
1

Managing Contention and Timing Constraints
in a Real-Time Database System

Matthew R. Lehr and Sang H. Son
mrl6a@cs.virginia.edu
son@cs.virginia.edu

Department of Computer Science
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903, USA

Abstract

This technical report discusses how current real-time technology has been
applied to a database management system to support firm real-time transactions.
The report reviews priority-based CPU- and resource scheduling concepts and
shows how they are used to avoid the problem of priority inversion in transaction
service order, transaction progress, and memory allocation. Next, the appropri-
ateness of optimistic concurrency control to real-time data management is exam-
ined, and the implementation of previously proposed methods WAIT-X(S) and
Precise Serialization is detailed. Finally, the enforcement of firm deadlines using
asynchronous aborts is discussed.

1. Introduction
As real-time applications grow more and more complex, so do the ways in which they maintain and access data.

As the amount of data increases, programs typically turn away from application-specific solutions and seek general,
adaptable, modular ways to manage data. Conventional systems use Database Management Systems (DBMS) to
achieve these ends and DBMS technology is well-understood. Despite all of its features, a conventional DBMS is not
quite capable of meeting the demands of a real-time system. Typically, its goals are to maximize transaction through-
put, minimize response time, and/or provide some degree of fairness. A real-time DBMS system, however, must
adopt goals which are consistent with any real-time system: providing the best service to the most critical transac-
tions and ensuring some degree of predictability in transaction processing.

The StarBase real-time DBMS is an attempt to merge conventional DBMS functionality with real-time technol-
ogy. StarBase supports the relational database model and understands a simple SQL-like query language. The
DBMS maintains a centralized server to which local or remote clients submit transactions. Transactions may execute
concurrently and serializability is the correctness criterion. In addition to this conventional functionality, StarBase
seeks to minimize the number of high-priority transactions which miss their deadlines. StarBase uses noa priori
information about transaction workload and discards tardy transactions at their deadline points. In order to realize
many of these real-time goals, StarBase has been built on top of RT-Mach, a real-time operating system developed by
Carnegie Mellon University [Tok90].

There are essentially three problems with which real-time DBMSs must deal: resolving resource contention,

2

resolving data contention, and enforcing timing constraints. As with other real-time systems, tasks to be performed
are stratified according to their relative importance to the system. Priority combines this relative importance with
task timing constraints to provide a means to decide which of many tasks should be scheduled at any given moment.
The intent is to always grant the highest priority tasks access to resources (CPU, critical sections, etc.). Similarly,
StarBase considers each transaction a task in its own right and seeks to provide the best service to the highest priority
transactions. The rest of this paper is devoted to addressing how StarBase allocates resources to the highest priority
transactions and how it enforces timing constraints. Section 2 begins the discussion by describing the StarBase archi-
tecture in general terms. Sections 3 and 4 review solutions proposed for resource and data conflict mediation and
show how they have been applied to StarBase. Finally, Section 5 details StarBase’s unique methods of enforcing
transaction deadlines.

2. Database Overview
The StarBase DBMS is organized as a multi-threaded server [Fig 1.]. It is assumed that database clients are

physically disparate from the server, so message-passing is used to communicate between DBMS clients and the
server itself. Transaction requests are sent via RT-Mach’s Inter-Process Communication (IPC) mechanism and are
queued at the server’s service port. RT-Mach provides a naming service with which StarBase registers its service port
during initialization. Clients look up the service port by querying the name server with StarBase’s well-known name.

When a request enters service, atransaction manager thread of execution is charged with ensuring it is properly
processed. The transaction manager executes the appropriate operations (read, write, insert, delete, create, remove)
as dictated by the content of the request. At the start of transaction processing, the transaction manager starts adead-
line manager thread, whose behavior is discussed in Section 5, to enforce the transaction’s deadline. A transaction
needs certain resources to execute, including mechanisms to acquire memory, read and write data from relations, and
ensure that data remains consistent. StarBase provides three resource managers to provide these services: Small
Memory Manager (MemMgr), Relation I/O Manager (RIOMgr), and Concurrency Controller (CCMgr). Each
resource manager must ensure that transactions access their resources in a consistent and orderly fashion. To prevent
mayhem, two of the resource managers are organized asmonitors to synchronize the actions of different transactions.
The services of the RIOMgr, however, are explicitly synchronized by the CCMgr.

.

.

.

CCMgr

(monitor)

RIOMgr

MemMgr

Service Port

Tr
an

sa
ct

io
n

Re
qu

es
t P

rio
rit

y
Q

ue
ue

.

.

.

TrMgr

DMgr

TrMgr

DMgr

TrMgr

DMgr

Tr
an

sa
ct

io
n

Pr
oc

es
sin

g

Da
ta

ba
se

 O
pe

ra
tio

ns

Dy
na

m
ic

M
em

or
y

Re
la

tio
n

O
pe

ra
tio

ns
Co

nc
ur

re
nc

y
Co

nt
ro

l

 Fig. 1: StarBase Server Architecture

3

StarBase uses a special type of algorithm to ensure data consistency, calledoptimistic concurrency control. Opti-
mistic concurrency control allows transactions to proceed unhindered until they are ready to apply their updates to the
database. To maximize the advantages of this, transaction processing code can access the contents of relations
directly without proceeding through a Data Manager as in other DBMS.

3. Resource Contention and Transaction Scheduling
For decades a major trend in computing has been to increase efficiency by sharing resources. By providing the

abstraction of processes (threads of execution) and a single software entity to control access to resources such as the
CPU, memory, and disk, computers provide the illusion of the concurrent execution of different tasks in an orderly
fashion. The ultimate arbiter of resources is the operating system, which is charged with resolving which thread of
execution gets a particular resource at any given time. The goals of conventional systems, by and large, are to
achieve fairness and minimize response time since they are designed to interact with humans. Real-time systems,
however, are usually designed for embedded environments and require quick and predictable behavior in response to
external mechanical and electrical stimuli (e.g. sensors, actuators, other computing units). Tasks that a real-time sys-
tem must perform are ranked according to their importance and the most critical tasks are given the best access to
resources to ensure they complete.

As with any application, the StarBase real-time DBMS is highly reliant on its native operating system, RT-Mach,
to provide the priority-based services necessary for real-time resource scheduling. RT-Mach’s services in turn are
based on two major ideas (among others) which have been developed to ensure the allocation of resources to more
important tasks in real-time systems. Those ideas arepriority-based CPU scheduling and theBasic Priority Inherit-
ance Protocol for non-preemptible resources. With both solutions, tasks to be performed are ranked by their relative
priorities (a function of their criticality and/or feasibility), and the highest priority tasks are granted access to the
resource in question.

The scheduling of real-time tasks on a single CPU has been studied for years. Many different algorithms have
been introduced, each with its own set of requirements. Some require that the task set be completely specified before-
hand, and others adapt to a dynamic load. Some use criticality alone to determine priority, and others use feasibility
(as measured by deadline, periodicity, slackness, et al.), while others use both criteria to arrive at a priority assign-
ment. In the case of StarBase, the scheduling policies available are those of its native operating system, RT-Mach.
RT-Mach provides a variety of priority-based policies, including fixed-priority (round-robin (PRI-RR) and FIFO fla-
vors (PRI-FIFO)), Rate Monotonic (RM), Deadline Monotonic(DM), and Earliest Deadline First (EDF). RT-Mach’s
real-time thread model distinguishes real-time threads of execution from ordinary ones, requiring the explicit specifi-
cation of timing constraints and priority on a per-thread basis. The timing and priority information is then used as
input to the RT-Mach scheduler [Tok90].

In the case of non-preemptible resources, however, contending threads must wait for the resource in question to
be explicitly relinquished (rather than centrally scheduled as is possible with preemptible resources like the CPU)
before one can access the resource. Ideally, a high-priority task should never have to wait to acquire a resource from
a lower-priority task, but some resources cannot be easily preempted without ensuing chaos. There are cases then,
where the goal of allocating resources to high priority tasks cannot be met immediately, and a high-priority task, TH,
has to wait for a low-priority task, TL, to relinquish a resource, R, before TH can proceed. Thisde facto blocking is a
form of priority inversion, since TL is allowed to execute instead of TH. As previously mentioned, some priority
inversion is unavoidable for non-preemptible resources, but Sha et al. identified a situation whereunbounded priority
inversion can be avoided [Sha90].

For example, consider what would happen if TH waits for TL to relinquish R and a third task, TM, whose priority
is between that of TH and TL, enters the system. Since TM has a higher priority than TL, priority-based CPU schedul-
ing schedules it in preference to TL (assuming TM does not also wait to acquire resource R), and when TM completes,
TL is not be appreciably closer to relinquishing R. TH is thus indirectly blocked by the introduction of TM, a lower

4

priority task and suffers from priority inversion for a much longer period than if TH and TL executed alone. If more
medium priority tasks are introduced into the system besides TM, the priority inversion interval increases. In fact, TH

may be indefinitely blocked as a stream of medium-priority tasks enter the system.

To remedy this situation, Sha et al. proposed the Basic Priority Inheritance Protocol (BPI) [Sha90]. Simply
stated, when a task, TL, holding resource R effectively blocks other higher-priority tasks waiting to acquire R, it
should inherit the highest priority of the waiting tasks. When TL relinquishes R, it returns to executing at its former
(lower) priority. Sha et al. also extended BPI to handle cases where chained waiting on resources can occur, and the
resource holder inherits the ceiling of the priorities of all threads it blocks directly or indirectly.

RT-Mach, in turn, has striven to implement these ideas and provides both interprocess communication (RT-IPC)
[Kit93] and thread synchronization (RT-Sync) [Tok91] facilities which obey BPI. RT-Mach implements BPI itself as
a combination of priority queuing and priority inheritance.

To ensure the propagation of priorities between threads of execution on machines physically disparate from the
local one, RT-Mach’s RT-IPC package attaches a priority to each message sent. The priority can be either specified
explicitly or derived from the sending thread. Incoming messages are queued in priority order at the destination and
one of a set of prearranged receiver threads inherits the message priority in accord with BPI if all receivers are busy.
Additionally, RT-IPC employs a priority handoff scheme distinct from the priority inheritance of BPI. Priority hand-
off ensures that the receiver thread executes at the priority of the last message it received. Priority inheritance is the
temporary boost in priority of a receiver to match the priority of a message which the thread cannot yet receive. Pri-
ority handoff, however, occurs precisely at the point when the receiver receives a message. Priority inheritance
occurs if the incoming message is of higher priority than some of the receivers, but priority handoff occurs for each
message received.

RT-Mach’s implementation of RT-Sync is a much more straightforward extrapolation of BPI than RT-IPC. RT-
Mach provides a variety of synchronization mechanisms, including real-time mutex (mutual exclusion) and condition
variables with which StarBase constructs its monitored MemMgr and CCMgr. Threads attempting to acquire a real-
time mutex variable or waiting on a real-time condition variable are queued in priority order, and an inheritance
mechanism is used to expedite the corresponding mutex variable holder if it blocks a higher priority thread.

As stated previously, applications must rely heavily on their host operating system to provide services such as
scheduling, and StarBase is no exception. StarBase employs RT-Mach’s priority-based CPU scheduling and BPI
resource handling in several ways: to determine the transaction service order, to provide high-priority transactions
the means to progress faster than low-priority transactions, to provide priority-consistent access to facilities such as
the small memory manager and concurrency controller. In order to differentiate between high and low priority trans-
actions, each StarBase transaction requires a priority specification. For purposes of uniformity, StarBase adopts the
same data type RT-Mach uses to convey priorities: rt_priority_t. The use of this data type also lends itself to
a straightforward translation of StarBase to RT-Mach priorities. Since the rt_priority_t includes a wide range
of criticality and timing information, major changes in scheduling policy (e.g. Fixed Priority to Earliest Deadline
First) are reduced to simple changes in the functions which compare priorities (e.g. changing the comparison of criti-
calities to one of deadlines) without any change in the client/server interface. Since the StarBase DBMS itself must
make priority-based decisions (e.g. concurrency control), its priority-based comparisons involve priorities expressed
in this data type. Of course, which policy is most appropriate differs from application to application, so the type of
policy is left as a compile-time constant. Naturally, StarBase must use a consistent transaction scheduling policy
across all of its priority-based decisions.

Transaction Service Order

Since performance ultimately degrades as the number of threads of execution in a system increase, and lazy allo-
cation of resources adds unpredictability to the system, StarBase maintains only a fixed number of preallocated trans-
action manager threads. At the same time, since the StarBase DBMS has no a priori knowledge of transaction
workload, more transactions may be submitted to the DBMS than it can handle at any given time. In order to throttle

5

the flow in such circumstances, StarBase needs a mechanism to decide which requests to admit into service, and RT-
Mach’s RT-IPC facilities do just that in a convenient and priority-cognizant manner. To submit a transaction to the
StarBase DBMS, a client places the transaction instructions and priority information into a message and uses RT-IPC
to send the message to the DBMS server. Since RT-IPC queues incoming messages in priority order, the next avail-
able transaction manager receives the next highest priority unreceived message. Requests are therefore served in pri-
ority order and only the highest priority outstanding requests are in service at any given time. If a high priority
transaction request cannot be serviced immediately because all transaction manager threads are busy serving some
lower priority requests, RT-IPC’s priority inheritance expedites one or more of the transaction managers so that the
high priority request enters service at a time bounded by the minimum of the in-service transaction deadlines.

Transaction Progress

Once transactions enter service, StarBase needs to ensure that high priority transactions progress as quickly as
possible. Since transactions require real-time execution, StarBase creates one real-time thread for each transaction
manager and relies on RT-Mach’s real-time CPU scheduling to schedule them. Transaction manager priorities are not
specified explicitly by StarBase, however. Each obtains the correct priority assignment automatically upon receipt of
a new transaction via RT-IPC’s priority handoff mechanism.

Memory Manager

Transactions, depending on the nature of their operations, require some dynamic allocation of memory during
their execution. StarBase maintains a small memory manager to allocate and manage dynamic memory. Since trans-
action managers of different priorities may attempt to use it simultaneously, entry into the small memory manager is
guarded by a real-time mutex variable to avoid the priority inversion problem and to ensure the heap is accessed in
mutual exclusion. To provide (relatively) predictable access to memory allocated through the manager, the heap is
wired so that it cannot be paged out of physical memory.

Concurrency Controller

Although the StarBase concurrency controller is responsible for resolving contention at a higher level (i.e. data
contention), it still relies on RT-Mach to provide basic synchronization and avoid the priority inversion problem. In
particular, the concurrency controller must keep its own data structures consistent and ensure that transaction com-
mits occur without interference. As such the concurrency controller is organized as a monitor, with a single real-time
mutex variable for the monitor lock, and one real-time condition variable for each transaction manager. The precise
function of the concurrency controller is detailed in the next section.

4. Data Contention and Concurrency Control

In addition to resources such as the CPU and memory, transactions also compete for access to the data stored in
the relations themselves. A DBMS interposes itself between the application and the raw, unstructured storage
medium to provide the abstraction of high-level operations called transactions. To obtain reasonable performance, a
DBMS must allow multiple transactions to access data concurrently while requiring that the outcome appear as
though it were the result of a serial execution of those transactions. Balancing these two behaviors induces a problem
which is quite distinct from ordinary contention for operating system resources: contention for data. To enforce data
access patterns that are consistent with a serial execution, transactions which read and write the same data must be
forcibly reordered by allowing one to proceed while the others are delayed. The procedure which makes these deci-
sions is called aconcurrency control algorithm, of which there are two major types:lock-based andoptimistic.

Lock-based concurrency control requires that transactions obtain shared or exclusive locks on data items before
they may be accessed. If two transactions wish to access a data item in a conflicting way (i.e. at least one requires
anexclusive lock), lock-based concurrency control delays granting one or the other of the transactions access to the
data. Optimistic concurrency control allows a transaction to access data with no hindrances up to the validation
point, when it must certify that it has accessed data in a manner that has not conflicted with other transactions.
Should optimistic concurrency control determine that the validator conflicts with other running or recently committed

6

transactions, it aborts one or more of the transactions involved in the conflict. Carey et al. [Car84] notes that locking
tends to detect and resolve conflicts over data relatively early in a transaction’s execution whereas optimistic concur-
rency control tends to resolve conflicts late. He also asserts that delaying transactions and maintaining the work
they’ve performed by locking is a much more efficient utilization of system resources than aborting transactions and
discarding their work. Carey found that the amount of transaction abortions is the single most important factor in
determining the performance of an DBMS.

StarBase’s concurrency control draws heavily from the work of two research groups. First, Haritsa reasoned that
optimistic concurrency control can outperform lock-based algorithms in a firm real-time setting [Har91]. He then
developed a real-time optimistic concurrency control method, WAIT-X(S), which he found empirically superior, over
a wide range of resource availability and system workload levels, to a previously proposed real-time lock-based con-
currency control method called 2PL-HP [Har91]. Second, Lee et al. devised an improvement to the conflict detection
of optimistic concurrency control in general, which StarBase integrates with Haritsa’s WAIT-X(S) [Lee94].

Why Optimistic Concurrency Control?

Experience has shown that in conventional database systems under conditions of high competition for data, lock-
ing outperforms optimistic concurrency control. This is attributed to the relative efficiency of the policy each concur-
rency control method uses to resolve data conflicts. Lock-based concurrency control requires contending transactions
to wait until data is free to access, whereas optimistic concurrency control resorts to aborting and restarting some or
all of the transactions contending for a particular data item. Locking is deemed more efficient than optimistic concur-
rency control for two reasons: First, its blocking policy tends to throttle the contention of transactions which still
have relatively large amounts of data to access, and secondly, restarts increase contention since operations of transac-
tions which are aborted and subsequently resubmitted must be reperformed.

Surprisingly, however, the advantage that locking enjoys in conventional systems may not be attainable in real-
time databases. In addition to the goal of maximizing transaction throughput espoused by conventional DBMS
design, real-time systems are required to minimize transaction lateness (or eliminate it entirely). Contention for
scarce resources is typically resolved by allocating such resources to those tasks deemed the most critical or likely to
complete in time at the expense of tasks of lesser importance or feasibility. Highly loaded systems experience condi-
tions under which an abort/restart policy must be used in order to enforce the timing constraints or performance guar-
antees for the highest priority tasks. A real-time lock-based concurrency control cannot rely solely on blocking to
resolve contention; it must use some form of abort. In particular, Abbot et al. [Abb92] proposed a real-time lock-
based concurrency control variant of two-phase locking called 2PL-HP. 2PL-HP resolves data contention in favor of
more important transactions by aborting transactions holding locks that a higher-priority transaction wishes to acquire
exclusively.

Haritsa gives two reasons that optimistic concurrency control may be able to turn the tables on locking in a real-
time system. As just mentioned, real-time locking cannot employ contention resolution based solely on blocking--it

lock-based

conventional real-time

strict retrospective

2PL

optimistic

real-time conventional

2PL-HP

m
ixed

m
ixed

strict prospective

strict prospective

Fig 2: A Partial Taxonomy of Concurrency
Control Methods

7

must abort some transactions to avoid unbounded priority inversion and enforce deadlines. Conversely, the pure
abort/restart policy of real-time optimistic concurrency control is dampened by the blocking imposed by real-time
priority based resource scheduling. The blurring of these fundamental differences between locking and optimism
places the two concurrency control approaches on a more even footing.

Haritsa states that the other deciding factor is precisely when data conflicts are resolved. Lock-based methods
such as 2PL-HP can grant a high-priority transaction exclusive access to data very early in the transaction’s execu-
tion. Other transactions are precluded from using the data and aborted even in the case that the exclusive lock holder
cannot feasibly make its deadline. Haritsa terms aborted transactions which result from situations of this sort as
wasted restarts. Conversely, optimistic concurrency control allows transactions to progress independently up to the
point of validation, effectively postponing any conflict resolution. By delaying decisions on data conflicts, only fea-
sible transactions may progress all the way to the validation point while infeasible transactions abort one by one as
they miss their deadlines. Thus, by the time a transaction has made it into validation, it has proven its feasibility and
the certainty of completing the transaction, should it win all of its data conflict contests, is guaranteed.

One may legitimately ask, “Why attempt a transaction which is obviously infeasible?” The answer is that
despite claims to the contrary, determininga priori worst-case execution time is difficult. There are cases where
small variances may turn a marginally feasible transaction into an infeasible one. At its outset, the transaction may
appear feasible but is later rendered infeasible by an unforseen event such as the introduction of a higher priority
transaction which blocks it.

WAIT-X(S)

StarBase uses the WAIT-X concurrency control algorithm proposed by Haritsa [Har91]. WAIT-X is optimistic,
usingprospective conflict detection and priority-based conflict resolution. WAIT-X’s conflict detection is prospective
in the sense that it looks for conflicts between the validator and transactions which may commit sometime in the
future (i.e. running transactions). Prospective conflict detection is also referred to asforward validation or broadcast
commit. The attendant advantages of the prospective method are that potential conflictors are readily identifiable,
dataset comparisons are simplified, and conflicts are detected much earlier in the execution history. Real-time opti-
mistic methods are precluded, however, from retrospective (or backward validation) conflict detection, which com-
pares the validator to transactions which committed in the recent past. Since all the transactions which conflict with a
validator have committed, there is only one outcome in the face of irreconcilable conflict: abortion of the validator
regardless of its priority relative to its conflictors. Prospective conflict detection, on the other hand, allows the con-
currency control to choose between aborting the validator or all of its conflictors in a priority-cognizant manner.

When WAIT-X detects conflicts between a validator and some running transactions, it can choose one of three
outcomes for the validator. It may abort the validator, it may commit the validator and abort the conflictors, or it may
delay the validator slightly in the hope that conflicts resolve themselves in a favorable way. Which course of action to
take is a function of the priorities of the validator and conflictors. In particular, Haritsa divides the conflictors into
two sets: those conflictors with higher priority than the validator (CHP), and those with lower priority (CLP). WAIT-
X blocks the validator until the CHP transactions comprise less than a critical portion,X%, of the conflict set:

Haritsa found experimentally that low values of X tend to minimize the deadline miss ratio for light loads, and
high values of X tend to minimize the deadline miss ratio for heavy loads. He established X = 50% as the threshold
value which minimizes the overall deadline miss ratio, but applications which require minimization of the highest-
priority deadline miss ratio should probably use a greater value for X.

The final aspect of the WAIT-X method deals with handling the abort of the transaction should WAIT-X block it

while (CHP transactions in conflict set and
CHP transactions comprise less than
X% of conflict set)

wait;
abort conflict set;
commit validator;

8

until its deadline. Haritsa claims that transactions which run up against their deadlines while waiting can either be
immediately sacrificed by aborting (WAIT-X(S)) or committing (WAIT-X(C)). Sacrifice is preferred over commit
since waiters are more likely to be lower priority than most of their conflictors. More importantly, however, commis-
sion at the deadline point would effectively extend the execution of a transaction past its deadline, so WAIT-X(C) is
not practical for systems requiring firm real-time constraints such as StarBase.

WAIT-X(S) Implementation

The StarBase concurrency control unit implements Haritsa’s WAIT-X as a monitor and is a more active entity
than other typical concurrency controllers. The concurrency control manager (CCMgr) opens and closes relations on
behalf of executing transactions, performs write-throughs to the database, handles asynchronous aborts, and elimi-
nates a potential race condition between the commission of a transaction and the expiration of its deadline. Transac-
tion managers use the six services provided by the CCMgr (RegisterTransaction,
RegisterRelationReference, UpdateReadSet/WriteSet, Validate, ScheduleAsynchronous-
Abort, and AbortSelf) by calling the corresponding monitor entry procedure. Each monitor entry procedure
locks the CCMgr monitor lock to gain access to the monitor and unlocks the monitor lock when exiting. The monitor
lock itself is implemented as an RT-Mach mutex variable to control priority inversion between contending transaction
managers. Once inside the monitor, of course, operations proceed in a mutually exclusive fashion.

Although on paper WAIT-X consists of a simple test to determine whether a transaction waits or commits, in
practice, the test is actually a trigger whose truth value can change at any instant as transactions enter (by reading
relations) and exit (by aborting) the validator’s conflict set. The CCMgr is a synchronous modification of the asyn-
chronous WAIT-X test, where the validation state corresponds to the testing the trigger, the wait state corresponds to
the loop body, and the committed state corresponds to the statements after the while loop. Note that validators may
be aborted while in the wait state either due to the commitment of other validators or due to the expiration of the val-
idator’s deadline.

As previously mentioned, the composition of a validator’s conflict set may change from instant to instant. The
most frequent case, when a running transaction advances in its read or writeset, is expensive to check because of its
frequency and because of the size of the read-/writeset data structures. The CCMgr limits checking the trigger condi-
tion to cases where it is reasonably sure conflict sets have changed: when a transaction enters validation for the first
time and when a transaction aborts. Note that in this scheme a particular transaction’s wait in the CCMgr is strictly
bounded by its deadline and waiting transactions retry validation by the earliest deadline of all transactions in the sys-
tem (subject to the availability of the processor to the transaction with earliest deadline). In order to give precedence
to the highest priority transactions, all waiting transactions retry validation in priority order.

As is typical, reads and writes are recorded in bitmaps for each relation a transaction references. Comparison of
the read- and writesets of transactions during conflict identification can then be expedited by performing a word-wise

validating

waiting

aborted terminated

running

committed

val
ida

te

conflict/
deadline/

error abort

restart

co
nfl

ict
/

de
ad

lin
e

ab
or

t

terminate

commit

wait re
try

Fig. 3: WAIT-X(S) State Diagram

9

logical AND on bitmap pairs to detect any overlaps. Since WAIT-X uses prospective validation, only the readset of a
potential conflictor need be compared to the writeset of the validator: the potential conflictor is still running so none
of its writes are visible to the validator. Prospective validation’s conflict detection is simple and relatively low-cost,
but it can be improved upon. A method to augment WAIT-X(S)’s conflict detection scheme is discussed in a later
section.

Because the bitmap comparison process is not atomic, it is of paramount importance that running transactions be
prohibited from advancing in their read- or writesets during the validation of a potential conflictor. Transactions are
required to update their read- and writesets prior to actually performing the read from a relation or write into their
own private workspace. As the CCMgr retries each validator, it cycles through the validator’s datasets marking each
relation referenced as locked. Part of the update read-/writeset function checks whether the relation is locked before
allowing the operation to proceed. If the relation is locked, the transaction is required to enter the CCMgr monitor,
effectively blocking it, and if the transaction is of higher priority than the thread currently executing inside the
CCMgr, that thread inherits the transaction’s priority. Since no mutual exclusion is used when updating the read- and
writesets, there is a race condition between the executing transaction writing bit i and the validator reading bit i. If
the executing transaction reads data item i first, writing bit i in the process, subsequent validation detects the presence
of 1 in the ith position in the bitmap and the transaction will be correctly seen as conflicting. If the CCMgr compares
a validating transaction’s bitmap to that of the executing transaction, marking the relation as locked beforehand, the
executing transaction’s read will detect the locked relation and attempt to enter the CCMgr monitor, effectively
blocking it until the completion of validation.

When the CCMgr computes the conflict set for a given validator, it tallies CHP and CLP transactions. To deter-
mine the priority of a conflictor relative to the validator, the CCMgr employs a function of transaction priorities
(using RT-Mach’s own data type, rt_priority_t) which returns TRUE if the first transaction is of higher priority
than the second. Note that this function is the same one employed to ensure transactions retry validation in priority
order. The exact behavior of the function is arbitrary and fixed at compile-time, but given the current composition of
RT-Mach’s priority data type, possibilities include Fixed Priority, Earliest Deadline First, and Least Slack First. Once
the CHP and CLP have been determined, the CCMgr decides whether the validator can commit or must remain on the
waiting list. If the validator commits, the CCMgr schedules aborts for transactions in the validator’s conflict set.

The wait state itself is implemented by associating an RT-Mach real-time condition variable appropriately called
waiting with each transaction. When the CCMgr decides that a validating transaction should wait, the transaction
manager is enqueued on a queue of other waiting transactions and suspended on its condition variable. This in turn
releases the CCMgr monitor lock and allows other transaction managers to use CCMgr services. The suspended
transaction manager is subsequently resumed when another transaction manager calls into the CCMgr to validate or
abort. At that point all transactions in the wait queue are retried individually in priority order and if the CCMgr
decides that one in particular commits or aborts, it signals the corresponding waiting condition variable, unblock-
ing the formerly suspended transaction manager.

Precise Serialization

Precise serialization is a conflict-detection scheme for optimistic concurrency control [Lee94]. The goal of pre-
cise serialization is to identify transaction conflicts which strict prospective conflict detection considers irreconcilable
but can actually be resolved without aborting the transactions involved. StarBase replaces the prospective conflict
detection portion of the WAIT-X(S) scheme with Precise Serialization so that WAIT-X(S) can still enforce transaction
serializability while incurring fewer transaction aborts.

In particular, Lee identified the case where a validator, TV, attempts to commit and write a data item x which
another uncommitted transaction TCR has read but not written. Lee terms data conflicts of this type write-read con-

flicts. As mentioned previously, strict prospective validation checks the writeset of the validator against the readset of
its potential conflictors, identifying write-read conflicts. If it detects such a conflict, the resolution requires aborting
some of the conflicting transactions. Note, however, that if TCR were to commit first, there would be no conflict on
data item x. Haritsa noticed the same problem and describes part of the rationale behind the priority wait scheme of
WAIT-X as a passive attempt to induce transactions to reserialize themselves in a nonconflicting order. Lee’s Precise

10

Serialization takes a more deterministic tack: it allows TV to commit while TCR is still running, but requires TCR to
behave as if it had committed before TV! TCR is constrained so that it cannot read any data item written by TV

because it would see a “future” value, and it cannot write any data item read by TV since TV has committed and can-
not change the past. Finally TCR must discard (as late writes) updates to any data items which TV wrote during its
commit. This pseudo-reserialization of TV and TCR is calledbackward ordering and its goal is to increase the proba-
bility that potential conflictors can complete without either aborting and restarting.

Precise Serialization Implementation

Since Precise Serialization is a conflict-detection scheme, not a full-blown method of concurrency control, it sup-
plements StarBase’s WAIT-X implementation rather than replacing it entirely. Precise Serialization modifies the
WAIT-X validation conflict detection and requires the addition of a mechanism to detect when a pseudo-reserialized
transaction does not behave in accordance with its virtual order in the execution history.

During validation, Precise Serialization partitions the set of conflicting transactions into those which conflict rec-
oncilably and those which conflict irreconcilably. Should the validator be allowed to commit, the reconcilable con-
flictors must be pseudo-reserialized by backward ordering, while the irreconcilable conflictors must be aborted. To
keep track of which are which, StarBase maintains a reserialization candidate set for the validator in addition to the
conflict set of the WAIT-X implementation described previously. The conflict set still identifies which transactions
conflict irreconcilably with the validator, but the candidate set identifies precisely those datasets among which recon-
cilable write-read conflicts exist.

To construct the candidate set and the conflict set at the point of validation, the CCMgr cycles through each
dataset referenced by the validator, TV. If TV has only a write-read conflict with an uncommitted transaction, TCR, on
a dataset, then the serialization order should be TCR → TV (backward validation) and the conflicting datasets are
added to the reserialization candidate set. If TCR has only a write-read conflict with TV, then the serialization order
should be TV → TCR (forward validation). In this case TV and TCR are considered to be non-conflicting. If the
CCMgr determines that the serialization order should be simultaneously TCR → TV and TV → TCR, then TV and TCR

are irreconcilably conflicting, and TCR is added to the conflict set. Note that the CCMgr does not consider write-write
conflicts since transactions are required to read tuple locations to determine their values or to establish that they are
empty before writing them. Consequently a writeset is always a subset of the readset (for a given transaction and
relation) and checking both against a potential conflictor’s writeset is redundant.

Once the candidate set and conflict set are completely identified, the CCMgr determines whether the validator
should commit or wait according to the WAIT-X commit test. If the validator waits, the conflict and candidate sets
are discarded--they will be recomputed if and when the validator retries validation. If the validator commits, the
transactions in the conflict set are aborted and the CCMgr must pseudo-reserialize the reconcilable conflictors.
Pseudo-reserialization is achieved by attaching copies (orremnants) of TV’s datasets to those datasets with which
they conflict--note that these dataset pairs are precisely those comprising the reserialization candidate set. Thus when
a conflictor later updates its read- and writesets, it can quickly check whether the operation violates its virtual order in
the execution history by consulting the dataset remnants attached to the dataset involved in the operation.

 Since one of TV’s datasets may conflict with more than one of the conflictors’, a remnant is given a reference
count rather than physically copied. As conflictors commit or abort one by one, the CCMgr decrements the reference
count. When the last conflictor terminates, the CCMgr discards TV’s dataset remnant.

In the same token several transactions may commit even though they conflict with a particular transaction, TCR.
The dataset remnants of these transactions attached to TCR are collectively known as therecently committed conflict-

ing datasets (or RCCs). Pseudo-reserialized transactions such as TCR must check each remnant in the RCCs for a
given dataset whenever they read or write to that dataset. As previously mentioned, TCR cannot read anything
marked as written in its RCCs, since it would read a “future” value. In most cases TCR cannot write anything marked

11

as read in its RCCs, since it would write a “past” value. The exception occurs when TCR writes a data item that TV

has also written, in which case TCR’s write is discarded as a late write. The net result is that only the value that TV

wrote is visible, consistent with the execution history TCR → TV. Unfortunately StarBase’s update operation may use
past values to compute new ones, precluding the use of late writes for it. The only situation in which the late write
phenomenon can be used is one in which the reserialized operation is supposed to have been performed before a
delete. Since delete is idempotent, the reserialized operation can be correctly discarded.

5. Enforcing Time Constraints
Each StarBase transaction is accompanied by a deadline specification. Since StarBase is a firm real-time DBMS,

it attempts to process the transaction and reply to the application at or before this deadline; no processing should
occur after the deadline. Firm deadline transactions may be contrasted with soft deadline transactions which are
viewed as having some usefulness even if their execution extends beyond the deadline point. Soft deadline transac-
tions typically execute at a reduced priority after the deadline until a point where they reach zero value and are dis-
carded. Hard deadline transactions are those transactions whose failure to execute on time is viewed as catastrophic.
In general, systems which support hard deadline tasks (such as a DBMS supporting hard deadline transactions) must
fix each detail of task execution beforehand, including resource usage and scheduling order. Rather than take the
chance that any task misses its hard deadline, such systems massively preallocate and underload resources to ensure
temporally precise behavior with no deviations.

Deadline Management

The first step in enforcing firm deadlines is detecting exactly when the deadline expires. As with other real-time
functionality, StarBase relies heavily on the RT-Mach operating system to provide supporting mechanisms. RT-Mach
provides the concept of a real-time deadline handler. Timing faults on a task such as deadline expiration occur asyn-
chronously with regard to the task’s thread of execution and are essentially exceptional events. The nature of the
actions the handler performs when a timing fault occurs depends on application semantics. Typical actions are to
abort the task (firm deadline) or lower its priority (soft deadline). Implementation of a deadline handler requires
time-based synchronization in addition to RT-Mach’s real-time thread model. In order to ensure the handler action is
ready to execute before the deadline, the real-time deadline handler must be eagerly allocated as a real-time thread to
execute the deadline handler code. The deadline handler thread then uses a real-time timer to block the thread until
the deadline expires. A real-time timer is an RT-Mach abstraction which allows real-time threads to synchronize with
particular points in time as measured by real-time clock hardware devices [Sav93]. Each timer is associated with
exactly one clock, but a single clock can support many timers.

RT-Mach provides a default deadline handler constructed from the building blocks discussed above, but it is
inadequate for StarBase’s purposes. First, the default deadline handler supports only tasks with uniform deadlines,
but StarBase, since it assumes no a priori information about its transaction workload, treats all transactions as if they
have different timing constraints. StarBase requires that its deadline handlers adapt to new transactions and their
deadlines as they enter service. Secondly, a RT-Mach default deadline handler forcibly suspends a task when it
misses its deadline so that the task does not interfere with the handler’s execution. If a task misses its deadline while
in the middle of a critical section, the suspended task cannot leave the critical section until it is resumed. Since Star-
Base uses a critical section to resolve potential race conditions between transaction commit (by the transaction man-
ager) and deadline abort (by the deadline manager), use of a default deadline handler can result in deadlock. Thirdly,
default deadline handlers do not allow the transaction and deadline managers to synchronize cooperatively. A dead-
line manager must know when a transaction completes so that it does not generate a useless abort; a transaction man-
ager must know when the deadline expires, so that it does not commit the aborted transaction. Neither is possible
without some shared state which must be accessed consistently (i.e. atomically).

Deadline Management Implementation

The solution, then, is to devise a deadline handler implementation which handles variable deadlines, avoids
potential deadlocks, and is eagerly allocated to provide some degree of predictability but at the same time takes pre-
cedence over the transaction it manages when the transaction deadline expires.

12

As mentioned in Section 3, RT-Mach provides RT-Sync real-time thread synchronization facilities. Each trans-
action and deadline manager pair can be synchronized using RT-Sync to construct a monitor with two real-time con-
dition variables, newTransaction and dmgrCancel. The transaction manager must be sure that the deadline
manager is ready to enforce a new deadline before a new transaction arrives, and the deadline manager must be sure
the transaction manager has received a new transaction before it prepares for the new deadline expiration. The condi-
tion variable newTransaction is used both to wait when one of the managers lags behind the other and to signal
the arrival of a new transaction to the deadline manager.

The condition variable dmgrCancel is used much differently. In order to expedite the processing of subse-
quent transactions, the transaction manager should be able to actively cancel the deadline manager in the event that
the transaction completes well in advance of its deadline. The deadline manager sets a boolean dmgrArmed to
TRUE whenever it blocks waiting for the deadline to expire so that the transaction manager knows to cancel it. The
transaction manager must be able to atomically test and the deadline manager must be able to atomically set
dmgrArmed (i.e. from within the monitor). Furthermore, dmgrArmed must be set atomically with the blocking of
the deadline manager, otherwise the transaction manager’s cancellation could interleave between the two operations,
nullifying it and allowing the deadline manager to wait for the deadline expiration anyway.

Additionally, the deadline manager must release the monitor lock when it blocks so that the transaction manager
can enter the monitor and test dmgrArmed to determine whether to cancel the deadline manager. StarBase can sat-
isfy all of these requirements by employing a real-time condition variable with a timeout. In particular the deadline
manager sets dmgrArmed and then waits on the condition dmgrCancel with a timeout set to the deadline of the
transaction currently in service. The deadline manager unblocks either when the deadline expires (the wait on
dmgrCancel times out) or when the transaction manager cancels the deadline manager (by signalling on dmgr-
Cancel). Naturally if the wait times out, the deadline manager must reenter the monitor.

The transaction and deadline manager behaviors are presented in Figures 4 and 5. This solution allows the dead-
line handler to deal with deadlines which vary from transaction to transaction since the transaction and deadline man-
agers synchronize before a transaction enters service. The use of a monitor to synchronize the transaction and

rt_mutex_t monitorLock;
rt_condition_t newTransaction;
message_t request;
boolean_t tmgrReady = FALSE;

while (TRUE)
 {
 rt_mutex_lock (monitorLock, NULL);
 tmgrReady = TRUE;
 if (dmgrReady == FALSE)
 {
 if (dmgrArmed)
 rt_condition_signal (dmgrCancel);
 rt_condition_wait (newTransaction,
 NULL);
 }
 mach_msg_receive (request);
 rt_condition_signal (newTransaction);
 tmgrReady = FALSE;
 rt_mutex_unlock (monitorLock);
 /* execute transaction */
 }

Fig. 4: Transaction Manager

rt_condition_t dmgrCancel;
boolean_t dmgrArmed = FALSE;
boolean_t dmgrReady = FALSE;

rt_mutex_lock (monitorLock, NULL);
while (TRUE)
 {
 if (tmgrReady)
 rt_condition_signal (newTransaction);
 dmgrReady = TRUE;
 rt_condition_wait (newTransaction,
 NULL);
. dmgrReady = FALSE;
 dmgrArmed = TRUE;
 status =
 rt_condition_wait (dmgrCancel,
 request.deadline);
 dmgrArmed = FALSE;
 if (status == KERN_SUCCESS)
 continue;
 /* abort transaction */
 rt_mutex_lock (monitorLock);
 }

Fig. 5: Deadline Manager

13

deadline managers also avoids the deadlock possible were the deadline manager capable of explicitly suspending the
transaction manager. Another implementation of the deadline handler involves creating and destroying the deadline
manager at the beginning and end of each transaction. Eagerly allocating the deadline manager thread, however,
reduces the amount of variability in transaction service times, providing an increased degree of predictability.

Finally, the easiest goal to achieve is that of the deadline manager taking precedence over its transaction man-
ager. Since the deadline handler’s execution is considered more critical than the transaction’s when the deadline
expires, the deadline handler should be assigned a higher priority so that RT-Mach gives it preferential scheduling rel-
ative to the transaction whose deadline it handles. At the same time, the execution of the deadline handler should not
cause priority inversion by interfering with the transaction managers of higher priority transactions. In order for the
deadline handler to function as desired, it should have a slightly higher criticality and slightly tighter timing con-
straints than its corresponding transaction manager, but a lower criticality and looser timing constraints than transac-
tion managers for higher priority transactions.

Fortunately, the criticality and time spaces are both very large in RT-Mach (at least 2n where n is the number of
bits in a word), which allows StarBase to map the external transaction priorities onto the priorities at which the trans-
action and deadline manager real-time threads actually run. Furthermore, real-time CPU and resource scheduling
generally make decisions on which task to run by simply comparing priorities without quantifying how much they
differ. Thus the magnitude of the difference between the priorities of a high-priority and a low-priority task is irrele-
vant; the high priority task is scheduled until it blocks. The fact that priority spaces are so large and scheduling deci-
sions are based on how rather than how much priorities differ allows StarBase to translate “external” transaction
priority values into “internal” priority values used by RT-Mach without radically altering the semantics of the transac-
tion priorities themselves.

The RT-Mach criticality priority space consists of unsigned integers, with 0 being the highest criticality and 2n-1
being the lowest. The transaction and deadline manager thread criticalities supplied to RT-Mach are gotten by dou-
bling the external transaction priority and adding one to the transaction manager criticality. A deadline manager thus
always has a greater criticality than its own transaction manager thread but has a lesser criticality than that of the next
highest criticality transaction.

Although time is viewed as continuous and real-valued, RT-Mach’s ability to measure it is limited by its clock
hardware resolution. RT-Mach, therefore, maintains a data type which represents discretized time in terms of nano-
seconds, though its clocks measure time with significantly lower precision. Tighter timing constraints for the dead-
line manager are gotten by adding one nanosecond to each timing constraint of the corresponding transaction
manager. Since RT-Mach’s clocks are not accurate to nanosecond precision, distinct transaction managers whose
timing constraints differ only by one nanosecond essentially have the same priority (disregarding their criticalities),
and tightening a deadline manager’s timing constraints by such a small value does not block the processing of an
appreciably higher priority transaction.

Type
(External)

Transaction
Priority

Transaction
Manager
Priority

Deadline
Manager
Priority

criticality c 2 * c + 1 2 * c

timing
constraints

(nsec)

t t t - 1

Fig. 6: Thread Priority Assignments

14

Asynchronous Aborts

As previously discussed, firm deadlines are handled asynchronously by a deadline handler which is charged with
aborting the task in question. In StarBase, the asynchrony between transaction and deadline managers results in a
race condition between the commit and deadline abort of a transaction. The concurrency controller (CCMgr) is the
authority which permits a transaction to commit and the commit/abort contention is resolved through it. As described
in Section 4, the CCMgr is a monitor and threads executing inside of it are capable of atomically determining whether
a transaction is in the process of committing or not.

When the deadline expires and the deadline manager must abort the transaction, it calls into the CCMgr. If the
transaction has not yet committed, the CCMgr marks the transaction as aborted and disallows it as a potential conflic-
tor with other validators by unlinking it from CCMgr internal data structures. How the CCMgr subsequently notifies
the transaction manager of the abort depends on the state of the transaction. If the transaction has not yet entered val-
idation, the transaction manager is notified the next time it updates its read- or writesets; if the transaction has entered
validation (i.e entered the wait state), the CCMgr resumes the transaction manager according to the mechanism
described in Section 4 with the status that it has failed validation.

In addition to the race condition between the commit and abort of a transaction, there is another race condition
between simultaneous aborts. For example, a transaction may discover a semantic error (e.g. relation not found) near
the point where the deadline expires or a transaction may abort due to conflicts during validation. Because of the dif-
ferent natures of these aborts, different actions are required on the part of StarBase. The CCMgr again arbitrates
which one of multiple aborts takes precedence. The most important is the deadline abort which supersedes all other
aborts in order to expedite replying to the client. Semantic errors are next in line and conflict aborts are least critical.
Aborts due to deadline expiration and semantic errors must prevail over conflict aborts, since the former require dis-
carding transactions permanently whereas the latter result in restarting transactions.

As described in Section 4, all validating transactions are retried whenever a transaction enters validation for the
first time or aborts. Since retrying validation may result in multiple transactions committing or aborting, it may be a
fairly lengthy process. Rather than allowing a deadline manager’s call into the CCMgr monitor to block it for such a
long period of time, the CCMgr maintains a thread which acts as a proxy. When a deadline manager requests that the
CCMgr abort its transaction, the deadline manager simply hands off the appropriate priority to the proxy thread and
then signals it. The deadline manager is then free to leave the CCMgr monitor and reply to the client while the proxy
retries all waiting validators. Note that the deadline manager assigns the priority of the transaction manager rather
than its own priority to the proxy so that the deadline manager can proceed unhindered.

6. Conclusion
This paper details the architecture to support a firm real-time DBMS assuming no a priori knowledge of transac-

tion workload characteristics. The paper describes how existing real-time technology has been applied to the prob-
lems of resource and data contention, and introduces unique methods to enforce deadlines. The next step is to extend
these solutions to the situation in which transaction characteristics are at least partially specified beforehand. With
prior knowledge, a real-time DBMS can provide better support for periodic transactions. Execution time estimates
and off-line analysis can be used to increase DBMS-wide predictability. Temporal consistency [Ram92], where data
used to derive new data must be consistent within a certain validity interval, is also a matter to be explored.

Acknowledgements

Youngkuk Kim and Juhnyoung Lee provided many valuable ideas and suggestions on how to improve this paper.

15

References

[Abb92] Abbott, Robert K., and Garcia-Molina, Hector. “Scheduling Real-Time Transactions: A Performance
Evaluation.” ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

[Car84] Carey, Michael J., and Stonebraker, M. R. “The Performance of Concurrency Control Algorithms for
Database Management Systems.” Proceedings of the Tenth VLDB Conference, Singapore, August 1984.

[Har91] Haritsa, Jayant R. “Transaction Scheduling in Firm Real-Time Database Systems.” TR1036. Department
of Computer Science, University of Wisconsin. August 1991.

[Hua90] Huang, J., Stankovic, J., Towsley, D., and Ramamritham, K. “Real-Time Transaction Processing: Design,
Implementation, and Performance Evaluation.” TR90-43. COINS, University of Massachusetts. May,
1990.

[Kim94] Kim, Youngkuk, Lehr, Matthew, George, David and Son, Sang H. “A Database Server for Distributed
Real-Time Systems: Issues and Experiences.” Second IEEE Workshop on Parallel and Distributed Real-
Time Systems, Cancun, Mexico, April 1994.

[Kit93] Kitayama, Takuro, Nakajima, Tatsuo, and Tokuda, Hideyuki. “RT-IPC: An IPC Extension for Real-Time
Mach.” Proceedings of the Second Microkernel Workshop, September 1993.

[Lee93] Lee, Juhnyoung and Son, Sang H. “Using Dynamic Adjustment of Serialization Order for Real-Time
Database Systems.” 14th IEEE Real-Time System Symposium, December 1993.

[Lee94] Lee, Juhnyoung, and Son, Sang H. “Precise Serialization for an Optimistic Concurrency Control
Algorithm.” Submitted for Publication.

[Leh93] Lehr, Matthew R. “StarBase v2.2 Implementation Details.” TR CS-93-48. Department of Computer
Science, University of Virginia. July 1993.

[Loe91] Loepere, Keith. Mach 3 Kernel Principles. Open Software Foundation and Carnegie Mellon University.
1991.

[Ram92] Ramamritham, Krithi. “Real-Time Databases.” International Journal of Distributed and Parallel
Databases, Vol. 1, No. 2, April 1993.

[Sav93] Savage, Stefan, and Tokuda, Hideyuki. “Real-Time Mach Timers: Exporting Time to the User.”
Proceedings of the Third USENIX Mach Symposium, April 1993.

[Sha90] Sha, Lui, Rajkumar, Ragunathan, and Lehoczky, John P. “Priority Inheritance Protocols: an Approach to
Real-Time Synchronization.” IEEE Transactions on Computers, Vol. 39, No. 9, Sep 1990.

[Son93] Son, Sang H., George, David W., and Kim, Young-kuk. “Developing a Database System for Time Critical
Applications on RT-Mach.” Unpublished.

[Sta88] Stankovic, John A. “Misconceptions About Real-Time Computing: a Serious Problem for Next-
Generation Systems.” IEEE Computer, Vol. 21, No. 10, October 1988.

[Tok90] Tokuda, Hideyuki, Nakajima, Tatsuo, and Rao, Prithvi. “Real-Time Mach: Towards a Predictable Real-
Time System.” Proceedings of the First USENIX Mach Workshop, October 1990.

[Tok91] Tokuda, Hideyuki, and Nakajima, Tatsuo. “Evaluation of Real-Time Synchronization in Real-Time
Mach.” Proceedings of the Second USENIX Mach Workshop, October 1991.

