The Certification of
Reusable Components

John C. Knight

Computer Science Report No, TR-91-09
April §, 1991

THE CERTIFICATION OF REUSABLE COMPONENTS

John C. Knight

. Department of Computer Science
‘ University of Virginia
Thomton Hall
Charlottesville, VA 22903
(804) 924-7605
knight@virginia.edu

ABSTRACT

Software reuse is being pursued in an attempt to improve programmer productivity. The concept
of reuse is to permit various artifacts of software development to be used on more than one
project in order to amortize their development costs.

Productivity is not the only advantage of reuse although it is the most\w:dely publicized. By
incorporating reusable components into a new product, the components bring with them whatever
qualities they possess, and these can contribute to the quality of the new product. This suggests
that reuse might be exploited for improving dependability as an entirely separate goal from
improving productivity. If useful properties pertaining to dependability could be shown to be
present in products as a direct result of software development based on reuse, this might be a
cost-effective way of achieving those qualities irrespective of the productivity advantages.

The adjective certified is sometimes used t0 describe components that have been tested in some
way. prior to entry into a library but the term certified is not formally defined in the reuse
literature. In this paper, we address the issue of certifying reusable components. We advocate
the development of software by reuse with the specific intent of establishing as many of the
required properties in the final product as possible by depending upon properties present in the
reusable components. For this goal to succeed, a precise definition of certification of reusable
components is required and such a definition is presented. The benefits of the definition and the
way in which it supports the goal are explored.

Keywords and Phrases: software reuse, reusable components, component certification.

1. INTRODUCTION

Software reuse is an emerging technology that is being pursued in an attempt to improve
programmer productivity {8, 23]. The primary goal of reuse is to permit various artifacts of
software development, such as partial designs and sections of source code, to be used on more
than one project in order to amortize their development costs. Many social, managerial, and
technical difficulties have to be overcome if reuse is to become an accepted part of routine
software development [21, 22]. However, given current software development costs and the
general lack of improvement in productivity that has been achieved by other means, reuse
remains an important candidate technology for productivity improvement.,

A substantial difficulty that appears to be limiting reuse is a lack of perceived quality in the
artifacts being reused. Although a software engineer may have available a library of useful
artifacts or reusable components, there is frequently a reluctance to use them because of concerns
about quality. Essentially, the engineer feels that without a lot of knowledge of the component,
he or she would be better off rebuilding it. The argument that is often made to justify rebuilding
is that it is quicker to rebuild than to try to understand the function and interface of the available
component. That lack of perceived quality is a detractor from reuse is an observation based only
on anecdotal evidence but appears 10 be the sofiware-reuse manifestation of the ‘‘not-invented-
here’” syndrome, '

Productivity is not the only advantage of reuse although it is the most widely publicized. -
By employing reusable components during product development, the components become part of
a new product thereby improving productivity as intended. However, the components also bring
with them whatever qualities they possess, and, at least in principle, these contribute to the
quality of the new product, Thus, extensive effort expended to establish desirable properties of
the reusable components might permit establishment of the same or similar properties in the
product with substantially less effort than would otherwise be required.

This scenario suggests that teuse might be exploited for improving dependability as an
- entirely separate goal from improving productivity. If useful properties pertaining to
dependability could be shown to be present in products as a direct result of software development
based on reuse, this might be a cost-effective way of achieving those qualities irrespective of the
productivity advantages. In the limit, there might be qualities that for all practical purposes can
only be achieved this way because the cost of establishing the qualities by analysis of the product
alone might be prohibitive. In practice, this is similar to the path taken by some theorem proving
systems in which libraries of proofs of lemmas and theorems are preserved for use in establishing
proofs of new theorems. In many cases establishing proofs directly from the axioms requires
infeasible levels of effort. Reusing theorems is a very limited application of reuse, and is not tied
directly to the software development method as modermn software reuse is.

The adjective certified is sometimes used to describe components that have been tested in
some way prior to entry into a library (e.g., [21]). Testing components prior to their insertion into
a reuse library is often claimed to be a productivity advantage. There is the vague expectation
that building software from tested components will somehow make testing simpler or less
resource intensive, and that products will be of higher quality [3, 12, 21). For example, Horowitz
and Munson [10] give the potential productivity improvement through reuse for the entire
lifecycle. The various aspects of testing are listed, and a potential reduction in cost resulting
from reuse is shown for each. Despite these various discussions of testing and reuse, the term

certified is not formally defined in the reuse literature .

In this paper, we address the issue of certifying reusable components. We advocate the
development of software by reuse with the specific intent of establishing as many of the required
properties in the final product as possible by depending upon properties present in the reusable
components. For this goal to succeed, a precise definition of certification of reusable components
is required and such a definition is presented. The benefits of the definition and the way in which
it supports the goal are explored. An important byproduct of a precise definition of certification
is that it provides a mechanism for communication about component quality between the
developer of a component and users of the component. Users no longer have to question the
quality of components - certification describes for the prospective user exactly what can be
expected of a component. This eliminates the ‘‘not-invented-here’’ difficulty mentioned above
and facilitating higher reuse levels.

2. SOFTWARE REUSE

The modem concept of software reuse, sometimes referred to also as systematic reuse,
expands on notions such as the conventional subprogram library by attempting to exploit reuse
outside of the traditional framework. Reuse under more general circumstances still has economic
benefits since costs might be reduced and hence productivity improved even if a component is
reused only once or just a few times. If large collections of reusable components were available
and a substantial fraction of a new application could be prepared from those components, there is
an obvious financial advantage. The economics of reuse are in fact quite complex. Several
models have been produced that attempt to make cost predictions [2, 10] but the intuitive
argument that reusing an existing component is likely to be cheaper than building it from scratch
is clear. A second goal with generalized reuse is to extend reuse to include components other
than traditional source code. An overview software development based on reuse is shown in
Figure 1.

In software development that incorporates reuse, a new software product is constructed to as
great an extent as possible by reusing components (also known as parts) that have been prepared
previously and stored in reuse libraries with the specific goal of their being available for reuse.
Components may be large or small, may be skeleton systems, skeleton subsystems, complete
subsystems, complete low-level subprograms, or any other structure that has the potential for
being reused. Components are obtained either by deliberately wiloring components from the
outset specifically for reuse or by scavenging them from existing software. A scavenged
component might require some refinement in order to increase its potential for reuse before being
placed into a reuse library. This will depend to a large extent on whether or not the author of the
component planned for reuse when the component was constructed.

When building a new application, suitable components have to be located from reuse
libraries in what amounts to a database search process. Present approaches to cataloging and
searching rely to a large extent on natural language specifications for components, although there -
is frequently a domain-specific structure 1mposed on the perceived library organization to
facilitate searching.

_ No matter what its origin, a component might be suitable for use in a new application
immediately upon location or might need to be modified in a process referred to as adaptation.

1t is important to note that the informal use of the term cenification in the context of reuse is entirely separate from other uses
in software engineering, for example ag 4 synonym for formal verification [25].

Custom Software
-
Product
Part Ad . -Under
Reuse art .aptauon > Development
Library >

Tailored Scavengéd
Parts Parts

Figure 1 - Software Development With Reuse

In some cases, provision for change is included when a component is written. Adaptation might
be as simple as setting a parameter, but could also involve making a substantial modification. For
example, before it can be used, a component that implements a desired sort algorithm might -
require that details of the records to be sorted be defined, including denoting the field to be used
for comparison. However, a user of the component might also wish to adapt the component by
redefining the order relationship to be used when sorting. This might involve rewnung
substantial portions of the part,

Adaptation has been recognized as a necessity for generalized reuse to the extent that
provision for it is finding its way into programming languages. Generic program units are present
in Ada [24], for example, to support adaptation. The designer of an Ada generic part can -
parameterize sections of the code and allow the user of the part to specify the details when
instantiating it. Symbolic constants and conditional compilation also provide facilities for
modifying source text at compile time according to the needs of a particular use.

Adaptation is likely to be extensive with generalized reuse, and ease of adaptaﬁon is an
important factor in the success of generalized reuse. By contrast, adaptation is almost
nonexistent in traditional reuse except when. portmg More importantly from the perspective of
certification, adaptation of a certified component is likely to affect the cerntification substantially
even with informal notions of certification based on testing.

Finally, even when reuse is consistently and extensively practiced, custom software has to
be built for those elements of the application that could not be constructed by reusing components
from a library. That custom software might itself be a source of new components for inclusion in
a reuse library.

.3

3. CERTIFYING REUSABLE PARTS

Although no formal definition of certification exists in the context of reuse, it is essential
that such a definition be available to permit users to trust reusable components and to permit the
exploitation of reuse in support of dependability. With no definition, there can be no assurance
that components retrieved from a reuse library possess useful properties nor that different
components possess the same properties. Given the informal notions of certification that have
appeared, it is tempting to think that a definition of certification should be in terms of some test
metric or similar. For example, certification might mean that the part has been tested to achieve
some particular value of a coverage metric or has a failure probability below some critical
threshold.

The major difficulty with this approach, no matter how carefully applied, is that any single
definition that is offered cannot possibly meet the needs of all interested parties. In practice, it
will meet the needs of none. Knowing that components in a reuse library have failure
probabilities lower than some specific value is of no substantial merit if the target application
requires an even lower value. A second difficulty is that by focusing on a testing-based
definition, other important aspects of quality are omitted from consideration. It is useful in many
cases, for example, for components to possess properties related to efficient execution.

With these difficulties in mind, it is clear that a different approach to certification is
required. The following are proposed as definitions for use in the context of reuse and are used
throughout the remainder of this paper:

Certified Part - A part is certified if it possess a prescribed set of properties.
Certification - Certification is the process by which it is established that a part is certified.

In establishing any specific reuse library, the prescribed set of properties has to be defined and the
process by which these properties are demonstrated has to be created. When developing a
component for placement in the library, it is the developer’s responsibility to show that the part
has the properties required for that Iibrary When using a component, it is the user’s
responsibility to enquire about the precise set of properties that the component has and ensure
that they meet his or her needs.

These definitions appear to be of only marginal value because the prescribed properties are
not included. However, it is precisely this aspect that makes the definitions useful. The
definitions have three very valuable characteristics:

(1) Flexibility.
As many different sets of prescribed properties can be defined as are required, and different
organizations can establish different sets of properties to meet their needs. Although the
ability to create different sets of properties is essential, the communication that a single set
facilitates within a single organization or project is also essential. Within an organization,
that organization’s precise and unambiguous definition of certification is tailored to its
needs and provides the required assurance of quality in it$ libraries of certified parts.

(2) Generality. '
Nothing is assumed about the type of component to which the definitions apply. There are
important and useful properties for components other than source code. For example, a
precise meaning for certification of requirements components could be developed. This
would permit the requirements specification for a new product to be prepared from certified

.

componenis with the resulting specification possessing useful properties, at least in part.
Useful properties in this case might be certain aspects of completeness or, for natural
language specifications, simple (but useful) properties such as compliance with rules of
grammar and style. .

(3) Precision.
Once the prescnbed property list is established, there is no doubt about the meaning of
certification. The property list is not limited in size nor restricted in precision. Thus
certification can be made as broad and as deep as needed to support the goals of the
organization.

The properties included in a specific definition of certification can be anything relevant to
the organization expecting 1o use the certified parts. As an example, the following are informal
statements of properties that might be used for a reuse library of source code components:

. Compliance with a detailed set of programming guidelines such as those prepared for Ada
[20].

. Subjected fo detailed formal inspection [7].
e Tested to some standard such as achieving a certain level of a coverage metric.

° Conipliance with certain performance standards such as efficient processor and memory
utilization or achieving some level of numeric accuracy.

4. TESTING ASPECTS OF CERTIFICATION

Although the approach to certification allows the inclusion of any desired properties, clearly
those associated with testing will frequently be present. As with all certification properties, the
goal with properties related to testing is to establish them prior to placing components into a
reuse library and to use knowledge of these properties to simplify or reduce testing of the
resulting product.

Software development based on reuse raises many new testing issues in both the testing of
components and the exploitation of tested components. In the context of preparing components
for entry into a library, some of the testing issues raised are:

(1) Component quality.
By definition, a component that is entered into a reuse library is being offered for use by
others and has to be prepared for every possible use [18]. This is very different from the
normal development situation in which a piece of software is intended for a single use and
is usually tested with that in mind.

Testing is also complicated by the differing component software structures. Very few
reusable components will be subprograms. Other components will be skeleton systems,
essentially canonical designs, in which the overall structure of the program is present but
the bulk of the detail is missing since it is application specific. Such components are not
immediately amenable to traditional techniques of unit testing.

(2) Adaptable compbnents. _
Adaptable components must be tested before being placed into a reuse library just as every
other component must be tested. Concepts such as Ada’s generic program units present

significant challenges for testing. The parameters used with Ada- generic units are not
merely for numeric or symbolic substitution. Subprograms can be used as parameters
thereby allowing different instantiations to function entirely differently. This raises the
question of exactly how, or even if, generic program units can be tested in any useful way

[6].

Once prepared and placed into a reuse library, taking advantage of the testing properties of
parts also raises issues, for example:

(1) Component adaptation.
Once a component is changed, the results of any testing that took place prior to placing the
component in.the library cannot necessarily be trusted. That testing might have been
extensive and be expensive to repeat in its entirety. This is a special case of the traditional
problem of regression testing in software maintenance,

2y Component use.

A reusable component will be used in many different circumstances. The possibility exists,
however, that a component may be selected that does not quite meet the precise needs of a
particular application. Where informal specification techniques are used for components in
reuse libraries and reliance is placed on human insight for component selection and
matching, it will be difficult to ensure that a selected component does precisely what is
required and that the component is being used correctly [9, 16, 17]. This indicates the need.
for increased attention being paid to integration testing during system development because
componenis will contain assumptions about their use that must be complied with for correct
operation. No matter how carefully documentation is prepared, such assumptions are easily
violated and the resulting fault is likely to be very subtle.

(3 Component revision.

As with any software, a reuse library will be the subject of revision. Parts will be enhanced
to improve their performance in some way yet maintain their existing interface. Systems
built with such components are then faced with a dilemma. Incorporating the revised
components might produce useful performance improvements but the resulting software
will differ substantially from that which was originally built and tested. Can revised
components with “‘identical’’ interfaces be trusted, and, if not, what testing needs to be
performed when revised componenis are incorporated?

In summary, the various phases of testing that occur in a traditional development
environment are still present but are changed in several ways when development is based on
reuse. New testing techniques have to be developed and existing methods have to be enhanced to
deal with this situation and to help make software reuse practical. The remainder of this paper
addresses one of the more unusual and significant areas, namely adaptable componenis and
adaptation.

5. TESTING AND USING ADAPTABLE COMPONENTS

There are two forms of adaptation that need to be addressed, anticipated and unanticipated.
Anticipated adaptation occurs when a user exploits facilities for change that were designed into
‘the part, such as occurs with an Ada generic component or a component dependent on symbolic
parameters. Unanticipated adaptation occurs when a component is modified in a way that was
not planned, usually using a text editor.

Both forms of adaptation operate as source-to-source transformations. The output of such a
transformation is source text in a programming language, and it is not required to meet any
conditions other than the syntactic rules of the language when it is compiled. This is true even of
Ada generic units even though the output of the transformation is not accessible to the

_programmer.

Checking Anticipated Adaptation

In many cases there are restrictions inherent in the design of a component to which any
anticipated adaptation must adhere. In the simplest case, a symbolic constant might be used to
define a quantity such as the size of an array dimension. Adaptation then consists of setting the
symbolic constant prior to using the part, an action that was anticipated by the implementor of the
part. The design of the part, however, might necessitate that certain restrictions be imposed, such
as the size being within prescribed limits, or having some property, such as the size being a
power of two.

Selecting a parameter value may seem to be an innocuous activity. Initially, it seems
unlikely that the value selected will be the subject of complex restrictions. However, in a
language like Ada, many elements of the operational environment of a program can be controlled
~ by source-text parameters and the values required might be interrelated in non-cbvious ways. For
example, representation clauses in Ada can be used to define record formats, enumerated type
representations, storage available for objects of a given type, and the characteristics of numeric
types, among other things. Parameterization of many of these quantities is very likely in a
component designed for reuse and the associated interrelationships might be quite involved.

In a more general context, a restriction imposed on an adaptation might be a functional
restriction on some piece of supplied program text. A procedure parameter 10 an Ada generic
unit, for example, might be required to meet certain functional constraints inherent in the design .

~of the generic unit. A more complex situation is likely to arise if a component in a library is
actually a canonical design. In that case, substantial volumes of code will have to be added to the
basic design. The code added might itself be obtained from a reuse library, but will almost
certainly have to meet many restrictions imposed by the canonical design.

If they are documented at all, the various restrictions imposed on an adaptation are
documented as comments. However, no mechanism is provided in existing production
programming systems to permit such restrictions to be checked. Ada does provide static
expressions thereby permitting extensive computation to be performed at compile time. Gargaro:
and Pappas present an excellent example of checking this way in Ada [9]. However, checking
restrictions is not the intent of such static expressions, they do not provide the complete range of
facilities needed, and there is no mechanism to permit signaling a violation other than forcing a
contrived, compile-time exception.

In general, the checking that is required amounts to ensuring that an implementation (albeit
often a small one) meets a specification. Checking an anticipated adaptation is, therefore, a
special case of verification. The restrictions correspond to the specification. and the adaptation
itself corresponds to the implementation It is important to note that the specification in this case
does not derive from, and is not related directly to, the original specification for the apphcatlon '
The specification is a consequence of the design of the reusable part.

In a non-reuse setting, this verification will be performed by the author of a part. If the
component is placed into a reuse library, however, the checks must be performed by the user.

\ ‘ -7-

Correct use then relies on the restriction being documented fully by the author,,notiéed by the
user, and checked accurately by the user. Achieving correct use on a regular basis seems unlikely
given this almost total reliance on human effort.

Anticipated adaptation can be dealt with using special-purpose variants of existing.
techniques that are used for program verification. Just as with verification of complete programs,
certain properties of adaptation can be checked completely and others not. For example, it is
simple to check that a symbolic constant meets a range or special property criteria. However, it is
not possible, in general, to check that a subprogram supplied as a generic parameter complies
with required functional constraints,

. Checking beyond that inherent in most programming languages is possible using some form
of supplementary notation. For example, Anna [14] is a notation designed to permit
specifications to be added to Ada source programs. Anna, however, is not designed to perform
the kind of verification described here, and although some of the required checking can be
specified in Anna, it is not possible to distinguish easily the checks that Anna will perform before
execution fime. For checks that are delaved by the Anna system until exccution time, the
verification of the various adaptations becomes confused with the verification of the entire
program unit that is being executed. Also, such checks require processor and memory resources
at execution time, and may not be checked at all unless the assertion is carefully placed.
Checking restrictions that derive from the design of a component is an activity that is best

performed as a fundamental element of the adaptation process.

A far better approach to checking the constraints required in an anticipated adaptation is to
incorporate machine-processable statements of the required restrictions within the source text of
the component. Checking for compliance is then performed after adaptation but before
traditional compilation. Such a notation can be thought of as an assertion mechanism that
operates prior to compilation rather than during execution.

This mechanism will not support the checking of all restrictions, for example many forms
of required functionality. Using the analogy with program verification once again, adaptation
restrictions that cannot be checked with a pre-compilation assertion mechanism can be dealt with
by testing the adapted component but again prior to conventional compilation. The concept is to
associate with a reusable component a set of test cases that must be executed satisfactorily by any
user-specific code supplied during adaptation. The tests will be defined by the author of the
component and executed by the user of the part. In the same sense that software testing is an
informal approach to verification, this approach is an informal way of assuring that adaptation
constraints are met, The overall flow of activities that permit adaptable parts 1o be used and the
associated constraints machine checked is shown in Figure 2.

Checking Unanticipated Adaptation

Arbltraly changes made using an editor are likely to be required frequently in attempting to
reuse existing software, Such unanticipated adaptation is far harder to deal with than anticipated
adaptation because its effect on the software is unpredictable. There is still the desire, however,
10 limit the amount of retesting that is needed since a component tailored specifically for reuse is
likely to have been subjected to extensive unit testing to ensure component quality. If all the -
testing carried out previously has to be repeated after adaptation, the economic impact will be
severe and could even be a deterrent to reuse. The central difficulty with unanticipated adaptation
is to restrict the number of test cases that have to be reexecuted after modification.

Adapt Part

* Adaptable
Check Assertions Software Component

E ,
i
;
| [remememmressmnssennes e :
+ | ! | Adaptation Assertions
‘\3 -
\
1
]
1

Test Adaptations

Y

Conventional
Compilation

Adaptation Test Cases

..

Figure 2 - Checking Anticipated Adaptations

The problem that has to be dealt with in this case is precisely that of conventional program
verification. Note, however, that the verification required in this case is quite different from the
verification required with anticipated adaptation. A modified component is different from the
original component and obviously satisfies different specifications after unanticipated adaptation.
If the specifications were not different after adaptation, there would be no point in modifying the -
component in the first place.

Storing the specification of a component in machine-processable form and modifying the
specification along with the component with extensive automated checking and support is the
best way to deal with unanticipated adaptation. Unfortunately, in general, this is probably not a -
practical approach to the problem at this point. However, a promising first approach to dealing
with many of the issues, at least partially, is the instrumentation of reusable components with
executable assertions {1, 14, 16]. In fact, Anna [14] is described as a notation for specification
although it does not have the completeness characteristics of a rigorous approach such as VDM
[11]. However, Anna does provide a rich notation for writing executable assertions.

The role of instrumentation using assertions is to include design information with the part,
in particular to permit design assumptions to be documented in a machine-processable way. The
effects of arbitrary changes cannot be checked with any degree of certainty in this way.
However, there is some empirical evidence that executable assertions provide a useful degree of
error detection when properly installed [13]. Executable assertions can be used therefore as part
of a system for testing components subjected to unanticipated adaptation. Any design
assumptions that were not modified correctly during adaptation at least stand a chance of being
detected by an assertion failing during test execution.

Testing Adaptable Components

As discussed above, the problem with anticipated adaptation is to ensure that certain
requirements imposed by the design of the component are met by the adaptation. The problem of
testing adaptable components is the complement of this. It amounts to ensuring that the
adaptable component will function correctly assuming that an adaptation complies with the
restrictions associated with design of the component.

Adaptable components cannot be executed without adaptation. Each specific adaptation
represents a degree of freedom that has to be constrained in order to use the part, and the key
question is whether the component will work correctly once these constraints or selections are

_installed.

The various adaptations that are provided with an adaptable component are similar in many
ways o inputs to the component. From the point of view of correctness, setting a symbolic
parameter, say, has some of the characteristics of reading an input of the same type as the
parameter. The component should, in principle, operate correctly for every valid value of the
parameter just as it should for every valid value of an input. Unfortunately, this analogy breaks
down when the adaptation provided by the component requires the user to supply functional
rather than merely parametric information. In that case there is no notion of type that can be used
to determine a valid set of values for the parameter and no obvious selection mechanism for test
cases. -

The only workable approach at this stage to testing an adaptable component is to instantiate
the component with specific adaptations and then test it using some conventional approach to unit
testing. Complete testing will then consist of repeating this test process with systematic settings
of the various adaptations. A key research issue that remains is to find useful ways of doing this
for adaptations that require functions to be supplied.

6. CONCLUSION

Software reuse can be.exploited to improve dependability entirely separately from the
highty publicized goal of using it to improve programmer productivity. The reuse of components
that have been shown to possess desirable properties has the potential for conveying those
properties to the product in which the parts are used. This information can then be used to help
establish desirable properties in the final product.

To do this effectively requires a precise framework for dealing with component guality, a
topic typically referred to in the literature on reuse as certification. Such a framework has been
presented. A byproduct of the use of this framework is that it provides a means of documenting
the qualities possessed by reusable components, Within a development organization this permits
users of reusable components to have confidence in the components, confidence that is usually
missing. This is expected to facilitate systematic reuse considerably.

- A number of significant issues arise when considering both the testing of reusable
components and the testing of systems incorporating reusable components. The most significant
issues arise from the need to deal with adaptable parts, i.e., those designed for change, and
adapted parts, i.e. those changed after being taken from a reuse library. To ensure that adaptable
parts have been tested prior to placement in a reuse library requires entirely different techniques
from those developed for traditional unit testing. Similarly, ensuring that an adaptable part has
been adapted properly prior to its inclusion in a new product is a new form of verification to
“which traditional methods do not immediately apply.

-10-

For software reuse to succeed in delivering a substantial improvement in programmer

productivity requires progress in a number of areas. Component certification is an imporiant one.

(1]

REFERENCES

Andrews, D.M. and J.P. Benson, ‘‘An Automated Program Testing Methodology and Its
Implementation’’, Proceedings of the Fifth Inrernanonal Conference on Software

- Engineering, San Diego, CA, March 1981.

{2]

[4]

(5]

[6]

{7]

(8]

[9]
[10]

(11}

(12}

[13]

[14]

[15]

Bames, B., T. Durek, J. Gaffney, A. Pyster, ‘‘A Framework and Economic Foundation for
Software Reuse’’, Proceedings of the Workshop on Software Reusability and
Maintainability, National Institute of Software Quality and Productivity, October, 1987.

Bassett, P.G., *‘Frame-Based Software Engineering’’, IEEE Software, July, 1987.

Biggerstaff, T.J. and C. Richter, *‘Reusability Framework, Assessment, and Directions”’,
IEEE Software, Vol. 4, No. 2, March 1987,

Comn, R., “*The Ada Software Repository and Software Reusability’’, Proceedings of the
Fifth Annual Joint Conference on Ada Technology and Washington Ada Symposium,

- Washington, DC, 1987.

Dowson, M., personal communication,

Fagan, M.E., ‘‘Advances in Software Inspections’’, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 7, July 1986. ‘

Freeman, P., (editor), Software Reuse: Emerging Technology, TEEE Computer Society
Press, 1988.

Gargaro, A. and T.L.. Pappas, ‘‘Reusability Issues and Ada’’, JEEE Software, July 1987.

Horowitz, E. and J.B. Munson, ‘‘An Expansive View of Reusable Software”, I[EEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984.

Jones, C.B., ‘‘Systematic Software Development Using VDM, Prentice Hall
International, 1986.

Lenz, M., H.A. Schmid, and P.F. Wolf, *‘Software Reuse Through Building Blocks’’, IEEE

Software, July, 1987.

Leveson, N.G., 8.5. Cha, T.J. Shimeall, and J.C. Knight , ‘*“The Use Of Self Checks And
Voting In Software Error Detection: An Empmcal Study”’, IEEE Transactions on Software
Engineering, 10 appear.

Luckham, D.C, and F.W. von Henke, ‘‘An Overview of Anna, a Specification Language
For Ada”’, IEEE Computer, March, 1985,

McCabe, T.J., “A Complexity Measure’’, I[EEE Transactions on Software Engineering,
Vol. SE-2, December, 1976.

-11-

[16]
17
[18]
[19]
(20]
(21]
[22]
{23]

(24}

(251

Meyer, B., “EIFFEL: Reusability and Reliability’’, in Software Reuse: Emerging
Technology, Tracz, W., (editor), IEEE Computer Society Press, 1988,

Rice, J. and H. Schwetman, ‘‘Interface Issues In A Software Parts Technology®’, in |
Software Reusability, edited by Biggerstaff and Perlis, Addison Wesley, 1989.

Russell, G., ““Experiences Using A Reusable Data Structure Taxonomy’’, Proceedings of
the Fifth Annual Joint Conference On Ada Technology and Washington Ada Symposium,
April 1987. - :

Sommerville, L., Software Engineering, third edition, Addison Wesley, 1989.

Software Productivity Consortium, Ada Quality and Style: Guidelines for Professional
Programmers, Van Nostrand Reinhold, 1989.

Tracz, W., ““‘Software Reuse: Motivators and Inhibitors’’, Proceedings of COMPCON §°87,
1987, ,

Tracz, W., **Software Reuse Myths'’, ACM SOF TWARE Software Engineering Notes, Vol.
13, No. 1, Jan 1988,

Tracz, W., {editor), Software Reuse: Emergihg Technology, IEEE Computer Society Press,
1988. : '

U.S. Department of Defense, Ada Joint Program Office, Reference Manual For The Ada
Programming Language, ANSI/MIL-STD-1815A, January, 1983.

Zelkowitz, M., 1. Gannon, and A, Shaw, Principles of Software Engineering and Design,
Prentice Hall, 1979.

-12-

