client, and was
stopped once the last message was received from the server and copied by the client into its own
address space. From these numbers, an average round-trip time was calculated.

10.1.2. Throughput

Our throughput test was designed to measure sending bandwidth for the client and receiving
bandwidth for the server. The client sent 40 Mbytes of data to the server, which copied the
received data into its own address space. At the client, the clock was started when the first
message left the application, and stopped when the last message left the application. On the
server, the clock was started upon receipt of the first message and stopped once the last message
was copied into the application’s address space. The test was repeated 5 times and an average
was calculated.

10.2. Testbed

We ran the tests on dual Pentium Il 450MHz machines with 256 MB RAM. For a more detailed
description of the machines, séppendix H The hosts were configured in a variety of ways to
capture all of the data we needed, as well as to perform some preliminary bottleneck analysis.
The configurations were:

FastMessages 1.1 (FM)

Non-Isotach MBM without hardware SIU’s in the link (NONISO)
Non-Isotach MBM with hardware SIU’s in the link (NONISO_SIU)

Isotach MBM without hardware prefix and withdwst orderingISO_NOPRE)
Isotach MBM with hardware prefix and without host ordering (ISO_NOIOM)
Isotach MBM with hardware prefix and with host ordering (ISO)

ok wnNE

83

A comparison of configurations 1 and 2 demonstrates how Non-Isotach MBM compares with
FastMessages. To determine the overhead that Isotach guarantees impose on the system,
configurations 3 and 6 can be compared.

Various other combinations of configurations can be compared to help determine where the
bottlenecks in the system may be. Configurations 2 and 3 allow us to determine if the presence of
the hardware in the link causes a drop in performance. In configurations 4-6, the hardware SIU is
physically present in the link, however, sending Isotach packets without the hardware prefix
causes them to pass through the SIU without any ordering being assigned. Configurations 4 and
5 indicate what effect the SIU has on Isotach packets. Finally, configurations 5 and 6 provide a
rough indication of the costs of ordering on the host.

10.3. Results

The following graphs illustrate the performance of various components of the Ironman messaging
layer. The actual data can be found\ppendix D

10.3.1. Non-Isotach MBM vs. FastMessages 1.1

Latency Throughput
. 120 =400
1 100 * _g- 200 /0/0——_‘
:- T 80 FM £ FM
= — —
=& 60 o " 2 200 |
s —=—NONS$O 5 —m—NONS$O

il ¥ 10
; 20 -: [=
= [

0 @ o

64 128 256 512 1024 64 128 256 512 1024
PacketPaybad Sze(bytes) PacketPaybad Sze(bytes)

Figure 7

As can be seen in Figure 7, the Non-lsotach MBM protocol is roughly equal to or better than
FastMessages in the latency tests. Unfortunately, the throughput results were more discouraging.
Clearly, FastMessages has a much higher throughput than Non-lsotach MBM. See the next
section for a discussion of a possible reason.

84

10.3.2. Isotach MBM vs. Non-Isotach MBM

Latency Throughput

E 120 - E 300

100 250 *
- o
£ 20| £ 200 B
= o /' —e—NONSO_SU 2 150 //./ —e—NONSO_SU
= —m—1S0] ——
3 0 — 2 100 | .//0/ - 1SO

— 7

3 HES
[]
m o0 g o0

64 128 256 512 1024 64 128 256 512 1024
P acketPaybad Sze(pytes) P acketPaybad Sze(pytes)

Figure 8

As shown in Figure 8, we have realized our performance goals in that Isotach guarantees do not
cost more than double the latency and one-half the throughput of a comparable messaging
protocol. However, we expected to observe much better performance for Isotach messages. To
support Isotach guarantees, the Isotach MBM protocol introduces several additional factors into

the system, including separate send/receive paths on the host and the hardware SIU. The
following section attempts to determine which of these factors is affecting performance.

10.4. Bottleneck Analysis
10.4.1. Why is Non-Isotach MBM throughput lower than FastMessages 1.17?

As can be seen from Figure 7, our Non-Isotach MBM protocol outperformed FastMessages 1.1 in
latency, but had a much lower throughput. One possible potential bottleneck in the Ironman
design is the delivery queue on the LANai for Non-Isotach packets. For every packet that is
received, the host must determine its location by performing a read across the PCI bus into the
LANai's SRAM. These reads can be extremely costly and may be contributing to the lower
throughput figures. (See the note at the end ofdbeive moduldor more information)

85

10.4.2. What is the effect of the hardware SIU in the link?

Latency Throughput
80 = 260
o "
i 70 2 & 210 /
= 60 £
= = 50 —e—NONSO - 160 —e—NONSO
s L — = NONSO_SU 3 / —m—NONSO_SU
a~ B 110
:] 3 e
£ 2 : : : : g o0 : : : :
64 128 256 512 1024 64 128 256 512 1024
PacketPaybad Sze(bytes) PacketPaybad Sze(bytes)

Figure 9

As can be seen from Figure 9, sending Non-Isotach packets through the hardware SIU had a
minimal effect on both latency and throughpuit.

10.4.3. What is the effect of enforcing ordering on the host?

Latency Throughput
110 - 225

o [1]
2 100 / 5
[= 175
- / E
&% 90 / —e—ISO_NOOM = 1 —e—ISO_NOOM
=% 80 —m—1S0 = — @IS0
e v i
» 70 | T 75
£ 2 J/'
) : : : ‘ & 25| : : : ‘

64 128 256 512 1024 64 128 256 512 1024

P acketPaybad Sze(pytes) P acketPaybad Sze(pytes)

Figure 10

As was mentioned, configurations 5 and 6 can be compared to determine how much ordering
costs on the host. In configuration 5, Isotach packets are sent through the hardware SIU’s and
assigned a timestamp, however, once they are received by the host they are delneditely

to the application. In configuration 6, the packets are held until the host receives the appropriate
EOP marker from the SIU. Figure 10 shows that waiting for the pulse does not significantly
affect either throughput or latency.

86

10.4.4. What is the cause of the additional latency for Isotach MBM?

120
100
80
60
40
20

Round Trip Time (uSec)

o

Latency

—

‘/r/"/ /

7/

—

—e—NONISO_SIU
ISO_NOPRE
—— SO

64 128 256 512 1024

Packet Payload Size (bytes)

Given that Non-Isotach packets are not significantly slowed by the hardware SIU and that waiting
for EOP markers does not increase the latency, we are left with two possibilities: either the
Isotach send/receive paths on the host/NIU, or the Isotach send/receive paths on the hardware
SIU. As can be seen in Figure 11, the send/receive path on the host does not appear to be causing
the increased latency. The jump in the graph occurs when Isotach packets are sent through the
Isotach path on the SIU. This leads us to conclude that the hardware SIU’s are responsible for

Figure 11

the increase in latency for the Isotach MBM protocol.

87

10.4.5. What is the cause of the lower throughput for Isotach MBM?

Throughput

300

&

. 250
%2}
_8- /
s 200 o e —$—NONISO_SIU
S 150 e ISO_NOPRE
2 —*—1S0
g 100 e
0
64 128 256 512 1024

Packet Payload Size (b ytes)

Figure 12

It appears that the send/receive paths on the host are responsible for the lower Isotach
throughput. In Figure 12, we observe that the largest gap in the graph is present between the
Non-Isotach MBM protocol and Isotach packets that were not sent with a hardware prefix. This
appears to indicate that the Isotach paths on the SIU are not significantly decreasing throughput.
We believe that the method of sending Isotach messages in two different packets is resulting in
the lower throughput figures. Because of this design decision, for each Isotach message there are
4 transfers of data across the PCI bus (2 to send, 2 to receive), versus only 2 transfers for the
Non-Isotach protocol. This is most clearly evidenced by the fact that the curves appear to be
converging for larger packet sizes. For larger packet sizes, the cost of transferring the additional,
much smaller Isotach packet appears to amortized.

It should be noted however that there is a slight difference in the Isotach receive path on the
LANai between configurations 4 and 6. In configuration 4, the SIU will not generate any EOP
markers (as it is in Host-Host mode). Thus, every Isotach packet is DMA'd up to the host as
soon as it is received. In configuration 6, Isotach packets are batched until an EOP marker is
received. Thus, even though there is less data (no EOP markers) to be transferred in
configuration 4, the DMA engine must be started more frequently. It is unclear what effect this
modification has on performance. In actuality, the send/receive paths on the host may not
contribute as much to the loss in Isotach throughput as Figure 12 appears to indicate. This
hypothesis is difficult to test since without EOP markers, Isotach packets cannot be transferred in
a batch.

Regardless, the convergence of the curves shows that the send/receive paths on the host are
contributing somewhat to the decrease in throughput.

88

11. Conclusions and Future Work

11.1. State of the system

With the exception of the Isotach Shared Memory Model, everything described in this document
has been implemented, debugged, and tested. Various low-level design issues have been omitted
from this document for brevity; however, these details can be found within the source code (See
Appendix J. The Ironman system is currently up and running in the Isotach lab using hardware
TM’s and SIU’s. The source can be found on the file server in the Isotach Lab (in Small Hall) at
/home2/isotach/ironman/v3.

11.2. Performance

Preliminary performance tests have shown that we have achieved our design goals with regards to
Isotach overhead. Depending on the size of exchanged messages, Isotach latency ranges from 1.4
to 2.3 times greater than the Non-Isotach protocol. Isotach throughput ranges from 42% to 89%
that of the Non-Isotach protocol.

Through some additional testing, it has been determined that much of this overhead is a direct
result of sending data through the hardware SIU. In addition, some of this overhead is a result of
having to transfer two separate packets from the LANai to the host for each Isotach message.
However, given the delays present in the Isotach paths on the SIU, sending an Isotach message as
a single Isotach packet probably will not result in significant improvement in performance.
Further study is necessary to determine whether these figures can be improved.

Additionally, the Non-Isotach protocol was tested against FastMessages 1.1 to determine how its
performance compared with an established, widely available messaging layer. Whereas our
protocol was equal to or better than FastMessages in latency, throughput results showed that
there are some severe bottlenecks present in the Ironman design.

11.3. Future Work

Currently, the Isotach Shared Memory Model protocol has not been implemented. The
preliminary design is included in this document merely for completeness. Completion of the
design and implementation of this protocol still needs to be done.

Additionally, the Isotach protocols currently utilize send and receive frames for transporting
packets through different sides of the messaging layer. This design should be extended to the
Non-Isotach protocols as well. This would provide for easier readability of the code, and would
improve performance for messages that are smaller than the maximum payload size.

89

Another possible performance improvement would be to implement write combining. Currently,
data is transferred across the PCI bus to the LANai's SRAM usingégpy function. Write
combining is a hardware feature of the Pentium Pro processor that can potentially improve
programmed 1/O writes. Note that this enhancement would most likely result in equal
performance gains for all protocols.

Currently, all Isotach MBM messages are sent out as a pair of messages; poiater and
oneordered packet. For small Isotach MBM messages there may be a significant increase in
performance if the payload of the MBM message is piggybacked ontsotiminter . This

would allow smaller packets to avoid the double DMA associated with the
iso_pointer/ordered packet pairing.

As mentioned in the introductory paragraphs of this paper, an all software implementation of the
Isotach mLayer does not exist. This mLayer depends on the Isotach custom hardware devices for
correct operation. Without them, there is no logical time or ordering of messages. The mLayer
could be modified to perform the same operations that the hardware SIU and TM perform. This
would increase the amount of work that the host and LANai need to do, but it would allow
Isotach to be used by individuals who do not have access to the Isotach custom hardware devices.
Furthermore, with the increases in Myrinet LANai processor speeds and PCIl bus speeds, a
software implementation of the SIU and TM may actually outperform the hardware devices.

Finally, the system needs to be studied in detail to determine which modules are the bottlenecks in
the send and/or receive paths. One potential method is to measure the average execution times of
the poll function exported by each module. This would indicate which modules are consuming
the most time. This type of measurement would be simple to implement. Another possibility is to
measure the latencies and throughputs of each module. This would involve much more intrusive
modifications to the code that may skew the results. After these bottlenecks are uncovered, the
final step would be to redesign the affected modules to eliminate the bottlenecks and increase the
performance of the mLayer.

90

References

[ABD98] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, J. Philbir)sér-Space
Communication: A Quantitative StufjyProc. Supercomputing '98, Nov 1999.

[Bar99] R.G. Bartholet,A Performance Study of Isotach Version”1.0niv. of Virginia, CS
Dept., Tech Rep. CS-99-13, Apr 1999.

[BIJM95] G. Buzzard, D. Jacobson, S. Marovich, J. Wilk$arfilyn: a high-performance net-
work interface with sender-based memory manageém@3 Lab., Hewlett-Packard
Laboratories, Palo, Alto, CA, HPL-95-86, July 1995.

[BSV99] R.G. Bartholet, D.C. Szajda, and R. Venkateswaran, “A Proposed Revised Isotach
Architecture”, internal document (if you need a copy, ask Craig)

[Lam78] L. Lamport, “Time, clocks, and the Ordering of Events in a Distributed System”,
Communications of the ACM, 21(7): 558-565, July 1978.

[MyrO1] Myrinet Documentation
[Myr02] Myrinet Users Guide
[Myr03] LANai 4.X Documentation

[Reg99] J. Regher,An Isotach Implementation for MyridgtUniv. of Virginia, CS Dept.,
Tech Rep. CS-97-12, May 1997.

[RWW97] P. Reynolds, C. Wiliams, R. Wagneitsdtach NetworKs IEEE Transactions on
Parallel and Distributed Systems, 8(4), April 1997.

[Sza99] D.C. Szajda,Testing the Isotach Prototype Hardware Switch Interface’,Udtiv.
of Virginia, CS Dept., Tech Rep. CS-99-27, Jun 1999.

[Wil93] C. Wiliams, “Concurrency Control in Asynchronous ComputatiprBhD thesis,
University of Virginia, January 1993.

[Wil99] C. Williams, “The Isotach Prototype Messaging Layer Architecture: Tinman Design”,
internal document (if you need a copy, ask Craig)

91

http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Bilas820/paper.ps
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Bilas820/paper.ps
ftp://ftp.cs.virginia.edu/pub/techreports/CS-99-13.ps.Z
http://www.hpl.hp.com/techreports/95/HPL-95-86.pdf
http://www.hpl.hp.com/techreports/95/HPL-95-86.pdf
http://www.myri.com/scs/documentation
http://www.myri.com/scs/documentation/mug
http://www.myri.com/scs/documentation/mug/development/LANai4.X.txt
ftp://ftp.cs.virginia.edu/pub/techreports/CS-97-12.ps.Z
ftp://ftp.cs.virginia.edu/pub/isotach/ieee97.pdf
ftp://ftp.cs.virginia.edu/pub/techreports/CS-99-27.ps.Z
ftp://ftp.cs.virginia.edu/pub/techreports/CS-93-33.ps.Z

Glossary

copyset -Each page of Isotach shared memory is present in one or more processors. The copyset
of a given page of Isotach shared memory is the set of processors at which the page is present.

deleted/freed- An element in a queue is deleted when its contents are no longer needed and is
freed when the head pointer of the queue is moved past the element so its space can be reused.

GC - Isotach group communication, i.e., sending and receiving barriers (including host-level to-
kens) and signals.

NIU mLayer - The part of the mLayer that runs on the NIU.

message vs. packetA message (as opposed to a packet) is the unit of communication at the ap-
plication interface. A packet is the unit of communication at the network interface. Thus the
application sends and receives messages. The mLayer sends and receives packets. This distinction
is really only important in systems that can split a message into multiple packets for sending.
Unfortunately “message” has multiple meanings, depending on context. See message Vvs. access.

message vs. sRef A message (as opposed to an access) is the unit of communication in the
MBM of computation. An sRef is a special type of message occurring in SMM computations that
carries instructions for an operation on shared memory.

mLayer - An inclusive, generic term for the software messaging layer. Composed of the host
mLayer (running on the host) and the NIU mLayer (running on the NIU).

net-message/net-packet A message/packet that is sent by a host to a different host, i.e., not a
self-message.

net-isochron -A net-isochron is an isochron containing one or more net-packets.

noniso protocol- A simple non-Isotach MBM messaging layer written by us for execution on the
Isotach prototype.

non-Isotach messages Messages that do not carry Isotach TSs and for which the Isotach
invariant does not necessarily hold. Non-Isotach messages include messages sent by the noniso
protocol but also messages that are sent in service of an Isotach protocol but that do not require
Isotach guarantees. Read responses are currently the only example of this latter type of non-
Isotach message. Assigns (and cancels) may become non-Isotach messages in the future. (The
decision depends on the trade-off between increased complexity in the shmem to deal with early
arriving assigns and decreased latency for assigns.)

pinned memory - An area in host memory that cannot be swapped out. The NIU can DMA to
and from memory only if it is pinned memory.

self-message/self-packet A message/packet sent by a host to itself. Isotach self-messages are
useful as a way to ensure that a local action takes place at the same logical time as remote actions.
Self-messages are not permitted in the noniso protGEahet-message.

self-isochron- A self-isochron is an isochron containing no net-pack&tsiet-isochron.

self-ref. An sRef that accesses a local copy of a shared variable. A self-ref is a special case of a
self-packet.

92

send side/receive side The send side is the path through the mLayer starting with the host and
ending at the network itself. Similarly theceive side is the path through the mLayer starting at
the network and ending at the host.

SMM - Shared Memory Model of parallel computation (for readers familiar with the first genera-
tion prototype software, do not confuse SMM as used here with the SMM in the first generation
software, the module that manages the shared memory.

shmem- The Isotach shared memory module. The shmem is the module at each Isotach host that
executes all assesses to the portion of Isotach shared memory local to that host.

specific sender-based flow control A type of sender-based flow control in which the sender
specifies the location into which its messages are to be written at the receiving node.

sRef- An Isotach message that is an access to Isotach shared memory, i.e., an Isotach read, write,
sched, or assign operation. A single Isotach SMM call may result in several sRefs, e.g., a call to
iso_write() results in the creation o8Refs, where is the number of copies of the variable being
written.

packet - The network “on the wire” level message unit. In the current prototype, since we do not
packetize messages, “message” and “packet” are the same.

host mLayer - The part of the mLayer that runs on the h€§tNIU mLayer.

93

Appendix A. Isotach API

The Isotach API supports both Isotach and Non-Isotach communication and both shared memory
model (SMM) and message based model (MBM) programming. The APIgiporss a Non-
Isotach barrier and Isotach group communication (barriers and signals). The four interfaces
supported by the API are as follows:

* Non-Isotach Message Based Model (noniso-MBM)

* Non-Isotach Group Communication (noniso-GC)

* Isotach Message Based Model (iso-MBM)

* Isotach Shared Memory Model (iso-SMM)

* Isotach Group Communication (iso-GC)

An application can use any subset of the interfaces, except that it cannot use both Isotach MBM
and Isotach SMM. Currently at most, one application per host can use the network.

The v.2 API extends the v.1 API, written by John Regehr, Chris Milner, and Dale Newfield. A
discussion of issues related to the APl may be found in ~ccw/group/design_issues.fm.

A.1l. Initialization/Shut-down

This section describes functions used by the application to open and close its network connection.

open_net()

Purpose Open the application’s connection to the network. Initiate the mLayer for a new run.
The application must call this function before calling any other function in the API.

[Corresponds taso_init() in the v.1 APIl. Renamed because the API includes a noniso

protocol interface.]

Argumentsnone.

Return typeint - O for success; nonzero for failure

try_close_net()

Purpose Try to close the application’s connection to the network. The call will notesa
until after all nodes have invoked try_close_net(). [Corresponds to iso_deint() in the v.1 API.]

Argumentsnone
Return typeint - O for success; nonzero for failure

Caveat The application must call this function repeatedly until the call succeeds. In an MBM

computation, after an unsuccessful call, the application must check for and handle any
incoming messages. For applications only using Non-Isotach messaging, this function call
initiates a noniso barrier, which must be completed for success to be returned. For

94

applications using any Isotach functionality, this function call initiates an Isotach barrier. The
Isotach barrier must complete for the function to return success.

A.2. System housekeeping and status functions

This section describes functions that can be called by the application to hand the mLayer control
and to obtain system information.

poll()

Purpose Housekeeping. A program that is not frequently sending or receiving messages (in
any of the interfaces) must frequently call this function to hand control to the mLayer to allow
it to perform its work.

Argumentsnone
Return typeint - O for success; -1 if no message is available for delivery; some other nonzero
value for any other type of failure.
get_node_number()
Use get_node_number(hostname)

Purpose return the NODEID of nodehostname [iso_get_node_number() is the
corresponding function in the v.1 API.]

Argumentschar *hostname
Return typeint , the NODEID of nodéostnameor -1 if not found.

get_my_node_number()
Purpose return the NODEID of this node.
Argumentsnone
Return typeint , the NODEID of this nodbBostnameor -1 if not defined.

get_max_payload()
Purpose return the maximum payload of a message in bytes.
Argumentsnone
Return typeint , the max payload size of the mLayer.

get_number_of _hosts()
Purpose return the number of hosts in the system. Excludes any hosts emulating TMs.
Argumentsnone
Return typeint , the number of hosts in the system.

95

get_ MBM_ver()

Purpose return the level of Isotach ordering supported.

Argumentsnone

Return typeint , the version number of the mLayer, or -1 for failure.

get_SIU_state()

Purpose returns TRUE if a hardware SIU is configured for this mLayer, FALSE otherwise.

Argumentsnone

Return typeint , a TRUE or FALSE value.

A.3. Non-Isotach Message Based Model

The only noniso specific function is the function for sending noniso messages.

send()

Use send(target, data, size)

Purpose send a noniso messagettoget the NODEID of the destination nodgata is a
pointer to the data to be sent, amkis the size of the message in bytes.

Argumentsint target, void *data, int size . Target must be a node other than
my_id, i.e., the application cannot send a noniso message to itself. A call to send that specifies
the local node as the target fails.

Return typeint — O for success, nonzero for failure, e.g., because target is not a valid
NODEID. Note that success does not mean that the message has been received, only that the
send_message call succeeded.

Caveat a call tosend() may fail. The application should check the return code.

receive()

96

Purpose Return a pointer to a noniso message. The call is non-blocking. The application must
either consume the message or copy it before again caliaiye()

Arguments A structure passed as a reference parameter containing: 1) the sender id; 2) the
length of the data; 3) a union component containing either a pointer to the data or the data
itself. The union is interpreted by reading the size field. If the size is less than or equal to four

bytes, the data is contained within the noniso_mbm message. Otherwise, the data is pointed
to by the noniso_mbm message.

Return Typeint - O for success, -1 if no message is available for delivery, other nonzero
value for any other type of failure.

noniso_mbm structure format:

sender_id size *data sendern_id size data

4B 4B 4B 4B 4B 4B

As mentioned above, the contents of a noniso_mbm structure can be either a pointer to some data
of arbitrary size, or 4 bytes of data. The structure is interpreted by inspecting the size field. Any
size greater than 4 bytes means that the data is stored elsewhere, dhdieldeis3a pointer.
Otherwise, the 3field is actual data.

A.4. Non-Isotach Group Communication

The application may participate in a noniso barrier using the functions described in the section.

initiate_barrier()

Purpose Start participation in a noniso barrier. The call will fail if the previous noniso barrier
is not locally complete.

Argumentsnone.
Return typeint - O for success; nonzero for failure

barrier_completed()
Purpose Return status of current barrier.
Argumentsnone.

Return typeint - O if the current barrier is complete; nonzero if there is no current barrier or
if current barrier is not complete

97

A.5. Isotach Message Based Model

The only Isotach MBM specific function is for sending Isotach messages. Messages are received
through a call to receive(), described in another section.

iso_send()
Use iso_send(target, data, size, last_in_isochron)

Purpose send an Isotach message isochronouskartget the NODEID of the destination
node.datais a pointer to the data to be sent, aimis the size of the message in bytes. If
this message is the last in the isochronjastt in_isochrornto TRUE. [This function (minus
the last argument) appears in the vl APl.] The memory pointed datbyan be reused as
soon as the call returns.

Argumentsint target, void *data, int size, int last_in_isochron

Return typeint - O for success, nonzero for failure, e.g., because target is not a valid
NODEID. Note that success does not mean that the message has been received, only that the
call to iso_send()succeeded.

Caveat a call to send() may fail. The application should check the return code.

iso_receive()

Purpose Return a pointer to an Isotach message or return a bs-notice. All applications

receive bs-notices through this call. An MBM Isotach application also receives messages. The
call is non-blocking. The application must either consume the message or copy it into its own
space before againliiag iso_receive()

ArgumentsA structure iso_mbm) passed as a reference parameter containing: 1) the sender
id; 2) the length of the data; 3) a union component containing either a pointer to the data or
the data itself; and 4) a tag indicating how to interpret the contents of the union (as a pointer,
as a bs- notice, or as a data

Return Typeint - O for success, -1 if no message is available for delivery, other nonzero
value for any other type of failure.

iso_mbm structure format:

tag field tag field
iso_pointer pad |iso_msg bs_notice pad |bits pa‘d
1B 3B 8B 1B 3B 1B 7B

The body of ariso_mbm structure either aiso_msg structure, or the bits fromks_notice
The tag field allows the application to interpret the contents ofisanmbm message
appropriately.

98

iSso_msg structure format:

sender length *data

2B 2B 4B
An iso_msg contains a sender field, the length of the data and a pointer to the corresponding data.

A.6. Isotach Shared Memory Model

The API supports an Isotach SMM interface only. This section describes the SMM interface.

iso_read()
Use iso_read(shaddr, laddr, last_in_isochron)

Purpose schedule a read access to the specified word of shared memory. When the value
returns read, write it in the specified local variable.isan get_read() call is nonblocking

— the process blocks if it tries to retrieve the value (vidsarretrieve() call) before

the read has returnedsd read32() is the analogous function in the v.1 API. (If we want

to specify a size, it can be a parameter)] The call fails if the process already has read_cap
outstanding reads or if the shared address specified is invalid.

Argumentsshmem_addr_t shaddr, struct isovar *laddr,
int last_in_isochron

Return typeint — O for success, nonzero for failure.

iso_retrieve()
Use iso_retrieve(laddr)

Purpose returns when the specified local variable is valiel, when the most recent locally
issuediso_read() that names the local variable as the location to write its result has
returned its result.

Argumentsstruct iso_var32 *laddr

Return typelong int

iso_write()
Use iso_write(shaddr, argueval, last_in_isochron)

Purpose write a value to a shared memory address. It is equivalent to calieg() and
thenassign() . Writes are nonblocking. [This function correspondgo write32() in
the v.1 APL.]

Argumentsshmem_addr_t shaddr, long int val, int last_in_isochron

Return typeint — 0O for success, nonzero for failure.

99

iso_sched()
Use iso_sched(shaddr, last_in_isochron)
Purpose schedule an assign to a shared memory location.
Argumentsshmem_addr_t shaddr, int last_in_isochron
Return typeint — O for success, nonzero for failure.
Caveat A host may send a sched on variablenly if it has sent the assign for its previous
sched (if any) onw.
iso_assign()
Use iso_assign(shaddr, val, last_in_isochron)

Purpose supply the value to be written in an access scheduled by a previously issued
iso_sched()

Argumentsshmem_addr_t shaddr, long int val, int last_in_isochron
Return typeint — 0O for success, nonzero for failure.

Caveat An application can issue an assign only if it has an outstanding sched on the same
shared variable.

A.7. Message functions common to the Isotach SMM and MBM
iso_end()
Use iso_end()

Purpose the application may call this function to inform the mLayer that the last
message/access in the current isochron has been issued. (An alternative way to signal the end
of an isochron is by settintpast_in_isochronwhen issuing the last message/access in an
isochron). An iso_end() issued while no isochron is being issued is a NOP. [This function also
appears in the v1 API.]

Argumentsnone
Return typeint - O for success, nonzero for failure.

A.8. Isotach Group Communication (GC)

The functions listed below are for registering, releasing, and using GC resources. A GC resource
is a signal or barrier channel. The Isotach cluster supports five signal channels (plus a reset signal
channel that is not exposed at the application level) and two barrier channels.

A.8.1. Registering and Releasing Signals and Barriers

The application must obtain permission from the mLayer before using a GC resource.

Signals— Sending a signal propagates a single bit of information to all application processes that
have registered that signal. All processes receive the signal at the same logical time. Furthermore,

100

all Isotach messages a process sends before sending a signal egiilbed before that signal is
received. If multiple processes send a signal on the same channel concurrently (so that the signal
arrives in the same epoch), only one signal willdmeived.

Barriers — The GC interface supports two types of barriers: STRONG and WEAK. An execution

of a weak barrier can complete only after all processes that registered the barrier have participated
in the execution of the barrier. A strong barrier makes the additional guarantee that all Isotach

messages issued by a participating process prior to participation are received at a given host
before the barrier completes at that host. In other words, after completion of a strong barrier at

host h, host h will noteceive any Isotach messages issued before the sender participated in the

barrier.

The mLayer will grant the application permission to use a GC resource only if the mLayer has not
been configured to use the resource itself. The application can register and release (clear) GC
resources dynamically.
iso_register_signal()

Use iso_register_signal(channel)

Purpose obtain permission from the mLayer to use the specified signal channel. After

successfully registering a signal, the application can send the signal and the mLayer will
forward the signals received on that channel to the application (in the usual way, by making
the message visible through poll/receive). The application is always implicitly registered to

receive reset signals, but it cannot register the reset signal and cannot send a reset signal.

Argumentsint channel , specifying which signal channel (1-5) the application intends to
use; execute once for each signal channel the application uses;

Return typeint 0 for success, nonzero for failure (normally because the mLayer claims the
channel or because the argument is out of bounds).
iso_clear_signal()
Use iso_clear_signal(channel)
Purpose relinquish specified signal channel. Clearing an unregistered signal is a NOP.

Argumentswhich signal channel (1-5) the application is relinquishing; execute once for each
signal channel that the application seeks to relinquish.

Return typeint - O for success; nonzero for failure.

iso_register_barrier()
Use iso_register_barrier(bmode, channel)

Purpose obtain permission from the mLayer to use the specified barrier channel as a barrier
and declare whether the barrier is a weak or strong barrier. After successfully registering a
barrier channel, the application can use it.

101

Arguments int bmode, int channel . The first argument should be STRONG or
WEAK (defined constants) to indicate how the barrier will be used. The second argument
indicates which barrier channel (0-1) the application intends to use.

Return typeint - O for success; nonzero for failure (e.g., because the mLayer claims the
channel or it is registered for another use).

iso_clear_barrier()
Use iso_clear_barrier(channel)
Purpose relinquish specified barrier channel. Clearing an unregistered barrier is a NOP.
Argumentsint channel , which barrier channel (0-1) the application is relinquishing

Return typeint - O for success; nonzero for failure (normally because argument is out-of-
bounds.)

A.8.2. Using GC Resources

The functions below are fagendingsignals and barriers. The application receives notice of the
receipt of a signal or of barrier completion receive().

An application must register a signal or barrier channel before attempting to use it.

iso_send_signal()
Use iso_send_signal(channel)
Purpose send specified signal

Arguments int channel , indicating on which signal channel (0-1) the application is
sending

Return typeint - O for success; nonzero for failure (normally because the process is in the
middle of sending an isochron, the argument is out-of-bounds, or the application has not
registered the specified signal channel.)

Caveat do not call while sending an isochron

iso_barrier()
Use iso_barrier(bmode, channel)

Purpose participate in the specified barrier. The application must have already registered the
barrier. The barrier type must agree with the type specified when the barrier was registered.
This function is non-blocking. The barrier is complete when the application receives a

barrier/signal notice (througieceive() call).

Arguments int bmode , indicating the type of barrier andt channel , indicating in
which barrier channel (0-1) the application is participating

102

Return typeint - O for success; nonzero for failure. Fails if the application has not
successfully registered the barrier; if the type of barrier specified by the first argument differs
from the type specified when the application registered the barrier; if the application is in the
middle of sending an isochron; or if the previous execution, if any, of a barrier on the same
channel is not locally complete. An execution of a barrier is locally complete at a given host if
the mLayer has returned a barrier notice to the host for that barrier execution.

Caveats Do not call while sending an isochron. Do not call if the previous barrier on the same
channel is not locally complete.

103

Appendix B. Packet Formats

This section describes the format of packets and the format of data items internal to the mLayer.

B.1. Network Packet Formats

This section describes the format of packets as they enter/leave the network interface

B.1.1. Non-Isotach Packet Structure

route packet| packet | pad sender DMA | payload| pad c_redlt application CRC
type | subtype| 1 base | length | 2 info payload
1-4B 2B 1B 1B 4B 4B 2B 2B 4B variable 1B

route: A route can be from 1 to 4 bytes long. Each routing byte is called a ‘flit’ on a Myrinet
network, and is consumed by a switch. Therefore, 4 routing bytes allows us to use a
maximum network diameter of 4 switches.

packet type The noniso packet type will not be registered with Myricom and thus we should
make it easy to change (so we can change it in the unlikely event that we discover a conflict
with a registered noniso packet type that we think anyone might want to use with Isotach).

packet subtypes sync, sync_ack, sync_done, credit, iso_credit,
request_credit, request_iso_credit, barrier, noniso_mbm, ordered,
read_response

sender: The sending node ID of the packet.

DMA base The starting location in pinned memory to which the NIU should DMA the message.

payload length The number of bytes in the application payload. The receiving NIU DMAs the
message beginning with the packet type and ending with the CRC.

credit info: The sender writes the head pointer of the receiver’s receive buffer at the sender into
the credit information field.

Sync packet

Sync packets (aka “hello packets”) are sent at system initialization. The application payload
contains the sending host's DMA base information for both Isotach and Non-Isotach regions in
pinned memory.

Sync-ACK packet
Sync-ACK packets are send in response to sync packets at initialization. The application payload
is empty.

Sync-done packet

Sync-done packets are used in the final stage of host synchronization to ensure that all hosts finish
synchronization at the same time. Sync-done packets effectively create a simple barrier.

104

Credit packets (Isotach and Non-Isotach)

A credit packet is a noniso packet of subtype credit or iso_credit sent when there is no normal
traffic on which to piggyback credit info. For a given protocol, the DMA base is the same for all
credit packets sent by the same sender to the same receiver: credit_packet_base for noniso credit
packets and iso_credit_packet_base for Isotach credit packets. The application payload is always
zero bytes for any credit packets.

Request-Credit packets (Isotach and Non-Isotach)

A request credit packet is sent when a sending host has attempted to clear a packet for sending a
certain number of times, and failed. This situation may be due to a credit packet starvation
problem. If one host is sending and one host is receiving, the receiving host must periodically
send credit packets back to the sending host. If one of these credit packets cannot be shipped
(most likely due to Myrinet hardware flow control) the receiving host may never send another
credit packet. This situation is very rare, and has never been observed but is theoretically
possible. Therefore, to prevent a deadlock situation, request-credit packets are used.]

Non-Isotach Barrier packets
These packets contain no actual data, other than the sender ID. The sender ID is used to
determine who has completed the barrier.

Non-Isotach Message Based Model (MBM) packets

These packets are used to send noniso-MBM information from host to host. They are created
upon a call to the API functiosend() and contain a variable payload of data, up to the
maximum packet size configured for the mLayer. Credit information is piggybacked on noniso-
MBM packets in the credit_info field.

Non-Isotach Ordered packets

These packets are essentially the same as the noniso-MBM packets except that these packets are
placed into a different region in the receiving host’s pinned memory. In addition, each packet of
subtype ordered is associated with a corresporistingointer . The ordered packet contains

the data for an Isotach MBM packet.

Read Response

A read response is an noniso packet with subtgpd response . The application payload
contains two fields, each 1 word long: the data (the value that is being returned), followed by a
pointer to the local variable in which the data should be written.

B.1.2. Iso-pointer

iso route route packet| packet 1s | sender c_redlt dgta CRC
prefix | pad type | subtype info | pointer
4B 4B 2B 1B 1B 2B 2B 4B 1B

An iso-pointer is an Isotach packet of subtygxe pointer that points to an ordered packet.
The pointer field is the address at which to find the corresponding noniso packet. Unfortunately,

105

packet length is the characteristic that distinguishes Isochron markers from iso-pointers. Iso-
pointers are 13 bytes long when received; isochron markers are 8 bytes long. (Ideally, we alter the
SIU so that it assigns 0x0602 as the packet_type for isochron markers.)

B.1.3. Shared Memory Reference (sRef)

iso route route packet| packet 1s | sender c_redlt shadder data / CRC

prefix | pad type | subtype info pad

4B 4B 2B 1B 1B 2B 2B 4B 4B 1B
An sRef is an Isotach packet of subtype read , iso_write , iso_sched , or

iso_assign . The payload of the message is composed of the shadder, the address of the shared
variable, and the operand to the operation, if any. The data field contains the following,
depending on the packet subtype:

1. iso_read :4B Ivar

2. iso_write 4B value

3. iso_sched : 4B pad

4. iso_assign : 4B value

B.1.4. BS-marker

barrier signal bits barrier
010 .
Pad | " ount reset | host signals bits CRC
3 bits 5 bits 1B 1 bit 5 bits 2 bits 1B

This format for the bs-marker marker is copied for convenient reference from the Isotach
specification. The host sends the SIU a bs-marker to initiate sending a signal or participating in a
barrier. The initial 3 bits identify the packet to the SIU as a bs-marker.

B.1.5. Isochron marker

packet | isochron CRC/
type packet subtypg
2B 1B 1B 2B 1B 1B

\J

TS| source| iso_id CR(

This format for the isochron marker is copied for convenient reference from the Isotach

specification. When receiving an isochron marker, the NIU OR’s the isochron CRC into the CRC

field and writes isochron_marker into the second field (which now becomes the packet subtype
field).

106

B.1.6. EOP marker

copy of token (up to CRC)
packet| packet | signal | barrier sort
type | subtype| bits bits pad| TS| count vector CRC
2B 1B 6bits 2bits 2B 1B 1B 0-32B 1B

Assuming that sort vectors hold a maximum of 32 items, the sort vector can be at most 32B long.
Since the header and CRC fields are 9B, an EOP marker is at most 41B (11 words) long.

B.2. Internal Packet Data Structures

This section describes the internal format of packets before they are sent out onto the network,
and after they are received from the network. These formats correspond to the structures in the
file utils.h

B.2.1. Non-Isotach Packet StructureRACKEY

packet| packet | pad sender DMA | payload| pad c_redlt application route
type | subtype| 1 base| length | 2 info payload
2B 1B 1B 4B 4B 2B 2B 4B variable 4B

This packet is used for all noniso messages that are stored on the host. The application payload is
configured to be the max payload size + 4 bytes. The extra 4 bytes is there to allow room for the
CRC if the packet sent uses all of the available bytes.

B.2.2. Isotach Packet StructurelSO_PACKET)

Isotach Packet sRef
packet| packet TS | sender| c_redlt [*data, shadder, data
type | subtype info sRef]

2B 1B 1B 2B 2B 8B 4B 4B

Isotach packets can either be iso_pointers or sRefs. Therefore, the Isotach Packet structure is
contains the union of a pointer to data and an sRef structure.

Isotach Send Frame Isotach Receive Frame

';?;?iih ro;te ro‘lJte pad | ISO_PACKET ISO_PACKET | CRC
4B 4B 2B 2B 16B 16B 4B

Isotach packets are placed into send/receive frames. The use of send/receive frames allows us to
store different information relevant to the packet, which depends on the current path of the
packet.

107

B.2.3. Packet-core-2 structures

iISO-pointer bs-notice
. . . , signal | barrier
iISO_pointer bs_notice . .
_p pad | sender pointer _ bits bits pad
1B 1B 2B 4B 1B 6 bits 2bits 6B
isochron-slot
isochron_slot pad | isochron_id self_count
1B 2B 1B 4B
These structures appeariso_delivery_q . A packet-core-2 is 2 words long. The first

byte is the packet subtype and determines the interpretation of the remainder of the packet. An
isochron-slot contains a count, self_count, of the number of self-messages it represents.

B.2.4. Packet-core-3 structure

iso_sched iISO_write

iso_sched pad | sourcqd shadder da~ta iso_write pad | sourcd shadder data
1B 1B 2B 4B 4B 1B 1B 2B 4B 4B

iISO_assign iso_read

iso_assign pad | sourcd shadder da~ta iso_read pad | sourcd shadder Ivar
1B 1B 2B 4B 4B 1B 1B 2B 4B 4B

isochron_marker packet core 2 struct

. . k 2

isochron_marker pad | sourcg isochron id pad pac gttﬁjcgre— pad

1B 1B 2B 1B 7B 8B 4B
These structures appear in the I0M buckstsf, ref buf , andshmem_buf. A packet-

core-3 is 3 words long. The first byte is the packet subtype and it controls the interpretation of
the remainder of the packet.

108

Appendix C. Isotach Implementation Constants

These are named values that do not change after initialization. The constants are all tunable
parameters for the messaging layer. They are all located in thesfilran/constants. h for
ease of modification.

SIiU
This parameter indicates whether or not the mLayer is configured to use a hardware SIU. Set
its value to 1 to enable hardware SIU support, O otherwise.
Coded: 0, 1

MBM_VER
This parameter defines which version of the IOM is being used. Currently there are two
available versions. Setting this value to 1 disables Isotach ordering and self-messages. A
value of 2 enables these features.
Coded: 1, 2

MAX_PAYLOAD_SIZE
Defines the maximum amount of bytes that may be sent in the payload of an Isotach or Non-
Isotach MBM packet. Can be configured to any integer, but normally accepted (and tested)
values are: 64, 128, 256, 512 and 1024.
Coded: 64, 128, 256, 512, 1024

SIZE_OF_PINNED_MEMORY
Must be configured to be less than or equal to the number of bytes that the Myrinet driver has
reserved from the pinned memory area. Standard configuration of the Myrinet driver uses
4MB of pinned memory, so this value is normally 4194304.
Coded: (default 4194304)

NONISO_RATIO
This value defines how much of available pinned memory to give to the noniso protocol, and
therefore how much is left to the Isotach protocol. Normally noniso and Isotach protocols
have equal space so this number is set to be 0.50 (i.e. 50%).
Coded: 0.50

ISO_SLACK
This is the amount of ‘slack’ to place in the host buffers, to account for packets that are not
subject to flow control (i.e. Isochron Markers and EOP Markers). This number is only a
rough approximation, but should be sufficient if set to at least 1.25.
Coded: 1.25

SEND_BUF_SIZE
This is the size of the host’s send buffer in number of packets.
Coded: 1024

109

ORD_SEND_BUF_SIZE
This is the size of the host’s ordered send buffer in packets.
Coded: 1024

ISO_SEND_BUF_SIZE
This is the size of the host’s Isotach send buffer in number of packets.
Coded: 1024

NIU_SEND_SIZE
The size of the NIU’s send buffer in number of packets.
Coded: 64

ISO_NIU_SEND_SIZE
The size of the NIU’s Isotach send buffer in number of packets.
Coded: 64

RECV_LIMIT
The maximum number of packets that can be received in one cedleige_packets()
on the LANai.
Coded: 256

ISO_NIU_RECV_SIZE
The size of each of the NIU’s 2 Isotach receive buffers in words.
Coded: 512

NIU_DELV_SIZE
The size of the NIU’s delivery queue. This queue stores a pointer to each received packet in
pinned memory. It must be set relatively large in order to ensure that software flow control
works properly. This value is also used in calculating pinned memory allocations.
Coded: 8192

NIU_RECV_BUF_SIZE
The total number of packets that can be buffered on the LANai before Myrinet hardware flow
control has to be asserted.
Coded: 32

isochron_allowance
The maximum number of outstanding Isochrons that can be sent.
Coded: 256

BUCKET_COUNT
The number of buckets. Each bucket corresponds to a timestamp, therefore logical time
wraps at 256 time units. This is set to be equal to the timestamp wraparound on the SIU
(because timestamps in packets are also 1B).
Coded: 256

110

BUCKET_SIZE

The number of packets that can arrive in one logical time pulse. This number should be set
high to prevent overflow. Generally, the number of packets that can arrive in one logical time

pulse should be equal to the max number of messages sent in a single isochron. For singleton
Isochrons, only 2-3 of these slots should be used at the most.
Coded: 256

111

Appendix D. Performance Testing Data

Latency
Average of 500 Round-Trips in usec
FastMessages 1.1 Noniso Isotach MBM
Packet Size w/o SIU w/o SIU*| w SIU |No Ordering w/o SIU®|No Ordering w/ SIU?|Ordering w/SIU
64 25.40 29.05] 31.19 35.78 67.06 67.79
128 29.60 34.14| 34.18 37.15 69.67 70.61
256 41.10 37.55] 39.05 42.14 74.71 75.57
512 62.10] 49.49| 50.91 53.82 85.34 86.40
1024 103.70 73.39] 76.90 79.80 105.08 106.62
Sender Throughput
Sending 4000000 bytes. Measured in Megabits per second (Mbps)
FastMessages 1.1 Noniso Isotach MBM
Packet Size w/o SIU w/o SIU*| w SIU |No Ordering w/o SIU*|No Ordering w/ SIU*|Ordering w/SIU
64 152.00 75.92| 75.93 44.10 32.03 32.05
128 259.80] 124.38|124.22 78.78 62.82 62.80
256 321.10] 175.73|176.66 128.66 120.73 118.43
512 355.90] 222.85|224.60 183.79 176.68 172.67
1024 359.10] 247.77|251.79 228.11 222.85 219.81
Receiver Throughput
Sending 4000000 bytes. Measured in Megabits per second (Mbps)
FastMessages 1.1 Noniso Isotach MBM
Packet Size w/o SIU w/o SIU*| w SIU |No Ordering w/o SIU*|No Ordering w/ SIU?|Ordering w/SIU
64 152.20 75.92| 75.94 44.10 32.03 32.05
128 260.00] 124.39/124.23 78.78 62.81 62.79
256 321.10] 175.75/176.69 128.66 120.69 118.43
512 355.90] 222.91|224.95 183.79 176.69 172.67
1024 359.20] 247.89/251.91 228.15 222.86 219.83

! Without SIU indicates that the physical hardware was removed from the link

2 Without SIU indicates that packets were sent without the SIU prefix, the hardware was in HH mode, and the TM was off

112

Appendix E. Configuration Files

An Isotach network is described by the network configurationrfdenork.cfg) located in the

root directory. The network configuration file specifies which hosts are on the network and
assigns each host a node identification number. The file also provides the route from each host to
every other host. Currently, the configuration file must be “created by hand,” and must be in the
exact format specified below. Future additions to the system could add enhanced parsing routines
for the file and/or a graphical tool to generate a network configuration file.

The format of the file is as follows:

#number of hosts in the network
hosts=n

#listing of hosts and their node numbers
name,0

name,1

name,n-1

#routes

#from node 1 to all hosts
node 1:

1,loopback

2,route

n-1,route
#end from node 1

#from node n-1 to all hosts
node n-1:

1,route

2,route

n-1,loopback
#end configuration file

113

Within the configuration file, any line with a ‘# at the beginning signifies a comment and is
ignored by the initialization routines. Furthermore, host names are specified in short form (i.e.
bugs.cs.Virginia.EDU would be specified abugs). Routes are given in hexadecimal
format.

Samplenetwork.cfg File:

#number of hosts in the network
hosts=5
#listing of hosts and their node numbers
bugs O
foghorn 1
porky 2

fudd 3
marvin 4
#routes
#from node O
node O:

080

181

283

385

4 86

#from node 1
node 1:

0 BF

180

282

384

4 85

#from node 2
node 2:

0 BD

1 BE

280

382

4 83

#from node 3
node 3:

0 BB

1BC

2 BE

380

4 81

#from node 4
node 4:

0 BA

1 BB

2 BD

3 BF

4 80

114

Appendix F. Development Environment

F.1. Directory Structure

The Isotach Ironman design calls for a modular, layered system. Thus, the source code is
organized through a directory tree structure. The directory structure consists of a main directory,
layer directories, and module directories. A module directory contains all of the source code
necessary for that particular module, including a Makefile for that particular module. A layer
directory contains module directories for each module in that layer, as well as a Makefile for that
particular layer. The main directory contains the following:

* Source code for Isotach applications and the executables
* LANai Control Program (binary file)

» Isotach Library (binary file)

* API Header files

» Configuration scripts for changing system parameters

» The current network configuration file

Additionally, there are directories in the main directory that contain:

» Scripts for performance testing
* Logs for performance testing results
» Different network configuration files

It should be noted that both the Hostman and Netman layers only have a single module, so the
source code and Makefiles are located directly in the layer directories.

F.2. Module Components

Every module contains 3 different source files: (module_name).c, locals.h, and exports.h. The
(module_name).c file contains the implementation of every function in that module. The .c file

includes locals.h, which contains all local function prototypes and variables global to that module.
Additionally, this file includes all header files needed by that module. The exports.h file contains

all function prototypes and data structures that the module exports to other modules. For
example, every module exports an init, deinit, and poll function to Hostman. Thus, although the
implementation of these functions is contained in (module_name).c, the prototypes for these
functions appear in the exports.h file.

The Netman module does not export to any other module so it does not contain an exports.h file.

Additionally, within this module, there is a net_utils.h header file that contains macros and
functions used by the LANai Control Program.

115

The Hostman module does not contain exports.h file as well. Instead, it provides a
utils.h file that is included by every other module andoat_utils.h file that is included
by every module except for Netman. This.h file contains the following:

* Queue manipulation functions

» Data types and typedefs used by all modules

» Constants representing packet types and subtypes

* Various constants used throughout all of the caG®JE FALSE , SUCCESS FAILURE ,
etc)

* Any constants used in more than one module (masks to interpret barrier/signal bits, masks
to interpret the prefix sent to the SIU’s, etc)

The host_utils.h file contains the types of items containeduiits.h that are not needed

on the LANai. These include data structures and constants used to describe pinned memory,
number of nodes, etc. Additionallyyost_utils.h contains several functions used for
debugging purposes.

Finally, Hostman contains a fileonstants.h that stores the values for all tunable system
parameters such as packet size, queue lengths, etc.

F.3. Makefiles

Every Isotach Makefile uses environment variables and relative paths whenever possible rather
than explicit flenames. This allows one to place a copy of the Isotach environment anywhere on
the disk, and then by changing a few environment variables, compile it and run programs. This is
particularly useful for running backed up versions of the code. Additionally, all output from the
Makefiles (except for error messages) is suppressed, and every Makefile uses echo statements to
output what it is doing. This makes it easier to trace through a build and see exactly what is
occurring.

As was mentioned, each module has its own Makefile. This Makefile is responsible for creating
an object file containing the code for that particular module. The Makefile also contains the
dependencies for that particular module. Finally, a module Makefile has a clean option that
removes the object file and any backup (~) files. By having module level Makefiles, you can work
on a particular module and check to see if it compiles without the overhead of re-compiling the
entire Isotach system.

Going up a level, each layer directory has its own Makefile as wel. The layer Makefile
recursively calls the Makefile for each module in that particular layer. The layer Makefile also has
a clean option that recursively calls each module’s Makefile with the clean option. Although not
entirely necessary, the layer Makefiles help provide abstraction and keep the Makefile hierarchy
more intuitive.

116

The Hostman and Netman layer Makefiles are exceptions. The Hostman Makefile contains code
to build the Hostman module, as well as build the runtime Isotach library using ranlib. The

runtime library is then moved up into the main directory. Because it is responsible for building the

library, the Makefile also recursive calls the Makefiles for each of the layers on the host (api,

processing, niu_interface). Hostman’s Makefile also provides a clean option that removes the
object file, backup files, and recursively calls each layer’s Makefile with the clean option.

The Netman Makefile is responsible for building the LANai Control Program. This uses the
lanai3-gcc compiler. The Makefile also invokes the compiler in such a way that a special ctr0.o
file is linked into the “executable” to support cards with larger memory. There is more
information about this iM\ppendix H Finally, the Makefile moves the compiled LANai Control
Program up to the main directory. To support the LANai debugging tools (see later in this
Appendix), the Makefile makes an extra copy of the control program. The clean option for this
Makefile removes the control program from the main directory and removes any backup files.

Finally, there is a Makefile in the main directory. This is primarily responsible for recursively
calling the other Isotach Makefiles, as well as compiling Isotach applications. We have provided
a plethora of options for this Makefile, each of which is detailed below:

* make This option builds the Isotach applications. If the runtime library and LANai
Control Program are not present in the main directory, it will recursively call the
appropriate Makefiles to build them.

* make clean This option removes the Isotach applications and any of their backup files. It
will not remove the Isotach library or the LANai Control Program.

* make build This option first removes the Isotach applications, and then recursively calls
Hostman’s and Netman’'s Makefiles. Remember that Hostman's Makefile calls the
Makefiles of the other layers. Thus, the Isotach library and the LANai Control Program
will be built. Finally, it re-builds the Isotach applications.

* make clobber This option removes the Isotach applications, and then recursively calls
Hostman’'s and Netman's Makefiles with the clean option. Thus, after this is run, all
executables, object files, backup files, etc. are removed from the source tree and you are
left with only source code.

* make rebuild After typing “make clobber ; make build” so many times, we have included
this option that does both for you.

* make print_mods This option prints a list of every module to the screen. This was
initially used to generate a list of the modules to keep track of who was working on what,
etc.

* make print_src This option prints a list of every source file to the screen. You need to
call make clobber before running this option.

* make linecount This option takes the output of make print_src and runs it through ‘wc —
I This option has been used to track progress throughout the development cycle and to
ensure that the source code doesn't get too large.

* make create_testbed This option runs the ‘create_testbed’ script that builds multiple
copies of the Isotach system for performance testing.

117

make run_test This option runs the ‘run_test’ script that performs virtually automated
performance testing.

make backup_logs This option backs up the log files from performance testing

make clear_logs This option clears the log files from performance testing

make snapshot This option clears all executables, object files, backup files, etc and then
tars and gzips the entire source tree and moves it to a backup location.

F.4. Scripts

Throughout the course of development, several shell scripts have been developed to assist in all
aspects. The following is a brief description of each script and how it is used. The create_testbed
and run_test scripts source code igpendix |

118

host_cfg— The Isotach system uses a network configuration file (network.cfg) to indicate
what hosts are on the network and the routes between each host. Often, there are several
different configurations that the user may want to switch between. There is a directory
directly below the main directory (cfg) that contains several configuration files. They are
named network.desc, where ‘desc’ is a few letters indicating what type of configuration it
is. To switch configurations, the host_cfg script can be invoked as “host_cfg desc”. This
copies the configuration file from the ‘cfg’ directory up to the main directory and renames

it network.cfg.

sys_cfg— There are three main parameters that are changed quite often. The first is
whether a hardware SIU is supported, the second is the level of Isotach ordering
supported, and the third is packet payload size. All three of these parameters are in a
header file “constants.h” in the Hostman layer. The sys cfg script uses sed to modify
these values in the “constants.h” directory. The script takes two arguments: system type
and packet size. System type can be one of three values: NOSIU-MBM1, SIU-MBM1,
SIU-MBM2, and packet size can be any integer, however traditionally it has been either
64, 128, 256, 512, or 1024.

create_testbed- When doing performance testing, one often wishes to run the same tests
over multiple system configurations. This script creates a directory called “testing”,
directly below the main directory. Then it proceeds to build 15 copies of the Isotach
system, with all combinations of the above parameters. It creates a subdirectory structure
to store each one. Using this script, one can create a testbed for performance testing by
typing one line and letting the system compile for approximately 15 minutes.

run_test — This script sweeps through the test bed, running the performance tests for each
combination of system parameters. At various stages of the test, hardware needs to be
added/removed/reconfigured. The script prompts the user to perform these actions, and
waits on user input before continuing. Additionally, as the Isotach hardware sometimes
fails, it checks the return value of each program to ensure that it was successfully run. If
the program was abnormally terminated (See the sectigmagmnam terminatioy) it will

re-run that particular test. Each of the test programs writes it output to a particular log
fle. These log files are managed by this script as well by backing them up and clearing
them before beginning the tests.

F.5. Queue Macro Functions

In the initial development of the mLayer, we realized that most of the mLayer’s functionality
relied on extensive queue manipulation. The previous version of Isotach also extensively used
gueue manipulation routines, but these routines were placed in the actual code, making the code
very unreadable. We desired to have more readable code, but we also did not want the overhead
of a function call for every queue manipulation. Therefore, we devised a set of generic queue
manipulation macros. These macros are listed and described in detall in the file
hostman/utils.h . These macros support two types of queues: pointer based queues and
index-based queues. For small queues shared between the LANai and the host, it is more efficient
to have the head/tail pointers be a one byte index into the array, rather than a four byte data
pointer. The advantage is that one-byte indices do not have to be switched between Endians.

F.6. LANai Debugging Tools

Isotach is currently implemented using a gigabit switched network called Myrinet. Myrinet has

many advantages, one of which is the ability to program the network card in a familiar language
such as C. However, this flexibility comes with its disadvantages. The LANai (the programmable
network interface) can be difficult to debug and test. However, there are some tricks and tools
that we have discovered that make the process of writing a LANai Control Program (LCP) much
easier.

One of the first tricks that we discovered is the equivalenpraritf ' debugging in C. The

basic concept is the following: when in doubt, print out the values of important variables during
execution to trace the program. Because the LANai has no console, thergiigfno or any

output at all. Furthermore, there is no debugger available for the LANai (like gdb). In order to
find out the values of variables on the LANai it is necessary to have it mapped into host memory,
and have the host print out the value. This generally works, except when the host has crashed or
is not functioning properly. In order to get around this problem, the following solution was
devised.

First, set up a dummy host on the Myrinet network that runs a simple program to receive all bytes
sent to its Myrinet card, and echo them to the host’s screen. We (along with T.J. Highley) have
implemented a simple program to do this cabed(short for send/receive). It is available in
/home2/isotach/tools and is simple to use. Just execsitein this directory, and wait to
receive packets from other hosts on the network.

Next, determine the route from the malfunctioning host to the ‘debug host’ (i.e. the one running
send/receive). In thenetman.c source, there are two functionsend word and
send_packet . These functions take a word of data and a pointer to an array of characters as
parameters, respectively. Change the first byte sent out in each of these functions to be the route
to the debug host. During any point of the LANai's execution (after synchronization has
completed, these two functions can be called to output information to the debug host. There are
two caveats to using this method of debugging. First, because this method of debugging is
invasive it may change the behavior/performance of a running program. Second, all of the data
sent out is printed out by the debug host in hexadecimal format and needs to be translated to a

119

more readable format. As long as the programmer is careful, the first problem can be avoided and
the second problem usually disappears when you find yourself reading hexadecimal just as well as
decimal.

Along with the Myrinet modules and utilities are a few utging tools that Myricom has written.
These tools are available fhome2/isotach/myrinet/bin/intel_linux . These tools

are described in detail dviyricom’s web site Of particular interest is themonapplication. This
application is written in Tcl/tk and monitors the status of any memory-mapped variables on the
LANai. Simply load up a list of the variables that you wish to monitor, and begin program
execution. A list of debugging variables has already been definestnran/net_utils.h

Every debugging variable on the LANai is prefaced with D_ so that it is easily identifiable in the
source code.

F.7. API Design Issues
F.7.1. Files

The function prototypes and data structures that comprise the API are spread over four different
header files:

noniso.h — contains all basic mLayer functions that the application can use, as well as all of the
api functions and data structures used by the noniso protocol.

isotach.h — contains all of the Isotach function prototypes and data structures that are used by
both the MBM and SMM models.

iso_mbm.h — contains function prototypes and data structures necessary to support the Isotach
MBM model

iso_smm.h — contains function prototypes and data structures necessary to support the Isotach
SMM model

F.7.2. Use

If the programmer wishes to use Non-Isotach functionality he/she must includenike.h

header file. If the programmer wishes to create an Isotach program, he/she must include either
iso_mbm.h oriso_smm.h , depending on which model they wish to use. Both of those header
fles includeisotach.h , providing the remainder of the Isotach APIl. Both Isotach (either
MBM or SMM) functionality and Non-Isotacméniso.h) functionality can be used in the same
program.

F.7.3. Preprocessor Tricks

The Ironman API provides for a single poll function, regardless of the system type. Furthermore,
the open_net function does not contain any parameters indicating which type of system the
programmer wishes to use. Thus, the programmer must indicate the system type by including
iso_mbm/smm.h or not. The open_net function exported by Hostman actually accepts a
parameter indicating the system type. Thus, based on the header files included, the preprocessor
redefines the open_net symbol to pass the appropriate argument. Additionally, Hostman exports
two different poll functions -- one for a strictly Non-Isotach system, and one that supports an

120

http://www.myri.com/scs/documentation/mug/tools/index.html

Isotach system. Based on which header files are included, the preprocessor redefines the poll
symbol to be the appropriate poll function. Finally, there is the restriction that the programmer
cannot use both the MBM and the SMM models in the same program. The preprocessor checks
for this in an Isotach program by looking at which header files the programmer included. If both
iso_mbm.h and iso_smm.h were included, the preprocessor generates an error.

121

Appendix G. Programming Conventions

This appendix will describe programming conventions used in the mLayer implementation. These
conventions were followed as closely as possible to create consistency within the code and to
enable the code to be readable.

G.1. Programming Style

a)

b)

d)

9)

The open parentheses following a function call or a control structure statement should be
directly following the function name/control statement without a space in between. In
addition, the brace should appear on the same line as the closing parentheses, with one space
in between itself and the closing parentheses.
while(1) {
}
Spaces should be left in between all operators and operands when possible.
while(i == 2)
Indent Tabs are THREE spaces, NOT five.
while(1) {
i=2;
}
All variable names should be in lowercase, with an underscore used to separate words. All
Non-Isotach variables have no prefix, while all Isotach variables are prefixedavith All
defined constant names (eithelefine orconst) should be all uppercase.
It is acceptable to use C shortcuts to save space and typing, but amynédiately obvious

what the statement's purpose is. If a C statement is not easily understood upon first reading, it
either should have a comment describing it or be made easier to understand. (NOTE: Because
efficiency is of primary concern in a messaging layer, readability must sometimes be sacrificed
for efficiency.)

All testing variables should be prefaced with the Author's initials in capital letters, followed by
an underscore. No testing variables should be left in the program for any of the program’s
releases. This convention allows testing variables to be removed quickly and easily.

All C structures gtruc) should be declared usitgpedefto avoid having to use the keyword
structwhen referencing the type.

122

G.2. Commenting Style

Comments should be used to describe sections of code, not individual lines of code. An individual

line of code should be easy enough to read and interpret, so that a comment is not warranted.
Making a line of code easy to read and interpret involves using descriptive variable names and
function calls. It also means that sometimes it is better to take one line and split it into several

lines (unless doing so would decrease performance for some reason). However, individual lines
of code can become complex due to the large number of structures and pointers that are
manipulated. These lines of code should be individually commented in order to increase

readability.

Each module directory contains three files. A source file for the module implementation

(module.c), a header file for any constants, structures and global variables for the module

(locals.h) and a header file for any constants structures and global variables that need to be
exported to other modulesxports.h). SeeAppendix £

Every C file should have a header in the following format.

/*

*

*

* |sotach Module : 'Module Name' [Local Variable Definitions/Exports]
* |sotach Layer :'Layer Name'
* |sotach Version : Version 3

REVISION INFORMATION:

$Source:$
$Revision:$
$Author:$
$Date:$

* 0% ok 2k X Xk 2k X X X X

* DESCRIPTION:
*

* This should be a short description of the module's purpose and basic
* functionality.
*

*

*

* COMMENTS:
*

* Any comments about general functionality of the module (not on individual
* functions, however) and also on data structures used in the module.
*

*

*/

This header should start at line 1 in the source file. Directly following the header should be all
#include statements.

123

All #define statements should be either in theals.h or theexports.h file located in the
module's directory. All module global variables should also be ilv¢his.hor exports.Hiles.

Each function should have a comment preceding it describing what the function’s purpose is.
This description does not have to be elaborate. The reader of this source code will use the
Ironman document in conjunction with the commented source code to fully understand the
messaging layer.

All comments that are transitory should be commented with a date, the programmer’s name and
should be made visible. These comments generally describe bugs, work to be done or
unexplained behavior and should not remain in the code indefinitely.

G.3. Version Control

The Isotach Version 3 code is being controlled by CVS. The CVS root repository is at:

/home2/isotach/CVSROOT

The location of the Version 3 source tree is at:

/home2/isotach/CVSROOT/v3
To create a new repository:

Simply change directory into the checked out source directory and type the following command:

cvs import -m "Imported Sources" v3 Isotach start

This will create a subdirectory in tl@&/SROOTalledv3 and check-in all files and directories in
the current directory into this subdirectory.

To checkout from the repository:

cvs checkout v3

To release a local file or directory structure:

cvs release v3

/I Releases v3, but does not delete the local copy
cvs release -d v3

/I Releases v3 and deletes the local copy
cvs release ‘filename'

124

To add a new file to the repository:

cvs add ‘filename’
cvs commit ‘filename’

To check changes between a checked out copy and a file in the repository:

cvs diff 'filename'

To add modules/layers to CVS:

cvs checkout CVSROOT/modules
cd CVSROOT
<edit the modules file and add modules
in using the format:
'layer' v3/'layer'
'module’ v3/'layer'/'module’
>
cvs commit -m "Added Modules:..." modules
cd ..
cvs release -d CVSROOT

125

Appendix H. Isotach Computers and Myrinet Drivers

This document will serve as an installation and users' guide to the Isotach v3 system.

The Isotach Lab is currently composed of eight Dual Pentium 111-450Mhz (256MB SDRAM)
computers and one Pentium 11-400Mhz (128MB SDRAM) file server. Each computer is running
RedHat Linux 6.1. The machines atmigs, daffy , marvin , fudd , porky , foghorn |,
roadrunner and coyote . The fileserver (where théhome, /home2 and /usr/remote

directories are stored) pe. All of these computers are in the.Virginia.EDU domain.

The fileserver is backed up on departmental resources, in case of emergencies. Reinstallation of
the fileserver involves reinstallation of Linux followed by reconfiguration using the configuration
files stored inhome2/config/server

H.1. Installation of the Isotach File Server

The fileserver (currentlpepe.cs.Virginia.EDU at IP Address28.143.136.220) needs
to be reinstalled manually. The files for reinstallation avedme2/config/server

To reinstall this machine, simply install an appropriate version of Red Hat Linux (>= 6.1) and
follow the following instructions.

1. During installation, you will need to specify whexach partition is located on a physical
disk. The following is a list of drives on the machine, and their associated mount points.

/dev/sdal /
/dev/sdb5 /home
/dev/sdb6 /home?2
/dev/sdab fusr
/dev/sdb1l /usr/local
/dev/sda6 swap

2. Atfter installation has completed, run the following commands:
cp —Rfv /home2/config/server/etc /etc
rpm —Uvh /home2/config/server/RPM
cd /varlyp ; make

The first command copies some configuration files into the serwetds directory.

These files are necessary to lock the system down from potential hackers. The second
command installs/updates any Red Hat packages present in the specified directory. Please
ensure that this directory is periodically updated with the newest Red Hat packages.
Finally, the third command creates the YP (Yellow-Pages) databases so that the other
clients can access the username/passwords on this machine. After running these
commands, the system should be restarted.

3. The Myrinet drivers for the client machines should be in the

/home2/isotach/myrinet directory. If they are not present (due to a hard disk
crash), the following procedure should be following to reinstall them.

126

a.

Obtain the Myrinet driverjanai3-gcc and lanai3-binutils from the
Myricom site or from the source files lhome2/isotach/myrinet/source

(obtained from a tape backup).

M.intel_linux.325.tar.gz

M.src.325.tar.gz

lanai3-binutils-2.9.1..1.tar.gz

lanai3-gcc-2.8.1..15.tar.gz

Unzip and untamM.src.325.tar.gz M.intel_linux.325.tar.gz into
/home2/isotach/myrinet with the following commands:

cd /home2/isotach

tar —zxvf M.src.325.tar.gz

tar —zxvf M.intel_linux.325.tar.gz

Two files fnyri.c andmyri.h) should be located in the same location as the
Myrinet source files. These files have been modified to support the bigphysarea
kernel patch that allows the Myrinet driver to access more than 120kb of host
memory. The current configuration accesses 4MB of host memory. Copy these
two files to/home2/isotach/myrinet/src/intel_linux/module

Unzip thdanai3-binutils andlanai3-gcc archives with:

mkdir /nome2/isotach/myrinet/source

/I Move the archives to this new directory

cd /home2/isotach/myrinet/source

tar —zxvf lanai3-binutils-2.9.1..1.tar.gz

tar —zxvf lanai3-gcc-2.8.1..15.tar.gz

Run the following sequence of commands to make and instadiridig-gcc

and lanai3-binutils : The prefix directory should be

/home2/isotach/myrinet

the binary utilities

cd lanai3-binutils-source-directory
Jconfigure --prefix=PREFIX --target=lanai3
make -k ; make install

lanai3 compiler

cd lanai3-gcc-source-directory

make distclean

Jconfigure --prefix=PREFIX --target=lanai3

make -k install

Finally, the Myrinet module needs to be rebuilt with the following commands:

cd /home2/isotach/myrinet/src/intel_linux/module

In —s 1386 /home2/isotach/myrinet/module

make clean

make

NOTE: On every machine EXCEPT the fileserver, make devices must be run in
this directory to create the proper entries in /dev for the Myrinet card. This can be
done manually, but is usually done by the install script when a new client machine

is installed.

127

http://www.myri.com/

H.2. Installation of the Isotach Client Computers

Installation of a client machine is simple and automated. The following is a list of instructions for
(re)-installing an Isotach client machine.

1.) Prepare the machine first by installing an appropriate version (>= 6.1) of Red Hat Linux. The
department has configured DHCP to recognize all eight of our client machines. Simply select
DHCP on the network configuration screen, and the machine will automatically be configured
with the proper hostname and IP address. For new machines, contact the department Systems
Administrator and provide him/her with the client’s hardware Ethernet address and requested
DNS name. Allocate all available hard drive space td thartition of typeExt2 (except for
128MB which should be allocated to a Linux Swap partition).

2.) Boot the newly installed machine, and log in as the root user. Using FTP, retrieve the file

/home2/config/install_script from the fileserver. Place this file in theoot
directory on the client machine. The client installation directory (currently
/home2/config/client) is stored in the script variabl€ONFIG The fileserver name

(currently pepe) is stored INSERVER This file contains a shell script, which does the
following things:

a. Edits the locaktc/fstab file to allow mounting of NFS directories from fileserver.
(/home , /home2 and/usr/remote). Mounts these directories.

b. Removes unnecessary daemons from runlevel 5. These daemons are removed to
remove unnecessary security holes, and to limit system processor usage. A list of
removed daemons is stored in the script varidbdEMONS

c. Installs any RPM (Red Hat Packages) in the dire@GQNFIG/RPM These RPM’s
are updates to Red Hat packages installed with the OS, and should be updated, as new
updates are available. There are also a féiiestincluded here (such as Xemacs).

d. Configuration files are copied over frdB@ONFIG/etc to/etc . These files include
the X11 configuration files. These configuration files are only appropriate for
machines with a Voodoo Banshee video card. For other types of machines, this script
will need to be customized.

e. Each machine needs to run a patched version of the Linux kernel. The kernel version
needs to match the version of the bigphysarea patch. This patch enables the Myrinet
cards to use a much larger region of host memory for buffer space. Currently, we are
using the 2.2.13 kernel with the appropriate bigphysarea patch. The script copies over
the kernel source from an archive file, patches the kernel, and then compiles/installs it.
Finally, the system’s boot loader is updated to use the new kernel.

f. Some other miscellaneous tasks are performed. These can include creating the printer
spool directories and editing thec/redhat-release file. Finally, the command
make devices is run in the Myrinet source directory to create entrigsvinfor the
Myrinet cards.

NOTE: The configuration files copied over froBCONFIG/etc are customized to

prevent unauthorized access to the Isotach lab. Please do not modify these files without

consulting another system administrator. Specifically, the fhests allow
hosts_deny , inetd.conf have been edited to reduce security risks.

128

3.) Reboot the machine to allow the bigphysarea to be installed. Verify that bigphysarea has been
installed by checking the filgproc/bigphysarea . This file should look similar to this (the
used list should indicate that one page less than the size is utilized):

Big physical area, size 4100 kB

free list: used list:
number of blocks: 1 1
size of largest block: 4 kB 4096 kB
total: 4 kB 4096 kB

This indicates that the driver is loaded and using 4096kb out of an available 4100kb.

4.) The Myrinet driver will be loaded from thetc/rc.d/rc.local file with the command:
/sbin/insmod —v /home2/isotach/myrinet/module/myrinet
/home2/isotach/myrinet/bin/intel_linux/lload \

/home2/isotach/tools/dummy_Icp

The second line is necessary to clear the SRAM on the LANai. This prevents the LANai from
sending out random packets on the Myrinet network. If random packets are sent out on the
network, it may interfere with other functioning Isotach nodes.

5.) The Myrinet driver should be compiled to use all but one page of available bigphysarea in
memory. (NOTE: We do not know why the last page of bigphysarea memory cannot be used
by the Myrinet driver. This problem might require further investigation, but it is not of very
high priority).

H.3. If the Myrinet Driver does not load

If the used list reads 0 and Okb, the driver may have loaded incorrectly. If the driver is not loaded
correctly, it may be trying to reserve more space than bigphysarea has. In this case, either find
out how much the Myrinet driver needs and modify lilo.conf so that bigphysarea provides one
more pages than requested, or recompile the Myrinet driver to request one page less than
bigphysarea has available.

H.4. Modification of bigphysarea

To change the number of pages allocated on a particular machine, simply edit that machines

letc/lilo.conf and modify the line containing the text:
append="bigphysarea=1025"

Change the number from 1025 to any number desired, lilerwith the command:
/sbin/lilo -v

Reboot the system with:
/sbin/reboot

129

H.5. Modification of the Myrinet Drivers

The Myrinet source tree is located at (environment varil¥iel_HOMIE

/home2/isotach/myrinet
Simply edit the filesMYRI_HOME/src/intel_linux/module/myri.h

To disable bigphysarea for the driver, simply comment out the line

#define ISOTACH

This will disable bigphysarea, and revert to usind2®kb copy block area allocated using
kmalloc()

To change the size of the requested bigphysarea modify the following lines:

#ifdef ISOTACH
#define COPY_BLOCK_SIZE (1024 * 4 * 1024)

The first number ICOPY_BLOCK_SIZHs the number of requested pages. The second number is
the page size. The third number converts from kilobytes to bytes. Just change the first number
from 1024 to the number of pages available in bigphysarea less one page.

In any case, after modifying myri.h, the driver should be recompiled.

H.6. Recompilation of the Myrinet Driver

The environment variablYRI_HOMEshould be set to the location of the Myrinet driver source
tree (currentlyhome2/isotach/myrinet), in order for correct compilation of the driver to
work.

Enter the directorgMYRI_HOME/src/intel_linux/module

make clean
make

cd i686
cp myrinet SMYRI_HOME/module

Either reload the myrinet driver manually, or reboot the computer to allow the new driver to be
loaded.

130

H.7. Manual Reloading of the Myrinet Driver

Use the following sequence of commands:
su

/sbin/rmmod myrinet

/sbin/lsmod -v $MYRI_HOME/module/myrinet

H.8. The crT.0 Module for the LANai Compiler

The filecrt0.o controls where the stack is placed in memory for a given compiler. The default
location for the stack in th&nai3-gcc is at the 128kb boundary. This means the total
memory available for the LCP and stack is 128kb on any Myrinet card. This is alseitation,
considering that the current Myrinet PCI cards support 1MB of onboard memory. Normally, an
application programmer will not encounter memory problems even with28ieb restriction on
memory usage. However, the data structures for this messaging layer were much larger than
previous versions of Isotach messaging layers, and 128kb was not enough space for our
structures. In order to solve this problem, we manually link in ourat®ro file in the netman

module Makefile. This is done with the following line of code in the Makefile:

$(CCLAN32) -0 Icp -nostdlib crt0.0 netman.o —Igcc

Currently, the stack frame begins at the 512kb boundary in memory. To change this, simply edit
the file crt0.s and compile the module. Some common siz@.0 andcrt0.s files are
contained in the directorgetman/lanai . To quickly re-configure the stack frame location,
simply use thefg script contained in the netman directory. This script takes a numerical value
as an argument. Accepted values are: 128, 256, 512, and 1024. In order for proper functioning
of the Isotach system, please do not use any values less than 512.

131

Appendix I. Installation and Configuration Scripts

132

create _testhedoouvviiiiii e 133
FUN _TBST .t 134
INSTAIL_SCIIPT ... e 137

UPdate _CHENTScoeiiiiiiii e 140

create_testbed

#!/bin/bash

Testbed Creation Script

#

Isotach Group

Date 3/15/2000

Authors: Perry Myers & Mike Lack

This script creates a testing directory in the $ISO_HOME directory. The

directory structure is the following:

$1SO_HOME/testing - main directory

$1SO_HOME/testing/<SYS_TYPE> - 3 directories (SIU-MBM1, SIU-MBMZ2, NOSIU-MBM1)
#.../<SYS_TYPE>/<PKT_SIZE> - 5 directories (64, 128, 256, 512, 1024)
#

In each of the lowest level directories is placed all executables for that

configuration of the Isotach System. These executables can then be run
for testing purposes. This prevents excessive recompiling of the system in
the main directory, which can be tedious and time consuming.

#

To run this script, go to $ISO_HOME and type:

#

make create_testbed

#

echo REMOVING CURRENT TESTING DIRECTORY!
rm -Rf $ISO_HOME/testing
echo TESTING DIRECTORY REMOVED

echo CREATING NEW TESTING DIRECTORY STRUCTURE...
mkdir $1ISO_HOME/testing

#$1SO_HOME/host_cfg siu

for TYPE in SIU-MBM1 SIU-MBM2 NOSIU-MBM1,
do
echo MAKING $TYPE TESTFILES
mkdir $1ISO_HOME/testing/$TYPE

for PKT_SIZE in 64 128 256 512 1024;

do
echo MAKING $PKT_SIZE FOR $TYPE

mkdir $1ISO_HOME/testing/$TYPE/$PKT_SIZE

$ISO_HOME/sys_cfg $TYPE $PKT_SIZE

make -C $ISO_HOME rebuild
for FILE in network.cfg noniso_test isotest thru latency isolatency isothru Icp;
do

cp $ISO_HOME/$FILE $ISO_HOME/testing/$TYPE/$PKT_SIZE

done

done

done

echo | MADE THIS!

133

run_test

#!/bin/bash

*kAA *

Semi-Automated Testing Script

#

Isotach Group

Date 3/15/2000

Authors: Perry Myers & Mike Lack

xxxxx *

#

This script was created to aid in the performance testing of the Isotach

System. The script performs the following tests:

Nonlsotach Throughput and Latency w/o Hardware SIU Present

Nonlsotach Throughput and Latency w/ Hardware SIU Present

Isotach Throughput and Latency w/ Hardware SIU Present, but no host ordering
Isotach Throughput and Latency w/ Harware SIU Present and host ordering
#

The test proceeds in three phases:

1. Fully automated testing of Nonlso w/o SIU's.

2. Fully automated testing of Nonlso/Iso w/ SIU's and no host ordering.

3. Semi-Automated testing of Iso w/ SIU’s and host ordering.

#

Between each of the three phases, user input is required to proceed to the
next phase. The third phase requires user intervention between each

individual test. This is because the hardware is not 100% reliable, and it
may be necessary to re-run some tests. After each testin Phase 3 is run,
the operator will be prompted to either continue with testing, or re-run the
previous test. The operator may re-run tests as many times as he/she

desires.

#

Each test sends output to files in $ISO_HOME/logs

The files are:

latency.log - Average Latency measured on the Server Side.

isolatency.log - Average Isotach Latency measured on the Server Side.
thru_send.log - Average Sender Throughput using Nonlsotach

thru_recv.log - Average Receiver Throughput using Nonlsotach

isothru_send.log - Average Sender Throughput using Isotach

isothru_recv.log - Average Receiver Throughput using Isotach

#

To run the performance tests, simply cd to the $ISO_HOME directory and
type the following:

#

make run_tests

#

NOTE: This script will only work if there is a valid testing directory.
To create a testing directory, run:

#

make create_testbed

#

LOGS=$ISO_HOME/logs
NODE_NAMEz=
NODE_NUMz

function nohardware_tests() {

if ["$NODE _NUM'= "0"]; then

echo
echo "The following were without the hardware:" >> $LOGS/latency.log
echo "The following were without the hardware:" >> $LOGS/thru_send.log
echo "The following were without the hardware:" >> $LOGS/thru_recv.log

fi

for PKT_SIZE in 64 128 256 512 1024,
do
cd $ISO_HOME/testing/NOSIU-MBM1/$PKT_SIZE
thru
sleep 1
latency
sleep 1

134

done

it [= 1;

echo
echo
echo
echo

fi

}

function nosiu_tests() {

for PKT_SIZE in 64 128 256 512 1024,

do

then

>> $LOGS/latency.log
>> $LOGS/thru_send.log
>> $LOGS/thru_recv.log

cd $1SO_HOME/testing/NOSIU-MBM1/$PKT_SIZE

RETVAL=1
until [=
thru
RETVAL=3$?
sleep 1
done
RETVAL=1
until [=
latency
RETVAL=3$?
sleep 1
done
RETVAL=1
until [=
isothru
RETVAL=3$?
sleep 1
done
RETVAL=1
until [=
isolatency
RETVAL=3$?
sleep 1
done
done

}

function siu_tests() {

I:

for TYPE in SIU-MBM1 SIU-MBM2;

do

do

do

do

do

for PKT_SIZE in 64 128 256 512 1024,

do

cd $ISO_HOME/testing/$STYPE/$PKT_SIZE

RETVAL=1
until [=
isothru
RETVAL=3$?
sleep 2
done
RETVAL=1
until [=
isolatency
RETVAL=3$?
sleep 2
done
done
done

}

function chill() {
it [=
echo -e
read RESPONSE
touch $ISO_HOME/go
fi

1

I:

then

then

do

do

135

until [-f $ISO_HOME/go] ; do
FOO=1
done
rm $1ISO_HOME/go
fi
}

#here is the main part of the script
clear

NODE_NAME="hostname -s*
NODE_NUM="grep $NODE_NAME $ISO_HOME/network.cfg | sed -e s/ISNODE_NAME// -e 's/ /"

echo "Welcome to the wonderful world of Isotach Performance Testing..."
echo

echo "This script is running on $SNODE_NAME($NODE_NUM)"

echo

if ["$NODE _NUM'= "0"]; then
echo "Clearing out the previous logs (hope you backed them up...)"
make -C $ISO_HOME backup_logs
make -C $ISO_HOME clear_logs
echo
fi

echo "Please disconnect the hardware SIU's"

#chill
#nohardware_tests

clear

echo "Finished running tests without the hardware."
echo "Please connect the hardware SIU's."

echo "Make sure that they are in Host-Host mode"
echo "and that the token manager is off"

chill
nosiu_tests

clear

echo "Finished running tests that did not use the hardware SIU"
echo "Please set the SIU's to SIU mode, reset them, and"

echo "power up the token manager"

echo "Once we have a yellow light, we will begin running SIU tests"

chill
siu_tests

echo | MADE THIS!

136

install_script

#!/bin/bash

Script Variables - Please Change as Necessary
SERVER=pepe

CONFIG=/home2/config/client

DAEMONS="*apmd *pcmcia *sendmail *kudzu *linuxconf *nfs’
KERNEL_VER=2.2.13

KCFG_DATE=2.29.2000
MYRI_HOME=/home2/isotach/myrinet

echo
echo CLIENT CONFIGURATION SCRIPT
echo

echo
echo
echo Removing original /home directory
echo

umount /home
rm -Rfv /home

echo
echo
echo Making /home, /home2 and /usr/remote directories
echo

mkdir --verbose /home
mkdir --verbose /home2
mkdir --verbose /usr/remote

echo
echo
echo Editing /etc/fstab file
echo

sed -e '${'\
-e 'a\'\
-e $SERVER':/home /home nfs
-e $SERVER':/home2 /home2 nfs
-e $SERVER'":/usr/remote /usr/remote nfs defaults' \
-e '} letc/fstab > /etc/fstab.new

cp -v /etc/fstab /etc/fstab.old
cp -v /etc/fstab.new /etc/fstab

echo
echo
echo Mounting NFS directories
echo

mount -v /home
mount -v /home2
mount -v /usr/remote

echo
echo
echo Removing unnecessary daemons from startup
echo

cd /etc/rc.d/rc5.d
rm -fv SDAEMONS
cd /etc

echo
echo
echo Installing Updates and Software
echo

rpm -Uvh --force $CONFIG/RPM/*

defaults\' \
defaults\' \

137

echo
echo
echo Copying over Configuration files from Server
echo

cp -vR $CONFIG/etc/* /etc

echo
echo
echo Copying over Kernel Sources
echo

cd Jusr/src

rm -fv /usr/src/linux

rm -Rf /usr/src/linux-$KERNEL_VER

rm -Rf /usr/src/bigphysarea-$KERNEL_VER

tar -zxf $CONFIG/linux-3KERNEL_VER.tar.gz

mv -v linux linux-$KERNEL_VER

cp -R $CONFIG/bigphysarea-$KERNEL_VER /usr/src

cp -v $CONFIG/kernelconfig-$KCFG_DATE /usr/src/linux-$KERNEL_VER

In -sv /usr/src/linux-$KERNEL_VER /usr/src/linux
lusr/bin/patch -p0 < /usr/src/bigphysarea-$KERNEL_VER/bigphysarea-patch

cd /ust/src/linux

make mrproper

make clean

cp -v kernelconfig-$KCFG_DATE .config
make oldconfig

make dep

make bzlmage

make modules

make modules_install

rm -fv /boot/vmlinuz
rm -fv /boot/System.map

cp -v /usr/src/linux/arch/i386/boot/bzimage /boot/vmlinuz-$KERNEL_VER
cp -v /usr/src/linux/System.map /boot/System.map-$KERNEL_VER

In -sv /boot/System.map-$KERNEL_VER /boot/System.map
In -sv /boot/ivmlinuz-$KERNEL_VER /boot/vmlinuz

/sbin/mkinitrd /boot/initrd-2.2.13.img 2.2.13

echo
echo
echo Editing /etc/lilo.conf and running lilo
echo
sed -e '/default=linux/{’ \
-e'a\' \
-e 'append= \' \
-e' "\
-e 'image=/boot/vmlinuz-2.2.13\' \
-e' label=linux\' \
-e' initrd=/boot/initrd-2.2.13.img\' \
-e' read -only\' \
-e' root=/dev/hdal' \
-e '} \

-e 's/label=linux/label=linux-old/' /etc/lilo.conf > /etc/lilo.conf.new

cp -v /etc/lilo.conf /etc/lilo.conf.old
cp -v /etc/lilo.conf.new /etc/lilo.conf

/sbin/lilo -v

echo
echo
echo Creating printer spool directories
echo

138

grep -v -e [N\ -e #' Jetc/printcap | grep '\w' > temp

sed -e 's/:\V /' temp > temp2
mkdir “cat temp2®
rm temp temp2

echo

echo
echo Modifying /etc/issue

echo

cat /etc/redhat-release > /etc/issue
echo Kernel ‘uname -r’ on an “uname -m" >> /etc/issue

echo

echo
echo Creating /dev entries for Myrinet Drivers

echo
make -C $MYRI_HOME/src/intel_linux/module devices

echo

echo
echo FINISHED!!!

echo

139

update_clients

#!/bin/bash

1st Parameter is a list of files to install into /etc
2nd Parameter is a list of scripts to run

CONFIG_DIR=/home2/config/client

for CLIENT in “cat $CONFIG_DIR/../clients’;
do
echo $CLIENT

for FILE in $1;

do

ssh $CLIENT "cp -vR $CONFIG_DIR/etc/$FILE /etc"
done

for FILE in $2;

do

ssh $CLIENT "cp -vR $CONFIG_DIR/var/$FILE /var"
done

for SCRIPT in $3;

do

ssh $CLIENT "$CONFIG_DIR/scripts/$SCRIPT"
done

case $ #in
4)
ssh $CLIENT $4;
esac
done

140

i

Appendix J. Isotach Source Code

010 0 S0 T (TS B o 143
JAEENCY.C.ue e 145
ENIULC e 148
(101 (] Y o UPP PRSP 151
ISOIALENCY.C ...t 153
(57011 0 £ U o PP UPPPPPTT 156
NONISO.N L. 159
ISOACKH. N 162
ISO_MDMLN..c 165
50 TS 1 1] 10 10 o P 166
hostman/constants.N ... 167
hosStmMan/utilS.N...........eoiiii s 169
hostman/host_utils.N............ccoooeiii i 175
hostman/locals.N..........coooiiii 179
hOStMAaN/NOSTMAN.C......ccovviiiiiieiiei e 181
api/seNd/eXPOrtS.Noi o 197
api/send/locals.N............oiiiiiiiii 198
API/SENA/SENA.C .. 199
api/deliver/exports.N. ..o 201
api/deliver/locals.N...........coouuiiiiiiii 202
api/deliver/deliver.C ... 203
api/barrier/exportS.n ... 205
api/barrier/locals.n..........cccoooiiiiii 206
api/barrier/Darrier.C.........uuoii i 207
api/iso_send/exportS.N..........uiiiiiiiiiii 210
api/iso_send/locals.N..........oooiiiiiiii 211
api/fiso_Send/iISO_SENU.Ccccuuieeriiieeeeeiie e e 212
api/iso_deliver/eXportS.N.. ... 217
api/iso_deliver/locals.h............ooiiiiiiiiiiiiii s 219
api/iso_deliver/iso_deliVer.C..........cccceeievveiiiieeiiiie e, 220
api/iso_barrier/eXportS.N.........ccoeeviiiiiiiiii s 222
api/iso_barrier/locals.N.............eiiiiiiiiii 223
api/iso_barrier/iso_barrier.C........ccccooeevviiiiiiiii i, 224
api/iso_signal/exportS.N ... 229
api/iso_signal/locals.n............iiiiiiiiii s 230
api/iso_signal/iso_SigNal.C..........cccoiviiiiiiiiiiineeeeeeii e 231
api/iso_retrieve/exports.Nccooov i 235
api/iso_retrieve/locals.N............eoiiiiiiiiiiii 236
api/iso_retrieve/iSO_TretrieVe.C.......cvvvvvueiieeeeiie e e, 237
processing/flow/exports.N..........couiiiiiiiiiiiii 238
processing/flow/locals.hcccooiiiiiiiii s 239

141

142

processing/flowW/flOW.Cvviviiiiiiii e 241

processing/iso_flow/exportsS.hceeiiiiiiiiiiiiiiiis 245
processing/iso_flow/locals.h ... 246
processing/iso_flow/iSo_floOW.C..........ccoovviiiiiiiiiiiiiiniiiii, 248
Processing/iom/exXportS. ..o 252
processing/iom/IocalS.h...........cooovuiiiiiiiiii 253
ProcessiNG/IOM/IOMLC......uuuiieiiiiiiiie e 255
processing/shmem/exportS.N.........coooviiiiiiiiiiiiii s 261
processing/shmem/locals.h..........cccooooiiiiii s 262
processing/shmem/ShMem.C.........ooooiiiiiiiiiii e 263
niu_interface/shipping/exports.i...........ccccoiiiiiiiiiininnnnn. 264
niu_interface/shipping/locals.h...............ccccoiiiiiiiiiiiinnnnn. 266
niu_interface/shipping/shipping.C...........ccovvviiiiiinneeiieennns 267
niu_interface/receive/exports.n.........cccoooviiiiiiiiinn, 271
niu_interface/receive/locals.i............cccooovviiiiiiiiiniciii, 272
niu_interface/receive/reCeIVE.C.........oovvvvvieeeeeiiii e, 273
niu_interface/iso_shipping/exports.hn............ccccvvinnnnenee, 276
niu_interface/iso_shipping/locals.h..................cccoeiin 277
niu_interface/iso_shipping/iso_shipping.C........................ 278
niu_interface/iso_receive/exports.i............cccceevevviinnnnns 281
niu_interface/iso_receive/locals.h..............cccccovviiiiiiiiinnnnn, 282
niu_interface/iso_receive/iSO_receive.C..........cccuvveerennn. 283
netman/net_Utils.N.........ccoooii i 286
Netman/loCalS.N............coooiii 289
NEtMAN/NEIMAN.C ...evviieiiieeii e 292

noniso_test.c

#include
#include
#include
#include
#include
#include
#include

static inline void subtracttime (struct timeval *, struct
signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec <0){
sec--;
usec+=1000000;

}
if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;

else {

t->tv_sec = (unsigned long)sec;

t->tv_usec = (unsigned long)usec;
}

}

int main (int argc, char *argv[]) {
int my_node_id;
int i, j;
char msg1[1024];
noniso_mbm message;
int ITERATIONS = 1000;
int PRINT;
struct timeval start, stop;
double us;
int receives = 0;
int pkt_number = 0;
char *msg;

if (argc >=2)

ITERATIONS = atoi(argv[1]);

if (argc>=3)

PRINT = atoi(argv[2]);

else if (ITERATIONS >=10)
PRINT = |ITERATIONS / 10;
else

PRINT =10;

memset(msg1l, ,1024);
msg1[1023] = ;

open_net();
gettimeofday (&start, NULL);
my_node_id = get_my_node_number();
printf();
for (i=0;i<I|TERATIONS; i++) {
sprintf(msg1, , my_node_id, i);

for (j=0;j<get_number_of_hosts(); j++) {

timeval *sub)

143

if (j'=my_node_id) {

do {
if (receive(&message) == 0) {
msg = (char *)message.msg.data_ptr;

/ pkt_number = atoi((char *)&message.msg.data_ptr[11]);
pkt_number = atoi(&msg[11]);
/* if (pkt_number != receives) {
printf("Received a packet out of order.\n");
printf("Expecting %d, got %d\n",receives, pkt_number);

exit(1);
¥
if (((pkt_number % PRINT) == 0)) /|| (pkt_number > 99900))
printf("MGOT PACKET %.20s\n" , (char *)message.msg.data_ptr);
receives++;

}
/ } while(send(j, (void *)msgl, strlen(msgl) + 1) = 0);
} while (send(j, (void *)msgl, 64) != 0);
}
}

printf("Receiving\n");

while (try_close_net() = 0) {
// while(receives < (ITERATIONS * (get_number_of_hosts() - 1))) {

/Iwhile(1) {
if (receive(&message) == 0) {
msg = (char *)message.msg.data_ptr;

// pkt_number = atoi((char *)&message.msg.data_ptr[11]);
pkt_number = atoi(&msg[11]);

/% if (pkt_number != receives) {
printf("Received a packet out of order.\n");
printf("Expecting %d, got %d\n",receives, pkt_number);

exit(1);
M
if (((pkt_number % PRINT) == 0)) /|| (pkt_number > 99900))
printf("IGOT PACKET %s\n" , (char *)message.msg.data_ptr);
receives++;
}
}

gettimeofday (&stop, NULL);
subtracttime (&stop, &start);

us=(double)stop.tv_sec *1e6 + (double)stop.tv_usec;
printf("Sent and received %d packets in %.0f usec\n" JTERATIONS,us);
printf("l made this'\n");
return 0
}

144

latency.c

/*
*fm_lat - latency tester for FM
*/

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <noniso.h>
#include <time.h>

#define COUNT50 /* # times to run test */
#define CLIENT 1 /* nodeid of client */
#define SERVERD /* nodeid of server */

char FILENAME[128];
#define LOG_FILE strcat(strcpy(FILENAME, getenv(

int BUF_SIZE;
#define REPS500

char * buf;
char * usr_buffer;

static inline void subtracttime (struct timeval *t,
signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec<0){
sec--;
usec+=1000000;

}
if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;

else {

t->tv_sec = (unsigned long)sec;
t->tv_usec = (unsigned long)usec;
}

}

int main(int argc, char *argv[]) {
struct timeval start, stop;
double us, us_sum =0;
int ij;
noniso_mbm message;
int sent, received;
FILE *fp;

time_t curtime;
char date[50];
struct tm *tp;

if (argc<2)

BUF_SIZE = get_max_payload();
else

BUF_SIZE = atoi(argv[1]);

open_net();

buf=(char *) malloc (BUF_SIZE);
usr_buffer = (char *)malloc(BUF_SIZE);

"ISO_HOME"), "llogs/latency.log"

struct

timeval *sub)

145

bzero (buf, BUF_SIZE);

if (get_my_node_number() == SERVER) {
for (i=0; i<COUNT; i++) {
received = 0;
for (j=0; j< REPS; j++) {
if (Ireceived) {
while (receive(&message)!=0) ;
memcpy(usr_buffer,message.msg.data_ptr,BUF_SIZE);

received = 1;
else {
while (send(CLIENT,buf,BUF_SIZE)!=0) ;
received = 0;
}
}
}
while (try_close_net() != 0)
poll();
printf();

else { /*client?*

/* each loop is a test; each test executes REPS # of msg round trips; */
for (i=0; i<COUNT; i++) {
sent = 0;
gettimeofday (&start, NULL);
for (j=0; j< REPS; j++) {
if (!sent) {
while (send(SERVER,buf,BUF_SIZE)!=0) ;
sent=1;

else {
while (receive(&message)!=0) ;
memcpy(usr_buffer,message.msg.data_ptr,BUF_SIZE);

sent = 0;
}
}
gettimeofday (&stop, NULL);
subtracttime (&stop, &start); /* defined in prof.h */
us = (double)stop.tv_sec *1e6 + (double)stop.tv_usec;

printf (

REPS, us, us/REPS);
fflush (stdout);
us_sum += us;

}
printf(, us_sum/(REPS*COUNT));
while (try_close_net() != 0)
poll();
printf();

fp = fopen(LOG_FILE,);
if (fp==0){
printf();
return 1,
}

/* get the current date */

time(&curtime);

tp = localtime(&curtime);

strftime(date, (size_t) 50, , tp);

fprintf(fp, ,date,get_max_payload());
if (get_SIU_state() == 1) {
fprintf(fp,):

else {
fprintf(fp,);

if (get_MBM_ver() ==1) {
fprintf(fp,);

else {

146

}

fprintf(fp,

fprintf(fp,
fclose(fp);

return 0;

, us_sum/(REPS*COUNT));

147

thru.c

/*
*fm_thru - throughput tester for FM
*,
/

#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <noniso.h>
#include <time.h>

#define CLIENT 1 /* nodeid of client */

#define SERVERD /* nodeid of server */

int BUF_SIZE; /*size of buffer to be sent in messages */

#define DATA_SIZE 4000000 /* amount of data to shove into the pipe, in units of bytes */
#define ITERATIONS 5 /* number of times to run the test */

char FILENAME[128];

#define SLOG_FILE strcat(strcpy(FILENAME, getenv("ISO_HOME"), "/logs/thru_send.log"
#define RLOG_FILE strcat(strcpy(FILENAME, getenv("ISO_HOME"), "/logs/thru_recv.log"

struct timeval start, stop;
long received_bytes;
long sent_bytes;

char * buf;

char * data;

static inline void subtracttime (struct timeval *t, struct timeval *sub) {
signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec<0){
sec--;
usec+=1000000;

}
if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;

else {

t->tv_sec = (unsigned long)sec;
t->tv_usec = (unsigned long)usec;
}

}
int main(int argc, char *argv[]) {

double sec;

double throughput;

double throughput_sum = 0;
double avg_throughput = 0;

int x;
noniso_mbm message;

FILE *fp;

time_t curtime;
char date[50];
struct tm *tp;

if (argc<2)

BUF_SIZE = get_max_payload();
else

BUF_SIZE = atoi(argv[1]);

148

buf=(char *) malloc (BUF_SIZE);
data = (char *) malloc (BUF_SIZE);

bzero (buf, BUF_SIZE);

open_net();

for (x=0; x < ITERATIONS; x++) {
sec =0;
throughput = 0;
initiate_barrier();
while (barrier_completed() !=0) ;

if (get_my_node_number() == SERVER) {
received_bytes = 0;
while (receive(&message) != 0);
gettimeofday (&start, NULL);
memcpy((void *) buf, (const void *) data, message.size);
received_bytes += message.size;

while (received_bytes < DATA_SIZE) {
while (receive(&message) != 0);
memcpy((void *) buf, (const void *) data, message.size);
received_bytes += message.size;

}
gettimeofday (&stop, NULL);

else { /*client?*
sent_bytes = 0;
gettimeofday (&start, NULL);
while (send(SERVER,buf,BUF_SIZE)!=0);
sent_bytes += BUF_SIZE;
while (sent_bytes < DATA_SIZE) {
while (send(SERVER,buf,BUF_SIZE)!=0);
sent_bytes += BUF_SIZE;

}

gettimeofday (&stop, NULL);
subtracttime (&stop, &start); /* defined in prof.h; puts result in stop */
sec = (double)stop.tv_sec + (double)stop.tv_usec / 1e6;

if (get_my_node_number() == SERVER) {

throughput = ((received_bytes * 8) / sec) / 1e6; /*in Mbps */
printf(, received_bytes, sec);
printf()

X, throughput);

else { /*CLIENT*

throughput = ((sent_bytes * 8) / sec) / 1e6; /*in Mbps */
printf(, sent_bytes, sec);
printf()

X, throughput);

}
fflush (stdout);
throughput_sum += throughput;

}

avg_throughput = throughput_sum / ITERATIONS;

printf(, get_my_node_number() ? : ,
avg_throughput);

while (try_close_net() != 0)

poll();

if (get_my_node_number() == SERVER)
fp = fopen(RLOG_FILE,);

else

fp = fopen(SLOG_FILE,);

/* get the current date */
time(&curtime);

149

tp = localtime(&curtime);
stritime(date, (size_t) 50, , tp);

fprintf(fp, ,date,get_max_payload());
if (get_SIU_state() == 1) {
fprintf(fp,):

else {
fprintf(fp,);

if (get_MBM_ver() == 1) {
fprintf(fp,);

else {
fprintf(fp,);

}
fprintf(fp, , avg_throughput);
fclose(fp);

return 0;

150

isotest.c

#include
#include
#include
#include
#include
#include
#include
#include

int main (int argc, char *argv[]) {
int my_node_id;

int i, j;

char msg1[1024];
iso_mbm message;
int ITERATIONS = 100000;
int PRINT;
int receives = 0;
int pkt_number;
int sends =0;
int end =0;
char *msg;

if (argc >=2)
ITERATIONS = atoi(argv[1]);
if (argc >=3)

PRINT

= atoi(argv[2]);

else if (ITERATIONS > 10)

PRINT
else
PRINT

= ITERATIONS / 10;

=1,

if ((ITERATIONS == 0) && (argc < 3))

PRINT =

1

memset(msg1l, ,1024);
msg1[1023] = ;

open_net();

my_node_id = get_my_node_number();

printf(

for (i=0;i<ITERATIONS; i++) {
sprintf(msg1, , my_node_id, i);
if (i==(TERATIONS - 1)) end = 1;

for
if

(j = 0; j < get_number_of_hosts(); j++) {

(j '= my_node_id) {

do {
if (iso_receive(&message) == 0) {
msg = (char *)message.info.msg.data;

pkt_number = atoi(&msg[11]);

if (((pkt_number % PRINT) == 0)) {
printf(,(char *)message.info.msg.data);

receives++;

}
} while (iso_send(j, (void *)msgl, 64,1) = 0);

/ } while (iso_send(j, (void *)msg1, strlen(msg1)+1,1) != 0);

/ } while (iso_send(j, (void *)msg1, strlen(msg1) + 1,end) != 0);
if (end==1)end=0;

if ((++sends % 1)==0) end = 1;

151

for (i=0; i<10000; i++)
poll();

printf();

while ((receives < (ITERATIONS * (get_number_of_hosts() - 1))) ||
(ITERATIONS == 0)) {
// while('finished) {
if (iso_receive(&message) == 0) {
msg = (char *)message.info.msg.data;
pkt_number = atoi(&msg[11]);

if (((pkt_number % PRINT) == 0)) {

printf(, (char *)message.info.msg.data);
}
receives++;
}
}
printf(,receives);

while (try_close_net() == FAILURE);
printf();

return 0;

}

152

isolatency.c

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <iso_mbm.h>
#include <time.h>

#define COUNT50 /* # times to run test */
#define CLIENT 1 /* nodeid of client */
#define SERVERD /* nodeid of server */

char FILENAME[128];
#define LOG_FILE strcat(strcpy(FILENAME, getenv(

#define REPS500
int BUF_SIZE;
char * buf;

char * usr_buffer;

static inline void subtracttime (struct timeval *t,
signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec<0){
sec--;
usec+=1000000;

}
if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;

else {

t->tv_sec = (unsigned long)sec;
t->tv_usec = (unsigned long)usec;
}

}

int main(int argc, char *argv[]) {
struct timeval start, stop;
double us, us_sum =0;
int ij;
iso_mbm message;
int sent, received;

time_t curtime;
char date[50];
struct tm *tp;

FILE *fp;
if (argc<2)
BUF_SIZE = get_max_payload();
else
BUF_SIZE = atoi(argv[1]);

open_net();
buf = (char *) malloc (BUF_SIZE);

usr_buffer = (char *)malloc(BUF_SIZE);
bzero (buf, BUF_SIZE);

"ISO_HOME"), "/logslisolatency.log"

struct

timeval *sub)

153

if (get_my_node_number() == SERVER) {
for (i=0; i<COUNT; i++) {
received = 0;
for (j=0; j< REPS; j++) {
if (Ireceived) {
while (iso_receive(&message)!=0) ;
memcpy(usr_buffer,message.info.msg.data,BUF_SIZE);

received = 1;
else {
while (iso_send(CLIENT,buf,BUF_SIZE,1)!=0) ;
received = 0;
}
}
}
/*while(try_close_net() = 0)
poll();*/
printf();

else { /*client?*
/* each loop is a test; each test executes REPS # of msg round trips; */
for (i=0; i<COUNT; i++) {
sent = 0;
gettimeofday (&start, NULL);
for (j=0; j< REPS; j++) {
if (!sent) {
while (iso_send(SERVER,buf,BUF_SIZE,1)!=0) ;
sent = 1;
}
else {
while (iso_receive(&message)!=0) ;
memcpy(usr_buffer,message.info.msg.data,BUF_SIZE);

sent = 0;
}
}
gettimeofday (&stop, NULL);
subtracttime (&stop, &start); /* defined in prof.h */
us = (double)stop.tv_sec *1e6 + (double)stop.tv_usec;

printf (

REPS, us, us/REPS);
fflush (stdout);
us_sum += us;

}
printf(, us_sum/(REPS*COUNT));
/* while(try_close_net() != 0)
poll(); */
printf(

)
fp = fopen(LOG_FILE,);
if (fp==0){
printf();
return 1,

/* get the current date */
time(&curtime);
tp = localtime(&curtime);
strftime(date, (size_t) 50, , tp);

fprintf(fp, ,date,get_max_payload());
if (get_SIU_state() == 1) {
fprintf(fp,):

else {
fprintf(fp,);

if (get_MBM_ver() == 1) {
fprintf(fp,);

else {
fprintf(fp,);

fprintf(fp, , us_sum/(REPS*COUNT));
fclose(fp);

154

}

return 0;

}

155

isothru.c

#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <iso_mbm.h>
#include <noniso.h>
#include <time.h>

#define CLIENTO /* nodeid of client */
#define SERVERL /* nodeid of server */
int BUF_SIZE; /*size of buffer to be sent in messages */

#define DATA_SIZE 40000000 /* amount of data to shove into the pipe, in units of bytes */

#define ITERATIONS 5 /* number of times to run the test */

char FILENAME[128];
#define SLOG_FILE strcat(strcpy(FILENAME, getenv(
#define RLOG_FILE strcat(strcpy(FILENAME, getenv(

struct timeval start, stop;
long received_bytes;
long sent_bytes;

char * buf;

char * data;

static inline void subtracttime (struct timeval *t,
signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec<0){
sec--;
usec+=1000000;

if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;
}
else {
t->tv_sec = (unsigned long)sec;
t->tv_usec = (unsigned long)usec;
}
}

int main(int argc, char *argv[]) {

double sec;

double throughput;

double throughput_sum = 0;
double avg_throughput = 0;

int x;
iso_mbm message;

time_t curtime;
char date[50];
struct tm *tp;

FILE *fp;
if (argc<2)
BUF_SIZE = get_max_payload();
else

BUF_SIZE = atoi(argv[1]);

buf = (char *) malloc (BUF_SIZE);
data = (char *) malloc (BUF_SIZE);

156

"ISO_HOME"), "/logsl/isothru_send.log"
"ISO_HOME"), "/logslisothru_recv.log"

struct timeval *sub) {

bzero (buf, BUF_SIZE);

open_net();

for (x=0; x < ITERATIONS; x++) {
sec = 0;
throughput = 0;
initiate_barrier();
while (barrier_completed() != 0) poll();

if (get_my_node_number() == SERVER) {
received_bytes = 0;
while (iso_receive(&message) != 0);
gettimeofday (&start, NULL);
memcpy((void *) buf, (const void *) data, message.info.msg.length);
received_bytes += message.info.msg.length;

while (received_bytes < DATA_SIZE) {
while (iso_receive(&message) != 0);
memcpy((void *) buf, (const void *) data, message.info.msg.length);
received_bytes += message.info.msg.length;
Vid if ((received_bytes % (1000%1024)) == 0)
printf("receoved %d bytes\n",received_bytes);

if (received_bytes > DATA _SIZE - BUF_SIZE)
printf("waiting for last packet\n”);*/

}
gettimeofday (&stop, NULL);

else { /*client?*
sent_bytes = 0;
gettimeofday (&start, NULL);
while (iso_send(SERVER,buf,BUF_SIZE,1)!=0);
sent_bytes += BUF_SIZE;
while (sent_bytes < DATA_SIZE) {
while (iso_send(SERVER,buf,BUF_SIZE,1)!=0);
sent_bytes += BUF_SIZE;

}
gettimeofday (&stop, NULL);

}
subtracttime (&stop, &start); /* defined in prof.h; puts result in stop */
sec = (double)stop.tv_sec + (double)stop.tv_usec / 1e6;
if (get_my_node_number() == SERVER) {
throughput = ((received_bytes * 8) / sec) / 1e6; /*in Mbps */
printf(, received_bytes, sec);
printf(

X, throughput);

else { /*CLIENT?¥

throughput = ((sent_bytes * 8) / sec) / 1e6; /*in Mbps */
printf(, sent_bytes, sec);
printf(

X, throughput);
}
fflush (stdout);
throughput_sum += throughput;

initiate_barrier();
while (barrier_completed() !=0) ;

avg_throughput = throughput_sum / ITERATIONS;
printf(, get_my_node_number() ?
avg_throughput);

while (try_close_net() != 0)

157

poll();
if (get_my_node_number() == SERVER)

fp = fopen(RLOG_FILE,);
else
fp = fopen(SLOG_FILE,);

gettimeofday (&start, NULL);

/* get the current date */
time(&curtime);
tp = localtime(&curtime);
strftime(date, (size_t) 50, , tp);

fprintf(fp, ,date,get_max_payload());
if (get_SIU_state() == 1) {
fprintf(fp,):

else {
fprintf(fp,);

if (get_MBM_ver() == 1) {
fprintf(fp,);

else {
fprintf(fp,);

}
fprintf(fp, , avg_throughput);
fclose(fp);

return 0;

158

noniso.h

/*

*

*

* Isotach Module : Non-Iso API Header File
* Isotach Layer : Main

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/noniso.h,v $
* $Revision: 1.4 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This header file is included by the Isotach Application Programmer when
* Non-Isotach functionality is requested. It exports all of the Non-Isotach
* API functions to the application writer.

*

*

*

* COMMENTS:

* If the Application programmer wishes to use ISO API Functions as well,
* he/she must also include either the iso_smm.h or the iso_mbm.h file.

*

*

*

#ifndef NONISO_H
#define NONISO_H

/* Hostman API Functions */
#ifndef HOSTMAN_EXP
#define HOSTMAN_EXP

#define SUCCES®
#define FAILURE 1
#define TRUE 1

#define FALSE 0

/* Initializes Isotach system and synchronizes hosts. Must be called at the
beginning of any program using Isotach or Non-Isotach functionality, before
any other API functions are called */

extern int open_net (int mode);

/* Attempts to stop all communication by using an approrpiate barrier, and
shutting down when all nodes have completed the barrier */
extern int try_close_net 0;

/* Can be called explicitly by the Application, or is called by any of the
other API functions listed below. Passes control to the mLayer so that
message processing can be done. MUST be called frequently, either directly
or indirectly
NOTE: The application programmer should ONLY call poll(). The function
poll() is mapped to one of the below poll functions depending on the
api header files that are included. */

extern int noniso_poll ();

extern int iso_poll ();

/* Returns the Node Number of the selected host */
extern int get_node_number (char *hostname);

/* Returns the Node Number of the currently running host */
extern int get_my_node_number ();

159

/* Returns the total number of active hosts in the system */
extern int get_number_of hosts ();

/* Returns the value of MAX_PAYLOAD_SIZE, which is set in constants.h */
extern int get_max_payload ();

/* Returns 1 is SIU is enabled, 0 if SIU is not enabled */
extern int get SIU_state ();

/* Returns the MBM Version Number. 1 if Ordering is not supported, and 2 if
Ordering is supported (functionality from IOM Module) */
extern int get_ MBM_ver ();

#endif

/*
* This code allows the correct poll function to be mapped to an application’s
* call to poll(). If both (iso_mbm.h or iso_smm.h) and noniso.h files are
*included by the application, then poll() is mapped to iso_poll().
* Otherwise, poll() is mapped to noniso_poll(). The arguments passed to
* open_net() indicate whether the application has requested an ISO, NONISO or
* BOTH environment. This is so the mLayer can initialize its data structures
* appropriately.
*

#ifdef ISOTACH_H

#undef poll ()

#define poll () iso_poll()
#undef open_net ()

#define open_net () open_net(2)
#else

#define poll () noniso_poll()
#define open_net () open_net(0)
#endif

/* Non-Iso Data Structure used in calls to receive() */
typedef struct {
int sender_id; // The originator of this message
int size; // The length of the data being pointed to by data_ptr
//if this is a -1, then the data is stored in data
union msg_tag {

void *data_ptr; // Pointer to pinned memory where data is kept
int data; // An actual word of data
} msg;

} noniso_mbm;
/* Non-Iso Protocol Specific API Functions */

/* Called to send a Non-Isotach Message to the host specified by the argument
target. A pointer to the data, which is the body of the message, is sent
with the *data parameter. The size of the data must also be sent.
NOTE: Target must be a valid host number, and cannot be the host number of
the sending node. (i.e. self-messages for NONISO are not supported) */
extern int send(int target, void *data, int size);

/* Called to recieve a Non-Isotach Message. If a message is placed in the
noniso_mbm struct, the function returns a value of 0 (SUCCESS). If there
was no message to be delivered, the function returne 1 (FAILURE) and there
is no data placed in the noniso_mbm structure

NOTE: The Application Programmer must copy the data pointed to by the
noniso_mbm struct before the next call to recieve() or the data will be
lost. */

extern int receive (noniso_mbm *recv_msg);

/* Called to begin a new barrier. Only one barrier may be initiated at a time.
To end the barrier, barrier_completed() must be called */
extern int initiate_barrier 0;

/* Called to check the status of an initiated barrier. When the barrier is
completed, the function returns 0 (SUCCESS), otherwise it returns 1
(FAILURE). */

extern int barrier_completed 0;

160

#endif

161

isotach.h

/*

*

*

* Isotach Module : Isotach Main Header File
* Isotach Layer : Main

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/isotach.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This header file is included by either the iso_mbm.h or iso_smm.h header
* files, which are included by the application programmer. This file

* contains the API functions that are common to both the SMM and MBM

* interfaces.

*

*

*

* COMMENTS:

* If the Application programmer wishes to use NONISO Send and Receive,
* he/she must also include the noniso_api.h file.

*

*

¥

#ifndef ISOTACH_H
#define ISOTACH_H

/* Hostman API Functions */
#ifndef HOSTMAN_EXP
#define HOSTMAN_EXP

#define SUCCES®
#define FAILURE 1
#define TRUE 1

#define FALSE 0

/* Initializes Isotach system and synchronizes hosts. Must be called at the
beginning of any program using Isotach or Non-Isotach functionality, before
any other API functions are called */

extern int open_net (int mode);

/* Attempts to stop all communication by using an approrpiate barrier, and
shutting down when all nodes have completed the barrier */
extern int try_close_net 0;

/* Can be called explicitly by the Application, or is called by any of the
other API functions listed below. Passes control to the mLayer so that
message processing can be done. MUST be called frequently, either directly
or indirectly.
NOTE: The application programmer should ONLY call poll(). The function
poll() is mapped to one of the below poll functions depending on the
api header files that are included. */

extern int noniso_poll ();

extern int iso_poll ();

/* Returns the Node Number of the selected host */
extern int get_node_number (char *hostname);

/* Returns the Node Number of the currently running host */

162

extern int get_my_node_number ();

/* Returns the total number of active hosts in the system */
extern int get_number_of hosts ();

/* Returns the value of MAX_PAYLOAD_SIZE, which is set in constants.h */
extern int get_max_payload ();

/* Returns 1 is SIU is enabled, 0 if SIU is not enabled */
extern int get SIU_state ();

/* Returns the MBM Version Number. 1 if Ordering is not supported, and 2 if
Ordering is supported (functionality from IOM Module) */
extern int get_ MBM_ver ();

#endif

/*
* This code allows the correct poll function to be mapped to an application’s
*call to poll(). If both (iso_mbm.h or iso_smm.h) and noniso.h files
* are included by the application, then poll() is first undefined and then
*mapped to iso_poll(). Otherwise, poll() is directly mapped to iso_poll().
* The arguments passed to open_net() indicate whether the application has
* requested an 1ISO, NONISO or BOTH environment.
* This is so the mLayer can initialize its data structures appropriately.
*

#ifdef NONISO_H

#undef poll ()

#define poll () iso_poll()
#undef open_net ()

#define open_net () open_net(2)
#else

#define poll () iso_poll()
#define open_net () open_net(1)
#endif

/* Group Communication API Functions */

/* Registers a channel to a Isotach signal. Before a signal can be used, it
must be registered. Valid channels are: 1-5. The function returns 0
(SUCCESS) if the signal was properly registered, and 1 (FAILURE) if not. */

extern int iso_register_signal (int channel);

/* Clears a signal channel. Can be called with values of 1-4, and returns
0 (SUCCESS) if the signal channel was cleared, otherwise 1 (FAILURE). */
extern int iso_clear_signal (int channel);

/* Registers a channel to a barrier with a specified barrier mode. Valid
channels are 0-1, and valid barrier modes are ISO_BARRIER_[WEAK|STRONG]
Returns 0 (SUCCESS) if the barrier could be registered, 1 (FAILURE)
otherwise. */
#define ISO_BARRIER_WEAK 0
#define 1SO_BARRIER_STRONG
extern int iso_register_barrier (int channel, unsigned char barrier_mode);

/* Clears the specified barrier channel. Returns 0 (SUCCESS) if the barrier
channel could be successfully cleared, and 1 (FAILURE) otherwise. */
extern int iso_clear_barrier (int channel);

/* Sends a signal on the specified channel. The channel must be registered
by using iso_register_signal, and it must be owned by the Application.
Valid channels are 1-4. If the signal could be sent, the function returns
0 (SUCCESS) otherwise, 1 (FAILURE). */

extern int iso_send_signal (int channel);

/* Initiates a barrier on the specified channel with the specified Barrier
Mode. The channel must have been registered previously with a call to
iso_register_barrier, and be in the range 0-1. The barrier_mode must match
the barrier mode that the channel was registered under, and be either
ISO_BARRIER_WEAK or ISO_BARRIER_STRONG. If the barrier could be initiated,
the function returns 0 (SUCCESS) otherwise it returns 1 (FAILURE). */

extern int iso_barrier (int channel, unsigned char barrier_mode);

163

/* Signify End of Isochron. This is called when you wish to complete
an Isochron. */
extern int iso_end ();

/* Isotach Message Data Structure used for iso_mbm */
typedef struct {

unsigned short sender; // The ID of the sending host
unsigned short length; // The length in bytes of the data
void *data; // A pointer to the actual data

} iso_msg;

/* Isotach Data Structure used by the Application in calls to iso_receive() */
typedef struct {

unsigned char tag; // The type of the structure (pointer, bs)
union {
unsigned char bits; // Barrier and Signal Bits
iso_msg msg; // Pointer to the Data in an iso_msg
} info;
}iso_mbm;
#endif

164

iso_mbm.h

/*

*

*

* Isotach Module : Isotach Message Based Model (MBM) Header File
* Isotach Layer : Main

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/iso_mbm.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This header file is included by the application programmer when he/she
* wishes to use the MBM interface. This cannot be included with the
*iso_smm.h file, as the SMM and MBM interface cannot be used concurrently.

*

*

*

* COMMENTS:

* If the Application programmer wishes to use NONISO Send and Receive,
* he/she must also include the noniso_api.h file.

*

*

*

#ifdef 1ISO_SMM_H

#error Cannot Include both the MBMand SMMinterfaces . Aborting
#endif

#ifndef 1ISO_MBM_H
#define I1ISO_MBM_H

/* This includes API Functions that are common to both the SMM and MBM
interfaces */
#include <isotach.h>

/* Isotach Message Based Model API Functions */

/* This sends an Isotach Message to the specified host. The target host must
be a valid host in the Isotach Network, and can be the current host (i.e.
self-messages ARE supported). A pointer to the data must be sent, along
with the data size. Finally, last_in_isochron must be sent. A value
of TRUE indicates that this is the last message in the pending isochron,
while a value of FALSE indicates that more messages need to be sent in this
isochron. Setting TRUE here is the equivalent of setting FALSE and then
calling iso_end(). */
extern int iso_send (int target, void *data, int size, int last_in_isochron);

/* This function attempts to receive an Isotach Message. When called, if
there is a message to be received, it is placed in the iso_mbm structure
and a value of 0 (SUCCESS) is returned. Otherwise, 1 (FAILURE) is returned
to indicate that there was no message to be received. The message can
either contain an iso_msg struct which has a pointer to some data, or it
can contain a byte of bits which can be interpreted to determine if signals
have arrived.

NOTE: The Application Programmer MUST copy the data pointed to by the
iso_msg structure before the next call to iso_receive() or the data will
be lost. ¥/

extern int iso_receive (iso_mbm *data);

#endif

165

iso_smm.h

/*

*

*

* Isotach Module : Isotach Shared Memory Model (SMM) Header File
* Isotach Layer : Main

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/iso_smm.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This header file is included by the application programmer when he/she
* wishes to use the SMM interface. This cannot be included with the
*iso_mbm.h file, as the SMM and MBM interface cannot be used concurrently.

*

*

*

* COMMENTS:

* If the Application programmer wishes to use NONISO Send and Receive,

* he/she must also include the noniso_api.h file.

*NOTE: The Isotach Shared Memory Model has NOT been implemented yet.
* Please DO NOT include this header file, as the SMM code is still

* under development. The Isotach Message Based Model, and the Non-

* Isotach systems have been implemented, so please include either:

* noniso.h and/or iso_mbm.h

*

*

*
#ifdef 1ISO_MBM_H
#error Cannot Include both the MBMand SMMinterfaces . Aborting
#endif

#ifndef ISO_SMM_H
#define ISO_SMM_H

/* This includes API Functions that are common to both the SMM and MBM
interfaces */
#include <isotach.h>

/* Shared Memory Messages API Functions */

/* This may or may not be accurate. The design has not been finalized at this
point, and these functionalities have not been implemented yet. */
extern int iso_sched_read (shmem_addr_t shaddr, iso_var32 *laddr,
int last_in_isochron);

extern int iso_get read (iso_var32 *var, int last_in_isochron);

extern int iso_write (shmem_addr_t shaddr, long int val, int last_in_isochron);
extern int iso_sched (shmem_addr_t shaddr, int last_in_isochron);

extern int assign (shmem_addr_t shaddr, long int val, int last_in_isochron);
#endif

166

hostman/constants.h

/*

*

*

* Isotach Module : Global Constants Header File
* Isotach Layer : Hostman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/hostman/host_utils.h,v $
* $Revision: 1.9 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This header file contains the globally used constants, type

* definitions and macros used throught the messaging layer.

* This file contains definitions and variables that may be changed to tweak
* Isotach performance. The other header files (utils.h and host_utils.h)

* contain definitions and variables that should not normally be changed.

*

*

* COMMENTS:

* None.

*

*

*

#ifndef CONSTANTS_H
#define CONSTANTS_H

/* *AAA AAAA HAAA */
/* MODIFY THESE VALUES TO TUNE PERFORMANCE OF MESSAGING LAYER
/* AAAA AAAA AAAA */

/* Set this to 1 if we want to use a hardware SIU, 0 otherwise */
#define SIU 0

/* Set this to one to remove support for isotach ordering and self messages,
or 2 to keep that support in */
#define MBM_VER

/* MAX_PAYLOAD_SIZE can be changed to allow more data to be transmitted with
each packet. This size is in bytes */
#define MAX_PAYLOAD_SIZEL024

/* This is the size of pinned memory in bytes. PLEASE change this value
if you decide to change the size of pinned memory in lilo.conf */
#define SIZE_OF _PINNED MEMORA194304

/* Changing the value of ISO_NONISO_RATIO allows the application designer to
distribute resources among Isotach and Nonlsotach protocols */
#define NONISO_RATIO 0.50

/* These percentages allow us to place a little 'slack’ in the host and NIU
buffers, to account for control messages that are not subject to software
flow control. */

#define ISO_SLACK 1.25

/* The Size of the Host's send buffer in # of PACKETS */
#define SEND_BUF_SIZE 1024

/* The Size of the Host's ord_send buffer in # of PACKETS */

*/

167

#define

ORD_SEND_BUF _SIZE 1024

/* The Size of the Host's iso_send buffer in # of PACKETS */

#define

ISO_SEND_BUF_SIZE

1024

/* These values correspond to buffers on the LANai */

64

256

8192

#define NIU_SEND_SIZE

#define ISO_NIU_SEND_SIZE 64
#define RECV_LIMIT

#define ISO_NIU_RECV_SIZE 512
#define NIU_DELV_SIZE

#define NIU_RECV_BUF SIZE 32

/* Isotach specific constants */

#define isochron_allowance 256

#define BUCKET_COUNT 256

#define BUCKET_SIZE 256

/* hokokk Hhokokk *okokk
#endif

168

Y/

hostman/utils.h

/*

*

*

* Isotach Module : Utilities Library
* Isotach Layer : Hostman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/hostman/utils.h,v $
* $Revision: 1.14 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This header file contains the globally used structures, constants, type
* definitions and macros used throught the messaging layer.

*

*

*

* COMMENTS:

*

* None.

*

*

*/

#ifndef UTILS_H

#define UTILS_H

#include <hostman/constants.h>

/*

* Generic Definitions and Constants
*

xxxxx HAAA *AAA /

typedef unsigned char UCHAR,;
typedef unsigned short USHORT,;
typedef unsigned long ULONG;
/* Some useful boolean values */
#define TRUE 1

#define FALSE 0

#define SUCCES®

#define FAILURE 1

/* Masks to extract the nth byte of a word */

#define FIRST_BYTE 0xFF000000
#define SECOND_BYTBx00FF0000
#define THIRD_BYTE 0x0000FF00
#define FOURTH_BYTHOx000000FF

/* The different stages of initialization are enumerated here */
enum init_stage {

START = 0x0, START_LANAI, INIT_DMA_TEST, CHECK_DMA_TEST, SYNCHRONIZE, FINISHED, BAD_CRC, STOP

i

/*

* Isotach Specific Definitions and Constants
*

xxxxx HAAA *AAA /

#define NONISOTACH)
#define ISOTACH 1
#define BOTH 2

/* PACKET_HEADER_SIZE should remain constant at 20 bytes */
#define PACKET_HEADER_SIZR0

/* First Byte of Prefix in an Isotach Packet */
#define BS_MARKER_MASKOx40000000
#define EOI_MASK 0x20000000
#define CHANNEL_MASK 0x10000000
#define SEQ_CON_SET_MAS0%08000000
#define SEQ_CON_MASK 0x04000000
#define LOG_TS_MASK 0x02000000
#define HOST_TS_MASK 0x01000000

/* Packet Types */

static const USHORT NONISO = 0x0620;
static const USHORT ISO = 0x0600;
static const USHORT EOP = 0x0601;

/* Packet Subtypes */

// Synchronization Subtypes - Used in NONISO typed packets

static const UCHAR SYNC = 0x00;

static const UCHAR SYNC_ACK =0x01;

static const UCHAR SYNC_DONE =0x02;

// Flow Control Subtypes - Used in NONISO typed packets
static const UCHAR CREDIT = 0x03;

static const UCHAR ISO_CREDIT = 0x04;

static const UCHAR REQUEST_CREDIT = 0x05;
static const UCHAR REQUEST_ISO_CREDIT = 0x06;

// Noniso GC and MBM Subtypes - Used in NONISO typed packets

static const UCHAR BARRIER = 0x07;

static const UCHAR NONISO_MBM = 0x08;

static const UCHAR ORDERED = 0x09;

// Isotach Subtypes - Used in ISO typed packets

static const UCHAR ISO_MBM = 0x10;

static const UCHAR ISO_READ =0x11;

static const UCHAR ISO_WRITE =0x12;

static const UCHAR ISO_ASSIGN =0x13;

static const UCHAR ISO_SCHED = 0x14;

static const UCHAR READ_RESPONSE =0x15;

static const UCHAR BS_MARKER = 0x16;

static const UCHAR ISO_MARKER =0x17;

static const UCHAR EOP_MARKER = 0x18;

static const UCHAR ISO_SLOT =0x19;

// Stop Packet - This is so we don't have to worry about switching on the LANAI
static const ULONG STOP_PACKET = 0x99999999;

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

* Packet Structures Section

kAR RRAAAAAAAAAAAAAAAAAAAAAAA AR A A A A AR /

/* The PACKET structure - Essentially, every NonlSO and Ordered message
are sent out in PACKETs. Also, all control messages are sent out in

PACKETS (i.e. credit packets, etc...) */
typedef struct {

USHORT type; // field that designates packet type

UCHAR subtype; // subtype field

UCHAR padl; // padding

ULONG sender; // field that holds sender ID

ULONG address; // field that holds an address or a pad
USHORT payload_length; // length of data in bytes

USHORT pad?; // pad

ULONG credit_info; // credit information piggybacked on packet
UCHAR data[MAX_PAYLOAD_SIZE + 4]; // payload of packet, 4 bytes added

// to account for crc field when packets

// are received.

ULONG route; // 4-byte route with padding if necessary

} PACKET;

170

/* used when you want queues or arrays of pointers to packets */
typedef PACKET* PACKET_PTR;

/* All of the fields in the following packet structures are explained in the

Ironman document in one of the Appendixes. Please reference that document

for more details */

/* Isotach is interesting in that we send out 3 different types
of packets: Iso-pointers, SRefs, and BS-Markers, but we can
receive 4 different types of packets: Iso-pointers, SRefs,
Isochron Markers, and EOP Markers. Here are the data structures
for receiving: There is an iso_recvframe that incorporates pointers
and srefs, and roughly corresponds to what is received off of the
network. In the case of a pointer, the crc should be copied into
the crc field of the receive frame. Additionally, we have isochron
markers, where the isochron crc needs to be or'ed with the packet crc
and stored in the crc field. After which, the isochron_marker subtype
should be written into the subtype field. Then there are eop markers
which can be of variable length. When an eop marker is received, the
crc is copied into the crc field of the structure, and the sequence
number is overwritten with subtype eop_marker. Note that the myrinet
packet type will not be copied into the iso_niu_recive_buffer or the
iso_receive_buffer */

/* this is the body of an sref */
typedef struct {

ULONG shadder; // shared mem address
ULONG data; // shared mem data
}iso_sref;
typedef struct {
USHORT type;
UCHAR subtype;
UCHAR TS; // isotach timestamp
USHORT sender; // sender node number
USHORT credit_info; // credit information
union {
ULONG pointer; // Either a pointer to the data, or
iso_sref sref; // an SREF
} body;
} ISO_PACKET;

/* this data structure is what is received off of the network
in some/most ? cases, the crc will be found inside the packet
body. It should be copied into the crc field of this structure
so iso_receiving can check the crc */

/* note that this structure is actually word aligned... */

typedef struct {
ISO_PACKET packet; //a union containing all possible types
UCHAR crc; //the crc field

} ISO_RECVFRAME;

/* now the size in words */
#define ISO_RECVFRAME_SIZES

/* this is an isochron marker */
typedef struct {
USHORT type;
UCHAR subtype;
UCHARTS;
USHORT source;
UCHAR iso_id;
UCHAR crc;
} isochron_marker;

/* now the size in words */
#define 1SO_MARKER_SIZE2

/* this is an eop marker */
typedef struct {

171

USHORT type;
UCHAR subtype;
UCHAR bits;
USHORT pad;
UCHARTS;
UCHAR count;
UCHAR sort_vector[32];
UCHAR crg;

} eop_marker;

/* now the size in words */
#define EOP_MARKER_SIZH1

/* this data structure is what will be dma'd onto the network.
It contains the prefix, the route, the myrinet packet type,
the isotach packet, and a size field. The size field is
necessary since different packet types have different sizes.
For example, a BS_Marker will only be 4 bytes long and thus
is contained only in the prefix. An iso_pointer is shorter
than an sref as another example.

*

typedef struct {
ULONG prefix; // isotach prefix -- can also contain
// entire bs_marker
ULONG route2;
USHORT routel;
USHORT pad;
ISO_PACKET packet; // isotach packet
} ISO_SENDFRAME;

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT sender;
PACKET_PTR pointer;
} isopointer;

typedef struct {
UCHAR subtype;
UCHAR bits;
UCHAR pad[6];

} bsnotice;

typedef struct {
UCHAR subtype;
UCHAR iso_id;
USHORT pad;
ULONG self_count;
} isoslot;

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT source;
ULONG shadder;
ULONG data;

} isosched;

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT source;
ULONG shadder;
ULONG data;

} isowrite;

typedef struct {
UCHAR subtype;

172

UCHAR pad;
USHORT source;
ULONG shadder;
ULONG data;

} isoassign;

typedef struct {
UCHAR subtype;
UCHAR tag;
USHORT source;
ULONG shadder;
ULONG lvar;

} isoread;

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT sender;
UCHAR iso_id;
UCHAR pad2[7];

} isomarker;

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT pad2;
ULONG data;
ULONG lvar;

} readresponse;

typedef struct {
UCHAR subtype;
UCHAR data[7];

} PACKET_CORE_2;

typedef struct {
UCHAR subtype;
UCHAR pad;
USHORT sender;
UCHAR data[8];

} PACKET_CORE_3;

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

/*inc_idx(P,S)

* This macro defines a function which takes an integer pointer value, and the
* size of a queue and increments the pointer. If the pointer is at the last
*slot in the queue, it is wrapped around to the beginning of the queue.

* This macro is used for incrementing head and tail pointers of index based
*queues.

*

#define inc_idx (1,S) (I=((1+1)%S))
/*inc_ptr(P,S,Q)

* This macro defines a function which takes a pointer, the size of a queue
*in bytes and the starting address of the queue. It increments the pointer
* by x bytes, where x is the size of the element type stored in the queue.
* If the address of the pointer is equal to the starting address of the queue
* plus the size of the queue, the address of the pointer is wrapped
* around the queue by setting it to the base address of the queue.
* This macro is used for incrementing head and tail pointers of address based
*queues.
*

#define inc_ptr (P,S,Q)\

{P++;\

P=(P==(Q+S))?Q:P;}

/* queue_empty(H,T)

173

*

* This macro returns TRUE if the head of the queue is equal to the tail.
* Otherwise, it returns FALSE. This (and all of the following queue macros)
*works for both indexed and address based queues.
*/
#define queue_empty (H,T) (H==T)

/* queue_index(P,Q)

* Gives the index number of a pointer (either head or tail) into a queue.
* For address based queues, the pointer is passed along with the base address
* of the queue. For indexed queues the pointer (an integer index) can be
* passed with zero (the integer index of the beginning of the integer queue).
* However, this really should only be used for address based queues.
*/
#define queue_index (P,Q) (P-Q)

/* queue_size(H,T,S)

* This returns the current size of the queue in terms of the number of
*elements. To determine the size of the queue in bytes, simply multiply
* the result of this macro by the size of each element in the queue.

*/

#define queue_size (H,T,S) (H<=T) ? (T-H) : (S-(H-T)))
/* queue_full(H,T,S)

* This returns TRUE is the queue is full. A queue is full if:
* The current queue size is equal to the queue-size - 1.
* If the queue is not full, this returns false.
*
#define queue_full (H,T,S) ((queue_size(H,T,S)==(S-1)) ? TRUE : FALSE)

/* lanai_queue_full(H,T,S)

* This returns TRUE if the queue is full, just as the above macro does, but
* jt does not use the queue_size() macro. This is used on the lanai instead
* of queue_full because it is less computationally expensive.
*/

#define lanai_queue_full (H,T,S) (H + 1)%S)==T)

/*q_last_item(T,S,Q)
*
* This macro returns the last item of the specified Queue. It is used in

*the IOM module. It is a peek function, as it does not actually remove
* the last item from the queue.
*/

#define q_last_item (T,S,Q) (((T-1)>=Q) ? (T-1) : (Q+S-1))

#endif

174

hostman/host_utils.h

/*

*

*

* Isotach Module : Host Utilities Library
* Isotach Layer : Hostman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/hostman/host_utils.h,v $
* $Revision: 1.9 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This header file contains the globally used structures, constants, type
* definitions and macros used throught the messaging layer.

*

*

*

* COMMENTS:

* None.

*

*

¥

#ifndef HOST UTILS_H
#define HOST UTILS_H

#include <stdio.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <string.h>
#include <lanai_device.h>
#include <hostman/utils.h>
#include <sys/time.h>

/* The system type. It can be either ISOTACH, NONISOTACH or BOTH */
extern UCHAR SYS_TYPE;

/* HAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A A A A A A A A A KA AR A AR A A A AAAA

xxxxxxxxxx *AAA /

/* Each Non-Isotach Recieve Buffer has 6 Packet slots allocated for packets
that are used by the mLayer. If more slots need to be added, change the
below value to be one more than the number of slots. (i.e. we have 5
control packet slots, and the value of CONTROL_SLOTS is 6). This creates
a buffer between the last control slot, and the first packet of real data.

*

#define CONTROL_SLOT6

// Control Slot 0 -> Credit Packet

// Control Slot 1 -> Credit Request Packet

// Control Slot 2 -> Barrier Packet

// Control Slot 3 -> Iso Credit Packet

// Control Slot 4 -> Iso Credit Request

/* The size in bytes of the Isotach Pinned Memory region *
ULONG ISO_PINNED_SIZE;

/* The size in bytes of the Non-Isotach Pinned Memory region */
ULONG NONISO_PINNED_SIZE;

/* The size of the Isotach Recieve Buffer */
ULONG ISO_RECV_SIZE;

175

/* The total number of Isotach Credits at this node *
ULONG ISO_CREDITS;

/* The total number of Non-Isotach Credits at this node */
ULONG NONISO_CREDITS;

/* Information about queues in pinned memory. Each one of these structures
contains an address that points to the beginning of a queue in pinned memory
and a size in # of PACKETS */

typedef struct {

PACKET_PTR base;
ULONG size;
} pinned_mem_info;

ULONG offset;

/* *%k HAAA *% HAAA FAKEEAAAAAAAAAK

* Barrier, Signal and Credit Enumerated Types and Structures

* hkk HAAA FAKEAAAAAAAAAAK FAKEEAAAAAAAAAK /

/* This enumeration defines the different ownerships that a signal or barrier
may have. Used by both iso_barrier, iso_signal and hostman */
enum bs_type {
APPLICATION = 0x0, MLAYER, UNCLAIMED

i

/* Array of masks to extract the nth bit of a byte
The array is actually initialized in one of the modules. */
UCHAR BITS[8];

#define NULL_CREDITO

/* *%k HAAA *% HAAA AAKAAAAAAAAAAAK

* LANAI Specific Variables and Data Structures

* Kkk HAAA *%k HAAA FAKEEAAAAAAAAAK /

lanai_symbol_table *symbol_table;
volatile char *lanai0;

/* *%k HAAA *% HAAA FAKEEAAAAAAAAAK

* General Isotach System Information

* Kkk HAAA *%k HAAA FAKEEAAAAAAAAAK /

/* Synchronization variable used during system initialization. It allows
the host and LANAI to inform each other of events during initialization */
volatile UCHAR *init_stage;

/* The total number of hosts in the Isotach network, and this node's host ID */
extern ULONG number_of_hosts;
extern ULONG host_node_id;

/* *%k HAAA *% HAAA AAKAAAAAAAAAAAK

* Network Status Table Structures

* Kkk HAAA *%k HAAA FAKEEAAAAAAAAAK /

/* The structure for elements in the Network Status Table (nst). Each entry
in the nst contains an id, a name, a route from the current host to this
host, the status of the node (alive, dead) and pinned memory information.
remote_noniso (iso) points to the base of the current node's noniso (iso)
queue on that remote host. local_noniso (iso) points to the remote host's
noniso (iso) queue in the current host's pinned memory *

typedef struct {

ULONG node_id;

char host_name[32];
ULONG route;
UCHAR alive;
pinned_mem_info remote_noniso;
pinned_mem_info remote_iso;
pinned_mem_info local_noniso;
pinned_mem_info local_iso;

} node_info;

176

/* xx

/* This function maps a host variable to a lanai memory-mappable variable.
It is used by hostman open_net and the other host module initialization
functions *

static inline ULONG * get_lanai_sym (char *name){

ULONG *x = NULL,;
ULONG y = lanai_symbol_value (symbol_table, name);

it (y==0){

printf ("ERROR: lanai symbol '%s' not found\n" , hame);

exit (1);
}

x = (ULONG *)&lanaiO[y];
return = Xx;

}

static void callback () {
// Dummy Function for passing to lanai_load_and_reset()

/* xx

/* This small function is used for debugging, and prints out the contents of
the packet passed in as a parameter */

static void print_out_packet (PACKET *p) {
int i;

printf("Type->%04X\n" , ntohs(p->type));
printf("Subtype->%02X\n" , p->subtype);
printf("Pad1->%02X\n" , p->padl);

printf("Sender->%|lu\n" , p->sender);
printf("Address->%]lu\n" , (ULONG)ntohl((ULONG)p->address));
printf("Payload_length->%04X\n" , ntohs(p->payload_length));
printf("Pad2->%04X\n" , ntohs(p->pad2));
printf("Credit_info->%]lu\n" , p->credit_info);
printf("Data->");
for (i =0; i< ntohs(p->pad2) - 16; i++) {
printf("0602X" p->datali]);
}
printf(“\n" o),
fflush(stdout);
return ;

}

/* This small function is used for debugging, and prints out the contents of
the isotach packet passed in as a parameter */
static void print_out_iso_packet (ISO_PACKET *p) {
printf("Type->%04xX\n" , ntohs(p->type));
printf("Subtype->%02X\n" , p->subtype);
printf("TS->%02X\n" , p->TS);

printf("Sender->%04X\n" , p->sender);

printf("Credit_info->%04X\n" , p->credit_info);

if (p->subtype == ISO_MBM) {

printf("Pointer->%04X\n" ,p->body.pointer);
else {

printf("SHADDR->%04X\n" ,p->body.sref.shadder);
printf("Data->%04X\n" ,p->body.sref.data);

}

fflush(stdout);

return ;

177

/* This small function is used for debugging, and prints out the contents of
the isochron marker passed in as a parameter */

static ~ void print_out_iso_marker (isochron_marker *p) {
int i
printf("Received isochron marker: ");

for (i=0; i< 8; i++) {

printf("0602X " (UCHAR)*((UCHAR *)p +i));
}
printf(“\n" o),
fflush(stdout);
return
}
/* This function is used for timing and performance debugging */
static inline void subtracttime (struct timeval *t, struct

signed long sec,usec;

sec = t->tv_sec - sub->tv_sec;
usec = t->tv_usec-sub->tv_usec;
if (usec<0){
sec--;
usec+=1000000;

}
if (sec<0){
t->tv_sec = 0;
t->tv_usec = 0;

else {
t->tv_sec = (unsigned long)sec;
t->tv_usec = (unsigned long)usec;
}
}
#endif

178

timeval *sub) {

hostman/locals.h

/*

*

*

* Isotach Module : Hostman Local Variable Header File
* Isotach Layer : Hostman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/hostman/locals.h,v $
* $Revision: 1.11 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:22:49 $

*DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.

* It also prototypes all functions internal to that module.
*

*

*

* COMMENTS:

*

¥

#ifndef HOSTMAN_LOCALS H
#define HOSTMAN_LOCALS H

#include <signal.h>
#include <unistd.h>
#include <hostman/host_utils.h>

#include <api/send/exports.h>
#include <api/deliver/exports.h>
#include <apiliso_deliver/exports.h>
#include <apil/iso_send/exports.h>
#include <api/barrier/exports.h>
#include <apil/iso_signal/exports.h>
#include <apil/iso_barrier/exports.h>
#include <apiliso_retrieve/exports.h>

#include <processing/flow/exports.h>
#include <processing/iso_flow/exports.h>
#include <processing/iom/exports.h>
#include <processing/shmem/exports.h>

#include <niu_interface/shipping/exports.h>
#include <niu_interface/receive/exports.h>
#include <niu_interface/iso_shipping/exports.h>
#include <niu_interface/iso_receive/exports.h>

UCHAR SYS_TYPE;

/* HAAA HAAA HAAA

* Hostman Level System Information
*

HAAA HAAA HAAA /

/* The LANAI Control Program and Network Configuration File should both be

* in the same directory as the application. */
//char FILENAME[128];

/f#define LCPFILE strcat(strcpy(FILENAME, getenv("ISO_HOME")),"/lcp")
//#define CONFIG_FILE strcat(strcpy(FILENAME, getenv("ISO_HOME")),"/network.cfg")

#define LCPFILE "./lcp"

179

#define CONFIG_FILE "./network.cfg"

/* The Network Status Table. This table contains a listing of all hosts,
and their memory addresses in pinned memory (for local buffers and remote
buffers. This is local to hostman, and passed to each module that needs it
during initialization */

node_info *nst;

/* Stores the total number of hosts in the system and the current node's ID. */
ULONG number_of_hosts;
ULONG host_node _id;

/* Base address of where the Isotach region begins in Pinned Memory */
ULONG *iso_base_ptr;

/* NEVER NEVER NEVER SET THIS VALUE BELOW 2...
This is the amount of time that we wait for the SIU hardware to reset
during initialization. */

#define SIU_SLEEP_TIMER 2

/* * HAAA *% HAAA *% *AAA

*LANAI Mapped Variable

* hkk HAAA *% HAAA FAKEEAAAAAAAAAK /

/* netman_hostbase contains the virtual address used by the LANAI in
* referencing the beginning of the pinned memory area on the host.
*/

volatile ULONG *netman_hostbase;

/* Set to either ISO, NONISO or BOTH depending on which header files the
* application programmer has included in the application program.
*/

UCHAR *NIU_SYS_TYPE;

/* hostman_hostbase contains the real address used by the host in
* referencing the beginning of the pinned memory area on the host.
*/

PACKET_PTR hostman_hostbase;

/* netman_maxlen contans the maxlen variable, so that the LANAI can access it*/
volatile ULONG *netman_maxlen;

/* This contains the base address in pinned memory of the iso_recv buffer */
volatile ULONG *niu_iso_recv_base;

/* * HAAA *% HAAA *% HAAA

* Local Function Prototypes

* Kkk HAAA *%k HAAA FAKEEAAAAAAAAAK /

int allocate_pinned_memory (int max_length);
static void callback ();

void print_network_configuration 0;

int initialize_configuration_table 0;

int synchronize ();

void print_config 0;

void handle_sigint (int s);

int isotach_init 0;

int isotach_deinit 0;

#endif

180

hostman/hostman.c

/*

*

*

* Isotach Module : Hostman
* Isotach Layer : Hostman
* Isotach Version : Version 3
*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/hostman/hostman.c,v $
* $Revision: 1.16 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This module is the ‘'main’ module in the messaging layer. It is responsible
* for calling the init, poll and deinit functions for all other modules. It

*is also responsbile for coordinating the actions of all other modules.

*

*

*

* COMMENTS:

*

*

*/

#include <hostman/locals.h>

/* *% HAAA *%k HAAA *%k HAAA

* Internal Hostman Functions: allocate_pinned_memory,
* callback,

* initialize _configuration_table,

* synchronize

* isotach_init

* isotach_deinit

* shutdown

kAR Ak kA A Ak *A KA A A KA A
*

/* This function is called by open_net and it assigns the correct addresses
to each entry in the nst (for local_noniso and local_iso).
For more information see the Ironman Document */

int allocate_pinned_memory (int max_length) {
int i

/* The number of noniso and iso credits assigned to each host in the
system */

int noniso_host_credits;

int iso_host_credits;

/* Pointer to the first packet in the ord buffer region and the noniso
buffer region *

PACKET_PTR ord_base_ptr;

PACKET_PTR noniso_base_ptr;

/* This section uses defined values in the utils header file to determine
the size of the NONISO region in pinned memory. *
noniso_base_ptr = (PACKET_PTR)DBLOCK]JO];

/* Calculate the Total Size of Nonlso Region in Pinned Memory. This is done
by using the total SIZE_OF _PINNED_MEMORY and the NONISO_RATIO defined
in constants.h */
NONISO_PINNED_SIZE = ((((SIZE_OF_PINNED_MEMORY * NONISO_RATIO) / sizeof
sizeof (PACKET)) / number_of_hosts) * number_of_hosts;

(PACKET)) *

181

/* The number of total NONISO Credits is dependent upon the size of the
NIU Delivery Queue. This protects the queue from being overfilled */
NONISO_CREDITS = (NIU_DELV_SIZE / number_of_hosts) * number_of_hosts;

/* Calculate the size in packets of each hosts noniso queue in
pinned memory. If the packet size is large, we need to restrict the
number of host_credits to fit into the NONISO region in pinned memory,
otherwise use the full amount of NONISO_CREDITS split among the number
of hosts. */
if (sizeof (PACKET)* NONISO_CREDITS >= NONISO_PINNED_SIZE) {
noniso_host_credits = (NONISO_PINNED_SIZE / number_of_hosts) / sizeof (PACKET);
NONISO_CREDITS = noniso_host_credits * number_of_hosts;

}
else
noniso_host_credits = NONISO_CREDITS / number_of_hosts;

/* End NONISO Pinned Memory Calculations */

/* This section uses defined values in the utils header file to determine
the size of the ORDERED and ISO regions in pinned memory. */

/*1SO_PINNED_SIZE corresponds to the amount of memory we have to
store ordered and isotach messages */
ISO_PINNED_SIZE = SIZE_OF_PINNED_MEMORY - NONISO_PINNED_SIZE;

/* Unnecessary sanity check. If everything above is correct, then
ISO_PINNED_SIZE should already be word aligned. */
ISO_PINNED_SIZE -= ISO_PINNED_SIZE % 4;

/* this calculates the address where the ord queues start */
ord_base_ptr = (PACKET_PTR)((ULONG)noniso_base_ptr + NONISO_PINNED_SIZE);

/* Calculate how many isotach messages we can store in the remainder of
pinned memory. We need to be able to store an equal amount of
ordered messages and isotach receive frames, since potentially

we can receive one ordered message for every isotach message

we receive. To calculate iso_credits, we use the following formulas:

size of ordered region = iso_credits * packetsize
size of isotach region = iso_credits * 2 * sizeo(recviframe) * slack
iso_pinned_mem_size = size of ordered + size of isotach

*

ISO_CREDITS = ISO_PINNED_SIZE / (sizeof (PACKET) +2* sizeof (ISO_RECVFRAME)*ISO_SLACK);

ISO_CREDITS = (ISO_CREDITS / number_of_hosts) * number_of_hosts;
ISO_RECV_SIZE =ISO_CREDITS * sizeof (ISO_RECVFRAME);
iso_base_ptr = (ULONG *)(ord_base_ptr + ISO_CREDITS);
iso_host_credits = ISO_CREDITS / number_of_hosts;

/* Clears the pinned mem info sections of each nst entry */
for (i=0;i<number_of hosts; i++)
memset(&(nst[i].remote_noniso), 0, (sizeof (pinned_mem_info) * 4));

/* For each host, calculate the starting address for their local noniso
queue area in pinned memory. If the system has Isotach functionality,
also calculate the starting address for the node's local iso queue area
in pinned memory */

for (i=0;i<number_of hosts; i++) {

nst[i].local_noniso.base = noniso_base_ptr + i*noniso_host_credits;
nst[i].local_noniso.size = noniso_host_credits;

nst[i].local_iso.base = ord_base_ptr + i*iso_host_credits;
nst[i].local_iso.size = iso_host_credits;

return SUCCESS;
}

/* This function reads in the configuration file specified by CONFIG_FILE

182

(which is usually in "./network.cfg”) */

int initialize_configuration_table 0{
FILE *fp;
char host_node_name[32]; // The hostname
char line[128]; // Temporarily stores a line read in from a file.
char search_str[16]; // String used to find your route in the table.

char temp_host_name[32];

int i
int node;
int route;

/* Find out the name of the current host */
fp = popen()

if (fp == (FILE *)NULL) {
printf();
return FAILURE;
}

fgets(host_node_name, 31, fp);
fclose(fp);
host_node_name([strlen(host_node_name) - 1] = ;

/* Time to read in the configuration file */
fp = fopen(CONFIG_FILE,);

if (fp == (FILE *)NULL) {
printf();
return FAILURE;

/* ignore the first comment line */
fgets(line, 127, fp);

/* find the number of hosts */
fscanf(fp, , &number_of_hosts);

/* allocate space in the table */
nst = (node_info *)malloc(number_of_hosts * sizeof (node_info));

/* ignore the second comment line */
fgets(line, 127, fp);

/* read in all of the host names and IDs */

for (i =0;i<number_of_hosts; i++) {

fscanf(fp, , temp_host_name, &nst[i].node_id);
strcpy(nst[i].host_name, temp_host_name);

/* set alive flag to FALSE */
nst[i].alive = FALSE;

if ('strcmp(host_node_name, nst[i].host_name)) {
host_node_id = nst[i].node_id;

}
}

/* find your routing table in the configuration file */
sprintf(search_str, , host_node_id);

while (!feof(fp)) {
fgets(line, 127, fp);

if (!strncmp(line, search_str, strlen(search_str))) {
break ;

/* read in your route and put in the correct format */
for (i =0;i<number_of_hosts; i++) {

fscanf(fp, , &node,&route);
nst[i].route = (ULONG)htonl(route);

183

}
fclose(fp);

return SUCCESS;
}

/* This function implements an n-squared synchronization algorithm, adapted
from the lllinois Fast Messages synchronization algorithm */
int synchronize () {
/*
The algorithm proceeds as thus:
This host sends out sync packets to every other host on the network.
The host waits until it has received sync_ack packets from all of the
hosts it has sent sync packets to. It also waits to receive sync packets
from every other host, and sends out sync_ack packets to any host that
has sent it a sync packet. Sending out sync_packets lets you know that
every other host is alive, and it also transmits pinned memory information
to these hosts. Receiving sync packets and responding with sync_ack
packets, lets the other hosts know that you are alive and that you
received their pinned memory information.

Once this host has received all sync packets (and responded to them) from
every other host, and has sent out its own sync packets (and gotten
responses back from other hosts) it is assured that every other host

is alive, and that every other host knows that it is alive.

However, to ensure that every other host in the network has also finished
synchronizing, sync_done packets are sent out. A host may not leave the
synchronization loop, and return to the application, until it has both

sent all of its sync_done packets and received all of the other hosts'
sync_done packets.

/* A temporary niu_send_buf memory mapped variable to be used for
synchronization. NOT to be confused with the niu_send_buf in

the Shipping Module */

volatile PACKET_PTR niu_send_buf;

volatile UCHAR *niu_send_h;

volatile UCHAR *niu_send_t;

volatile ULONG *lanai_received;
ULONG host_received = 0;

PACKET_PTR bad_packet;
PACKET sync_packet;
PACKET sync_ack_packet;
PACKET recv_packet;
PACKET done_packet;

ULONG my_lanai_received;

int i;

const int SYNC_DELAY = 500000;
int dead_hosts;

int notified_hosts;

int done_hosts;

int delay = SYNC_DELAY;

/* Used to create the nice little spinny thingy when you are synchronizing */

char spin_chars[4] = { ", Wk

int j=0;

/* Initialize the following arrays *

int *alive = (int *)malloc(number_of_hosts* sizeof (int));

int *toldalive = (int *)malloc(number_of _hosts* sizeof (int));
int *done_sync = (int *)malloc(number_of_hosts* sizeof (int));
/* Memory Map these variables on the LANAI */

niu_send_buf = (PACKET_PTR)get_lanai_sym(" niu_send_buf");
niu_send_h = (UCHAR *)get_lanai_sym(" niu_send_h");
niu_send_t = (UCHAR *)get_lanai_sym(" niu_send_t");
lanai_received = get_lanai_sym(" lanai_received");

184

/* By default you have notified yourself that you are alive, and you also
know that you are alive. This also implies that you are done with
yourself */

notified_hosts = 1;

dead_hosts = number_of_hosts-1;

done_hosts = 1;

printf(,spin_chars[j++]);
fflush(stdout);

/* Initialize the arrays to indicate that all other hosts are dead, not done
synchronizing and have not been told that you are alive */

for (i=0; i< number_of_hosts; i++) {

alive[i] = FALSE;

toldalive[i] = FALSE;

done_sync[i] = FALSE;

/* Change your entry in the arrays to indicate that you are alive, and
you have told yourself that you are alive */
alive[host_node_id] = toldalive[host_node_id] = TRUE;
done_sync[host_node_id] = TRUE;

/* Initialize sync packet with default info */
sync_packet.type = htons(NONISO);
sync_packet.subtype = SYNC;
sync_packet.padl = 0;
sync_packet.sender = host_node_id;
sync_packet.address = 0;
sync_packet.payload_length = htons((USHORT) sizeof (pinned_mem_info)*2);
sync_packet.pad2 = 0;
sync_packet.credit_info = 0;

/* Initialize sync ack packet with default info.*/
sync_ack_packet.type = htons(NONISO);
sync_ack_packet.subtype = SYNC_ACK;
sync_ack_packet.padl = 0;
sync_ack_packet.sender = host_node_id;
sync_ack_packet.address = 0;
sync_ack_packet.payload_length = 0;
sync_ack_packet.pad2 = 0;
sync_ack_packet.credit_info = 0;
memset(&sync_ack_packet.data, ,MAX_PAYLOAD_SIZE);

/* Initialize sync done packet with default info.*/
done_packet.type = htons(NONISO);
done_packet.subtype = SYNC_DONE;
done_packet.padl = 0;
done_packet.sender = host_node_id;
done_packet.address = 0;
done_packet.payload_length = 0;
done_packet.pad2 = 0;
done_packet.credit_info = 0;
memset(&done_packet.data, ,MAX_PAYLOAD_SIZE);

while ((dead_hosts) || (notified_hosts < number_of_hosts)) {
/* As long as there are dead hosts in the network, or there are hosts
that you have not notified of your aliveness keep looping */

if (*init_stage == BAD_CRC) {

/* If you receive a bad CRC, bail out. This should really never happen,
but eventually support may be put in for bad CRC recovery during
synchronization */

printf();
fflush(stdout);
bad_packet = hostman_hostbase;
print_out_packet(bad_packet);
return FAILURE;

/*do a receive */

185

/* check to see if we've received any packets */
my_lanai_received = ntohl(*lanai_received);

while (host_received < my_lanai_received) {
/* retrieve the packet off of the queue */
memcpy(&recv_packet, hostman_hostbase + host_received, sizeof (PACKET));

/* record that we've received it */
host_received++;

/* examine the subtype */
/*if it is an ack packet, set alive flag to true */
if (recv_packet.subtype == SYNC_ACK) {

if (lalive[recv_packet.sender]) {
alive[recv_packet.sender] = TRUE;
dead_hosts--;

}

/* otherwise, if its a plain sync packet. Retrieve the info and send
an ack */
else if (recv_packet.subtype == SYNC) {

if (itoldalive[recv_packet.sender]) {
/* copy the noniso dma information into the nst */
/* note, this will also copy over isotach information, since it is
second in the payload, and it inmediately follows the non_iso
memory info stuff in the node_info structure */

memcpy(&nst[recv_packet.sender].remote_noniso,recv_packet.data,
ntohs(recv_packet.payload_length));

if (nst[recv_packet.sender].remote_noniso.base == 0) {
print_out_packet(&recv_packet);
continue ;

/* now send back an ack */
sync_ack_packet.route = nst[recv_packet.sender].route;
/* make sure Lanai's send buffer is not full */

while (queue_full(*niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {}
/* insert the packet onto the send queue and inc the tail pointer */
memcpy((PACKET_PTR)niu_send_buf + *niu_send_t,
&sync_ack_packet, sizeof (PACKET));
inc_idx(*niu_send_t, NIU_SEND_SIZE);
toldalive[recv_packet.sender] = TRUE;
notified_hosts++;

}

/* we could receive a done packet from someone else */

else if (recv_packet.subtype == SYNC_DONE) {
done_sync[recv_packet.sender] = TRUE;
done_hosts++;

/* else bail and terminate */

else {
printf(, recv_packet.sender);
fflush(stdout);
print_out_packet(&recv_packet);

if (++delay > SYNC_DELAY) {
delay = 0;

/* This is to create the nice spinny thingy for synchronization *
printf(,8,8);
printf(,spin_charslj]);
fflush(stdout);
j=(+1) % 4,

/* send out sync packets to all dead hosts */
for (i =0;i<number_of_hosts; i++) {

186

it (talive[i]) {

/* copy pinned memory info into payload */
memcpy(&sync_packet.data, &nst[i].local_noniso,
2% sizeof (pinned_mem_info));

/* add the route */
sync_packet.route = nst[i].route;

/* make sure Lanai's send buffer is not full */
while (queue_full(*niu_send_h, *niu_send_t, NIU_SEND_SIZE)) { }

/* insert the packet onto the send queue and increment the tail
pointer */
memcpy((PACKET_PTR)niu_send_buf + *niu_send_t, &sync_packet,
sizeof (PACKET));
inc_idx(*niu_send_t, NIU_SEND_SIZE);
}

/* now tell everyone that we in fact synchronized with everyone else */
for (i=0; i< number_of_hosts; i++) {

if (i!=host_node_id) {

/* add the route */
done_packet.route = nst[i].route;

/* make sure Lanai's send buffer is not full */
while (queue_full(*niu_send_h, *niu_send_t, NIU_SEND_SIZE)) ;

/* insert the packet onto the send queue and increment the tail pointer*/
memcpy((PACKET_PTR)niu_send_buf + *niu_send_t, &done_packet,
sizeof (PACKET));

inc_idx(*niu_send_t, NIU_SEND_SIZE);

/* now wait for done packets from everyone else */
while (done_hosts < number_of_hosts) {

if (++delay > SYNC_DELAY) {

delay = 0;
printf(,8,8);
printf(,spin_charslj]);
fflush(stdout);
j=(+1) % 4,
}
if (*init_stage == BAD_CRC) {

/* If you receive a bad CRC, bail out. This should really never happen,
but eventually support may be put in for bad CRC recovery during
synchronization */

printf();
fflush(stdout);

bad_packet = hostman_hostbase;
print_out_packet(bad_packet);
return FAILURE;

if (host_received < ntohl(*lanai_received)) {

/* retrieve the packet off of the queue */
memcpy(&recv_packet, hostman_hostbase + host_received, sizeof (PACKET));

/* record that we've received it */
host_received++;

if (recv_packet.subtype == SYNC_DONE) {
done_sync[recv_packet.sender] = TRUE;

187

done_hosts++;

else if (recv_packet.subtype == SYNC) {

printf(, recv_packet.sender);
fflush(stdout);

else {
printf(,recv_packet.sender);
fflush(stdout);
print_out_packet(&recv_packet);

/* This is to create the nice spinny thingy for synchronization */
printf(,8,8);
printf();
fflush(stdout);

nst[host_node_id].remote_noniso.size = nst[(host_node_id + 1) %
number_of_hosts].remote_noniso.size;

nst[host_node_id].remote_iso.size = nst[(host_node_id + 1) % number_of_hosts].remote_iso.size;

*init_stage = FINISHED;
return SUCCESS;
}

/* Initialize the Isotach System */
int isotach_init 0{

/* Initialize remaining modules */
shipping_init(nst);
flow_init(nst);
send_init();
receive_init(nst);
deliver_init(nst);
barrier_init(nst);

if ((SYS_TYPE == ISOTACH) || (SYS_TYPE == BOTH)) {
/* Call Isotach Modules inits */

iso_send_init();

iso_flow_init(nst);

iso_receive_init(iso_base_ptr);

iso_deliver_init();

iso_shipping_init(nst);

iso_signal_init();

iom_init();

iso_barrier_init(nst);

}
*init_stage = FINISHED;

/* Print out configuration information */
print_config();

/* Isotach Reset and Initialization - This is only executed if SIU == 1
* (that is, we are using SIU hardware functionality.
*/
#if (SIU ==1)
if ((SYS_TYPE == ISOTACH) || (SYS_TYPE == BOTH)) {
/* If you are node 0, send out a reset bs-marker */
if (host_node_id == 0) {

printf();
iso_send_mLayer_signal(RESET_SIGNAL);
}
/* Wait until the reset signal has been received and then continue */
printf();
while (reset_count ==0) {
iso_poll();

188

printf("Waiting for SIU...\n");
sleep(SIU_SLEEP_TIMERY);

}
#endif

return SUCCESS;
}

/* Deinitialize the Isotach System */
int isotach_deinit 0{
/* Deinitialize remaining modules */

flow_deinit();

send_deinit();

receive_deinit();

deliver_deinit();

barrier_deinit();

shipping_deinit();

if ((SYS_TYPE ==ISOTACH) || (SYS_TYPE == BOTH)) {
/* Call Isotach Modules deinits */

iso_send_deinit();

iso_flow_deinit();

iso_receive_deinit();

iso_deliver_deinit();

iso_shipping_deinit();

iso_signal_deinit();

iom_deinit();

iso_barrier_deinit();

fprintf (stderr, "Shutting down the Isotach System...\n"

fprintf (stderr, "Loading the LANai with %s\n" , LCPFILE);

lanai_load_and_reset (0, LCPFILE , 0O, 0, O, callback);

return SUCCESS;
}

/* The following lines of code load a dummy mcp so that garbage is not
spewed onto the network by the previous mcp. */
static inline void shutdown (int type){

i (type == 0) {
isotach_deinit();
exit (1);

else if (type==1){

fprintf(stderr, "Waiting for CONTROL-C Interrupt...");

while (1);

/* xx

/* xx

*/

/* In the Application Level Header files, the application poll() is mapped to
one of the three following functions. If the system requested is purely
Non-Isotach, then noniso_poll() is used. If the system is purely Isotach
then iso_poll() is used. If both Isotach and Non-Isotach functionality is
requested by the application, then iso_poll() is used.

These poll functions are also called by some of the modules, so the polling
can be done implicitly instead of explictly by the application programmer */

189

int iso_poll () {
receive_poll();
iso_receive_poll();
flow_poll();
iso_flow_poll();
shipping_poll();
iso_shipping_poll();
iso_signal_poll();

return SUCCESS;
}

int noniso_poll () {
receive_poll();
flow_poll();
shipping_poll();
return SUCCESS;

}

/* xxx
* End of POLL functions
ook ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok o ok ok ok ok e o o ok ok 5k ok ok ok o ok ok ok ok ok ok ok sk o ok o o o sk ok ok o e b b ok ok Sk ok ok ok
*

/* xxx
* API Functions - open_net,
* get_node_number,
* get_number_of_hosts,
* get_my_node_number,
* try_close_net
ook ok ok o ok ok ok o b ok ok ok ok ok ok ok ok ok o ok ok ok ok o ok ok ok e o ok ok ok 5k sk sk o b ok ok ok ok ok ok sk ok e ok o o o sk ok ok o b b b o ok Sk ok ok ok
*

/* Returns the host node ID of this host. */
int get_my_node_number () {
return host_node_id;

}

/* Returns the total number of hosts on the Isotach Network. */
int get_number_of hosts () {
return number_of_hosts;

}

/* Returns the maximum payload that the application may send in a noniso or
Isotach message */

int get_max_payload () {
return MAX_PAYLOAD_SIZE;

}

/* Returns 1 if the SIU functionality is enabled, 0 if it is disabled */
int get SIU_state () {
return SIU;

}

/* Returns a numeric value which indicates which version of the IOM is being
used. 1 signifies that no host ordering is used, 2 signifies that host
ordering is being used */

int get_MBM_ver () {

return MBM_VER,;
}

/* Returns the host node ID of the host with name hostname. This function
is invoked by the application */
int get_node_number (char *hostname) {
int i
for (i=0; i<number_of_hosts; i++)
if (!strcmp(nst[i].host_name, hostname))
return (int)nst[i].node_id;
return -1;

}

190

/* This function is called by the application to initialize the mLayer and

to load the LANAI with the Lanai Control Program (LCP). This MUST be called
before any messages (Isotach or Nonlsotach) can be sent. The only API

functions that will work properly before open_net is called are the ones
listed directly above this function. (i.e. get_node_number, etc...) */
int open_net (int mode) {

volatile ULONG *dma_sts; // Burst mode information for DMA transfer

int units;

int max_length; // Size of Pinned Memory Area on Host in bytes.
USHORT sts;

int i

/* Initialize the BITS array so that we can extract the nth bit of a byte
by masking it with BITS[n] */
for (i=0;i<8;i++){
BITS[i] =1 <<,
}

/* Is the system ISO, NONISO or BOTH? */
SYS_TYPE = mode;

Vil o *
/* Section 1: lanai_read_symbol_table() */
Vil o *
printf ("Loading Netman onto Myricom Interface Board...\n"

symbol_table = lanai_read_symbol_table(LCPFILE);
if ('symbol_table) {

printf ("ERROR: Could not read LANAI symbol table. Aborting."

exit(1);
}

[FREKEKIREAIRAAAAKAKIRKAKAKIAIAIAAIA K]

/* Section 2: open_lanai_copy_block() */

[FREKEKERIRIRAAAAKAKARKAKIKIAIAIAAAA K]

units = open_lanai_copy_block (&max_length, &sts);

printf ("units= %d max_length= %d sts= %d\n"
it ((units <= 0) || (max_length <= 0)) {
printf("ERROR: Could not open LANAI copy block. Aborting.\n"
exit(1);

else if (max_length I= SIZE_OF_PINNED_MEMORY) {

printf("ERROR: LANAI Reports that Pinned Memory is: %lu\n"
printf("Change SIZE_OF_PINNED_MEMORY to equal this amount. Aborting\n"
shutdown(1);
/* * HAAA *% HARAAAAAAAAAAAAAAAAK */
/* Section 3: Mapping Hostman Variables */
/* Other module's mapped variables will be done in their own */
/* initialization functions. *
/* * HAAA *% HARAAAAAAAAAAAAAAAAK */
lanai0 =(char *)LANAI[O];
netman_hostbase = get_lanai_sym("_netman_hostbase"
netman_maxlen = get_lanai_sym("_netman_maxlen");
niu_iso_recv_base = get_lanai_sym(" niu_iso_recv_base"
dma_sts =get_lanai_sym(" _dma_sts");
init_stage = (UCHAR *)get_lanai_sym("_init_stage");

NIU_SYS_TYPE = (UCHAR *)get_lanai_sym(

/* * ok k *k kA k kA kA kA ARk A KA kA */
/* Section 4: Set init_stage to START *
/* * ok k *k kA k kA kA kA ARk A A A kA */

*init_stage = START;

""NIU_SYS_TYPE");

, units, max_length, sts);

, (ULONG)max_length);

191

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */

/* Section 5: Seed beginning of pinned memory woth a set value for */
Vid DMA test. ¥

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */

for (i=0;i<8;i++){
(ULONG *)(UBLOCK]JO])[i] = htonl(OXDEADBEEF);

}
/* xx */
/* Section 6: lanai_load_and_reset and initialize the signal handler */
/* xx */

lanai_load_and_reset (0, LCPFILE, 0, 0, 0, callback);

signal (SIGINT, handle_sigint);

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */
/* Section 7: Send LANAI a pointer to beginning of Pinned Memory *
/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */

*netman_hostbase = htonl((ULONG)DBLOCK]0]);
*netman_maxlen = htonl((ULONG)max_length);
*NIU_SYS_TYPE =SYS_TYPE;

*dma_sts = htonl(sts);

hostman_hostbase = (PACKET_PTR)UBLOCK]JO];

offset = (ULONG)hostman_hostbhase - (ULONG)ntohl(*netman_hostbase);
/* xx */
/* Section 8: INIT_STAGE: START_LANAI - Tell LANAI to being DMA Test *
/* xx */

/* xx */

/* Section 9: Host Checks pinned memory to ensure DMA engine is */
/* working, and terminates with an error message ifitis *

/* not working. ¥/

/* xx */

/* The host waits until the LANAI has completed the DMA Test */
while (*init_stage != INIT_DMA_TEST) {}

for (i=0;i<8;i++){
long int j=htonl((ULONG)((UBLOCKI[O])i]));

it (1= 0x11223344) {

printf("ERROR: DMA problem at location %d. Value = %lIx\n Aborting."
i, J);
shutdown(1);
}
}
/* xx */
/* Section 10: INIT_STAGE: CHECK_DMA _TEST - Tell LANAI that hostis %
/* finished checking the DMA Engine. *
/* xx */

/* xx */

/* Section 11: Read in the Network Configuration File and Initialize %
/* Network Status Table *

/* xx */

if (initialize_configuration_table() == FAILURE) {
printf("ERROR: Configuration File could not be processed. Aborting.\n"

192

shutdown(1);

/* *k ok k *k ok k * H*okokk */

/* Section 12: Allocate Pinned Memory to ISOTACH and NONISOTACH and %/
/* print out the network configuration *

/* *k ok k *k Hhokokk * ok k */

allocate_pinned_memory(max_length);
print_network_configuration();

/* *k ok k *k ok k * H*okokk */
/* Section 13: Begin Host Synchronization Routine */
/* *k ok k *k Hhokokk * ok k */

/* Tell the LANAI that we are ready to begin synchronization */
*init_stage = SYNCHRONIZE;

/* Synchronization Loop */
if (synchronize() == FAILURE) {

printf("ERROR: Hosts would not synchronize properly. Aborting.\n");
shutdown(1);

/* *k ok k *k Hhokokk * ok k */

/* Section 14: Initialize Isotach Modules and perform an Isotach Reset *

/* if necessary */

/* *k ok k *k ok k * Kok k */

if (isotach_init() == FAILURE) {

printf("FAILURE: Isotach Initialization Failed. Aborting.\n");
shutdown(1);
}
/* *k ok k *k Hhokokk * ok k */
/* Section 15: Return to the Application */
/* *k ok k *k Hhokokk * ok k */

return SUCCESS;
}

/* This function attempts to shutdown the Isotach Network through the use of
a barrier. If the system is Isotach or Both and using hardware SIUs, the
system attempts to initiaite an Isotach barrier to ensure that all hosts
have completed message sending, and then shuts down the system when the
barrier has completed. In Nonlsotach mode, or when the hardware SIU is
disabled, this function uses a Nonlsotach barrier to accomplish the same
thing. */
int try_close_net 0{
/* NOTE: It is expected that after an application calls try_close_net, it
will no longer be SENDING any more messages. It may need to recieve more
messages, but by the time the barrier is completed there should be no
further messages to complete. */

static int initiated = FALSE;
int i

/* If we are NONISOTACH or do not use an SIU, then use this barrier method */
if ((SYS_TYPE == NONISOTACH) || (MBM_VER < 2)) {

/* If the barrier has not been initiated yet, initiate it. */
if (linitiated && queue_empty(send_h, send_t)) {
initiate_barrier();
initiated = TRUE;
}

/* Poll no matter what */
noniso_poll();

193

/* If there is nothing left in the delivery q, then check to see if the
barrier is completed. If it is, shutdown, otherwise, inform the
application to keep checking */

if (queue_empty(delivery_h,delivery_t)) {

if (barrier_completed() == SUCCESS) {
isotach_deinit();
return SUCCESS;

else {
return FAILURE;
}
}
else {
return FAILURE;
}

/* Else, if we are using an SIU in an ISOTACH system, use this method */
else if (((SYS_TYPE ==ISOTACH) || (SYS_TYPE == BOTH)) && (MBM_VER > 1)) {
return SUCCESS;

/* If we have not initiated an iso_barrier yet, try to. Only set initiated

to TRUE if we can start the barrier on the
SHUTDOWN_BARRIER channel. SHUTDOWN_BARRIER is defined in iso_barrier's
exports.h */

if ((tinitiated) && (queue_empty(iso_send_h, iso_send_t))) {
if (iso_mLayer_barrier(SHUTDOWN_BARRIER, STRONG) == FAILURE) {
return FAILURE;

}

initiated = TRUE;
}

/* Poll No matter what */
iso_poll();

/* Peek at the top of the iso_delivery Queue. If the top item is a
BS_MARKER and it has bits that indicate that the SHUTDOWN_BARRIER has
completed, then shutdown. Otherwise, return FAILURE to the application
so that the application keeps checking. */
if ('queue_empty(iso_delivery_h, iso_delivery t)) {
if ((iso_delivery_t->subtype == BS_MARKER)) {
printf("got a bsmarker for shutdown");
printf("bits-=%0X\n" , ((bsnotice *)iso_delivery_t)->bits);
if (((bsnotice *)iso_delivery_t)->bits & BITS[SHUTDOWN_BARRIER] == 1) {
isotach_deinit();
return SUCCESS;

else {
return FAILURE;

/* Return FAILURE just in case... */
return FAILURE;

}

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

*/

/* This prints out the network configuration, and some basic system
configuration. Useful to see, but not necessary. Can be removed from

194

open_net() ¥/

void print_network_configuration 0{
int i
printf("Welcome to Isotach\n");

printfi(“MAX_PAYLOAD SIZE = %din" ,MAX_PAYLOAD_SIZE);

if (MBM_VER == 1)

printf("There is no support for self messages and Isotach ordering\n”);
it (SIU==0)
printf("There is no support for a hardware SIU\n");

printf("l am node %s(%lu)\n\n" ,nst[host_node_id].host_name,host_node_id);

for (i=0;i<number_of hosts; i++) {
printf("Node ID: %lu\tName: %s\tRoute: %08X\n"
nstfi].node_id,nst[i].host_name,ntohl(nst[i].route));

return ;

}

/* This prints out the Pinned Memory Configuration for all hosts. Again, it
is often useful to see this, but it is not necessary. Disable by commenting
out the call in open_net() */

void print_config 0{

int i

printf("NONISO Pinned Memory Configuration:\n");

for (i=0;i<number_of _hosts; i++) {

printf("Node ID: %lu\tBase: %8u\tLength: %5lu\tBaseL: %8u\tLengthL: %5Ilu\n”
(ULONG)nst[i].remote_noniso.base, nst[i].remote_noniso.size, (ULONG)nst[i].local_noniso.base,
nst[i].local_noniso.size);

printf("ISO Pinned Memory Configuration:\n");

for (i=0;i<number_of hosts; i++) {

printf("Node ID: %lu\tBase: %8u\tLength: %5lu\tBaseL: %8u\tLengthL: %5Ilu\n”
(ULONG)nst[i].remote_iso.base, nst[i].remote_iso.size, (ULONG)nst[i].local_iso.base,
nst[i].local_iso.size);

return ;

}

/* FAKEEAAAAAAAAKK * HAAA * HAAA

* End Utility Functions

* kA ok ok ok okok Ak Aok ok ok ok ok

*/

/* FAEEEAAAAAAAAAK * HAAA * HAAA

* Misc. Functions: handle_sigint

* kA ok ok Hok okok Ak ok ok ok ko ok

*/

/*
* This is the signal handler for CONTROL-C before FM_initialize has been
* executed. It does not call iso_print_stats. It simply notifies the user
* that a sigint was received and then loads the LANai with a dummy _Icp
* to reset it and prevent miscellaneous packets from being sent out.
* Perry (9/15/99)
*/

void handle_sigint (int s){
shutdown(0);
}

/* FAKEEAAAAAAAAKK * HAAA * HAAA

,nst[i].node_id,

,nst[i].node_id,

195

* End Misc. Functions

* ok okok * ok ok * ok ok

*/

196

api/send/exports.h

/*

*

*

* Isotach Module : Send Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module and the Flow Module

*

*

#ifndef ~ SEND_EXPORTS_H
#define SEND_EXPORTS_H

/* Hostman's open_net calls this to initialize the send module */
int send_init ();
int send_deinit ();

/* The application calls this to perform a non-iso send */
int send(int target, void *data, int size);

#endif

197

api/send/locals.h

/*

*

*

* Isotach Module : Send Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef SEND_LOCALS_H
#define SEND_LOCALS_H

#include <hostman/host_utils.h>

#include <api/send/exports.h>

#include <niu_interface/shipping/exports.h>
#include <processing/flow/exports.h>

#endif

198

api/send/send.c

/*

*

*

* Isotach Module : Send Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module exports the APl send function, which is called by the

* applications. It provides the functionality for sending non-iso messages.

* Each message is built into the send_buf at send_t. Then, the message is

* examined by Flow Module to determine if there is enough send credits to send
*the message. After the message has cleared Flow, it is sent to shipping

* where the route is assigned and the packet is sent to the LANAI via the

* memory-mapped niu_send_buf. The Netman module reads packets off of the
* niu_send_buf and transmits them onto the network.

*

*

*

* COMMENTS:

*

*

#include <api/send/locals.h>

/* Module De-Initialization Function */
int send_deinit () {

/* Stub Function */

return SUCCESS;

}

/* Module Initialization Function *
int send_init () {

return SUCCESS;
}

/* The Application calls this to initiate an Non-Isotach Message Based Packet.
Self-Messages are not supported, and the target must be a valid node-id in
the network. *data points to the data to be sent, and size represents the
amount of bytes to be sent. */

int send(int target, void *data, int size) {

/* If the send_buf is full, first invoke the poll() function and then return
a FAILURE code to the application */
if (queue_full(send_h, send_t, SEND_BUF_SIZE)) {
if (SYS_TYPE == NONISOTACH)
noniso_poll();
else
iso_poll();

// printf("Leaving send(): send_buf has reached maximum capacity.\n");
return FAILURE;

/* If the target host for the send is not in the allowed range of hosts, OR

is to this host, poll and then return a FAILURE */

if ((target < 0) || (target >= number_of_hosts) || (target == host_node_.id)){
if (SYS_TYPE == NONISOTACH)

199

noniso_poll();
else
iso_poll();

printf("Leaving send(): Invalid recepient.\n");
return FAILURE;

/* If the payload size is greater than MAX_PAYLOAD_SIZE, poll and then
return a FAILURE code */
if (size > MAX_PAYLOAD_SIZE) {

if (SYS_TYPE == NONISOTACH)

noniso_poll();
else
iso_poll();
printf("Leaving send(): Payload size too large.\n");

return FAILURE;

/* Create the Packet to be sent in the tail of the send_buf */

/* The target is written into the route, so that shipping will know which
entry off of routes[] to use */

send_t->route = (ULONG)target;

send_t->type = htons(NONISO);

send_t->subtype = NONISO_MBM;

send_t->sender = host_node_id;

/* The payload length, and contents of the payload are written into the
packet */
send_t->payload_length = htons((USHORT)size);
memcpy(&send_t->data, data, size);

//printf("Sent packet to %lu\n”, send_t->route);

/* The send_t is incremented to tell flow that there is a new packet to be
examined */
inc_ptr(send_t, SEND_BUF_SIZE, send_buf);

/* Poll before exiting */

if (SYS_TYPE == NONISOTACH)
noniso_poll();

else

iso_poll();

return SUCCESS;

200

api/deliver/exports.h

/*

*

*

* Isotach Module : Deliver Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/deliver/exports.h,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module

*

*

#ifndef DELIVER_EXPORTS_H
#define DELIVER_EXPORTS_H

int DELIVERY_SIZE;

typedef struct {
int sender_id; // The originator of this message
int size; // The length of the data being pointed to by data_ptr
//if this is a -1, then the date is stored in data
union msg_tag {

void *data_ptr; // Pointer to pinned memory where data is kept
int data; // An actual word of data
} msg;

} noniso_mbm;

/* The Delivery Queue. Messages are placed onto this queue for delivery to
the application. The application reads messages off of this queue through
calls to receive() */

PACKET_PTR *delivery_g;

ULONG delivery_h;

ULONG delivery_t;

int receive (noniso_mbm *recv_msg);

int deliver_init (node_info *nst);
int deliver_deinit 0;
#endif

201

api/deliver/locals.h

/*

*

*

* |sotach Module : Deliver Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/deliver/locals.h,v $
* $Revision: 1.4 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef DELIVER_LOCALS H
#define DELIVER_LOCALS H

#include <hostman/host_utils.h>

#include <api/deliver/exports.h>

#include <niu_interface/receive/exports.h>
#include <processing/flow/exports.h>

/* A pointer to the last packet delivered, so it can be deleted when the next
call to recieve() is processed. This gives the application time to copy
the message contents into local memory, before it is deleted from pinned
memory. */

PACKET_PTR last_packet;

#endif

202

api/deliver/deliver.c

/*

*

*

* Isotach Module : Deliver Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

$Source: /homeZ2/isotach/cvsroot/v3/api/deliver/deliver.c,v $
$Revision: 1.2 $

$Author: pnm2h $

$Date: 1999/11/04 22:29:15 $

DESCRIPTION:

COMMENTS:

B R A T T

X

#include <api/deliver/locals.h>

/* Deliver Module Delnitialization Function */
int deliver_deinit 0{
return SUCCESS;

}
/* Delviery Module Initialization Function */
int deliver_init (node_info *nst) {
DELIVERY_SIZE = number_of_hosts * nst[host_node_id].remote_noniso.size;
delivery_q = (PACKET_PTR *)malloc(DELIVERY_SIZE * sizeof
if (delivery_gq == (PACKET_PTR *)NULL) {
printf("Could not allocate space for delivery_q! Aborting.\n"
shutdown(1);

last_packet = NULL;
delivery_t=0;
delivery_h =0;

return SUCCESS;
}

/* API Function called by the Application to recieve pending messages from the
delivery_q. The pending message is placed in the noniso_mbm structure,
which has a data pointer to pinned memory where the body of the message is
stored. The application MUST copy the data out of pinned memory before the

next call to receive or it will be lost. */
int receive (noniso_mbm *recv_msg) {

/* If there is a packet waiting to be deleted, delete it. */
if (last_packet != NULL) {
delete_packet(last_packet->sender, last_packet);
last_packet = NULL;

}

if (SYS_TYPE == NONISOTACH)
noniso_poll();

else

iso_poll();

/* Nothing to receive... ¥/

(PACKET_PTR));

203

if (queue_empty(delivery_h, delivery_t)) {
return FAILURE;

/* Take the message to be received off of the delivery_q and place it in the
noniso_mbm structure passed into receive() */

else {

last_packet = delivery_g[delivery_h];

inc_idx(delivery_h, DELIVERY_SIZE);
recv_msg->sender_id = last_packet->sender;

recv_msg->size = ntohs(last_packet->payload_length);
recv_msg->msg.data_ptr = last_packet->data;

return SUCCESS;
}

204

api/barrier/exports.h

/*

*

*

* Isotach Module : Barrier Module Exported Functions/Variables
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

* Included by the Hostman and Receive Modules
*

*

*

#ifndef BARRIER_EXPORTS_H
#define BARRIER_EXPORTS_H

/* receiving calls this when it receives a barrier packet */
void process_barrier (ULONG sender);

/* Hostman's open_net calls this to initialize the Flow Module */
int barrier_init 0;
int barrier_deinit 0;

/* called by mLayer and perhaps eventually the application */
int initiate_barrier 0;

/* a "poll" function that returns success when we have received
barrier packets from every host */
int barrier_completed 0;

#endif

205

api/barrier/locals.h

/*

*

*

* Isotach Module : Barrier Module Local Variable Header File
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef BARRIER_LOCALS_H
#define BARRIER_LOCALS_H

#include <hostman/host_utils.h>
#include <api/barrier/exports.h>
#include <niu_interface/shipping/exports.h>

/* array of flags used to store receipt of barrier */
int *barrier_recv;

/* flag to signify whether we are in a barrier or not */
int in_barrier;

PACKET_PTR *barrier_packet_base;

#endif

206

api/barrier/barrier.c

/*

*

*

* Isotach Module : Barrier Module
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/flow_control/flow/flow.c,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module provides functionality for a non-isotach barrier, initially
*used by try_close_net in noniso, but may eventually used by an

* application. It provides init and de-init functions to be called by

* hostman, and initiate function that sends barrier packets to all hosts,
* a receive function that the receive module can call to notify us that
*we have received a barrier packet, and a poll function that allows the
* initiator of the barrier to see when it completes.

*

*

*

* COMMENTS:
* Included by the Hostman Module, Shipping Module and Send Module

*

*/

#include <api/barrier/locals.h>

/* receiving calls this when it receives a barrier packet */
void process_barrier (ULONG sender) {
barrier_recv[sender] = TRUE;

return
}
/* Barrier Module Initialization Function */
int barrier_init (node_info *nst) {
int i;
barrier_recv = (int *)malloc(number_of_hosts * sizeof (int));

barrier_packet_base = (PACKET_PTR *)malloc(number_of_hosts *
sizeof (PACKET_PTR));

in_barrier = FALSE;

/* Set all of the barrier recieves to FALSE and set each barrier_packet_base
to the appropriate slot in the noniso buffer */

for (i=0;i<number_of hosts; i++) {

barrier_recv[i] = FALSE;

barrier_packet_base[i] = nst[i].remote_noniso.base + 2;

return SUCCESS;
}

/* Barrier Module Delnitialization Function */
int barrier_deinit 0{
free(barrier_recv);
return SUCCESS;

}

/* Initiates a noniso barrier. Called now by the try_close_net function

207

in a purely NONISO system. May also be called directly by the application,
though that feature is yet untested */
int initiate_barrier 0{
int i
int iterations = 0;
PACKET barrier_packet;

/* Cannot Initiate a new batrrier, if we are already in one */
it (in_barrier) {
return FAILURE;
}
in_barrier = TRUE;

/* Initialize all of the packet fields... */

barrier_packet.type = htons(NONISO);
barrier_packet.subtype = BARRIER;
barrier_packet.padl =0;
barrier_packet.sender = host_node_id;
barrier_packet.payload_length = 0;
barrier_packet.pad2 =0;

barrier_packet.credit_info = NULL_CREDIT;

/* Send the barrier packet out to each node in the network, and to yourself
set your barrier_recv value to TRUE to indicate that you have sent the
barrier to yourself. */
for (i =0;i<number_of_hosts; i++) {
if (i ==host_node_id)
barrier_recv]i] = TRUE;
else {
barrier_packet.route =i;
barrier_packet.address = (ULONG)htonl((ULONG)barrier_packet_base[i]);

/* ship_packet only attempts to send once... we want this packet to
go out, so we will keep calling */

while (ship_packet(&barrier_packet) == FAILURE) {
if (++iterations % 10 == 0)

printf("Looping in ship_packet (barrier)\n"):
printf("Sending Barrier Packet to %d\n" i)
}
return SUCCESS;

}

/* a "poll" function that returns success when we have received
barrier packets from every host */

int barrier_completed 0{
int i
int done = TRUE;

if (SYS_TYPE == BOTH)
iso_poll();

else

noniso_poll();

/* If you haven't initiated a barrier, then you cannot check for barrier
completion */
if (in_barrier == FALSE)

return FAILURE;

/* Only if you have recieved a barrier packet from ALL hosts, should you
complete the barrier */
for (i =0;i<number_of_hosts; i++) {
if (barrier_recv[i] == FALSE) {
done = FALSE;
break ;

if (done) {
/* no longer in a barrier */
in_barrier = FALSE;

208

/* reset everything to false */
for (i =0;i<number_of_hosts; i++)
barrier_recv[i] = FALSE;

return SUCCESS;
}

else
return FAILURE;

209

api/iso_send/exports.h

/*

*

*

* Isotach Module : Iso-Send Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module and the Flow Module

*

*

#ifndef ISO_SEND_EXPORTS_H
#define ISO_SEND_EXPORTS_H

/* The max number of messages stored in the hit buffer. This parameter can
be changed, and should be if there is overflow in the hit buffer. */
#define HIT_BUF_SIZE 512

/* This is set to TRUE if we are currently in the middle of sending out an
Isochron, and FALSE if we are not. */
int mid_net_isochron;

/* The hit buffer is used to store locally executed messages/srefs. For each
self message sent, there is an entry for that message in the hit buffer. */

PACKET hit_buf[HIT_BUF_SIZE];

PACKET_PTR hit_h;

PACKET_PTR hit_t;

int iso_send (int target, void *data, int size, int last_in_isochron);
int iso_write ();

int iso_sched ();

int iso_assign ();

int iso_end ();

int iso_send_init 0;

int iso_send_deinit 0;

#endif

210

api/iso_send/locals.h

/*

*

*

* Isotach Module : Iso-Send Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef 1SO_SEND_LOCALS_H
#define 1SO_SEND_LOCALS_H

#include <hostman/host_utils.h>

#include <api/iso_send/exports.h>

#include <processing/iom/exports.h>

#include <processing/iso_flow/exports.h>
#include <niu_interface/shipping/exports.h>
#include <niu_interface/iso_shipping/exports.h>

/* This is initially set to 1, and alternates between 0 and 1 each time an
Isotach packet is sent. This is flipped each Isotach packet to maintain
sequential consistency */

int seq_con_set;

/* A counter (0-255) used to track Isochron ID's. Initialized to zero and
incremented for each Isochron */
UCHAR net_isochrons_sent;

/* This variable is set to TRUE if the EOI status of the item in the tail slot
of iso_send_buf has been determined, or if iso_send_buf is empty. Itis
FALSE otherwise. Initialized to TRUE and set to FALSE when a packet is
constructed in iso_send_buf. */

int EOI_decided;

/* The number of self-messages in the current Isochron. */
int self_count;
void EOI_found ();

int start_iso_packet 0;

#endif

211

api/iso_send/iso_send.c

/*

*

*

* Isotach Module : Iso-Send Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module exports the API functions:
*

*jso_send()

*jso_write()

*jso_sched()

* jso_assign()

*jso_end()

*

* See API Documentation for Details

*

*

*

* COMMENTS: Currently only Iso-MBM messages are supported
*

*

*/

#include <api/iso_send/locals.h>

/* This function is called at the end of each Isochron */
void EOI_found () {

if (EOI_decided == FALSE) {
/* If EOI_decided is FALSE, then make this packet the End Of Isochron
packet, by setting the EOI bit in the packet header. */
iso_send_t->prefix |= EOI_MASK;

/* If a send-delta is required (see SIU Spec) it should be added here.
The random number was purely for testing puposes. */
//iso_send_t->prefix [= (rand()%16);

/* Increment the tail of the iso_send_buf to clear the packet. */
inc_ptr(iso_send_t, ISO_SEND_BUF_SIZE, iso_send_buf);
EOI_decided = TRUE;

}

if (mid_net_isochron == TRUE) {
/* If we have sent any network messages in this Isochron, call
post_isochron with the self_count number */
post_isochron(mid_net_isochron, self_count, net_isochrons_sent);

/* Increment the number of net isochrons sent. */
net_isochrons_sent = (net_isochrons_sent + 1) % isochron_allowance;
mid_net_isochron = FALSE;

}
else {
/* If it is not a network isochron, then just post the isochron without
incrementing the net_isochrons_sent */
post_isochron(mid_net_isochron, self_count, -1);

}

212

/* Reset self-count back to zero for the next Isochron */
self_count = 0;

return
}
/* This function is called for each Isotach Packet that needs to be sent. */
int start_iso_packet 0{

/* If this is not the EOI packet, send the previous packet to shipping by
incrementing the iso_send_buf tail. */

if (EOI_decided == FALSE) {

inc_ptr(iso_send_t, ISO_SEND_BUF_SIZE, iso_send_buf);

EOI_decided = FALSE;

/* Initialize the prefix... */
iso_send_t->prefix = 0;

/* If mid_net_isochron is FALSE, this must be the first Isotach packet in the
Isochron to be sent on the network. In this case, mark this packet as a
SOl (start of Isochron) packet. */
if (mid_net_isochron == FALSE) {

/* We are now in the middle of a network Isochron... */
mid_net_isochron = TRUE;

if (seq_con_set == TRUE) {
/* Set the seq_con_bit if it is TRUE and then flip it to false.
This alternates the seq_con_bit for every packet sent. */
iso_send_t->prefix |= (SEQ_CON_SET_MASK | SEQ_CON_MASK | LOG_TS_MASK);
seq_con_set = FALSE;

else {
/* Otherwise just set the seq_con_mask and log_ts_mask. See the
hardware spec for more details on these... ¥/
iso_send_t->prefix |= (SEQ_CON_MASK | LOG_TS_MASK);
seq_con_set = TRUE;
}

/* Set the Isochron ID in the prefix */
iso_send_t->prefix |= ((ULONG)net_isochrons_sent << 16);

/* If you want to use send deltas, set them here. */
// iso_send_t->prefix [= 0x00000001;

return SUCCESS;
}

/* The application calls this to indicate that the last packet has been sent
in the current Isochron. *
int iso_end (){
/* Call EOI_found to complete the current Isochron, and then call poll. */
EOI_found();
iso_poll();

return SUCCESS;
}

/* Module de-initialization Function */
int iso_send_deinit 0{

return SUCCESS;
}

/* Module initialization Function */
int iso_send_init 0{

int i
seq_con_set = TRUE;
net_isochrons_sent = 0;
EOI_decided = TRUE;
self_count =0;

mid_net_isochron = FALSE;

213

/* Initialize all pointers into the hit_buf */
hit_t = hit_h = hit_buf;

/* Set up the hit_buf */

for (i=0;i<HIT_BUF_SIZE; i++) {
hit_buffil.type = (USHORT)htons(NONISO);
hit_buffi].subtype = ORDERED;
hit_buffi].sender = host_node_id;

}

return SUCCESS;
}

/* This function is called by the application to send out an MBM packet.
The arguments are a host ID (target), a pointer to the data to be sent and
the size of that data. If last_in_isochron is TRUE, then this packet is
the last packet in the isochron. Otherwise, there will be other packets
in the isochron or a call to iso_end(). */
int iso_send (int target, void *data, int size, int last_in_isochron) {
/* If the target host for the send is not in the allowed range of hosts, OR
is to this host, poll and then return a FAILURE */
if ((target < 0) || (target >= number_of_hosts)) {
iso_poll();
printf("Leaving iso_send(): Invalid recepient.\n");
return FAILURE;

/* If the payload size is greater than MAX_PAYLOAD_SIZE, poll and then
return a FAILURE code */

if (size > MAX_PAYLOAD_SIZE) {

iso_poll();

printf("Leaving iso_send(): Payload size too large.\n");
return FAILURE;

/* Is this message a self-message? If not, then skip this section and go to
the section for sending NON-self-messages */
if (target == host_node_id) {

/* If the target is this host, make sure there is enough space in the

hit_buf If there is not enough space, return FAILURE */

it (queue_full(hit_h, hit_t, HIT_BUF_SIZE)){

iso_poll();
printf("Leaving iso_send(): Hit Buffer is full for self-message.\n");
printf("hit_h = %lu, hit_t = %lu, size =

%d\n" ,(ULONG)hit_ﬁ,(ULONG)hit_t,queue_size(hit_h,hit_t,HIT_BUF_SIZE));
exit(1);
return FAILURE;

/* Construct the self-message in the tail of the hit_buf */
hit_t->type = htons(NONISO);
hit_t->subtype = ORDERED,;
hit_t->sender = host_node_id;

/* The payload length, and contents of the payload are written into the
packet */
hit_t->payload_length = htons((USHORT)size);
memcpy(&hit_t->data, data, size);
//printf("Sent ordered packet to Selfin");
inc_ptr(hit_t, HIT_BUF_SIZE, hit_buf);
self_count++;

/* If this is NOT a self-message, execute the following code: */
else {

/* Make sure there is room in the ord_send_buf and iso_send_buf before
proceeding */

if (("EOI_decided)
&& ((queue_full(ord_send_h, ord_send_t, ORD_SEND_BUF_SIZE))

214

|| (queue_full(iso_send_h, iso_send_t + 1, ISO_SEND_BUF_SIZE)))) {
iso_poll();
//printf(“Leaving iso_send(): Either Ord or Iso send buffers are full.\n");
return FAILURE;

else if ((queue_full(ord_send_h, ord_send_t, ORD_SEND_BUF_SIZE)) ||
(queue_full(iso_send_h, iso_send_t, ISO_SEND_BUF_SIZE))) {
iso_poll();
//printf(“Leaving iso_send(): Either Ord or Iso send buffers are full.\n");
return FAILURE;

}
if (start_iso_packet() == FAILURE) {
iso_poll();
printf("Leaving iso_send(): start_iso_packet() Failed.\n");
}

/* Start building the Isotach Packet in the iso_send_buf */
iso_send_t->route2 = target;
iso_send_t->packet.subtype = ISO_MBM;
iso_send_t->packet.sender = (USHORT)host_node_id;

/* Create the Packet to be sent in the tail of the ord_send_buf */

/* The target is written into the route, so that shipping will know which
entry off of routes[] to use */
ord_send_t->route = (ULONG)target;

/* The payload length, and contents of the payload are written into the
packet */
ord_send_t->payload_length = htons((USHORT)size);
memcpy(&ord_send_t->data, data, size);

// printf("Sent ordered packet to %luln”, ord_send_t->route);

/* The ord_send_t is incremented to tell flow that there is a new packet
to be examined */
inc_ptr(ord_send_t, ORD_SEND_BUF_SIZE, ord_send_buf);

/* If this is the last packet in the isochron (set by last_in_isochron)
finish the isochron by sending out an EOI if this was a network
isochron. */
if (last_in_isochron == TRUE) {
EOI_found();

}

/* Always poll on every API call... */
iso_poll();

return SUCCESS;
}

/* The following Functions pertain to the Isotach Shared Memory Manager
Interface (SMM). This interface has not been implemented yet in this
version of the code. These functions are stubs which need to be filled
in. *

int iso_read (){

return SUCCESS;
}

int iso_write () {

return SUCCESS;
}

int iso_assign () {

return SUCCESS;
}

215

int iso_sched (){

return SUCCESS;
}

216

api/iso_deliver/exports.h

/*

*

*

* Isotach Module : Iso-Deliver Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module and the Flow Module

*

*

#ifndef ISO_DELIVER_EXPORTS_H
#define ISO_DELIVER_EXPORTS_H

/* Size in Bytes of the Iso Delivery Queue. Changing this value changes the
allocation of memory in allocate_pinned_memory in hostman. The iso delivery
queue is protected from overflow by Isotach Flow Control. Because of this
the number of Isotach Credits is calculated based upon this number. It is
set sufficiently large to prevent Isotach Pinned memory from being
constrained by it. */

#define ISO_DELIVERY_SIZE 16384

/* The Isotach Delivery Queue. Messages are processed by the mLayer, and then
placed on this queue for delivery to the application. The application reads
messages off of this queue through calls to iso_receive. */

PACKET_CORE_2 iso_delivery_q[ISO_DELIVERY_SIZE];

PACKET_CORE_2 *iso_delivery_h;

PACKET_CORE_2 *iso_delivery_t;

/* The tail pointer of the Ordered Message Receive Buffers. */
PACKET_PTR *ord_receive_t;

typedef struct {

unsigned short sender; // The sending ID of the message
unsigned short length; // The length of the message
void *data; // Pointer to the data in pinned memory
} iso_msg;
typedef struct {
unsigned char tag; // The type of the structure (pointer, bs)
union {
unsigned char bits; // Barrier and Signal Bits
iso_msg msg; // Pointer to the Iso-data
} info;
}iso_mbm;
int iso_receive (iso_mbm *data);
int iso_deliver_init 0;
int iso_deliver_deinit 0;

217

#endif

218

api/iso_deliver/locals.h

/*

*

*

* |sotach Module : Iso-Deliver Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.

* It also prototypes all functions internal to that module.
*

*

*

* COMMENTS:

*

¥

#ifndef ISO_DELIVER_LOCALS_H
#define ISO_DELIVER_LOCALS_H

#include <hostman/host_utils.h>
#include <api/iso_deliver/exports.h>
#include <api/iso_send/exports.h>
#include <processing/iom/exports.h>

/* The last packet that was delivered to the application. This packet is
deleted on the subsequent call to iso_recieve(). */

PACKET_PTR last_packet;

/* The sending node of the last_packet */

USHORT packet_sender;

int thru_counter = 0;

#endif

219

api/iso_deliver/iso_deliver.c

/*

*

*

* Isotach Module : Iso-Deliver Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:

*

* This module exports the API functions:
*

* jso_receive()
*

* See API Documentation for Details

* % % % %

*/
#include <api/iso_deliver/locals.h>

/* Isotach Deliver Module Initialization */
int iso_deliver_init 0{
last_packet = (PACKET_PTR)NULL;
iso_delivery_h = iso_delivery_t = iso_delivery_q;
return SUCCESS;

}
/* Isotach Deliver Module Delnitialization */
int iso_deliver_deinit 0{
return SUCCESS;
}

/* API: Application calls this function to recieve pending Isotach Messages.
Messages can be either MBM data, or Signals/Barriers. If there is no
message to recieve, the function returns FAILURE, otherwise the function
returns SUCCESS and the message is placed in the iso_mbm struct */

int iso_receive (iso_mbm *data) {

/* Delete the last packet retrieved, if there is one to be deleted. The
application must copy or use the data contents before another call to
iso_recieve() or the data may be deleted. */
if (last_packet != NULL) {
if (packet_sender == host_node_id) {
inc_ptr(hit_h, HIT_BUF_SIZE, hit_buf);
}
else {
iso_delete_packet(packet_sender);

}
last_packet = NULL;

iso_poll();
/* If there is nothing to recieve, return FAILURE */

if (queue_empty(iso_delivery_h, iso_delivery_t)) {
return FAILURE;

220

// Assert (removable) that the item at the head of iso_delivery_q is an

// iso_pointer (pointing to an ordered net-packet), an isochron_slot

// (indicating the number of self-packets that should be delivered next) or
// a bs-notice.

/* If the head message on the iso_delivery queue is a message deliver the

message to the application from the iso_delivery _q */

if (iso_delivery_h->subtype == ISO_MBM) {

last_packet = (PACKET_PTR)((ULONG)(((isopointer *)iso_delivery_h)->pointer) + offset);
packet_sender = ((isopointer *)iso_delivery_h)->sender;

/* Check to see that the Ordered Packet corresponding to the Isotach Packet
has arrived. Because of FIFO, this should not happen. */
if (ord_receive_t[packet_sender] == last_packet) {
/printf("FAILURE: Ordered Packet Correspoinding to this pointer has not arrived.
Aborting.\n");
last_packet = (PACKET_PTR)NULL;
return FAILURE;

/* Set the iso_mbm for the Application */
data->tag =1SO_MBM;
data->info.msg.data = last_packet->data;
data->info.msg.length = ntohs(last_packet->payload_length);
data->info.msg.sender = packet_sender;

/* Remove the message from the iso_delivery_q */
inc_ptr(iso_delivery_h, ISO_DELIVERY_SIZE, iso_delivery_q);

/* If the message at the head of the iso_delivery _q is not a message, it
could be an ISO_SLOT which points to a self message. Retrieve the
self-message off of the hit_q. */

else if (iso_delivery_h->subtype == ISO_SLOT) {

last_packet = hit_h;

packet_sender = host_node_id;

/* Set tje iso_mbm for the Application */
data->tag =1SO_MBM;
data->info.msg.data = last_packet->data;
data->info.msg.length = last_packet->payload_length;
data->info.msg.sender = packet_sender;

/* If this is the last message pointed to by the ISO_SLOT, remove the
ISO_SLOT from the iso_delivery q, otherwise just decrement the ISO_SLOT
self count */

if (((isoslot *)iso_delivery_h)->self_count == 1) {
inc_ptr(iso_delivery_h, ISO_DELIVERY_SIZE, iso_delivery_q);

else {
((isoslot *)iso_delivery_h)->self_count--;

/* Finally, the message could be a BS_MARKER. In this case, create a message
for the Application that contains the Barrier/Signal Bits */

else if (iso_delivery_h->subtype == BS_MARKER) {

data->tag = BS_MARKER,;

data->info.bits = ((bsnotice *)iso_delivery_h)->bits;

else {
printf("FAILURE: Item at head of iso_delivery_qg was not valid. Aborting.\n");
return FAILURE;
}
return SUCCESS;
}

221

api/iso_barrier/exports.h

/*

*

*

* Isotach Module : Iso Barrier Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module and the Flow Module

*

*

#ifndef ISO_BARRIER_EXPORTS_H
#define ISO_BARRIER_EXPORTS_H

/* This is the default barrier to be used by the try_close_net function in
hostman. This can be either O or 1, and 0 is picked arbitrarily. */
#define SHUTDOWN_BARRIHR

/* Some types used by the mLayer. The Application should use the types
ISO_BARRIER_WEAK and ISO_BARRIER_STRONG which correspond to the values of
WEAK and STRONG respectively. */

enum barrier_mode {

WEAK = 0x0, STRONG, TICK, MAX

5
int iso_register_barrier (int channel, UCHAR bmode);
int iso_clear_barrier (int channel);

int iso_barrier (int channel, UCHAR bmode);
int iso_mLayer_barrier (int channel, UCHAR bmode);

int iso_barrier_notify (UCHAR bits);
int iso_barrier_poll 0;
#endif

222

api/iso_barrier/locals.h

/*

*

*

* |sotach Module : Iso Barrier Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef ISO_BARRIER_LOCALS_H
#define ISO_BARRIER_LOCALS H

#include <hostman/host_utils.h>

#include <niu_interface/iso_shipping/exports.h>
#include <api/iso_signal/exports.h>

#include <api/iso_deliver/exports.h>

#include <api/iso_send/exports.h>

#include <api/iso_barrier/exports.h>

/* Some Constants Pertaining to Barriers */

#define NUM_BARRIERS 2 // Number of usable barriers in the system
#define NUM_BARRIER_MODHS // Number of modes usable by the mLayer
#define MIN_BARRIER_COUNZR // Minimum number of ticks for a barrier
#define MAX_BARRIER_COUN37 // Max number of ticks for a barrier. See spec.

/* The different states that each barrier might be in. See Ironman for more
details on the states. */

enum barrier_state {

HOLDING = 0x0, NOT_HOLDING, SEND, TRANSITION, READY

h

/* Each barrier has a record associated with it that records its state, node
owner and which mode the barrier is in. */
typedef struct {
UCHAR owner;
UCHAR mode;
UCHAR state;
} BARRIER_RECORD;

/* Diameter of the network in max number of hops */
int network_diameter;

BARRIER_RECORD barriersfNUM_BARRIERS];
UCHAR barrier_countfNUM_BARRIER_MODES];

int enqueue_barrier (int channel);

#endif

223

api/iso_barrier/iso_batrrier.c

/*

*

*

* Isotach Module : Iso Barrier Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:
*

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:

* This module exports the API functions:
*

* jso_register_barrier()

* jso_clear_barrier()

* jso_barrier()

*

* See API Documentation for Details

*

* % % %

*/
#include <api/iso_barrier/locals.h>

/* Iso Barrier Module Initialization Function */
int iso_barrier_init (node_info *nst) {
int i;
int route_length = 0;
network_diameter = 0;

/* This sets the network diameter based upon the max number of hops in any
route between two hosts */
for (i=0;i<number_of hosts; i++) {
if ((ntohl(nst[i].route) & FOURTH_BYTE) == 0) {
route_length = 0;

else if ((ntohl(nst[i].route) & THIRD_BYTE) == 0) {
route_length = 1;

else if ((ntohl(nst[i].route) & SECOND_BYTE) == 0) {
route_length = 2;

else if ((ntohl(nst[i].route) & FIRST_BYTE) ==0) {
route_length = 3;

else {
route_length = 4;

}

if (route_length > network_diameter) {
network_diameter = route_length;
}
}

/* Initialize the barriers. Barrier 0 is used only by the mLayer, and
1 is usable by the application */

barriers[0].owner = MLAYER,;

barriers[1].owner = UNCLAIMED;

224

for (i=0;i<NUM_BARRIERS; i++) {
barriers[i].mode = MAX;
barriers[i].state = SEND;

}

barriersfSHUTDOWN_BARRIER].state = HOLDING;
barriersfSHUTDOWN_BARRIER].mode = STRONG;

/* Initialize each of the Barrier strengths. WEAK and STRONG are identical
for now, but can be made different. */
/* NOTE: | am not sure why these are identical - Perry 3/17/2000 */
barrier_count{WEAK] = network_diameter + 1;
barrier_count{STRONG] = barrier_count{WEAK];
barrier_count[TICK] = MIN_BARRIER_COUNT;
barrier_countfMAX] = MAX_BARRIER_COUNT;

return SUCCESS;

}
/* Isotach Barrier Module Deinitialization Function */
int iso_barrier_deinit 0{
return SUCCESS;
}

/* This function enqueues a barrier for sending. */
int enqueue_barrier (int channel) {

/* Removable Assertion that the barrier being enqueued is in a SEND state */
if (barriers[channel].state != SEND) {

printf(, channel);
shutdown(1);

/* Can only enqueue a barrier, if there is room left in the iso_send_buf */

if (queue_full(iso_send_h, iso_send_t, ISO_SEND_BUF_SIZE)) {

printf();
return FAILURE;

/* Go ahead and put the barrier on the buffer, and indicate that it is ok
to send. */
iso_send_t->prefix = BS_MARKER_MASK;
iso_send_t->prefix |= (barrier_count[barriers[channel].mode] << 16);
iso_send_t->prefix |= (1 << (channel + 8));

inc_ptr(iso_send_t, ISO_SEND_BUF_SIZE, iso_send_buf);
barriers[channel].state = NOT_HOLDING;

return SUCCESS;
}

/* This function allows the application to register a barrier for
use. The application can only register barrier channel 1, as 0 is reserver
for the mLayer. If the barrier is already registered, it must be cleared
first using iso_clear_barrier() */

int iso_register_barrier (int channel, UCHAR bmode) {
if ((channel <0) || (channel >= NUM_BARRIERS)) {
printf();
return FAILURE;
}
if (barriers[channel].owner != UNCLAIMED) {
printf();
return FAILURE;
}
if ((bmode != STRONG) && (bmode != WEAK)) {
printf();
return FAILURE;
}

/* Only the application can register barriers, so set owner to APPLICATION *
barriers[channel].owner = APPLICATION;

225

/* Set mode the the specified mode */
barriers[channel]l.mode = bmode;

/* Removable assertion that the barrier state is either NOT_HOLDING or SEND*/
if ((barriers[channel].state != NOT_HOLDING) &&

(barriers[channel].state != SEND)) {
printf(

, channel);
shutdown(1);

/* Change barrier states. See Ironman for State Diagram. */
if (barriers[channel].state == NOT_HOLDING) {
barriers[channel].state = TRANSITION;

else {

barriers[channel].state = HOLDING;
}

return SUCCESS;
}

/* This function allows the application to clear a registered barrier for
re-registration. It is a NOP when used on an unregistered barrier
channel. */

int iso_clear_barrier (int channel) {

if ((channel <0) || (channel >= NUM_BARRIERS)) {
printf();
return FAILURE;

if (barriers[channel].owner != APPLICATION) {
return FAILURE;

/* Clear the owner, and reset the mode to MAX */
barriers[channel].owner = UNCLAIMED;
barriers[channel].mode = MAX;

/* Change the barrier state. See State Diagram in Ironman */

if ((barriers[channel].state == TRANSITION) ||
(barriers[channel].state == READY)) {

barriers[channel].state = NOT_HOLDING;

else if (barriers[channel].state == HOLDING) {
barriers[channel].state = SEND;

}

if (barriers[channel].state == SEND) {
enqueue_barrier(channel);

return SUCCESS;
}

/* Initiate an Isotach Barrier on the specified channel and with the specified
mode. The mode specified here must match the mode specified when the
channel was registered. This function is only called by the Application */

int iso_barrier (int channel, UCHAR bmode) {

if ((channel <0) || (channel >= NUM_BARRIERS)) {
printf();
return FAILURE;

if (barriers[channel].owner != APPLICATION) {
printf();
return FAILURE;

if (bmode != barriers[channel].mode) {
printf()
return FAILURE;

226

if (mid_net_isochron == TRUE) {

printf("FAILURE: Cannot send a Barrier while in the middle of an Isochron.\n"

return FAILURE;

/* More barrier state changes... See Ironman */
if (barriers[channel].state == HOLDING) {
/* If the barrier is in the Holding State, then send out the barrier by
calling enqueue_barrier() and setting state to SEND */
barriers[channel].state = SEND;
enqueue_barrier(channel);

else if (barriers[channel].state == TRANSITION) {
barriers[channel].state = READY;

else {
return FAILURE;

return SUCCESS;
}

/* Initiate an Isotach Barrier on the specified channel and with the specified
mode. The mode specified here must match the mode specified when the
channel was registered. This function is only called by the mLayer */

int iso_mLayer_barrier (int channel, UCHAR bmode) {

if ((channel < 0) || (channel >= NUM_BARRIERS)) {
printf("FAILURE: Barrier Channel out of range.\n");
return FAILURE;

}
if (barriers[channel].owner '= MLAYER) {
printf("FAILURE: Barrier is not registered to mLayer.\n");
return FAILURE;
}
if (bmode != barriers[channel].mode) {
printf("FAILURE: Barrier Mode does not match registered barrier mode\n"
return FAILURE;
}
if (mid_net_isochron == TRUE) {
printf("FAILURE: Cannot send a Barrier while in the middle of an Isochron.\n"
return FAILURE;
}

/* More barrier state changes... See Ironman */
if (barriers[channel].state == HOLDING) {
/* If the barrier is in the Holding State, then send out the barrier by
calling enqueue_barrier() and setting state to SEND */
barriers[channel].state = SEND;
enqueue_barrier(channel);

}
else if (barriers[channel].state == TRANSITION) {
barriers[channel].state = READY;

else {

return FAILURE;
}

return SUCCESS;
}
/* Isotach Barrier Poll Function */
int iso_barrier_poll 0{
int i;

/* Check each barrier channel. If any barrier channel has state SEND, then
try to enqueue the barrier for sending. */
for (i=0;i<NUM_BARRIERS; i++) {
if (barriers[i].state == SEND) {
enqueue_barrier(i);

227

return SUCCESS;
}

/* Called by the IOM to notify the Isotach Barrier Module that barrier bits
have arrived in a message. */
int iso_barrier_notify (UCHAR bits) {
UCHAR app_bits = 0x0;
int i

/* Check each of the barrier channels */
for (i=0;i<NUM_BARRIERS; i++) {
if (bits & BITS]i]) {
// Removable assertion that the barrier state is neither SEND nor HOLDING
if ((barriers[i].state == SEND) ||
(barriers[i].state == HOLDING)) {

printf(Ji);
shutdown(1);
}
/* Barrier state transitions... See Ironman */
if (barriers[i].state == TRANSITION) {
barriers[i].state = HOLDING;
}
else if ((barriers[i].state == NOT_HOLDING)
&& (barriers[i].owner == APPLICATION)) {
app_bits |= BITS]i];
barriers[i].state = HOLDING;
}
else if ((barriers[i].state == READY) ||
((barriers[i].state == NOT_HOLDING) &&
(barriers[i].owner != APPLICATION))) {
barriers[i].state = SEND;
enqueue_barrier(i);
}
}
}
return app_bits;

}

228

api/iso_signal/exports.h

/*

*

*

* Isotach Module : Signal Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module and the Flow Module

*

*

#ifndef ISO_SIGNAL_EXPORTS_H
#define ISO_SIGNAL_EXPORTS_H

/* This defines which bit (0-5) of the BS Marker should be interpreted as the
reset signal bit. This signal is owned by the mLayer, and should not be
changed. Used by both iso_signal and hostman */

#define RESET_SIGNALS

/* The number of resets that have happened yet. Initialized to zero and
incremented for every reset signal that is received. */
int reset_count;

int iso_register_signal (int channel);

int iso_clear_signal (int channel);

int iso_send_signal (int channel);

int iso_send_mLayer_signal (int channel);

int iso_signal_poll 0;
UCHARIso_signal_notify (UCHAR bits);
int iso_signal_init 0;

int iso_signal_deinit 0;

#endif

229

api/iso_signal/locals.h

/*

*

*

* Isotach Module : Signal Module Local Variable Header File
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef 1SO_SIGNAL_LOCALS_H
#define 1SO_SIGNAL_LOCALS_H

#include <hostman/host_utils.h>

#include <niu_interface/iso_shipping/exports.h>
#include <api/iso_signal/exports.h>

#include <api/iso_deliver/exports.h>

#include <api/iso_send/exports.h>

/* The number of signals available to the MLayer and Application */
#define NUM_SIGNALS

/* These are the 'bits' that need to be sent out as part of the initial reset
signal sent out by host number 0. This is a combination of the reset signal
and both barrier channels. The barrier channels need to go out with the
reset to prime the system (by giving the Token Manager initial barrier
credits) for future barriers. *

#define INITIAL_RESET_SIGNAL 0x83

/* The initial ownership of each of the signal channels. The Application
can use signals 1-4, by calling the iso_register_signal function. Signals
0 and 5 are reserved for use by the MLayer. */
UCHAR signals[] = {MLAYER, UNCLAIMED, UNCLAIMED, UNCLAIMED, UNCLAIMED, MLAYERY},

/* Each call to iso_send_signal sets a bit in the signal accumulator. Normally
one signal is sent on a given outgoing signal packet, but if for some reason
that packet cannot be sent, the signal accumulator accumulates signals and
sends them all out at once. */

UCHAR signal_accumulator;

int enqueue_signals ();

#endif

230

api/iso_signal/iso_signal.c

/*

*

*

* Isotach Module : Signal Module
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module exports the API functions:
*

* jso_register_signal()
*jso_clear_signal()

*jso_send_signal()

*

* See API Documentation for Details

*

* % % %

*
#include <api/iso_signal/locals.h>
/* Module Initialization Function */
int iso_signal_init 0{
signal_accumulator = 0O;
reset_count =0;

return SUCCESS;

}

/* Module De-Initialization Function */

int iso_signal_deinit 0{
return SUCCESS;

}

/* This function enqueues the current signal_accumulator onto a packet on
iso_send_t to be sent out on the network. */
int enqueue_signals () {
/* If the queue is full, fail for now and try again later... */
if (queue_full(iso_send_h, iso_send_t, ISO_SEND_BUF_SIZE)) {
printf("FAILURE: iso_send_buf full. Cannot send signal. \n");
return FAILURE;

/* Create the packet in iso_send_t */
iso_send_t->prefix = BS_MARKER_MASK;

/* Or in the signals... */
iso_send_t->prefix |= (signal_accumulator << 8);

/* Reset the accumulator */
signal_accumulator = 0O;

/* Clear the packet for flow control to handle... */
inc_ptr(iso_send_t, ISO_SEND_BUF_SIZE, iso_send_buf);

return SUCCESS;
}

231

/* This registers a signal channel to the application. The channel must not
be registered already. */

int iso_register_signal (int channel) {
if ((channel < 0) || (channel >= NUM_SIGNALS)) {
printf("FAILURE: Signal requested is out of range. Aborting.\n");
return FAILURE;
}
if (signals[channel] = UNCLAIMED) {
printf("FAILURE: Attempted to register an already claimed signal.\n");
return FAILURE;
}

signals[channel] = APPLICATION;

return SUCCESS;
}

/* This unregisters the signal at the specified channel. The signal must be
registered to the application in order for this function to work. */
int iso_clear_signal (int channel) {
if ((channel < 0) || (channel >= NUM_SIGNALS)) {
printf("FAILURE: Signal requested is out of range. Aborting.\n");
return FAILURE;

if (signals[channel] == APPLICATION)
signals[channel] = UNCLAIMED;

return SUCCESS;
}

/* This sends out a signal on the specified channel. The signal channel must
be registered to the application in order for this to work. */
int iso_send_signal (int channel) {
if ((channel < 0) || (channel >= NUM_SIGNALS)) {
printf("FAILURE: Signal requested is out of range. Aborting.\n");
return FAILURE;

}
if ((signals[channel] = APPLICATION) || (mid_net_isochron == TRUE)) {
printf("FAILURE: Signal is not registered to application, or in middle of isochron.\n");
return FAILURE;
}

/* Add this signal to the signal accumulator. Normally, signals are sent
out individually. (i.e. each addition to the signal accumulator results

in a packet sent out with that signal bit set). However, if the iso_send
buffer is full, the signal send may be delayed and the accumulator may
gather more than one signal. */

/* * ok k *k Hhokokk *k ok k */
/* NOTE: What happens if two signals are sent out in a row with the same *
/* channel? Potentially, the first signal ends up on the */

/* accululator w/o being sent, because of a full iso_send_buf. ~ */

/* The second signal would be or'd onto the signal accumulator, but */
/* the end result is that one signal is sent out on channel x, not */

/* two, which is what the application requested. This needs to be */

/* looked into. */
/* -Perry Myers (03/28/2000) *
/* * ok k *k Hhokokk *k ok k */

signal_accumulator |= (1 << (channel + 2));
if (enqueue_signals() == FAILURE) {
return FAILURE;

return SUCCESS;
}

/* This is the function that the mLayer calls to send out an mLayer signal.
It is used by the mLayer currently to send out a reset signal at system
initialization */

232

int iso_send_mLayer_signal (int channel) {
if ((channel < 0) || (channel >= NUM_SIGNALS)) {
printf("FAILURE: Signal requested is out of range. Aborting.\n");
return FAILURE;

}
if ((signals[channel] = MLAYER) || (mid_net_isochron == TRUE)) {
printf("FAILURE: Signal is not registered to mLayer, or in middle of isochron.\n");
return FAILURE;
}

if ((reset_count == 0) && (channel == RESET_SIGNAL)) {

/* If this is the first reset signal sent, then send the
INITIAL_RESET_SIGNAL, which includes the barrier bits and keep
trying to send it until it goes out... */

signal_accumulator = INITIAL_RESET_SIGNAL;
while (enqueue_signals() == FAILURE);
}

else {
/* If this is not the first reset signal (i.e. all other mLayer signals)
then add the signal to the accumulator and attempt to send */
signal_accumulator |= (1 << (channel + 2));
if (enqueue_signals() == FAILURE) {
return FAILURE;

return SUCCESS;
}

int iso_signal_poll 0{
/* If there are signals in the accumulator, attempt to send. */
if (signal_accumulator != 0) {
enqueue_signals();

return SUCCESS;
}

/* IOM calls this when it recieves a packet with signal bits sent.
It handles the processing of reset signals. For the first reset signal
(i.e. the initial reset signal) it simply increments the counter, and for
all other resets it shuts the system down. All other signal bits are
delivered to the application, by passing app_bits back to the IOM */
UCHARIso_signal_notify (UCHAR bits) {
UCHAR app_bits = 0x00;
int i;

/* Shift the bits right so that the barrier bits are shifted out... */
bits = bits >> 2;

/* If the RESET bit is set... */
if (bits & BITS[RESET_SIGNAL]) {
reset_count++;

/* If this is not the initial reset signal, shut down the system */

if (reset_count>1){
printf("Received a reset signal. Shutting Down System...\n");
fprintf (stderr, "Loading the LANai with ./lcp\n" ;
lanai_load_and_reset (0, " Jlcp" , 0,0, 0, callback);
shutdown(1);

/* For all of the other application signals set, place the bit into app_bits
*/
for (i=0;i<NUM_SIGNALS; i++) {
if (bits & BITS]i]) {
if (signals[i] == APPLICATION) {
app_bits |= BITS[i];

233

/* Shift back 2 to the left, to leave room for the barrier bits. */
app_bits = app_bits << 2;

return app_bits;

}

234

api/iso_retrieve/exports.h

/*

*

*

* Isotach Module : Iso-Retrieve Module Exported Functions/Variables
* Isotach Layer : API

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

*

*

*

#ifndef ISO_RETRIEVE_EXPORTS_H
#define ISO_RETRIEVE_EXPORTS_H

/liso_getread()

/lreport_value()

//handle_read_response()

//getread_init()

//getread_deinit()

//getread_poll() // callme function called by hostMan poll()

#endif

235

api/iso_retrieve/locals.h

/*

*

*

* |sotach Module : Iso-Retreive Module Local Variable Header File
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/api/send/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:24:00 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef ISO_RETRIEVE_LOCALS_H
#define ISO_RETRIEVE_LOCALS_H

#include <hostman/host_utils.h>
#include <niu_interface/receive/exports.h>
/f#include <apif/iso_retrieve/exports.h>
/f#include <processing/shmem/exports.h>

#endif

236

api/iso_retrieve/iso_retrieve.c

/*

*

*

* Isotach Module : Iso-Retrieve Module
* Isotach Layer : API

* |sotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/api/send/send.c,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module exports the API functions:

*
*
* See API Documentation for Details
*

*

*

* COMMENTS: This module is not yet implemented yet.

*

*

#include <api/iso_retrieve/locals.h>

237

processing/flow/exports.h

/*

*

*

* Isotach Module : Flow Module Exported Functions/Variables
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

* Included by the Hostman, Shipping, Deliver, and Receive Modules

*

*/

#ifndef FLOW_EXPORTS_H
#define FLOW_EXPORTS_H

int flow_init (node_info *nst);

int flow_deinit 0;

int update_credit (int node_id, PACKET_PTR new_head);
int flow_poll ();

int send_credit_packet (ULONG dest);

int delete_packet (ULONG sender, PACKET_PTR packet);

/* The size of each NONISO queue in pinned memory. This size is in number of
PACKETS */
ULONG REMOTE_NONISO_SIZE;

#endif

238

processing/flow/locals.h

/*

*

*

* Isotach Module : Flow Module Local Variable Header File
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef ~ FLOW_LOCALS_H
#define FLOW_LOCALS_H

#include <hostman/host_utils.h>

#include <api/send/exports.h>

#include <processing/flow/exports.h>
#include <niu_interface/shipping/exports.h>
#include <niu_interface/receive/exports.h>

#define MAX_SEND_ATTEMPT500000
int credit_packet_threshold;

/* This is an array of pointers to the beginning of queues. There is one for
each other host in the network. The remote_t pointer for a host is
incremented each time a new packet is send out to that host. The remote_q
variable allows the base of the queue to be stored, so that queue wrap
around works */

PACKET_PTR *remote_q;

PACKET_PTR *remote_h;

/* This is an array of tail pointers. There is one for each other host in the
network. When new packets are constructed in the send module, the value of
remote_t[target node] is written into the address feild. This allows for
specific sender based flow control.

For remote_tfindex], this tail pointer corresponds to node index's i-th
receive buffer, where i is this host_node_id */

PACKET_PTR *remote_t;

/* These are the head and base pointers for the NONISO receive buffers. These
pointers refer to the local receive buffers that are used by other hosts in
the network */

PACKET_PTR *receive_h;

PACKET_PTR *receive_q;

PACKET_PTR *receive_last_h;

PACKET_PTR *credit_packet_base;

PACKET_PTR credit_packet_slot;
/*

239

This is a tunable variable that indicates at what point a sender should
send an explicit credit packet.

*/

float CREDIT_PACKET_THRESHOLD_PERCENTAGE = 0.90;

#endif

240

processing/flow/flow.c

/*

*

*

* Isotach Module : Flow Module
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/flow_control/flow/flow.c,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module controls the flow of packets from non-iso send to the network.

* The send_flow_ptr points to the next packet to be examined on the send_buf,
* by the flow module. As flow clears a packet for transmission by shipping

* to the niu_send_buf, it increments send_flow_ptr. Flow uses sender

* specific flow control. That is, each host maintains how many send credits

* it has to send to a particular host.

*

*

*

* COMMENTS:

*

*

#include <processing/flow/locals.h>

/*
called by deliver once we know that the previous packet has been
processed by the application. Thus, we can now free up one
send credit
*
int delete_packet (ULONG sender, PACKET_PTR packet) {
// After assertion below is removed, remove packet argument to this function

// Free up another slot
inc_ptr(receive_h[sender], REMOTE_NONISO_SIZE, receive_g[sender]);

// Assertion: packet points to the packet at head of sender's receive

/ buffer. This should be removed later.

//if (ULONG)packet = (ULONG)receive_h[sender] + offset) {

// printf("ERROR: Failed assertion packet != receive_h[sender] in delete_packet.\n");
// exit(1);

i

/*
If we've freed up quite a few credits and not sent any credit
information to the sender, send an explicit credit packet.
*
if (queue_size(receive_last_h[sender], receive_h[sender], REMOTE_NONISO_SIZE)
> credit_packet_threshold) {
send_credit_packet(sender);

return SUCCESS;
}

/* called by delete packet to send a credit packet */
int send_credit_packet (ULONG dest) {
int i=0;

241

/* The target is written into the route, so that shipping will know which

entry off of routes[] to use */
credit_packet_slot->route = dest;
credit_packet_slot->credit_info = (ULONG)receive_h[dest];
credit_packet_slot->address = (ULONG)htonl((ULONG)credit_packet_base[dest]);

/*
we use the shipping module's ship_packet function to bypass flow
control to send the credit packet. The only way this function can
fail is if the Lanai's send queue is full. Since every packet on
that queue is able to be shipped, the queue will have a free slot
shortly.
*
while (ship_packet(credit_packet_slot) == FAILURE) {

}

/lprintf("Sending Credit Packet to %d.: %d slots freed\n", dest,
queue_size(receive_last_h[dest], receive_h[dest], REMOTE_NONISO_SIZE));

// remember the credit information that we sent to the sender
receive_last_h[dest] = receive_h[dest];
return SUCCESS;
}

// called by Hostman once the application has finished.

int flow_deinit 0{
free(remote_q);
free(remote_h);
free(remote_t);
free(receive_q);
free(receive_h);
free(receive_last_h);
free(credit_packet_base);
free(credit_packet_slot);

return SUCCESS;

}
// called by Hostman to initialize all of the data structures contained in
// this module
int flow_init (node_info *nst) {
int i

/* The arrays are initialized, and set the the DMA base of each of
this host's remote noniso queues on every other host in the network *

remote_q = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
remote_h = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
remote_t = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
receive_q = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
receive_h = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
receive_last_h = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
credit_packet_base = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
credit_packet_slot = (PACKET_PTR)malloc(sizeof (PACKET));

for (i =0;i<number_of_hosts; i++) {

remote_q[i] = nst[i].remote_noniso.base + CONTROL_SLOTS;

remote_h[i] = nst[i].remote_noniso.base + CONTROL_SLOTS;

remote_{[i] = nst[i].remote_noniso.base + CONTROL_SLOTS;

receive_q[i] = nstfi].local_noniso.base + CONTROL_SLOTS;

receive_h([i] = nst[i].local_noniso.base + CONTROL_SLOTS;

receive_last_h[i] = nst[i].local_noniso.base + CONTROL_SLOTS;
credit_packet_base[i] = nst[i].remote_noniso.base;

// calculate how many noniso credits we have at each host
REMOTE_NONISO_SIZE = (ULONG)(nst[host_node_id].remote_noniso.size - (CONTROL_SLOTS+1));

// calculate at what point we need to send an explicit credit packet
credit_packet_threshold = CREDIT_PACKET_THRESHOLD_PERCENTAGE *
REMOTE_NONISO_SIZE;

// fill in the predetermined fields of the credit packet

242

credit_packet_slot->type = htons(NONISO);
credit_packet_slot->subtype = CREDIT;
credit_packet_slot->sender = host_node_id;
credit_packet_slot->payload_length = 0;

return SUCCESS;
}

// called by receive when we receive a credit packet
int update_credit (int node_id, PACKET_PTR new_head) {
remote_h[node_id] = new_head;
return SUCCESS;
}

// polling function called by the main poll function in hostman
int flow_poll () {
static int send_attempts = 0;
static int last_send_attempts = 0;
int out_of_credits = FALSE;
int receiver;
PACKET_PTR temp_address;
PACKET credit_request;
PACKET_PTR request_address;

// while there are packets waiting to be cleared and we are not out

// of credits on any of the receivers

while ((‘queue_empty(send_t, send_flow_ptr)) && (‘out_of_credits)) {
receiver = send_flow_ptr->route;

// If we are out of credits at the destination
if (queue_full(remote_h[receiver],remote_t[receiver], REMOTE_NONISO_SIZE)) {
out_of_credits = TRUE;

// wait a while before sending out a credit request.

// credit request packets are used to prevent a particular

// type of deadlock which Perry will fill in here

if (++send_attempts == MAX_SEND_ATTEMPTS) {
//printf("Sending out a Credit Request to host %d\n", receiver);
credit_request.type = htons(NONISO);
credit_request.subtype = REQUEST_CREDIT;
credit_request.padl = 0;
credit_request.sender = host_node_id;
credit_request.payload_length = 0;
credit_request.pad2 = 0;
credit_request.credit_info = NULL_CREDIT;
request_address = credit_packet_base[receiver] + 1;
credit_request.address = (ULONG)htonl((ULONG)request_address);
credit_request.route = receiver;
ship_packet(&credit_request);
last_send_attempts = send_attempts;
send_attempts = 0;

// otherwise we can pass the packet on to shipping
else {
last_send_attempts = send_attempts;
send_attempts = 0;

// check to see if there is credit information to piggy back
// on the packet

// if nothing has changed...
if (receive_h[receiver] == receive_last_h[receiver]) {
send_flow_ptr->credit_info = NULL_CREDIT,;

// otherwise

else {
receive_last_h[receiver] = receive_h[receiver];
send_flow_ptr->credit_info = (ULONG)receive_last_h[receiver];

243

/*
Now calculate the address where this packet will be placed on
the receiver. The tail pointer into the target's non-iso queue,
is the location where this packet should be placed. This
address is written into the address field.
*/
send_flow_ptr->address = (ULONG)htonl((ULONG)remote_t[receiver]);
/* The tail pointer (remote_t[target]) is incremented, for the next call
*to send with this target. The tail wraps around to the beginning of
* the queue, when necessary
*
inc_ptr(remote_t[receiver], REMOTE_NONISO_SIZE, remote_qg[receiver]);

// now clear the packet for shipping
inc_ptr(send_flow_ptr, SEND_BUF_SIZE, send_buf);

return SUCCESS;
}

244

processing/iso_flow/exports.h

/*

*

*

* Isotach Module : Isotach Flow Module Exported Functions/Variables
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

* Included by the Hostman, Iso_Shipping, Iso_Deliver, and Receive Modules
*

*

*

#ifndef ISO_FLOW_EXPORTS_H
#define ISO_FLOW_EXPORTS_H

int iso_flow_init (node_info *nst);

int iso_flow_deinit 0;

int iso_update_credit (int node_id, ULONG credit_info);
int iso_delete_packet (int node_id);

int iso_flow_poll 0;

// number of ordered packets that a host can store in pinned memory
ULONG REMOTE_ORD_SIZE;

#endif

245

processing/iso_flow/locals.h

/*

*

*

* Isotach Module : Isotach Flow Module Local Variable Header File
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/locals.h,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef 1SO_FLOW_LOCALS_H
#define 1SO_FLOW_LOCALS_H

#include <hostman/host_utils.h>

#include <niu_interface/shipping/exports.h>
#include <api/iso_send/exports.h>

#include <processing/iso_flow/exports.h>
#include <processing/iom/exports.h>

#include <niu_interface/iso_shipping/exports.h>
#include <niu_interface/iso_receive/exports.h>

int iso_send_credit_packet (ULONG dest);

/*
array of counters for the isotach credits
used by the local node at remote nodes
*/
ULONG *my_credits_used;

/*
array of counters for isotach credits restored
to the local node at remote nodes

*/

ULONG *my_credits_freed;

/*
the total number of isotach credits the local node has
at each of the remote nodes

*

ULONG *my_credits;

/* the number of isotach credits restored to remote nodes */
ULONG *your_credits_freed;

/*

the number of isotach credits allocated on the local node
for each of the remote nodes.

246

*/
ULONG *your_credits;

/* the last credit information sent to each node */
ULONG *your_credits_freed_last;

/* the address in pinned memory where isotach credit packets are sent */
PACKET_PTR *iso_credit_packet_base;

/* the point at which a receiver needs to send explicit credit packets */
ULONG iso_credit_packet_threshold;
float ISO_CREDIT_PACKET_THRESHOLD_PERCENTAGE = 0.50;

/* pointer to the isotach credit packet that is sent out */
PACKET_PTR iso_credit_packet_slot;

/* starting addresses of ordered queues on the remote hosts */
PACKET_PTR *ord_remote_g;

/*
tail pointers into those queues a.k.a. the address to which the ordered
packet needs to be dma'd by the receiver.

*/

PACKET_PTR *ord_remote_t;

#endif

247

processing/iso_flow/iso_flow.c

/*

*

*

* Isotach Module : Isotach Flow Module
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:
*

* $Source: /homeZ2/isotach/cvsroot/v3/flow_control/flow/flow.c,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:

* This module controls the flow of packets from non-iso send to the network.

* The send_flow_ptr points to the next packet to be examined on the send_buf,
* by the flow module. As flow clears a packet for transmission by shipping

* to the niu_send_buf, it increments send_flow_ptr. Flow uses sender

* specific flow control. That is, each host maintains how many send credits

* it has to send to a particular host.

*

*

*

* COMMENTS:

*

*/

#include <processing/iso_flow/locals.h>
// Called by hostman to initialize all local data structures
int iso_flow_init (node_info *nst) {

int i

// all of these arrays need to have num_hosts slots

my_credits_used = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
my_credits_freed = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
my_credits = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
your_credits_freed = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
your_credits = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
your_credits_freed_last = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));

iso_credit_packet_base = (PACKET_PTR *)malloc(number_of_hosts *
sizeof (PACKET_PTR));

ord_remote_q = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
ord_remote_t = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));

// an isotach credit packet
iso_credit_packet_slot = (PACKET_PTR)malloc(sizeof (PACKET));

// the number of ordered packets a remote host can store
REMOTE_ORD_SIZE = nst[host_node_id].remote_iso.size;

// point at which to send out an explicit isotach credit packet
iso_credit_packet_threshold = REMOTE_ORD_SIZE *
ISO_CREDIT_PACKET_THRESHOLD_PERCENTAGE;

// initialize arrays with information retrieved during synchronization
for (i=0;i<number_of hosts; i++) {
my_credits_used[i] =

0;
my_credits_freed[i] =0;

248

my_credits][i] = REMOTE_ORD_SIZE;
your_credits_freed][i] = 0;
your_credits][i] = REMOTE_ORD_SIZE;

iso_credit_packet_base[i] = nst[i].remote_noniso.base + 3;
ord_remote_q[i] = nst[i].remote_iso.base;
ord_remote_t[i] = nst[i].remote_iso.base;

// fill in pre-determined fields of the isotach credit packet
iso_credit_packet_slot->type = htons(NONISO);
iso_credit_packet_slot->subtype =1SO_CREDIT;
iso_credit_packet_slot->sender = host_node_id;
iso_credit_packet_slot->payload_length = 0O;

return SUCCESS;
}

// called by hostman when the application closes the messaging layer

int iso_flow_deinit 0{
free(my_credits_used);
free(my_credits_freed);
free(my_credits);
free(your_credits_freed);
free(your_credits);
free(your_credits_freed_last);
free(iso_credit_packet_base);
free(ord_remote_q);
free(ord_remote_t);

return SUCCESS;

}

// called by receive whenever it receieves an isotach credit packet
int iso_update_credit (int node_id, ULONG credit_info) {
my_credits_freed[node_id] = credit_info;
return SUCCESS;
}

// called by iso_delete_packet to send out an explicit credit packet
int iso_send_credit_packet (ULONG dest) {

/* The target is written into the route, so that shipping will know which

entry off of routes[] to use */
iso_credit_packet_slot->route = dest;
iso_credit_packet_slot->credit_info = (ULONG)your_credits_freed[dest];
iso_credit_packet_slot->address = (ULONG)htonl((ULONG)iso_credit_packet_base[dest]);

/*
Uses shipping's ship_packet which only returns failure if the
Lanai's send queue is full. Since a packet will be put on the
wire almost immediately, we sit and loop here.

*
while (ship_packet(iso_credit_packet_slot) == FAILURE) {

}

/* now we've notified the host about all slots freed */
your_credits_freed_last[dest] = your_credits_freed[dest];

return SUCCESS;

// called by iso_deliver once the application has processed a message
int iso_delete_packet (int node_id) {

// free up a credit
inc_idx(your_credits_freed[node_id], your_credits[node_id]);

249

// if we haven't sent to the node in a while, send a credit packet

if (queue_size(your_credits_freed_last[node_id], your_credits_freed[node_id],
your_credits[node_id]) >= iso_credit_packet_threshold) {

iso_send_credit_packet(node_id);

}

return SUCCESS;
}

// called by Hostman's poll function
int iso_flow_poll 0{
int out_of_credits = FALSE;
static int counter =0;
ULONG receiver,

/*
loop while there are packets to send and we are not out of credits
at any receiver.
*/
while ('queue_empty(iso_send_t, iso_send_flow_ptr) && !out_of credits) {
/*check to see if it is a BS Marker since they can always go out*/
if (iso_send_flow_ptr->prefix & BS_MARKER_MASK) {
inc_ptr(iso_send_flow_ptr, ISO_SEND_BUF_SIZE, iso_send_buf);
printf();
continue ;

/*otherwise we need to check if there is room at the receiving host*/
receiver = iso_send_flow_ptr->route2;
if (queue_full(my_credits_freed[receiver], my_credits_used[receiver],
my_credits[receiver])) {
out_of_credits = TRUE;

}
/#if we can send the packet*/
else {
out_of_credits = FALSE;
counter = 0;

/*increment the number of credits used*/
inc_idx(my_credits_used[receiver], my_credits[receiver]);

/*check to see if there is credit info to piggy back*/
if (your_credits_freed[receiver] == your_credits_freed_last[receiver]) {
iso_send_flow_ptr->packet.credit_info = NULL_CREDIT;

else {
your_credits_freed_last[receiver] = iso_send_flow_ptr->packet.credit_info =
your_credits_freed[receiver];

}

/#if its an iso pointer ... */
if (iso_send_flow_ptr->packet.subtype == ISO_MBM) {

/*set the dma address in the corresponding ord packet?*/
ord_flow_ptr->address = (ULONG)htonl((ULONG)ord_remote_t[receiver]);

/*write the value into the pointer field of the iso_packet*/
iso_send_flow_ptr->packet.body.pointer = (ULONG)ord_remote_t[receiver];

/*increment our tail pointer into the remote ordered queue*/

inc_ptr(ord_remote_t[receiver], REMOTE_ORD_SIZE,
ord_remote_q[receiver]);

/*clear the ordered packet for shipping*/

inc_ptr(ord_flow_ptr, ORD_SEND_BUF_SIZE, ord_send_buf);

/*regardless, clear the isotach packet for shipping*/
inc_ptr(iso_send_flow_ptr, ISO_SEND_BUF_SIZE, iso_send_buf);

250

}

return SUCCESS;
}

251

processing/iom/exports.h

/*

*

*

* Isotach Module : Isotach Ordering Module Exported Functions/Variables
* Isotach Layer : Procesing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

* Included by the Hostman, iso_receive, and iso_send Modules
*

*

*

#ifndef IOM_EXPORTS_H
#define IOM_EXPORTS_H

void bucketize (ULONG *pkt, UCHAR pkt_subtype);

void post_isochron (int net_isochron, ULONG self_count, int
int iom_init ();

int iom_deinit ();

#endif

252

net_isochrons_sent);

processing/iom/locals.h

/*

*

*

* Isotach Module : Isotach Ordering Module Local Variable Header File
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: $

* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.

* It also prototypes all functions internal to that module.
*

*

*

* COMMENTS:

*

¥

#ifndef IOM_LOCALS_H
#define IOM_LOCALS_H

#include <hostman/host_utils.h>
#include <processing/iom/exports.h>
#include <api/iso_deliver/exports.h>
#include <api/iso_send/exports.h>
#include <api/iso_signal/exports.h>
#include <api/iso_barrier/exports.h>
/f#include <processing/shmem/exports.h>

// Masks used to determine if an EOP has barrier and/or signal bits set
#define BARRIER_MASHKIX03 // 000000xx
#define SIGNAL_MASKOXFC /I xxxxxx00

// Size of a sort vector returned by the SIU
#define sort_vector_count 32

// a bucket type (really an arry or core 3 structs)
// bucket size is defined in constants.h
typedef PACKET_CORE_3 bucket[BUCKET_SIZE];

// the array of buckets. bucket count is defined in constants.h
bucket buckets|[BUCKET_COUNT];

// the array of tail pointers into the buckets
ULONG bucket_t[BUCKET_COUNT];

// used for self messages... The hit_q is an array of core_2 isoslot structs
// we also have a head and tail pointer into this queue

#define HIT_Q_SIZE 8192

isoslot hit_q[HIT_Q_SIZE];

isoslot *hit_q_t;

isoslot *hit_g_h;

void print_bucket_entry (PACKET_CORE_3*p, int num);

253

inline void process_bucket_entry (PACKET_CORE_3 *p);

#endif

254

processing/iom/iom.c

/*

*

*

* Isotach Module : Isotach Ordering Module
* |sotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/flow_control/flow/flow.c,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This module orders messages/accesses so they can be delivered in

* jsotach receive order. 1so_receive passes in pointers to packets

* so that they can be enqueued into the appropriate bucket or trigger

* a draining of a bucket if it is an eop marker. Additionally, when an

* [sochron that contains self messages/accesses is sent out, a marker is
* stored here in the hit_q, so that when a pulse is executed, they can be
* delivered to the application at the correct logical time.

*

*

*

* COMMENTS:

*

¥

#include <processing/iom/locals.h>

// Called by hostman to initialize all local data structures
int iom_init () {
int i;

/* Initialize head and tail pointers into the buckets */
for (i=0; i<BUCKET_COUNT,; i++) {
bucket_t[i] = 0;

}

for (i=0;i < HIT_Q_SIZE; i++) {
hit_q[i].subtype = ISO_SLOT;
}

hit_q_t = hit_g_h = hit_q;
return SUCCESS;
}

// Also called by Hostman when application execution terminates
// Right now its a stub, but eventually who knows...
int iom_deinit () {

return SUCCESS;
}

/*
We currently support two different levels of ordering.
MBM_VER 1 ignores eop markers, and deliveres messages
to the application as soon as they are received by

255

enqueueing them directly on the applications delivery queue
Note: this version does not support self messages.

*/

#if (MBM_VE&=1)

// Called by iso_receive when an isotach packet is dma'd up to the
// host from the Lanai.
void bucketize (ULONG *pkt, UCHAR pkt_subtype) {
eop_marker *eop_m;
isochron_marker *iso_m;
ISO_RECVFRAME *iso_p;

// if it is an eop marker, check for signals but otherwise ignore
if (pkt_subtype == EOP_MARKER) {
eop_m = (eop_marker *)pkt;

if (eop_m->bits & SIGNAL_MASK)
iso_signal_notify(eop_m->bits);

// ignore isochron markers
else if (pkt_subtype ==1SO_MARKER) {

// if it is an isotach packet, enqueue it directly on the
// isotach delivery queue
else if (pkt_subtype ==1SO_MBM) {
// retrieve the address of the packet
iso_p = (ISO_RECVFRAME *)pkt;

// set the subtype on the delivery queue
iso_delivery_t->subtype = iso_p->packet.subtype;

// have the slot in the delivery queue point to the packet
((isopointer *)iso_delivery_t)->sender = iso_p->packet.sender;
((isopointer *)iso_delivery_t)->pointer = (PACKET_PTR)iso_p->packet.body.pointer;
inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);

// missing a case for Shared Memory
else {

}

return

#endif

// used for debugging purposes
void print_bucket_entry (PACKET_CORE_3 *p, int num){
PACKET_PTR msg;
if (p->subtype == ISO_MBM) {
msg = (PACKET_PTR)((ULONG)((isopointer *)p)->pointer + offset);

printf("Entry %d is pointing to %.20s\n" ,num,msg->data);
else if (p->subtype == ISO_MARKER) {
printf("Entry %d has iso_id %d\n" ,num, ((isomarker *)p)->iso_id);
else
printf("Entry %d has subtype %d\n" ,num,p->subtype);
return ;

}

/*

"Called" by MBM_VER 2 bucketize as a bucket is drained.
It is separated out into an inline function merely for readability
*/

inline void process_bucket_entry (PACKET_CORE_3 *p) {
// If it is a message, enqueue it on the isotach delivery queue
if (p->subtype == ISO_MBM) {

// only copy the first 2 words from the bucket entry since the
// deliver queue consists of core_2 structures

256

memcpy(iso_delivery_t, p, sizeof (PACKET_CORE_2));
inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);

// If it is an isochron marker, check for self messages
else if (p->subtype == ISO_MARKER) {

// check that the isochron id of the marker equals the one at
// the head of the hit_q
if (((isomarker *)p)->iso_id != hit_q_h->iso_id) {

printf("IOM: Error. The ID of the isochron marker in ");
printf("the bucket did not match up with the ID of the hit_g\n");
printf("marker=%d, hit_g=%d\n" ,((isomarker *)p)->iso_id,hit_g_h->iso_id);
shutdown(1);

}

// now copy the isochron slot into the delivery queue if there are

// self messages to be delivered

if (hit_g_h->self_count > 0) {
memcpy(iso_delivery_t, (PACKET_CORE_2 *)hit_g_h, sizeof (PACKET_CORE_2));
inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);

inc_ptr(hit_g_h, HIT_Q_SIZE, hit_q);

// sanity check since this should have been caught much further downstream
else {

printf("Found something unexpected in the bucket\n");
shutdown(1);

return

}

/*
MBM_VER 2 supports full isotach ordering and self messages. Note that
the only difference between the two versions is the implementation of
bucketize.

*/

#f (MBM_VER=2)

// Called by iso_receive when an isotach packet has been dma'd up to the
// host by the Lanai.
void bucketize (ULONG *pkt, UCHAR pkt_subtype) {

eop_marker *eop_m;

isochron_marker *iso_m;

ISO_RECVFRAME *iso_p;

UCHAR bits = 0x00;

UCHARTS;

int ij;

if (pkt_subtype == EOP_MARKER) {
eop_m = (eop_marker *)pkt;
TS = eop_m->TS;

/*check to ensure that the count equals the # of elts in the bucket*/

if (eop_m->count != bucket_t[TS]) {
printf("IOM: Received an incorrect sort vector from the SIU. Aborting\n");
shutdown(1);

/*
If the SIU has sorted everything for us, we can process elements in
the bucket according to the order provided in the sort vector
*/
if (eop_m->count <= sort_vector_count) {
for (i=0;i<eop_m->count; i++) {
process_bucket_entry(&buckets[TS][eop_m->sort_vector[i]]);

/* Else there were too many isotach messages for this pulse*/
/* Note: rather than sort the rest and merge, we will re-sort the entire

257

bucket since for right now it is roughly equivalent and requires
less copies
*/

/* Second Note: since we currently have a small number of hosts, it seems
that the most efficient sort is to simply loop through the bucket and
and enqueue all items for this particular sender. We know that they
are in FIFO order for each sender and this will be a stable sort.

This has complexity O(m*n), where m is the number of hosts, and n is
the size of the bucket. Since n is fairly small, most nlogn sorts have
too much overhead, and since m is small, m*n will be n*n. As the
number of hosts in an isotach system grows, this sorting algorithm
will need to be re-examined.

*
else {
for (j=0;j<number_of hosts; j++) {
for (i=0;i<bucket_t[TS]; i++) {
if (buckets[TS][i].sender ==j) {
process_bucket_entry(&buckets[TS][i]);
}
}
}
}

/* reset bucket tail pointer */
bucket_t[TS] =0;

bits = 0;

/* now check for signals */
if (eop_m->bits & SIGNAL_MASK)
bits = iso_signal_notify(eop_m->bits);

/* if there were any signals, deliver them to the application*/
if (bits) {

iso_delivery_t->subtype = BS_MARKER,;

((bsnatice *)iso_delivery_t)->bits = bits;

inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);

bits = 0;

/* now check for barriers */
if (eop_m->bits & BARRIER_MASK) {
bits = iso_barrier_notify(eop_m->bits);

/* if there were any barriers, deliver them to the application®/
if (bits) {

iso_delivery_t->subtype = BS_MARKER,;

((bsnatice *)iso_delivery_t)->bits = bits;

inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);

else if (pkt_subtype ==1SO_MARKER) {
iso_m = (isochron_marker *)pkt;
TS =iso_m->TS;

/* check to see if there is room in the bucket */
if (bucket_t[TS] == BUCKET_SIZE) {
printf("IOM: Bucket %d has overflowed. Aborting.\n" ,(int)TS);
for (i =0; i< BUCKET_SIZE; i++) {
print_bucket_entry(&buckets[TS][i], i);

}
shutdown(1);

/*
Copy all pertinent information out of the marker and into the
bucket entry
*
buckets[TS][bucket_t[TS]].subtype = pkt_subtype;
((isomarker *)&buckets[TS][bucket_t[TS]])->sender = ntohs(iso_m->source);
((isomarker *)&buckets[TS][bucket_t[TS]])->iso_id = iso_m->iso_id;

258

bucket_t[TS]++;

else if (pkt_subtype ==I1SO_MBM) {
iso_p = (ISO_RECVFRAME *)pkt;
TS = iso_p->packet.TS;

/* check to see if there is room in the bucket */
if (bucket_t[TS] == BUCKET_SIZE) {
printf(,(int)TS);
for (i=0; i<BUCKET_SIZE; i++) {
print_bucket_entry(&buckets[TS][i],i);

}
shutdown(1);

// copy the sender and address of the message into the bucket entry
buckets[TS][bucket_t[TS]].subtype = pkt_subtype;
((isopointer *)&buckets[TS][bucket_t[TS]])->sender =
(USHORT)iso_p->packet.sender;
((isopointer *)&buckets[TS][bucket_t[TS]])->pointer =
(PACKET_PTR)iso_p->packet.body.pointer;
bucket_t[TS]++;

// currently missing a case for Shared memory packets
else {

}

return

}
#endif

#if (MBM_VER= 1)

//version 1 does not support self messages so this is merely a stub

void post_isochron (int net_isochron, ULONG self_count, int net_isochrons_sent) {
return

}
#endif

#if (MBM_VER=2)

// Called by iso_send whenever there are self messages

void post_isochron (int net_isochron, ULONG self_count, int net_isochrons_sent){
isoslot *last_hit;
PACKET_CORE_2 *last_delv;

/*

If the isochron containing the self messages had net components as well,

we need to wait for the correct logical time before executing them.

Thus, we enqueue an isoslot onto the hit_q

*
if (net_isochron == TRUE) {
it (queue_fullthit_g_h,hit_g_t,HIT_Q_SIZE)) {

printf();
shutdown(1);

hit_q_t->self_count = self_count;
hit_q_t->iso_id = net_isochrons_sent;
inc_ptr(hit_q_t,HIT_Q_SIZE,hit_q);

/* otherwise, the isochron contained all self messsages */

/*

if the hit_q is empty, we can deliver them

immediately to the application

*
else if (queue_empty(hit_g_h, hit_g_t)) {
last_delv = g_last_item(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);
/*

if the last item of the delivery queue is an isoslot, add these
messages to that isoslot.

*/

if ((last_delv->subtype == 1SO_SLOT) &&

259

(‘queue_empty(iso_delivery_h, iso_delivery_t))) {
((isoslot *)last_delv)->self_count += self_count;

/* otherwise, enqueue an isoslot onto the deliver queue *
else {
iso_delivery_t->subtype = ISO_SLOT;
((isoslot *)iso_delivery_t)->self_count = self_count;
inc_ptr(iso_delivery_t, ISO_DELIVERY_SIZE, iso_delivery_q);
}
}

/*
if the hit_g wasn't empty, add these messages to
the last isoslot on the hit_q

*/
else {
last_hit = q_last_item(hit_g_t,HIT_Q_SIZE,hit_q);
last_hit->self_count += self_count;

return

}
#endif

260

processing/shmem/exports.h

/*

*

*

* Isotach Module : Isotach Shared Memory Module Exported Functions/Variables
* Isotach Layer : Procesing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/flow_control/flow/exports.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:

*

*

*

#ifndef SHMEM_EXPORTS_H
#define SHMEM_EXPORTS_H

//shmem_init()
//shmem_deinit()

#endif

261

processing/shmem/locals.h

/*

*

*

* Isotach Module : Isotach Shared Memory Module Local Variable Header File
* Isotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: $

* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef SHMEM_LOCALS_H
#define SHMEM_LOCALS_H

#include <hostman/host_utils.h>
#include <processing/flow/exports.h>
/f#include <api/getread/exports.h>
/f#include <processing/iom/exports.h>
/f#include <processing/shmem/exports.h>

#endif

262

processing/shmem/shmem.c

/*

*

*

* Isotach Module : Isotach Shared Memory Module
* |sotach Layer : Processing

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/flow_control/flow/flow.c,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:15 $

* DESCRIPTION:
*

* This is the Shared Memory Module which processes all Shared Memory
* Requests, and maintains the shared memory. This module executes the
* Srefs on local portions of shared memory.

*

*

*

* COMMENTS:

* Not Implemented Yet.
*

*

*

#include <processing/shmem/locals.h>

263

niu_interface/shipping/exports.h

/*

*

*

* Isotach Module : Shipping Module Exported Functions/Variables
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/exports.h,v $
* $Revision: 1.4 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module, Flow Module and Send Module

*

*

#ifndef ~ SHIPPING_EXPORTS_H
#define SHIPPING_EXPORTS_H

/* niu_send_buf is a buffer for outgoing messages that exists on the LANAI's
*SRAM. The following memory mapped variables point to the beginning of the
* buffer, the head and the tail (respectively). Exported to Hostman for
* synchronization purposes.

*/

volatile PACKET *niu_send_buf;

volatile UCHAR *niu_send_h;

volatile UCHAR *niu_send_t;

int ship_packet (PACKET_PTR packet);

int shipping_init (node_info *nst);
int shipping_deinit 0;

int shipping_poll 0;

/* send_buf is a queue of PACKETS that need to be transferred to the
niu_send_buf on the LANAI. */
PACKET send_buf{SEND_BUF_SIZE];

/* send_t points to the next slot in the queue in which the Send Module may
create a packet to be sent */
PACKET_PTR send_t;

/* send_h points to the next element in the queue which the shipping module
should take off and place on the niu_send_buf *
PACKET_PTR send_h;

/* send_flow_ptr points to the next element in the queue which the Flow Module
needs to examine to determine if there are sufficient send credits to send
the message */

PACKET_PTR send_flow_ptr;

/* these are for the ordered packets. Each is similiar to the one above*/
PACKET ord_send_buf[ORD_SEND_BUF_SIZE];

264

PACKET_PTR ord_send_t;
PACKET_PTR ord_send_h;
PACKET_PTR ord_flow_ptr;

#endif

265

niu_interface/shipping/locals.h

/*

*

*

* Isotach Module : Shipping Module Local Variable Header File
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/locals.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef SHIPPING_LOCALS_H
#define SHIPPING_LOCALS_H

#include <hostman/host_utils.h>
#include <processing/flow/exports.h>
#include <niu_interface/shipping/exports.h>

/* An array of routes from THIS host to every other host in the network */
ULONG *routes;

#endif

266

niu_interface/shipping/shipping.c

/*

*

*

* Isotach Module : Shipping Module
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/shipping.c,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This module takes packets from the send_buf, after they have been cleared
* by the Flow Module and places them on the niu_send_buf for network
* transmission.

*

*

* COMMENTS:

*

*/

#include <niu_interface/shipping/locals.h>

// used by flow and iso_flow to ship out credit packets and credit requests
// as well as the barrier module to send out barrier packets
int ship_packet (PACKET_PTR packet) {

if ('queue_full(*niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
packet->route = routes[packet->route];

/* Copy the actual packet from the send_buf to the niu_send_buf */
/* NOTE: this should eventually be optimized using write combining
or some other sort of PCI bus magic*/
memcpy((PACKET_PTR)&niu_send_buf[*niu_send_t], packet, sizeof (PACKET));

/* Incremenet the niu_send_t to inform Netman that a new packet has been
placed on its buffer */
inc_idx(*niu_send_t, NIU_SEND_SIZE);

return SUCCESS;

else {
return FAILURE;

// called by hostman when the messaging layer is terminated
int shipping_deinit 0{
free(routes);
return SUCCESS;

}

// called by hostman when the messaging layer is initialized
int shipping_init (node_info *nst) {

int i;

267

routes = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
// retrieve the routes from the network status table

for (i =0;i<number_of_hosts; i++) {
routes[i] = nst[i].route;

// retrieve pointers into the send buffer from the Lanai

niu_send_buf = (PACKET_PTR)get_lanai_sym("_niu_send_buf");
niu_send_h = (UCHAR *)get_lanai_sym(" niu_send_h");
niu_send_t = (UCHAR *)get_lanai_sym(" niu_send_t");

// initialize all host send buffer pointers
send_t =send_h =send_flow_ptr = send_buf;
ord_send_t = ord_send_h = ord_flow_ptr = ord_send_buf;

// fill in pre-determined information in the ordered send buffer
for (i=0;i<ORD_SEND_BUF_SIZE; i++) {
ord_send_buf]i].type = (USHORT)htons(NONISO);
ord_send_buf[i].subtype = ORDERED;
ord_send_buf[i].sender = (ULONG)host_node_id;
ord_send_buf]i].credit_info = NULL_CREDIT;
ord_send_buf[i].padl = 0x00;

return SUCCESS;
}

/* Shipping Poll is called by the main poll function in hostman. It checks
to see if there is anything outstanding to send. If there are any packets
between send_h and send_flow_ptr, they are all put on the niu_send_queue
*
int shipping_poll 0{
UCHAR local_niu_send_h;

/* If there are no NONISO Packets to send, return now. */
if (queue_empty(send_h, send_flow_ptr) && queue_empty(ord_send_h,

return FAILURE;

// take a snapshot of the head pointer
local_niu_send_h = *niu_send_h;

/* if there are noniso and ordered packets to send out,
alternate sending them */

while ('queue_empty(send_h, send_flow_ptr) &&
lqueue_empty(ord_send_h, ord_flow_ptr)) {

/*
if the Lanai's send buffer seems to be full, first take
a new snapshot of the head pointer. Then if it is still full,
return failure.

*

if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {

local_niu_send_h = *niu_send_h;
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
return FAILURE;

/*send the nonisotach packet out*/

/* Write the route from the routing table into the route field in the out-
going packet. The target host number is stored in the route field, and
is overwritten with the routing bytes *

send_h->route = routes[send_h->route];

/* Copy the actual packet from the send_buf to the niu_send_buf */

268

ord_flow_ptr))

/* Need to copy the entire size of the packet structure since the
route is at the end */
/* Note: this needs to be optimized with write combining or some other
form of PCI bus magic */
memcpy((PACKET_PTR)&niu_send_buf[*niu_send_t], send_h, sizeof (PACKET));

/* Incremenet the niu_send_t to inform Netman that a new packet has been
placed on its buffer */
inc_idx(*niu_send_t, NIU_SEND_SIZE);

/* Free up the slot used by this packet on the send_buf */
inc_ptr(send_h, SEND_BUF_SIZE, send_buf);

/*recheck to see if the queue is full*/
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
local_niu_send_h = *niu_send_h;
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
return FAILURE;

/*send the ordered packet out*/

/* Write the route from the routing table into the route field in the out-
going packet. The target host number is stored in the route field, and
is overwritten with the routing bytes */

ord_send_h->route = routes[ord_send_h->route];

/* Copy the actual packet from the send_buf to the niu_send_buf */
/* Note: this needs to be optimized */
memcpy((PACKET_PTR)&niu_send_buf[*niu_send_t], ord_send_h, sizeof (PACKET));

/* Incremenet the niu_send_t to inform Netman that a new packet has been
placed on its buffer */
inc_idx(*niu_send_t, NIU_SEND_SIZE);

/* Free up the slot used by this packet on the send_buf */
inc_ptr(send_h, ORD_SEND_BUF_SIZE, ord_send_buf);

/*note that at most one of the following two loops will be entered*/

/*now send out any extraneous nonisotach packets*/
while ('queue_empty(send_h, send_flow_ptr)) {

/* check to see if the send buffer on the Lanai is full */
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
local_niu_send_h = *niu_send_h;
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
return FAILURE;

/* Write the route from the routing table into the route field in the out-
going packet. The target host number is stored in the route field, and
is overwritten with the routing bytes */

send_h->route = routes[send_h->route];

/* Copy the actual packet from the send_buf to the niu_send_buf */
/* Note: this needs to be optimized */
memcpy((PACKET_PTR)&niu_send_buf[*niu_send_t], send_h, sizeof (PACKET));

/* Incremenet the niu_send_t to inform Netman that a new packet has been
placed on its buffer */
inc_idx(*niu_send_t, NIU_SEND_SIZE);

/* Free up the slot used by this packet on the send_buf */

inc_ptr(send_h, SEND_BUF_SIZE, send_buf);
}

269

}

/*now send out any extraneous ordered packets*/
while ('queue_empty(ord_send_h, ord_flow_ptr)) {

/* check to see if the Lanai's send buffer is full */
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
local_niu_send_h = *niu_send_h;
if (queue_full(local_niu_send_h, *niu_send_t, NIU_SEND_SIZE)) {
return FAILURE;

/* Write the route from the routing table into the route field in the out-
going packet. The target host number is stored in the route field, and
is overwritten with the routing bytes */

ord_send_h->route = routes[ord_send_h->route];

/* Copy the actual packet from the send_buf to the niu_send_buf */
/* Note: this needs to be optimized */
memcpy((PACKET_PTR)&niu_send_buf[*niu_send_t], ord_send_h,

/* Incremenet the niu_send_t to inform Netman that a new packet has been
placed on its buffer */
inc_idx(*niu_send_t, NIU_SEND_SIZE);
/* Free up the slot used by this packet on the send_buf */
inc_ptr(ord_send_h, ORD_SEND_BUF_SIZE, ord_send_buf);

return SUCCESS;

270

sizeof

(PACKET));

niu_interface/receive/exports.h

/*

*

*

* Isotach Module : Receive Module Exported Functions/Variables
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/receive/exports.h,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module

*

*

#ifndef RECEIVE_EXPORTS_H
#define RECEIVE_EXPORTS_H

int receive_init (node_info *nst);

int receive_deinit 0;
int receive_poll 0;

#endif

271

niu_interface/receive/locals.h

/*

*

*

* Isotach Module : Receive Module Local Variable Header File
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/receive/locals.h,v $
* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef RECEIVE_LOCALS H
#define RECEIVE_LOCALS H

#include <hostman/host_utils.h>

#include <api/deliver/exports.h>

#include <api/iso_deliver/exports.h>
#include <processing/flow/exports.h>
#include <niu_interface/receive/exports.h>

// pointers to the delivery queue on the lanai
volatile PACKET_PTR *niu_delivery_q;
volatile ULONG *niu_delivery_h;

volatile ULONG *niu_delivery_t;

// array of pointers for each node's ordered packet receive buffer
PACKET_PTR *ord_receive_buf;

// array of sizes for each node's ordered packet receive buffer
ULONG *ord_receive_buf_limit;

#endif

272

niu_interface/receive/receive.c

/*

*

*

* Isotach Module : Receive Module
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:
*

$Source: /home2/isotach/cvsroot/v3/niu_interface/receive/receive.c,v $
$Revision: 1.2 $

$Author: pnm2h $

$Date: 1999/11/04 22:29:16 $

DESCRIPTION:

COMMENTS:

P T T T

X

#include <niu_interface/receive/locals.h>

// called by hostman when the application closes the messaging layer
int receive_deinit 0{
free(ord_receive_buf);
free(ord_receive_buf_limit);
free(ord_receive_t);
return SUCCESS;
}

// called by hostman when the messaging layer is initialized
int receive_init (node_info *nst) {
int i

// retrieve the values from the Lanai

niu_delivery_q = (PACKET_PTR *)get_lanai_sym("_niu_delivery_g");

niu_delivery_h = (ULONG *)get_lanai_sym("_niu_delivery_h");

niu_delivery_t = (ULONG *)get_lanai_sym("_niu_delivery_t");

ord_receive_buf = (PACKET_PTR *)malloc(number_of_hosts * sizeof (PACKET_PTR));
ord_receive_buf_limit = (ULONG *)malloc(number_of_hosts * sizeof (ULONG));
ord_receive_t = (PACKET_PTR *)malloc(number_of _hosts * sizeof (PACKET_PTR));

for (i=0;i<number_of hosts; i++) {

ord_receive_buf[i] = (PACKET_PTR)((ULONG)nst[i].local_iso.base + offset);
ord_receive_{t[i] = ord_receive_buf]i];

ord_receive_buf_limit[i] = nst[i].local_iso.size;

/* this is our sanity check... To make sure that we aren't fooling
ourselves, we zero out pinned memory. A VERY useful debugging tool
when things are foobar'd */

/*

bzero((void *)ord_receive_buf[0],
nstfhost_node_id].local_iso.size*sizeof(PACKET));

bzero((void *)ord_receive_buf[1],
nstfhost_node_id].local_iso.size*sizeof(PACKET));

return SUCCESS;
}

273

// called by hostman's poll function
int receive_poll 0{
ULONG current_niu_delivery_t;
ULONG temp_niu_delivery_h;
PACKET_PTR this_packet;

/* Find out where the tail on the niu_delivery queue is at the current
time */
current_niu_delivery_t = ntohl(*niu_delivery_t);

/* Process all packets on the niu_delivery _q up until the value of
current_niu_delivery t. This means that receive_poll() should always
handle as many packets as it thought needed to be handled at the beginning
of the function call. If new packets are queued up by the LANAI, these
should be handled on the next call to receive_poll() */

while (!queue_empty(ntohl(*niu_delivery_h), current_niu_delivery_t)) {
/* Read the address in pinned memory of the next packet to be handled
off of the niu_delivery_q */
this_packet = (PACKET_PTR)(ntohl((ULONG)niu_delivery_qg[ntohl(*niu_delivery_h)]) + offset);

/* Once this address has been read in, increment the niu_delivery_h to let
the LANAI know that space has been freed. We need a temporary copy
since the head needs to be switched.

*

temp_niu_delivery_h = ntohl(*niu_delivery_h);
inc_idx(temp_niu_delivery_h, NIU_DELV_SIZE);
*niu_delivery_h = htonl(temp_niu_delivery_h);

/* Check to see if the CRC Field is NON-zero. If it is NON-zero, the
packet has been corrupted and must be handled */

/* The CRC byte is found by looking into the payload of the packet. When
the packet is received off of the network, the crc byte is always
present in the 1st byte of the word immediatly following the packet
payload. This is because the packet is word aligned when it is sent
out by the sending host. */

/*
if ((UCHAR)(this_packet->data[ntohs(this_packet->pad?2) -
PACKET_HEADER_SIZE - 4]) 1= 0) {
printf("ERROR: Bad CRC Received. Aborting.\n");
print_out_packet(this_packet);
printf("Packets Received = %d\n", pkt_counter);

shutdown(1);
*/

// if it is an isotach credit packet, update credit info
if (this_packet->subtype == ISO_CREDIT)
iso_update_credit(this_packet->sender,
(PACKET_PTR)this_packet->credit_info);

// if there is credit info piggy backed, update credit info
else if (this_packet->credit_info = NULL_CREDIT)
update_credit(this_packet->sender, (PACKET_PTR)this_packet->credit_info);

/* If the incoming packet is a NONISO Message, send it to the Delivery
module */
if (this_packet->subtype == NONISO_MBM) {
if ('queue_full(delivery_h, delivery_t, DELIVERY_SIZE)) {
delivery_q[delivery_t] = this_packet;
inc_idx(delivery_t, DELIVERY_SIZE);

else {
printf("ERROR: Delivery Queue is Full! Aborting.\n");

shutdown(1);

else if (this_packet->subtype == ORDERED) {
/* tell iso_deliver that the ord packet is here */
inc_ptr(ord_receive_t[this_packet->sender],

274

ord_receive_buf_limit[this_packet->sender],
ord_receive_buf[this_packet->sender));

/* remember that all credit information was extracted previously */
else if (this_packet->subtype == CREDIT) {
//printf("Received a credit packet from %d w/ new head at %lu\n”, this_packet->sender,
(ULONG)this_packet->credit_info);
fflush(stdout);

else if (this_packet->subtype == I1SO_CREDIT) {
//printf("Received an iso_credit packet from %d w/ new head at %luln”, this_packet->sender,
(ULONG)this_packet->credit_info);
fflush(stdout);

/*if it is a noniso barrier, notify the barrier module */
else if (this_packet->subtype == BARRIER) {
// printf("Received a barrier packet from %d\n", this_packet->sender);
fflush(stdout);
process_barrier(this_packet->sender);

/*if it is a credit request, send out a credit packet */
else if (this_packet->subtype == REQUEST_CREDIT) {
//printf(“received a credit request from host %d\n",this_packet->sender);
fflush(stdout);
send_credit_packet(this_packet->sender);

/* this should hopefully never happed... */
else {
printf("Received something we are really confused about... bailing\n");
print_out_packet(this_packet);
shutdown(1);
}
}

return SUCCESS;
}

275

niu_interface/iso_shipping/exports.h

/*

*

*

* Isotach Module : Iso_Shipping Module Exported Functions/Variables
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/exports.h,v $
* $Revision: 1.4 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module, iso_Flow Module and iso_Send Module

*

*

#ifndef ISO_SHIPPING_EXPORTS_H
#define ISO_SHIPPING_EXPORTS_H

/*iso_niu_send_buf is a buffer for outgoing messages that exists
*on the LANAI's SRAM. The following memory mapped variables point
* to the beginning of the buffer, the head and the tail (respectively).
*/

volatile 1ISO_SENDFRAME *iso_niu_send_buf;

volatile UCHAR *iso_niu_send_h;

volatile UCHAR *iso_niu_send_t;

int iso_shipping_init (node_info *nst);
int iso_shipping_deinit 0;
int iso_shipping_poll 0;

/*iso_send_buf is a queue of ISO_SENDFRAMES that need to be transferred
to the niu_send_buf on the LANAI. %/
ISO_SENDFRAME iso_send_buf[ISO_SEND_BUF_SIZE];

/*iso_send_t points to the next slot in the queue in which the
Isotach Send Module may create a packet to be sent */
ISO_SENDFRAME *iso_send_t;

/*iso_send_h points to the next element in the queue which the
isotach shipping module should take off and place on the niu_send_buf */
ISO_SENDFRAME *iso_send_h;

/*iso_send_flow_ptr points to the next element in the queue
which the Isotach Flow Module needs to examine to determine
if there are sulfficient send credits to send the message */

ISO_SENDFRAME *iso_send_flow_ptr;

#endif

276

niu_interface/iso_shipping/locals.h

/*

*

*

* Isotach Module : Iso_Shipping Module Local Variable Header File
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/locals.h,v $
* $Revision: 1.6 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef ISO_SHIPPING_LOCALS H
#define ISO_SHIPPING_LOCALS_H

#include <hostman/host_utils.h>
#include <processing/iso_flow/exports.h>
#include <niu_interface/iso_shipping/exports.h>

/* The SIU hardware expects a route to be at least 6 bytes long with a pad */
typedef struct {

ULONG route2;

USHORT routel;
} iso_route;

/* An array of routes from THIS host to every other host in the network */
iso_route *iso_routes;

#endif

277

niu_interface/iso_shipping/iso_shipping.c

/*

*

*

* Isotach Module :1SO_SHIPPING Module
* Isotach Layer : niu_inteface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/niu_interface/shipping/shipping.c,v $
* $Revision: 1.5 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This module takes packets from the iso_send_buf, after they have been
* cleared by the Flow Module and places them on the niu_send_buf for network
* transmission.

*

*

* COMMENTS:

*

*/

#include <niu_interface/iso_shipping/locals.h>

int iso_shipping_deinit 0{
free(iso_routes);
return SUCCESS;

}

// called by hostman when the messaging layer is initialized
int iso_shipping_init (node_info *nst) {

int i;
ULONG route;
iso_routes = (iso_route *)malloc(number_of hosts * sizeof (iso_route));

/#initialize all routing bytes to zero*/
memset(iso_routes, 0x00, number_of_hosts * sizeof (iso_route));

/* The SIU expects the route to range from 2 - 6 bytes,
depending on the number of routing bytes. Since

nonisotach supports at most 4 routing bytes, we are

limiting isotach to that as well. However, to accomodate

the way in which routes are used by the SIU, we need to split
it across two different fields in the ISO_SENDFRAME structure.
Below is a list of the four cases, and how the fields need to

be populated for each. The fields are listed in network order,
so byte ordering will have to be switched:

1 byte route: routel -> 00R1
route2 -> 00000000

2 byte route: routel -> RI1IR2
route2 -> 00000000

3 byte route: routel -> 0000
route2 -> 00R1R2R3

4 byte route: routel -> 0000
route2 -> R1IR2R3R4

278

*

/* the following algorithm could be accomplished with 2 cases,
however for readability, we explicitly list all 4 cases */

for (i =0;i<number_of_hosts; i++) {
/* first put the route back in host ordering */
route = (ULONG)ntohl(nst[i].route);

/* if the third byte is zero, we have a one byte route */

if ((route & THIRD_BYTE) == 0) {
iso_routes[i].routel = (USHORT)htons((USHORT)route);
iso_routes[i].route2 = 0;

/* if the second byte is zero, we have a two byte route */

else if ((route & SECOND_BYTE) ==0) {
iso_routes[i].routel = (USHORT)htons((USHORT)route);
iso_routes[i].route2 = 0;

/* if the first byte is zero, we have a three byte route */
else if ((route & FIRST_BYTE) ==0) {
iso_routes[i].routel = 0;
iso_routes[i].route2 = (ULONG)htonl(route);

/* otherwise it is a four byte route */

else {
iso_routes[i].routel = 0O;
iso_routes[i].route2 = (ULONG)htonl(route);

/* set the type field to ISO */
for (i=0;i<ISO_SEND_BUF_SIZE; i++) {
iso_send_buf[i].packet.type = htons(1SO);

/* retrieve pointers into the isotach send buffer on the Lanai */

iso_niu_send_buf = (ISO_SENDFRAME *)get_lanai_sym();
iso_niu_send_h = (UCHAR *)get_lanai_sym();
iso_niu_send_t = (UCHAR *)get_lanai_sym();

/* initialize the queue pointers for the isotach send buffer on the host */
iso_send_t =iso_send_h = iso_send_flow_ptr = iso_send_buf;

return SUCCESS;
}

/*iso_Shipping Poll is called by the main poll function in hostman.
It checks to see if there is anything outstanding to send.
If there are any packets between iso_send_h and iso_send_flow_ptr,
they are all put on the iso_niu_send_queue */
int iso_shipping_poll 0{
UCHAR local_iso_niu_send_h;

/* If there are no NONISO Packets to send, return now. */
if (queue_empty(iso_send_h, iso_send_flow_ptr))
return FAILURE;

// take a snapshot of the head pointer
local_iso_niu_send_h = *iso_niu_send_h;

// while there are packets to ship
while ('queue_empty(iso_send_h, iso_send_flow_ptr)) {

// if the queue appears full, first take a new snapshot of the head

// if it is still full then return failure

if (queue_full(local_iso_niu_send_h, *iso_niu_send_t, ISO_NIU_SEND_SIZE)) {
local_iso_niu_send_h = *iso_niu_send_h;

if (queue_full(local_iso_niu_send_h, *iso_niu_send_t,
ISO_NIU_SEND_SIZE)) {

279

}

/printf("\tltISO_NIU_SEND_Q Full!!! Leaving ISO_Shipping!!\n");
return FAILURE;

/* look up the route in the table and write it into the outgoing packet */
iso_send_h->routel = iso_routes[iso_send_h->route2].routel;
iso_send_h->route2 = iso_routes[iso_send_h->route2].route2;

/* Switch the byte ordering of the sender field */
iso_send_h->packet.sender = (USHORT)htons(iso_send_h->packet.sender);

/* Switch the byte ordering of the prefix */
iso_send_h->prefix = (ULONG)htonl(iso_send_h->prefix);

/* Copy the actual packet from the send_buf to the niu_send_buf */
/* Note: this needs to be optimized using write combining or some
other form of PCI bus magic */
memcpy((ISO_SENDFRAME *)&iso_niu_send_buf[*iso_niu_send_t],
iso_send_h, sizeof (ISO_SENDFRAME));

/* Incremenet the iso_niu_send_t to inform Netman that a
new packet has been placed on its buffer */
inc_idx(*iso_niu_send_t, ISO_NIU_SEND_SIZE);
/* Free up the slot used by this packet on the iso_send_buf */
inc_ptr(iso_send_h, ISO_SEND_BUF_SIZE, iso_send_buf);

return SUCCESS;

280

niu_interface/iso_receive/exports.h

/*

*

*

* Isotach Module : Iso Receive Module Exported Functions/Variables
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source:$

* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the exported functions, variables and data

* structures for the given module. Other modules which need to access these
* variables/functions should include this header file.

*

*

*

* COMMENTS:
* Included by the Hostman Module

*

*

#ifndef ISO_RECEIVE_EXPORTS_H
#define ISO_RECEIVE_EXPORTS_H

int iso_receive_init (ULONG *iso_base_ptr);
int iso_receive_deinit 0;

int iso_receive_poll 0;

#endif

281

niu_interface/iso_receive/locals.h

/*

*

*

* Isotach Module : Iso Receive Module Local Variable Header File
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source:$

* $Revision: 1.3 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef ISO_RECEIVE_LOCALS_H
#define ISO_RECEIVE_LOCALS_H

#include <hostman/host_utils.h>

#include <processing/iom/exports.h>

#include <processing/iso_flow/exports.h>
#include <niu_interface/iso_receive/exports.h>
#include <api/iso_signal/exports.h>

/* The iso_recv buffer is a buffer with elements of word length. The normal
queue manipulation functions do not apply to this queue because pointer
increments are not of uniform size. They depend on the size of the
packet stored (i.e. iso_pointer, iso_sref, EOP or isochron marker)

Both of these pointers are to virtual addresses because they are only
used on the host.*/

ULONG *iso_recv_buf;

ULONG *iso_recv_h;

/* These pointers are pointers into the iso_recv_buf, but because they are
modified on the LANai, they need to exist on the LANai's SRAM
These addresses are physical addresses into pinned memory.
iso_receive_buf_start is only used on the LANAI, so physical to virtual
address calculations never need to be done on it. iso_recv _t is looked
at on the host (to determine if the queue is empty) and the offset must
be added to it to get the virtual address of the iso_recv_t */

volatile ULONG *iso_recv_t;

volatile ULONG *iso_recv_start;

volatile ULONG *iso_recv_size;

#endif

282

niu_interface/iso_receive/iso_receive.c

/*

*

*

* Isotach Module : Iso Receive Module
* Isotach Layer : NIU Interface

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:
*

* $Source:$

* $Revision: 1.2 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $
* DESCRIPTION:

* COMMENTS:

*/

#include <niu_interfacel/iso_receive/locals.h>

// called by hostman when the application shuts down the messaging layer
// right now it is a stub since there is nothing to do
int iso_receive_deinit 0{
return SUCCESS;
}

// called by hostman when the messaging layer is initialized
int iso_receive_init (ULONG *iso_base_ptr) {

iso_recv_t = (ULONG *)get_lanai_sym("_iso_recv_t");
iso_recv_start = (ULONG *)get_lanai_sym("_iso_recv_start");
iso_recv_size = (ULONG *)get_lanai_sym("_iso_recv_size");
iso_recv_buf = (ULONG *)((ULONG)iso_base_ptr + offset);

*iso_recv_t = (ULONG)htonl((ULONG)iso_base_ptr);

*iso_recv_start = (ULONG)htonl((ULONG)iso_base_ptr);

*iso_recv_size = (ULONG)htonl(ISO_RECV_SIZE);

iso_recv_h =iso_recv_buf;

return SUCCESS;

}
// called by hostman's poll function
int iso_receive_poll 0{

ULONG *current_iso_recv_t;
UCHAR pkt_subtype;
eop_marker *eop_m;
isochron_marker *iso_m;
ISO_RECVFRAME *iso_p;

/* take a snapshot of the tail pointer and add the offset */
current_iso_recv_t = (ULONG *)((ULONG)ntohl(*iso_recv_t) + offset);

/* loop until the head equals the snapshot of the tail */
while ('queue_empty(iso_recv_h, current_iso_recv_t)) {
/* if we have received a stop packet from the Lanai,
reset the head pointer back to the beginning */

if (*iso_recv_h == STOP_PACKET) {

283

iso_recv_h =iso_recv_buf;
continue ;

/*The packet subtype is the third byte of the first word of the packet */
pkt_subtype = ((ISO_RECVFRAME *)iso_recv_h)->packet.subtype;

/*We have different tasks, depending on what we receive*/

if (pkt_subtype == EOP_MARKER) {
eop_m = (eop_marker *)iso_recv_h;

/* Check the CRC */

if (eop_m->crc) {
printf();
shutdown(1);

/* Insert the EOP marker into a bucket */
bucketize(iso_recv_h, pkt_subtype);

/* Increment the head pointer */
iso_recv_h += EOP_MARKER_SIZE;
}

else if (pkt_subtype ==1SO_MARKER) {
iso_m = (isochron_marker *)iso_recv_h;

/* Check the CRC */

if (iso_m->crc) {
printf();
print_out_iso_marker(iso_m);
shutdown(1);

/* Insert the Isochron marker into a bucket */
bucketize(iso_recv_h, pkt_subtype);

/* Increment the head pointer */
iso_recv_h += ISO_MARKER_SIZE;
}

else if ((pkt_subtype ==1SO_MBM) ||
(pkt_subtype == ISO_READ) ||
(pkt_subtype == ISO_WRITE) ||
(pkt_subtype == ISO_ASSIGN) ||
(pkt_subtype == ISO_SCHED)){

iso_p = (ISO_RECVFRAME *)iso_recv_h;

/* Check the CRC */

if (iso_p->crc) {
printf();
shutdown(1);

/* switch the sender back to host ordering */
iso_p->packet.sender = (USHORT)ntohs(iso_p->packet.sender);

/* Extract credit information */
if (iso_p->packet.credit_info != NULL_CREDIT) {
iso_update_credit((int)iso_p->packet.sender,iso_p->packet.credit_info);

/* Insert the Isotach packet into a bucket */
bucketize(iso_recv_h, pkt_subtype);

/* Increment the head pointer */

iso_recv_h += ISO_RECVFRAME_SIZE;
}

284

else {
printf();
print_out_iso_marker((isochron_marker *)iso_recv_h);
print_out_iso_packet(&((ISO_RECVFRAME *)iso_recv_h)->packet);
shutdown(1);

return SUCCESS;
}

285

netman/net_utils.h

/*

*

*

* Isotach Module : Network Utility Functions
* Isotach Layer : Netman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /home2/isotach/cvsroot/v3/netman/net_utils.h,v $
* $Revision: 1.4 $

* $Author: pnm2h $

* $Date: 1999/11/02 01:25:37 $

* DESCRIPTION:
*

* This file contains some useful macros which can be used in the Netman
* module, but which are not applicable to the rest of the messaging layer.
* These were copied from the previous version of Isotach. No author was
* indicated for these macros, so credit will be given to anonymous.

*

*

*

* COMMENTS:

*

*

*/

#ifndef NET_UTILS_H
#define NET_UTILS_H

#include <hostman/utils.h>

/* The following is strictly for debugging the LANai */
ULONG D_iso_receives = 0;

ULONG D_receives =0;
ULONG D_iso_sends =0;
ULONG D_sends =0;
ULONG D_iso_dma_s
ULONG D_iso_dma_e
ULONG D_dma_s
ULONG D_dma_e ;
ULONG D_error_state =0;
ULONG D_mbm_receives = 0;
ULONG D_eop_receives = 0;
ULONG D_chr_receives = 0;
ULONG D_bsmark =0;
ULONG D_forced =0;
ULONG D_idle =0;

ULONG D_dropped_packets = 0;
ULONG D_dropped_words =0;

0;
o

0;
o

/* End Debugging Variables */

/* This enumerated type represents the different states the receive
code can be in while dma'ing packets up to the host

*/

enum dma_state {

IDLE = 0x0, DMA_NONISO, DMA_ISO

h

/* Return the max/min of two given numbers */

#define max(a,b) ((a) >=(b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

286

/* The following are macros used to access the Lanai's status register */

/*
* REMINDER (from page 15 of the LANai 4.x docs):
*

* after a write to RML:

* recvready() is undefined for 2 instructions
* recvdone() is undefined for 1 instruction

*

* after a write to SML or SMLT:

* sendready() is undefined for 2 instructions
* senddone() is undefined for 1 instruction
*

* after a read from RB, RH, RW:

* recvready() is undefined for 3 instructions
*

* after a write to SB, SH, SW, ST:
* sendready() is undefined for 3 instructions
*

* after a write to DMA_CTR:
* dmadone() is undefined for 1 instruction

*

*/

/* often status bits are undefined for a certain number of
instructions. The following nop is used to wait until
status bits are valid.

*/

#define nop() asm volatile ("nop")

/leurrently not used
#define wait_senddone ()\
{ nop(); \
nop(); \
while (!(ISR & SEND_INT_BIT)); }

//an inline function taken from the previous version of the code
//that returns the status of a dma transfer out onto the wire
//note that you must have at least 2 instructions between the
//write to SMLT (initiating the transfer), and this check

static inline int senddone (void)

return (ISR & SEND_INT_BIT);
}

//wait after a simple write onto the network (ie SB,SH,SW)
#define wait_sendready () \
{ nop(); \
nop(); \
nop(); \
while (1(ISR & SEND_RDY_BIT)); }

//the check after a simple write onto the network
#define sendready () (ISR & SEND_RDY_BIT)

//la macro that will wait until we are finished a simple receive
//(ie. RB, RH, RW)
#define wait_recvdone () \
{ nop(); \
nop(); \
while (1(ISR & RECV_INT_BIT));}

//wait for a receive dma to finish
#define wait_recvbufdone () \
{ nop(); \
nop(); \
while (1(ISR & (RECV_INT_BIT | BUFF_INT_BIT)));}

//check to see if there is data waiting to be received
#define recvready () (ISR & BYTE_RDY_BIT)

//check to see if a host dma has finished

287

//note that there needs to be at least 2 instructions between
//the write to DMA_CTR (initiating the dma) and this check
#define dmadone() (ISR & DMA_INT_BIT)

//explicitly wait for a host dma to finish
#define wait_dmadone ()\
{ nop(); \

while ({(ISR & DMA_INT_BIT));}

//check to see if we have overrun our receive buffer. If we have
//something is wrong so just drop the packet
#define buffer_overrun () (ISR & BUFF_INT_BIT) ? drop() : FALSE)

/*
* was the message we just received aligned on a word boundary?
*
* that is: are both overrun bits set, meaning that there were
* three overrun bytes since the CRC should have landed on the
* first byte of the word following the message
*/

static inline int aligned (void){
register int orun;
orun = (ISR & (ORUN1_INT_BIT | ORUNZ2_INT_BIT));
return (orun == (ORUN1_INT_BIT | ORUNZ2_INT_BIT));
}

/*
*drop an entire packet on the floor
*,
/

static inline int drop (void){
register unsigned char bit_bucket;
nop();

nop();

nop();

while (/(ISR & TAIL_INT_BIT) && (ISR & BYTE_RDY_BIT)) {
nop();
nop();
nop();

bit_bucket = RB;
D_dropped_words++;

return TRUE;
}

/*

* Has the token timeout timer expired?

*,

/
//don't think we use this for anything right now, but could
//be useful for an all software SIU

static inline int token_timeout (void){
return (ISR & TIME_INT_BIT);

}

#endif

288

netman/locals.h

/*

*

*

* Isotach Module : Netman Local Variable Header File
* Isotach Layer : Netman

* Isotach Version : Version 3

*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/netman/locals.h,v $
* $Revision: 1.9 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This file contains all of the local variable and data structure definitions.

* It also includes all other header files necessary for the module's function.
* It also prototypes all functions internal to that module.

*

*

*

* COMMENTS:

*

¥

#ifndef NETMAN_LOCALS_H
#define NETMAN_LOCALS_H

#include <lanai4_def.h>
#include <netman/net_utils.h>

/*
* Local Variable that are memory mapped to the host
*

*/

volatile UCHAR init_stage;

volatile ULONG netman_hostbase;
volatile ULONG netman_maxlen;
volatile ULONG niu_iso_recv_base;
volatile UCHAR NIU_SYS_TYPE;

/* niu_send_buf is a buffer for outgoing messages that exists on the LANAI's
* SRAM. The following variables point to the beginning of the
* buffer, the head and the tail (respectively).
*

volatile PACKET niu_send_buf[NIU_SEND_SIZE];
volatile UCHAR niu_send_t;
volatile UCHAR niu_send_h;

/* niu_delivery _q is a buffer for pointers to incoming messages. It exists
*on the LANAI's SRAM. The following variables point to the beginning of
* the buffer, the head and the tail (respectively)

*/

volatile PACKET_PTR niu_delivery_q[NIU_DELV_SIZE];
volatile ULONG niu_delivery_t;
volatile ULONG niu_delivery_h;

/* Keeps a count of the number of packets received by the LANAI. The host
checks this against its own count of how many it has received to determine
whether or not messages from the LANAI need to be processed. This is

289

only used during synchronization.
*
volatile ULONG lanai_received;

/* isotach memory mapped variables */

// functions similarily to the niu_send_buf described above

volatile ISO_SENDFRAME iso_niu_send_buf{ISO_NIU_SEND_SIZE];
volatile UCHAR iso_niu_send_t;

volatile UCHAR iso_niu_send_h;

/* the address of iso_receive_buf in pinned memory*/
volatile ULONG iso_recv_start;

/* the tail pointer into the isotach receive buffer */
volatile ULONG iso_recv_t;

/* the size of the isotach receive buffer */

volatile ULONG iso_recv_size;

/*
* Local Variable that are NOT memory mapped to the host

*

*/

/* we need to calculate where the next tail pointer could possibly
be after we DMA an entire isotach receive buffer to determine
if we will need to wrap around back to the beginning on the
next transfer. This variable stores what the tail will be
once the DMA has finished.

Please see the Ironman documentation for a full description of
the Isotach receive path from the LANAI to the host.

*

volatile ULONG *new_iso_recv_t;

// used during the initialization of the dma engine
ULONG dma_sts;

// the receive buffer on the LANAI for nonisotach packets
// they are queued up here and then dma'd up to the host
// as soon as the engine is free

PACKET niu_receive_buf[NIU_RECV_BUF_SIZE];
PACKET_PTR niu_recv_t;

PACKET_PTR niu_recv_h;

/*isotach receive data structures*/

/* This is the ‘high water mark’ for filling up the iso_recv_buf. If the
current DMA will place any words beyond this address, then a STOP word must
be placed as the first word following the last DMA'd packet. This indicates
to the host, that the next packet will be at the beginning of the
iso_recv_buf */
ULONG *iso_recv_buf_thresh;

/* These are for receiving from the network into LANAI SRAM
We have two different buffers that we use for pipelining.
Thus, when we receive an EOP marker (a buffer fills up), we
can DMA that buffer up to the host, and still keep receiving
from the network at the same time by utilizing the second buffer.
*

// the two aforementioned buffers
ULONG niu_iso_recv_bufO[ISO_NIU_RECV_SIZE + 1];
ULONG niu_iso_recv_bufl[ISO_NIU_RECV_SIZE + 1];

// a threshhold value for each buffer. Once we hit it, we know that
// we have no more room for isotach packets inside this buffer.

// Thus once we hit this threshold, we dma that buffer, and switch to
// the next.

ULONG *niu_iso_thresh[2];

// this stores the starting address of each of the isotach receive buffers
ULONG *niu_iso_buffer[2];

// the tail pointer into whichever buffer we are currently using

290

ULONG *niu_iso_tail_ptr;

// stores which number buffer we are using. This is used to toggle between

// the two buffers
UCHAR cur_niu_iso_buf;

// this stores the state of the DMA engine
// its potential values are IDLE, DMA_NONISO, DMA_ISO
char state;

// used to store the first word of any received packet so
// that we can determine what its type is

ULONG buffer;

/* Local Function Prototypes *

inline
inline
inline
inline
inline
inline
inline
inline
inline

#endif

void
void
void
void
void
char
void
void
void

send_word (ULONG word);

send_packet (UCHAR *data, UCHAR length);
receive_packets ();

synchronize ();

send_packets ();

check_dma ();

iso_dma ();

noniso_dma ();

force_noniso_dma ();

291

netman/netman.c

/*

*

*

* Isotach Module : Netman
* Isotach Layer : Netman

* Isotach Version : Version 3
*

*

*

* REVISION INFORMATION:

* $Source: /homeZ2/isotach/cvsroot/v3/netman/netman.c,v $
* $Revision: 1.11 $

* $Author: pnm2h $

* $Date: 1999/11/04 22:29:16 $

* DESCRIPTION:
*

* This is the main module of the program which gets loaded onto the Myricom
* Interface board. The, along with send_side and receieve_side comprise

* the lanai control program. The module contains the main function and

* synchronization.

*

*

*

* COMMENTS:

*

*

*/

#include <netman/locals.h>
int . main () {

/*
* Initialization of the LANAI Begins HERE

*

¥/

int i;
ULONG tmpbuf[8];

MYRINET = CRC_ENABLE_BIT,;
VERSION = 0;
TIMEOUT = 3;
WRITE_ENABLE = 0x80000000;

/* Spinning until host tells us to continue... */
while (init_stage '= START_LANAI) {}

/* Section 1: Initialization of a small portion of SRAM which sets value
* for DMA test.
/

for (i=0;i<8;i++){
tmpbuf[i] = 0x11223344;
}

/* Section 2: DMA from SRAM to pinned memory. */

DMA_STS = dma_sts;

DMA_DIR =0;

LAR=(void *) tmpbuf;

EAR =(void *)netman_hostbase;
DMA_CTR=8* sizeof (int);
wait_dmadone();

292

init_stage = INIT_DMA_TEST;
/* Spinning until host has initialized */
while (init_stage != CHECK_DMA_TEST) {}
/* Section 3: Initialize all necessary variables in SRAM */

/* Initialize Lanai Buffers, Head, & Tail Pointers*/
niu_send_t =0;
niu_send_h =0;
niu_delivery_h = 0;
niu_delivery_t = 0;

iso_niu_send_t = 0;
iso_niu_send_h = 0;

niu_recv_t = niu_receive_buf;
niu_recv_h = niu_receive_buf;

cur_niu_iso_buf=0;

niu_iso_buffer[0] = niu_iso_recv_buf0;
niu_iso_buffer[1] = niu_iso_recv_bufl;

niu_iso_thresh[0] = (ULONG *)((niu_iso_buffer[0] + ISO_NIU_RECV_SIZE) -

(sizeof (eop_marker)/ 4));
niu_iso_thresh[1] = (ULONG *)((niu_iso_buffer[1] + ISO_NIU_RECV_SIZE) -

(sizeof (eop_marker)/ 4));

niu_iso_tail_ptr = niu_iso_buffer[cur_niu_iso_buf];

// we currently aren't dma'ing anything up to the host
state = IDLE;

/* Spinning until host maps additional variables and reads in configuration
* file

*

while (init_stage != SYNCHRONIZE) {}

/* Section 4: Enter synchronization routine */
synchronize();

/* kind of a kludge here... if we have an isotach system, the host is
finished once the isotach receive buffers are mapped. If its a
nonisotach system, it goes to a finished stage.

*,

/

if (NIU_SYS_TYPE != NONISOTACH) {
while ((iso_recv_start == 0) || (iso_recv_size == 0));

iso_recv_buf_thresh = (ULONG *)((iso_recv_start + iso_recv_size) - ISO_NIU_RECV_SIZE);

else {
while (init_stage != FINISHED) {}

/*
* Initialization COMPLETED. The next section of the main function is the
*main event loop

*

Y/

while (1) {
// one of our main design goals is to keep the dma engine as
// busy as possible. Thus, every pass through this loop we
// check to see if the engine is free and if so, dma up any
// nonisotach packets that are sitting around
if (state != IDLE)

293

check_dmay);
if ('queue_empty(niu_recv_h,niu_recv_t))
noniso_dma();

/* call receive_packets */
receive_packets();

/* call send_packets */
send_packets();

return 0;

}

// a debugging routine that we use to send a single word of
// data to a separate host on the switch that is running our
// send/receive program. Kind of our version of printf() debugging
inline void send_word (ULONG word) {
/* change this before recompiling to the debug host route */
char route = OXBE;

wait_sendready();
SB = route;
wait_sendready();
SW = word;
wait_sendready();
ST=0;
wait_sendready();

}

// a debugging routine that we use to send a block of
// data to a separate host on the switch that is running our
// send/receive program. Kind of our version of printf() debugging
inline void send_packet (UCHAR *data, UCHAR length) {
int i
wait_sendready();
SB = 0x83;
wait_sendready();

for (i=0; i< length; i++) {
SB = datali];
wait_sendready();

}
ST=0;
wait_sendready();
}
/* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

*/

// this function checks the status of the dma engine and returns
// whatever it was previously doing.
// it also performs all necessary operations once a particular
// type of dma has finished
inline char check_dma () {
char prev_state = state;

// if the dma engine has finished sending
if (dmadone()) {
// if we were dma'ing a nonisotach packet
if (state == DMA_NONISO) {
// enqueue a pointer onto the niu_delivery queue
niu_delivery_g[niu_delivery_t] = (PACKET_PTR)niu_recv_h->address;

// increment the tail pointer of the deliverq queue
inc_idx(niu_delivery_t, NIU_DELV_SIZE);

// advance the head pointer of the niu receive buffer
inc_ptr(niu_recv_h, NIU_RECV_BUF_SIZE, niu_receive_buf);

294

// set our state to idle
state = IDLE;

//D_dma_e++;
// if we were dma'ing the isotach receive buffer
else if (state == DMA_ISO) {
// our new tail pointer is what we calculated previously
iso_recv_t = (ULONG)new _iso_recv_t;

// set our state to idle

state = IDLE;
//D_iso_dma_e++;
}
}
return prev_state;

}

// a function that tries to dma a nonisotach packet up to the host
inline void noniso_dma () {
// if the engine is free
if (state == IDLE) {
// we are taking it off the head of the recieve buffer
LAR = (void *)(niu_recv_h);

// and putting it wherever the packet says to
EAR = (void *)(niu_recv_h->address);

// we need to be careful though...

// if the destination address is out of bounds, we bail and sit

//in an infinte loop. Otherwise, we could potentially overwrite

// part of the kernel or some other important portion of memory

// and hang the machine.

if ((niu_recv_h->address >
(netman_hostbase + netman_maxlen - niu_recv_h->pad2 - 100))
|| (niu_recv_h->address < (netman_hostbase))) {

D_error_state = 1;
while (1);

/* The size of the packet was stored in the 2nd pad*/
DMA_CTR = niu_recv_h->pad2;

// set our state to reflect the fact that we are transfering a
// nonisotach packet
state = DMA_NONISO;

//D_dma_s++;
}

return

}

// sometimes, if our receive buffer is full, we need to free up a
// slot before we can receive off of the network. The previous
// function only dma's if the engine is idle.

// this function enforces that a dma transfer occurs

inline void force_noniso_dma () {

// wait for the dma engine to finish what it was doing
wait_dmadone();

// if we were previously dma'ing an isotach buffer, we need
// to force a noniso dma.

if (check_dma() == DMA_ISO) {

noniso_dmay);

wait_dmadone();

check_dmay);

// otherwise, we know that we've finished a nonisotach dma and

// a slot has freed up. So lets start another and return.
noniso_dmay();

return

295

}

// this function dma's an entire isotach receive buffer

// it is forced in the sense that we need to start the

// transfer now. It can finish whenever.

// It also determines whether we need to wrap around in the

// hosts isotach receive buffer on the next dma, as well as

// switches the niu isotach receive buffer so we can keep

// receiving isotach packets

// for a detailed description of the isotach receive path, consult
// the ironman design document

inline void iso_dma () {

// if the engine isn't free, wait for it to finish
if (state !=IDLE) {

wait_dmadone();

check_dmay);

/* Calculate where the new iso_recv_t would be after the transfer */
new_iso_recv_t = (ULONG *)iso_recv_t + (niu_iso_tail_ptr -
niu_iso_buffer[cur_niu_iso_buf]);

/* If another niu_iso_recv_buf will not fit in the iso_recv_buf, then
reset the tail pointer to the beginning of the iso_recv_buf */
if (new_iso_recv_t >=iso_recv_buf_thresh) {
// write STOP_PACKET into the last word of the buffer before
// beginning the dma. This will tell the host to wrap around
*niu_iso_tail_ptr = STOP_PACKET;
niu_iso_tail_ptr++;

// set the new tail pointer to the beginning of the buffer
new_iso_recv_t = (ULONG *)iso_recv_start;

}

// we are transfering data from the current buffer
LAR =(void *)niu_iso_buffer[cur_niu_iso_buf];

// our destination is the tail pointer into the host's isotach
// receive buffer
EAR =(void *)iso_recv_t;

// the number of bytes to transfer is the tail - the start of the niu
// isotach recieve buffer
DMA_CTR =(void *)niu_iso_tail_ptr - LAR;

// set our state accordingly
state = DMA_ISO;

// now toggle niu isotach receive buffers and set the new tail
cur_niu_iso_buf = (cur_niu_iso_buf + 1) % 2;
niu_iso_tail_ptr = niu_iso_buffer[cur_niu_iso_buf];

return

}

// this function receives packets off of the network
inline void receive_packets () {
int receives = 0;
USHORT iso_pkt_size; //can't put size into pad?2 of an isotach packet

/* while there is something to receive... */
/* we also want to set a cap on the number of packets received in
a single function call, since receiving has the potential of
starving sending */
while ((recvready()) && (receives < RECV_LIMIT)) {

// always check the status of the dma engine
check_dmay);

/* Reads word off to determine type before DMA */

buffer = RW;
wait_recvdone();

296

/* Check the header to see if it is a noniso packet */
if ((USHORT)(buffer >> 16) == NONISO) {

// if the receive buffer is full, force a noniso dma
if (lanai_queue_full((ULONG)niu_recv_h, (ULONG)niu_recv_t,
NIU_RECV_BUF_SIZE* sizeof (PACKET))){
//D_forced++;
force_noniso_dma();

// write the first word of the packet into the receive buffer
*(ULONG *)niu_recv_t = buffer;

// dma the rest of the packet off of the network
RMP = (void *)niu_recv_t + 4;

RML = (void *)niu_recv_t + sizeof (PACKET) - 4;
wait_recvbufdone();
receives++;

D_receives++;

// calculate the size of the packet and store it in the padZ field
niu_recv_t->pad2 = (USHORT)((void *)RMP - (void *)niu_recv_t);

// increment our tail pointer
inc_ptr(niu_recv_t, NIU_RECV_BUF_SIZE, niu_receive_buf);
receives++;

// try to dma the packet up to the host
noniso_dma();

/* Otherwise it is an Isotach Packet */
else {
// write the first word into the isotach receive buffer
*niu_iso_tail_ptr = buffer;

// we need to check the packet type at this point
// some of the hardware SIU's send back garbage before they are reset
it ((((PACKET *)niu_iso_tail_ptr)->type !'= EOP) && (((PACKET *)niu_iso_tail_ptr)->type !=

1SO)) {
drop();
D_dropped_packets++;
continue ;
}

// dma the rest of the packet into the niu isotach receive buffer
RMP = (void *)niu_iso_tail_ptr + 4;
RML = (void *)niu_iso_tail_ptr + sizeof (eop_marker);

// wait for the dma to finish
wait_recvbufdone();
receives++;

//D_iso_receives++;

// calculate the size of the packet
iso_pkt_size = (USHORT)((void *)RMP - (void *)niu_iso_tail_ptr);

// if we are supporting a hardware SIU...
#if (SIU ==1)
/* Check to see if it is an isochron_marker */
if (iso_pkt_size == sizeof (isochron_marker)) {

// or the isochron crc in with the packets crc
((isochron_marker *)niu_iso_tail_ptr)->crc |=
((isochron_marker *)niu_iso_tail_ptr)->subtype;

// set the subtype for identification purposes on the host
((isochron_marker *)niu_iso_tail_ptr)->subtype = ISO_MARKER;

// increment the tail pointer
niu_iso_tail_ptr += ISO_MARKER_SIZE;

//D_chr_receives++;

297

/* Is the incoming packet an EOP Marker. */
else if (((PACKET *)niu_iso_tail_ptr)->type == EOP) {
/* Use the 1st byte after the type (sequence number) to
store the subtype for ID purposes on the host */
((eop_marker *)niu_iso_tail_ptr)->subtype = EOP_MARKER;

// find the crc byte and store it in the crc field in the structure
((eop_marker *)niu_iso_tail_ptr)->crc =
((ULONG)*((UCHAR *)RMP - 4) & FIRST_BYTE) >> 24;

// increment the tail pointer
niu_iso_tail_ptr += EOP_MARKER_SIZE;

//D_eop_receives++;

}
/* otherwise it was a plain isotach packet */
else {
// increment the tail pointer
niu_iso_tail_ptr += ISO_RECVFRAME_SIZE;
//D_mbm_receives++;
}
// if the current isotach receive buffer has grown too large
// or the packet just received was an EOP, dma the buffer up
// to the host
it ((niu_iso_tail_ptr >= niu_iso_thresh[cur_niu_iso_buf]) ||
(((buffer & (OXFFFF0000)) >> 16) == EOP)) {
iso_dmay();
}
// if we are not supporting a hardware SIU, we only receive isotach
// packets
#else

// increment the tail pointer
niu_iso_tail_ptr += 1ISO_RECVFRAME_SIZE;

//D_mbm_receives++;
// dma the packet up to the host
iso_dma();
#endif
} // this ends the isotach packet handling

// regardless of what we received, check the dma engine and
// try to dma any outstanding nonisotach packets
if (state !'=IDLE)
check_dmay();
if ('queue_empty(niu_recv_h,niu_recv_t))
noniso_dma();

/* xx

*/

/* xx

*/

// sends packets out one at a time
/* Currently, send_packets sends out one packet from the niu_send_buf and
* one packet from niu_iso_send_buf.
* It may be better to record the number of packets in niu_send_buf upon
* entering send, and then send this number of packets out before giving
* control back to main
*/
// this is debatable, since we need to bias the system heavily towards
// receiving
inline void send_packets () {

298

// if we are supporting a hardware siu

#if (SlU==1)
// keep track of the number of system resets
static int reset_count = 0;

#endif

// if we have a nonisotach packet to send
if ('queue_empty(niu_send_h, niu_send_t)) {
/* Send out the Routing Bytes */

wait_sendready();

/*examining the route from left to right, we have 4 possibilities:
1 byte route -> 000000R1
2 byte route -> 0000R1R2
3 byte route -> 00R1R2R3
4 byte route -> RIR2R3R4
where the byte ordering is the order in which they are specified
in the network configuration file.
*/

/* If the third byte in the routing word is 0, then we only need
to send out a 1 byte route, which is done by casting the ULONG
to a single byte.*/

if ((niu_send_buf[niu_send_h].route & THIRD_BYTE) == 0)

SB = niu_send_buf[niu_send_h].route;

/* If the second byte in the routing word is 0, then we only need

to send out a half-word route which is done by casting the ULONG

to a half word.*/

else if ((niu_send_buf[niu_send_h].route & SECOND_BYTE) == 0)
SH = niu_send_buf[niu_send_h].route;

/* If the first byte in the routing word is 0, then we need to send out
a single byte followed by a half word. */
else if ((niu_send_buf[niu_send_h].route & FIRST_BYTE) == 0) {
SB = (niu_send_buf[niu_send_h].route & SECOND_BYTE) >> 16;
wait_sendready();
SH = (niu_send_buf[niu_send_h].route & (THIRD_BYTE | FOURTH_BYTE));

/* Finally, if all 4 bytes are used, send out a 4 byte route with SW */
else
SW = niu_send_buf[niu_send_h].route;

/* Send out the actual packet, up to HEADER_SIZE + payload_length */
wait_sendready();

SMP = (void *)&niu_send_buf[niu_send_h];

/* smlt needs to point to the beginning of the last word of the packet.

however, if our data is not word aligned, since the last 2 bits of
smit are hardwired to zero, it is possible that we could lose data.
Therefore, we add 3 bytes to our payload length to guarantee that a
partial word will go out, but then we need to subtract 4 to make it
point to the beginning of the last word. Thus, we ultimately
subtract 1 byte.

*

SMLT = (char *)&niu_send_buf[niu_send_h] + PACKET_HEADER_SIZE +
niu_send_buf[niu_send_h].payload_length - 1;

// while we are waiting for the packet to go out, try to receive
// some more packets
while (!'senddone()) {

receive_packets();

D_sends++;
/* Increment head pointer */
inc_idx(niu_send_h, NIU_SEND_SIZE);

299

/* send out an isotach packet if we can */
if ('queue_empty(iso_niu_send_h, iso_niu_send_t)) {
wait_sendready();

/*if it is a BS marker, we don't use the DMA engine since we are
only sending out three bytes. We only want to send them out
if we are supporting a hardware SIU
*/

if (iso_niu_send_buf[iso_niu_send_h].prefix & BS_MARKER_MASK) {

#if (SlU==1)

SB = (iso_niu_send_buf[iso_niu_send_h].prefix & FIRST_BYTE) >> 24;

wait_sendready();

SH = (iso_niu_send_buf[iso_niu_send_h].prefix & (SECOND_BYTE |

THIRD_BYTE)) >> 8;

wait_sendready();

ST=0;

wait_sendready();

reset_count++;
#endif

}

/* otherwise, send the packet */
else {
/* first, send the prefix. The prefix was switched on the host
before it was shipped down to the lanai, so we can simply send
the whole word. We only send it if we are supporting a
hardware SIU.
*
#if (SlU==1)
SW =iso_niu_send_buffiso_niu_send_h].prefix;
wait_sendready();
#endif

/* Second send the route. Unfortunately, the SIU expects the route
to range from 2 - 6 bytes, depending on the number of routing
bytes. Since nonisotach supports at most 4 routing bytes, we are
limiting isotach to that as well. As before in nonisotach, we have
4 cases, however, the route is split across two different fields
in the ISO_SENDFRAME structure:

1 byte route: routel -> 00R1
route2 -> 00000000

2 byte route: routel -> R1IR2
route2 -> 00000000

3 byte route: routel -> 0000
route2 -> 00R1R2R3

4 byte route: routel -> 0000
route2 -> R1IR2R3R4

Thus, the algorithm to send out the route is as follows:

*
/* always send the half word routel */
// quick note... We have conditional compilation designed to
// specify whether we are supporting a hardware SIU.
// if we are not, we only support 1 byte routes for isotach packets
#if (SlU==1)
SH =iso_niu_send_buffiso_niu_send_h].routel;
#else
SB = iso_niu_send_buf[iso_niu_send_h].routel;
#endif

wait_sendready();
/* if those routing bytes were all zeros, then send out the full
word route2, which contains the rest of the route
*/
if (iso_niu_send_buf[iso_niu_send_h].routel == 0) {
wait_sendready();
SW =iso_niu_send_buffiso_niu_send_h].route2;

300

}

wait_sendready();

/* now send the rest of the packet onto the wire using the DMA engine *
SMP = (void *)&iso_niu_send_buffiso_niu_send_h].packet;

/* SMLT points to the last word that needs to be sent out?*/
SMLT =(void *)&iso_niu_send_buffiso_niu_send_h].packet +

// while we are waiting for the send to finish, receive what we can

while (!senddone()) {
receive_packets();

/lincrement the head pointer
inc_idx(iso_niu_send_h, ISO_NIU_SEND_SIZE);

//D_iso_sends++;

return

}
/* xx

*/

// this is the function used to synchronize all of the hosts
// all it primarily does is send and receive packets
inline void synchronize () {

UCHAR crc;

int receives = 0;
int sends =0;

int sending = FALSE;
int receiving = FALSE;

/* In order to support a flood of synchronization packets that can
occur when synchronizing many hosts, we utilize a pipelining
scheme in which a packet can be received from the network
while the previous one is being dma'd up to the host */

// array of two packets
PACKET packet[2];

// indices into that array
int from_net=0;
int to_host =0;

// pointer into pinned memory
void *next_slot;

// number of packets received by the lanai
lanai_received = 0;

/* Initialize the beginining of the DMA area to the beginning of host's
pinned memory. */
next_slot = (void *)netman_hostbase;

/* Send and receive until the host says it has finished synchronization */
while (init_stage '= FINISHED) {

/* If there is a Byte to read off the network, then receive it. */
if (recvready()) {
// dma the packet into the free packet slot
RMP = &packet[from_net];
RML = (char *)&packet[from_net] + sizeof (PACKET) + 4;
wait_recvbufdone();

sizeof

(ISO_PACKET) - 4;

301

// if the packet was ok....
it ('buffer_overrun()) {
/* Check the CRC */
/* Sync and Sync Ack packets are always word aligned, so
CRC byte is the first byte in the first word past the packet */

crc = *((UCHAR *)RMP - 4);
packet[from_net].pad2 = (USHORT)((void *)RMP -
(void *)&packet[from_net]);

/* If there is a bad CRC, notify the host and return */

// we've noticed that sometimes we receive truncated packets
// during synchronization if we have too many hosts trying to
// synchronize at once, even with our pipelining scheme
// thus we drop these packets and contine
if ((packet[from_net].subtype == SYNC) &&
(packet[from_net].pad2 < PACKET_HEADER_SIZE)) {
continue

// otherwise there was an actual CRC error
it (crec) {
LAR=(void *)&packet[from_net];
EAR =(void *)netman_hostbase;
DMA_CTR = (packet[from_net].payload_length + PACKET_HEADER_SIZE);
wait_dmadone();
init_stage = BAD_CRC;
return ;

}

/* Move the from_net pointer to the next slot, so the NIU interface can
receive another packet */
from_net = (from_net + 1) % 2;
receives++,

/* DMA the newly received packet into host's pinned memory *
/* Only start a new DMA to the host if the previous one has finished */
wait_dmadone();

/* If we have received a packet last iteration, move the receiving
slot and set Receiving to false. */

if (receiving == TRUE) {
/* Increment the 'tail pointer' on the Pinned Memory Queue to
point to the next available slot for DMA. */

next_slot += sizeof (PACKET);
// toggle the to_host pointer

to_host = (to_host + 1) % 2;

receiving = FALSE;

lanai_received++;

// set the destination
EAR = next_slot;

// we are dma'ing the previously received packet
LAR =(void *)&packet[to_host];

// here is a check to ensure that we are not dma'ing into
// regions of memory that we shouldn't. This check should
// be able to be removed, but...
if ((ULONG)next_slot > (netman_hostbhase + netman_maxlen -
2% sizeof (PACKET))) {
while (1);

DMA_CTR = (packet[to_host].payload_length + PACKET_HEADER_SIZE);
receiving = TRUE;
}
}

nop;
if ((receiving == TRUE) && (dmadone())) {

302

/* Increment the 'tail pointer' on the Pinned Memory Queue to
point to the next available slot for DMA. */
next_slot += sizeof (PACKET);
to_host = (to_host+ 1) % 2;
receiving = FALSE;
lanai_received++;

}

nop();
nop();
nop();

if ((sending == TRUE) && (sendready())) {
sending = FALSE;
/* Increment head pointer */
inc_idx(niu_send_h, NIU_SEND_SIZE);

}
if (('queue_empty(niu_send_h, niu_send_t)) && (sending == FALSE)) {

/* Send out the Routing Bytes */

/* See the notes in send_packets concerning sending out of routing
bytes */

if ((niu_send_buf[niu_send_h].route & SECOND_BYTE) == 0)
SB = niu_send_buf[niu_send_h].route;

else if ((niu_send_buf[niu_send_h].route & THIRD_BYTE) == 0)
SH = niu_send_buf[niu_send_h].route;

else if ((niu_send_buf[niu_send_h].route & FOURTH_BYTE) == 0) {
SH = niu_send_buf[niu_send_h].route;
wait_sendready();
SB=*((char *)(&niu_send_buf[niu_send_h].route) + 2);

}

else
SW = niu_send_buf[niu_send_h].route;

/* Send out the actual packet, up to HEADER_SIZE + payload_length */
wait_sendready();
SMP = (void *)&niu_send_buf[niu_send_h];

/* Since Sync packets are word aligned, we don't have to worry
about any extraneous bytes in the "next" word */
SMLT = (char *)&niu_send_buf[niu_send_h] + PACKET_HEADER_SIZE +
niu_send_buf[niu_send_h].payload_length - 4;
sends++;
sending = TRUE;
}
}

/* reset the Lanai Send Buffer queue */
niu_send_t = niu_send_h = 0;

lanai_received = 0;

return

}

303

