

We bring innovation to transportation.

Arterial Performance Measures in a Connected Vehicle Environment

Noah J. Goodall, Virginia Center for Transportation Innovation and Research

18th World Congress on Intelligent Transportation Systems - October 20, 2011

Connected Vehicles

 Significant movement towards wireless communication between vehicles and infrastructure

Connected Vehicles

• Communication among vehicles, and between vehicles and roadside infrastructure

3

- Many ways to communicate
 - WiMAX
 - Wi-Fi
 - Cellular
 - Blue Tooth
 - 3G/4G
- This project focused on DSRC

New Data

- Not just aggregated speed and occupancy
- Can connect to vehicles on-board electronics and measure:
 - Applied brake pressure
 - Windshield wiper status
 - Headlights
 - Steering wheel angle and rate of change
 - Much more!

Point Detection

10/20/2011

Wide Area Detection

10/20/2011

Project Objective

- These new data allow:
 - Better collection of existing metrics
 - New metrics
 - Contextual information to improve these metrics
- This project's goal is to identify these metrics, and their compatibility with existing standards

Standards

- Society of Automotive Engineers (SAE) J2735 DSRC Message Set Dictionary
 - Best developed connected vehicle standard
 - Updated November 2009
- Most metrics require only the basic safety message (BSM)
 - Sent 10x per second to avoid collisions

Improved Measurement of Existing Metrics

- Vehicle delay
- Headway
- Speed
- Turning movements
- Queue length
- Travel time

- Person delay
 - Vehicle delay often used as the objective function for signal timing. Person delay more fair to carpoolers.
 - DSRC standard allows transmission of a bus's number of passengers. Can deliver more sophisticated transit priority.

- Sudden decelerations
 - May indicate a crash or near-miss
 - Can identify potential unsafe roadways
 - Potentially more information than accidents which are rare and sometimes unreported
 - Uses applied brake pressure, deceleration rate, and anti-lock brake activation

- Change in lateral acceleration
 - Areas with high rates of swerving may also indicate unsafe conditions

12

- Can be measured using:
 - Lateral acceleration
 - Steering wheel angle
 - Steering wheel angle rate of change

- Aggregate regulation compliance
 - By anonymizing driver data, can determine areas of unsafe acts and focus enforcement
 - Illegal u-turns, speeding, right turn on red, high speed turns, etc.

13

Environment and Contextual Information

- These metrics provide information that can improve the accuracy of the other metrics
- Study how vehicles behave in different scenarios can:
 - Improve accuracy of models
 - Improve operations and safety

Environment and Contextual Information

- Roadway weather and light
 - By understanding roadway surface and light conditions, can better understand a vehicle's behavior
 - Example: how do driver's change behavior in heavy rain?
 - Uses vehicles' moisture, sunlight, and temperature sensors

Environment and Contextual Information

- Driver behavior
 - Most understand of driver behavior is based on aggregated data from specific studies
 - Gap acceptance
 - Allowable headway
 - Lane change behavior
 - Free flow speed
 - Information can be collected on a much larger scale, and can be localized by region, type of roadway, and time of day

In Summary

- Approaching a shift in traffic data collection
- Much more data, new types of data, different quality data
- Requires a new way of approaching performance measurement and traffic operations generally

Special Thanks

- Cooperative Transportation Systems Pooled Fund Study
- Dr. Brian L. Smith, University of Virginia
- Dr. Ramkumar Venkatanarayana, University of Virginia

For More Information

Noah J. Goodall, VCTIR noah.goodall@vdot.virginia.gov

Special thanks:

- Dr. Brian L. Smith, University of Virginia
- Dr. Ramkumar Venkatanarayana, University of Virginia