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Extended Abstract

Detecting spatial regularity in images arises in military applications, computer vision, scene analysis,
and other areas. In this paper we give a O(n5/2)—time algorithm that for a given pointset finds all
maximal approximately equally-spaced collinear subsets. Our algorithm is robust in that it can
tolerate noise or imprecision that may be inherent in the measuring process. Thus, our algorithm is
applicable in real-world arenas, such as landmine detection from infrared images.
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1 Introduction

Spatial regularity detection is an important problem in a number of domains such as computer vision, scene
analysis, and landmine detection [3]. This paper focuses on the spatial regularity problem in the context
of landmine detection from infrared terrain images, where for a given set of points, the goal is to recognize
equally-spaced collinear subsets. The detection of landmines from infrared images is made possible by two
facts [5]: (1) landmines are usually deployed equally-spaced along straight rows, in order to enable their
future recovery; and (2) landmines have a distinct signature in infrared images obtained from airborne or
orbiting platforms.

Kahng and Robins [3] gave an optimal O(n?)-time algorithm for the ezact version of the landmine
detection problem, and their algorithm was later parallelized by Boxer and Miller [1]. However, we must
often work with inezact data due to inaccuracies in mine placement, drift due to soil shifting, and imprecision
inherent in the imaging technology. Since these factors can corrupt the collinearity and equal-spacedness
properties that we seek, exact methods which do not compensate for these phenomena may be inadequate
in practice.

We address this issue by developing a robust algorithm for mine detection that can tolerate inaccuracies
in the data relative to a user-specified error threshhold. In particular, for an input pointset our algorithm
will report all equally-spaced collinear subsets, where points are allowed to drift from their ideal locations
by up to a given amount. Our algorithm relies on computational geometric and combinatorial techniques,
and runs within O(n®/?) time.
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2 Preliminaries

Given a set of distinct points P C E?, a subset P! C P is collinear if all points of P’ lie on the same line.
We say that a collinear subset P’ C P is equally-spaced if all points of P’ are equally-spaced along their
containing line. A sequence of points that is both collinear and equally-spaced is said to be regular.

Some techniques for addressing imprecision in geometric problems were introduced by Guibas et al. in
[2]. While these methods are not readily applicable to our problem, we adopt some of their notation. In
particular, a pointset is e-regular if each point may be displaced by a distance of at most ¢ to yield a regular
pointset; i.e. given a fixed € > 0, a pointset P = {p1,pa,...,pn} C E? is e-regular if there exists a regular
pointset R = {r1,ra,...,7,} such that dist(p;,r;) < ¢, for all 1 < i < n (see Figure 1), where dist(a,b)
denotes the distance between points a and b.

A mazimal set with respect to a particular property (e.g., collinearity, regularity, near-regularity, etc.)
is one that is not properly contained in any other set having the same property. A sequence denotes an
ordering of the points of an e-regular subset based on the ordering of their corresponding counterparts in
the regular sequence. We may now formulate our problem as follows:

Mine Detection Problem (MDP): Given ¢ > 0 and a pointset P C E?, find all maximal e-regular
sequences contained in P.
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Figure 1: An example of an e-regular pointset (solid dots), whose points are within ¢ of
the corresponding points of a regular pointset (hollow dots).

We can show the following lower bound on the time complexity of the Mine Detection Problem:
Theorem 2.1 The time complezity of the mine detection problem has a lower-bound of Q(n?) for all e > 0.

Unfortunately the general MDP problem formulation above is intractable since the output can have expo-
nential size, as in the example of Figure 2: for each of the points in the regular set (hollow dots) there
are two observed points (solid dots) within a distance of . Thus, a maximal e-regular subset may be
constructed by choosing either of the two solid dots in each circle, which induces an exponential number of
distinct maximal e-regular subsets.

Figure 2: An example of an instance with exponential output.

Another obstacle is the non-linearity of the Euclidean norm formula, which gives rise to second-degree
optimization constraints. In light of these considerations, we propose the following modifications to the
MDP formulation above in order to enable a polynomial-time algorithm:



o First, to keep the equally-spaced constraint equations linear (and thus easier to optimize), we employ
the Chebyshev metric! for measuring distances between points in the e-regular sequence and the
corresponding points in the associated regular sequence; and

e Second, to prevent an exponential-sized output, we postulate that each interpoint distance in the
input data is greater than 8e.

The first modification implies that the circles in Figure 1 become squares. Because a square of side 2¢
can cover a circle of diameter 2¢, no potential mine locations will be overlooked given this modification.
On the other hand, a few “false positives” may be detected, but this is in practice preferable to landmines
remaining undiscovered. In the rest of the discussion we assume that all distances are Chebyshev unless
otherwise noted.

The second modification relating the magnitudes of mine seperation and potential drift is not unrealistic,
since the sizes of mines and their potential drift tend to be considerably smaller than typical inter-mine
separation. As we shall see below, these two modifications enable a practical, efficient solution. Moreover,
even if the input does not satisfy the second condition, our proposed algorithm will still produce a correct
solution, although a polynomial time complexity is no longer guaranteed in such cases.

3 A Robust Algorithm for Mine Detection

The high-level description of the algorithm is as follows. Given a pointset, our basic approach is to extend
each pair of points into a maximal e-regular sequence. At each step of the algorithm we seek a single
additional point which may be included into the current sequence while preserving the sequence’s e-regular
property. When we find such a point we eztend the sequence by including the point into the sequence.
When a maximal e-regular sequence has been found through repeated extensions, we iterate this process
with all other pairs of points.

Since any contiguous subsequence of an e-regular sequence is itself e-regular, we do not need to recon-
struct any subsequence which is a contigous portion of a previously found maximal e-regular sequence.
Specifically, when starting with a pair, we repeatedly extend the sequence until a maximal sequence is
found. We record this sequence and refer to it as an initial sequence. We then remove the leftmost? point
of the sequence, leaving an e-regular subsequence (that we need not reconstruct) which we then extend to
to the right.

Each time a maximal sequence is found, the leftmost point is removed and we continue extending to
the right. When it is no longer possible to continue in this manner (i.e. when the remaining subsequence
contains only a single point), we repeat this entire process in the other direction: starting with the current
initial sequence, we now remove the rightmost point and extend to the left, etc. We refer to this process of
removing and extending as marching.

We mark each pair of points that we encounter during the extension process; when choosing new starting
pairs, this information helps avoid pairs that have been previously processed. This also serves to prevent
cycling which could occur if the extending process loops back on itself to yield the same initial sequence
(e.g., when the points lie on a large circle).

The points of an e-regular sequence are implicitly ordered by the positions of the corresponding regular
points along their containing line. A remove operation removes an endpoint from an e-regular sequence,
yielding a shorter e-regular subsequence. Our algorithm begins with all pairs labeled unmarked, and pairs
are marked as they are extended to form maximal e-regular sequences. An e-regular sequence is extended
by appending a new point that preserves the e-regular property (this process is described below in greater
detail). A high-level description of our algorithm is given in Figure 3.

1Under the Chebyshev metric, the distance between two points (z,y) and (u,v) is given by max(|z — ul, |y — v|).
20mne end of the sequence is chosen arbitrarily to be the left end of the sequence, while the other end is denoted as the right
end of the sequence.



Robust Mine Detection (RMD) Algorithm
Input: A pointset P C E?

Output:LIST of all maximal e-regular subsets.
L:LIST =0

2:For all unmarked pairs S = {p;, p;}

3:  Call Procedure Initialize S

4: Let INIT =S5

/* INIT is now the initial sequence */

Let LIST = LIST U{INIT}

/* We are now ready to begin extending */
6: Call Procedure March(right)

7:  Unmark all pairs in INIT

8: Let S=INIT
9
1

Ot

:  Call Procedure March(left)
0: Output S
Procedure Initialize S
1:While S can be extended to the left Do Extend S to the left
2:While S can be extended to the right Do Extend S to the right

Procedure March(direction)

/* <direction> is either 'right’ or ’left’ */

/* <opposite direction> is 'right’ if <direction> is ’left’ and vice-versa */
1:Remove the <opposite direction>-most point from S

2:While |S| > 1 and the <opposite direction>-most pair of S is unmarked
3:  Mark the <opposite direction>-most pair of S

4. If S is extendable to the <direction> Then

5 Repeat (Extend S to the <direction>)
Until S cannot be extended to the <direction>
6: Let LIST = LIST U {S}

7:  Remove the <opposite direction>-most point from S

Figure 3: An O(n%/?)-time algorithm (RMD) for the Mine Dection Problem

We can prove the following correctness property of our algorithm (see [7] for details):

Theorem 3.1 Algorithm RMD finds all mazimal e-regular sequences among the input points for all e > 0.

4 The Algorithm Details

We now expand on some of the subroutines used implicitly in the high-level description of the algorithm. In
particular, we describe how we extend an e-regular sequence. Given a sequence S = (p;, pit1, -, Pj-1,Pj);
where the points in S are a subset of the input pointset P, we extend left by finding a point p;—; € P
which, when included into S, maintains the e-regular property of S, and then prefixing the point to yield
S = (pi—1,pi,Pi+1, - -, Pj—1,pj). Similarly, we extend right by finding a point pj41 € P such that
S = (pi,pi+1, - -Pj—1,Pj, Pj+1) is e-regular, and including that point into P.

We implement the extension operation in two steps - projection and wverification. Projection entails
determining a set of candidate points for inclusion into a sequence. This method, combined with the
minimum interpoint distance restriction discussed earlier, guarantees that at most a single candidate needs
to be considered. The werification step employs linear programing to verify that S remains e-regular when
augmented with this candidate.



Projection works as follows. Given two points, p;,p;,? < j in an e-regular sequence S, let k =i —1 or
k = 7+ 1 correspond to left or right extensions, respectively. The region in which the kth element of S
must lie is bounded as follows:

Pr, < ];:Z “(pj. — Pi. +2¢) + pj, +2¢ (1)
Phe 2 ];:Z (pj. — pi, — 2¢) + pj, — 2¢ (2)
Pr, < j:f (pj, = i, +26) +pj, + 2 (3)
Pk, 2 j:Z (P, — i, —2¢) +pj, — 2 (4)

This region, illustrated in Figure 4 with ¢ = 1,5 = 2,k = 3, is referred to as a right projection when
k = 5341 and as a left projection when k& = i — 1. We denote the set of points lying in such a region
proji(pi,pj,j — 1) ot proj.(pi,pj,j — 1), for left and right projections respectively. Having determined the
region using equations (1 - 4), we may count the points lying inside the region in O(logn) time [6].
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Figure 4: The dashed square indicates the region in which ps must lie if (p1, p2, ps) is
an e-regular sequence. The solid square denotes the region in which the corresponding
regular point must lie.

While the projection operation utilizes only two of the points in the e-regular sequence in order to
determine the location of a potential new point, the location of a new point to be included is constrained
by the locations of all the points already in the sequence (not only by a single pair). Thus a verification
step which considers all of these constraints is required.

We use linear pogramming to process all of these constraints efficiently. A linear programming instance
generally consists of a set of linear inequality constraints and an objective function that must be optimized
subject to the constraints. In order to exploit efficient methods for solving low-dimensional linear programs
[4], we define the necessary constraints for our linear program to verify e-regularity by describing a regular
sequence by a point and a vector in a manner similar to the point-slope description of a line, using the
length of a vector ¥ to describe the inter-point distance. That is, a regular sequence R is described by
(ro, V), R=A{ri|lr; =ro+ ¥ i} for 0 <i<n—1 where ¥is a vector.



In the two-dimensional Chebyshev plane, a sequence is e-regular if and only if p; is within distance ¢
of r; in both the # and y dimensions. That is, S is e-regular if and only if its orthogonal projections to
the coordinate axes are e-regular. We may thus use the following constraints in our linear program, where
Uz, Uy, To, and ro, are variables:
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(5)
(6)
pi, 270, + Uy i—¢ (7)
(8)

pi, <To, + Uy -ite
Linear programs in fixed dimension (i.e. the number of variables) can be solved in time linear in

the number of constraints [4]. In our application, the dimension is fixed at four (the four variables being
0., Uz, T0,, Vy). Thus, the time required for the verification step is proportional to the length of the sequence.

The minimum interpoint-distance condition prevents finding more than one candidate in any single
projection region: suppose two points may be used to extend an e-regular sequence in a given direction.
Both of these points must lie in the same projection region, which measures 8¢ on each side (See Figure 4).
Therefore if all interpoint distances are greater than 8¢, we are guaranteed that this will never occur, and
this in turn prevents exponential output size. Based on the above techniques, we can prove the following
time complexity when interpoint-distances are are greater than 8. (see [7] for details):

Theorem 4.1 The time complezity of algorithm RMD is O(n®/?).

5 Conclusion

We have formulated and addressed the Mine Detection Problem from inexact data. In the unconstrained
variant, we have established an exponential lower bound on the output. On the other hand, under reasonable
conditions, the problem is solvable within O(n5/2) time. Remaining open issues include:

e Giving tight time bounds for solving the problem for minimum interpoint distances of 8¢;
e Generating meaningful polynomially-sized representations of exponentially-sized outputs; and

e Determining the complexity of the Euclidean version (rather than the Chebyshev).
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