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SUMMARY

In an attempt to reduce the number of operand memory references, many RISC machines have thirty-two or
more general-purpose registers (e.g. MIPS-X, ARM, Spectrum). Withoat special compiler opfimizations, such
as inlining or interprocedural register allocation, it is infrequent that a compiler can make effective use of even
a majority of these registers for a function. This paper proposes that some of these registers be used instead to
hold branch farget addresses and the corresponding instruction af each branch target. To demonstrate the
effectiveness of this scheme, two machines were designed and emulated. One machine had thirty-two general-
purpose registers used for data references, while the other machine had sixteen data registers and sixteen
registers used for branching. The results show that using registers for branching can effectively reduce the
cost of transfers of control.
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INTRODUCTION

Branch instructions cause many problems for machines. Branches occur frequently and thus a
large percentage of the machine time is spent branching to different instructions. Branches can result in
the pipeline having to be flushed, which reduces its effectiveness and makes pipelines with few slages
more attractive. During this delay while the next instruction is to be fetched, no useful work is accom-
plished on many machines. Since many branch target addresses are a significant distance away from the

branch instruction (e.g. calls}, the processor will often have greater delays due to cache misses.

This paper describes a technique that can eliminate much of the cost due to branches by using a
new sei of registers. A field is dedicated within each instruction to indicate a branch register containing
the address of the next instruction to be executed. Branch target address calculations are accomplished in
separate instructions from the instruction causing the transfer of control. By exposing to the compiler the
calculation of branch target addresses as separate instructions, the number of executed instructions can be
reduced since the calculation of branch target addresses may be moved out of loops. Much of the delay
due to pipeline interlocks is eliminated since the insiruction at a branch target is prefeiched at the point
the address is calculated. This prefetching of branch targets can also decrease the penalty for cache

misses.
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REVIEW

Due to the high cost of branches, there has been much work proposing and evaluating approaches
to reduce the cost of these instructions, One scheme that has become popular with the advent of RISC
machines is the delayed branch. While the machine is fetching the instruction at the branch’s target, the
instruction behind the branch is executed. For example, this scheme is used in the Stanford MIPS
{HeG83] and Berkley RISC [PaS82] machines, Problems with delayed branches include requiring the
compiler or assembler to find an instruction to place behind the branch and the cost of executing the

branch itself,

A technique to reduce the cost of executing the branch itself is branch folding, This has been
implemented in the CRISP architecture [DiM87b]. Highly encoded instructions are decoded and placed
into a wide instruction cache. Each instruction in this cache contains an address of the next instruction to
be executed. Unconditional branches are folded into the preceding instruction since the program counter
is assigned this new address for each instruction. Conditionat branches are handled by having two poten-
tial addresses for the next instruction and by inspecting a static prediction bit and the condition code flag
to determine which mnstruction to take. I the setting of the condition code (the compare) is spread far
enough apart from the conditional branch, then the correct instruction can be fetched with no pipeline
delay, Otherwise, if the incorrect path is chosen, then the pipeline must be flushed. The problems with
this scheme include the complex hardware needed to implement the machine and the large size needed

for an instroction cache since each decoded instruction is 192 bits in length.

An approach to reduce delays due to cache misses is to prefetch instructions into a buffer [RaR77].
The conditional branch instraction causes problems since one of two target addresses could be used
iRiF72]. One scheme involves prefetching instructions both behind the branch and at the target of the
branch {LeS84]. This scheme requires more complicated hardware and must also deal with future condi-
tional branch instructions. Other schemes use branch prediction in an attempt to choose the most likely

branch target address [LeS84). If the incorrect path is selected, then the execution must be halted and the
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pipeline flushed.

OVERVIEW OF USING THE BRANCH REGISTER APPROACH

As in Wilke’s proposed microprogrammed control unit [WiS53] and the CRISP architecture
[DiM87a], every instruction in the brarch register approach is a branch. Each instruction specifies the
Iocaﬁoﬁ of the next instruction to be executed, To accomplish this without greatly increasing the size of
instructions, a field within the insiruction specifies a register that contains the virtual address of the

instruction 1o execute next.

Examples depicting instructions in this paper are represented using register transfer lists. Register
transfers or register transfer lists (RTLs) describe the effect of machine instructions and have the form of

conventional expressions and assignments over the hardware’s storage cells. For example, the RTL
r[3] = r[l] + r[2); cc = [1] + r[2] ? 0;

represents a register-to-register integer add on many machines. The first register transfer stores the sum
of the two registers into a third register, while the second register transfer compares the sum of the two
registers to set the condition codes. All register transfers within the same register transfer list represent

operations that are performed in parallel.

For instructions specifying that the next instruction to be executed is the next sequential instruction,
a branch register is referenced which contains the appropriate address. This register is, in effect, the pro-
gram counter (PC). While an instruction is being fetched from the instruction cache, the PC is always
incremented by the machine to point to the next sequential instruction. If every instruction on this
machine is thirty-two bits wide, then this operation can always be performed in a uniform manner. Once
an instraction has been fetched, the value of the branch register specified in the instruction is used as an
address for the next instruction. At the point the PC is referenced, it will represent the address of the next
sequential instraction. An example of this is shown in the RTL below, where b{0] (a branch register)

has been predefined to be the PC.

r{il = r{ll + 1; BI0] = bi01; /* gotonextsequential instruction */



Since references to b10] do not change the address in b [0], subsequent examples of RTLs will not

show this assignment.

If the next instruction to be executed is not the next sequential instruction, then code is generated 1o
calculate and store the virtnal address of that instruction in a different branch register and to reference
that branch register in the current instruction, Storing the virtual address of a branch target instruction
into a branch register on this machine also causes the address to be sent o the instruction cache to pre-
fetch the instruction, The prefetched instruction will be stored into the one of a set of instruction registers
that corresponds to the branch register receiving the virtual address and the address in the branch register
will be incremented to point to the instruction after the branch target. The instruction register 1[0],
that corresponds to the branch register b[0], which is used as the program counter, is always loaded

with the next sequential instruction,

The first two stages in the pipeline for this machine are the instruction fetch and decode stages.
During the decode stage of the current instruction, the bit field specifying one of the branch registers is
also used to determine which instruction register 1o use in the decode stage of the next instruction. When
a branch register is referenced in an instruction to indicate that a transfer of control is to occur, the next
instruction is executed from the corresponding instruction register. Assuming there is also an execute
stage in the pipeline, the dataflow paths between the pipeline stages, registers, and cache are illusirated in

Figure 1.

GENERATING CODE FOR TRANSFERS OF CONTROL

The following sections describe how code can be generated to accomplish various transfers of con-

trof using branch registers.

Calculating Branch Target Addresses

For any instruction where the next instruction to be executed is not the next sequential instruction,
a different branch register from the PC must be specified and the virtual address it contains must have

been previously calculated. Assuming each instruction on this machine is thirty-two bits wide, a virtual
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Figure 1: Dataflow for Branch Register Machine

address of thirty-two bits cannot be referenced as a constant in a single instruction. Instead, most instruc-
tions could use an offset from the PC to calculate branch addresses. The compiler knows the distance
between the PC and the branch target if both are in the same rontine. This is shown in the following

RTLs:

b{1] = b[D] + (L2 = Ll); /* storeaddressof 1.2 */
Ll: .

L2:

For calls or branch targets that are known to be too far away, the calculation of the branch address
requires two instructions. One part of the address is computed by the first instruction and then the other
part in the second, Global addresses are calculated in this fashion for programs on the SPARC architec-

ture [SSS87]. An address calculation requiring two instructions is illustrated by the following RTLs:



r{5] = HI(L1}; /* store high part of addr */
bfl] = r[B] + LO(L1L): /* addlowpartofaddr */
= r{0] + 1; /* inst at branch target */

Li: .x::‘{O]

Unconditional Branches

Unconditional branches would be handled in the following manner. First, the virtual address of the
branch target would be calculated and stored in a branch register. To perform the transfer of control, this
branch register would be moved into the PC (b{01), which causes the instruction at the target address to
be decoded and executed next. While the instruction at the branch target is being decoded, the instruction

sequentially following the branch target is fetched, An example of an unconditional branch is depicted in

the following RTLs:
b[2] = B[O] + (L2 - L1); /* store addrof 12 */
Ll: .
r[1] = r[l] + 1; b[O] = bl[2]; /* nextinstat L2 */
LZ2: .
Conditional Branches

Conditional branches would be generated by the following method. First, the virtual address of the
branch target is calculated and stored in a branch register. At some poin! later, an instruction determines
if the condition for the branch is true. Three branch registers are used in this instruction. One of two
registers is assigned to the destination register depending upon the value of the condition. To more effec-
tively encode this compare instruction, two of the three registers could be implied. For instance, the
RTLs in the following example show how a typical conditional branch could be handied. The destination
branch register is b[7], which is by convention a trash branch register. The other implied branch regis-
ter, the source register used when the condition is not true, is b [0], which represents the address of the

next sequential instruction. An instruction following this conditional assignment would reference the

-6-



destination branch register.

b{2] = L{0] + (L2 - Ll): /* store addrof L2 */
Ll:
b[7] = £l5] < 0 => b[2] | b{01; /* ifcondtruethenassign b[2] to b[7]
else assign b[0] */
r[1l = r[1] + 1; b{0] = b[7]; /* nextinstataddrin b[7] */
L2:

Function Calls and Refurns

Other transfers of control can also be implemented efficiently with this approach. For example,
function calls and returns can be handled by specifying virtual addresses for branch registers. Since the
beginning of a called function is an unknown distance from the PC, its virtual address is calcutated in two
instructions and stored in a branch register, Then, an instruction at some point following this calculation
would reference that branch register. To accomplish a return from a function, the address of the instruc-
tion following the call would be stored in an agreed-on branch register (for example b{71). Every
instruction that references a branch register that is not the program counter, {0}, would store the
address of the next physical instruction into b{7}. If the called routine has any branches other than a
return, then b[7} would need to be saved and restored. When returning to the caller is desired, the
branch register is restored (if necessary) and referenced in an instruction. An example that illustrates a

call and a retum on this machine is given in the following RTLs.

r[2] = HI{ routine); /% store high part of addr */

b[3] = r{2] + LO(_routine}: /* add low part of addr */

;[O] = r[0] + 1; b[0] = b{3]; b{7} = b[0]; /* nextinstisfirstinstinrouting */
_zoutir.le:

;.[O] = r[l2}; b[0] = b[7]; /* returnio caller */



Indirect Jumps

For implementation of indirect jumps, the virtual address could be loaded from memory into a
branch register and then referenced in a subsequent instruction, The following RTLs show how code

could be accomplished for a switch statement.

r{2] = rf2] << 2; /* setup r2 as index in table */
£{1} = HE{L{1}; /* store high part of 1.01 */
{1}l = rf{1l] + LO(LO1); /* addlow part of 101 */

= L{r[1] + r{2]]; /* load addr of switch case */

b3}

r[0] = rf0] + 1; bE0] = b[31; /* mextinstisatswitchcase */
LGL: .long Ldstl
.long Ldst2

-

COMPILER OPTIMIZATIONS WITH BRANCH REGISTERS

Initially, it may seem there is no advantage o the method of handling branches on this machine,
Indeed, it appears more expensive since an instriction is required to calculate the branch target address
and a set of bits to reference a branch register is sacrificed from each instruction to accomgplish ransfers
of control. However, one only needs to consider that the branch target address for unconditional jumps,
conditional jumps, and calls are constants. Therefore, the assignment of these addresses to branch regis-
ters can be moved out of loops. Since the transfers of control occur during the execution of other instrac-

tions, the cost of these branches after the first iteration of loops disappears.

Since there is a limited number of available branch registers, often not every branch target can be
allocated to a unique branch register. Therefore, the branch targets are first ordered by estimating the fre-
quency of the execution of the branches to these targets. The estimated frequency of execution of each
branch is used, rather than the execution of each branch target instruction, since it is the calculation of the
virtual address used by each branch that has the potential for being moved out of loops. If there is more
than one branch to the same branch target, then the estimated frequency of each of these branches are

added together.



First, the compiler attempts to move the calculation of the branch target with the highest estimated
frequency to the preheader of the innermost loop in which the branch occurs. The preheader is the basic
block that precedes the first basic block that is executed in the loop (or the head of the loop). At this
point the compiler tries to allocate the calculation of the branch target address to a branch register. 1f the
loop containg calls, then a non-scratch branch register must be used. If a branch register is only associ-
ated with branches in other loops that do not overlap with the execution of the current ioop, then the
branch target calculation for the branch in the current loop can be allocated to the same branch register.
If the calculation for a branch target can be allocated to a branch register, then the calculation is associ-
ated with that branch register and the preheader of that loop (rather than the basic block containing the
transfer of control) and the estimated frequency of the branch target is reduced to the frequency of the
preheader of the loop. Next, the calculation of the branch target with the current highest frequency is
then attempted to be moved out of its innermost loop. This process continues until alt branch target cal-

culations have been moved out of loops or no more branch registers can be allocated.

To further reduce the number of instructions executed, the compiler attempts to replace no-
operation (noop) instructions, that occur when no other instruction can be used at the point of a transfer
of control, with branch target address calculations. These noop instructions are employed most often
after compare instructions. Since there are no dependencies between branch target address calculations
and other types of instructions that are not used for transfers of control, noop instructions can often be

replaced.

Figures 2 through 4 illustrate these compiler opt'nnizaﬁons. Figure 2 contains a C function. Figure
3 shows the RTLs produced for the C function for a conventional RISC machine with a delayed branch.
Figure 4 shows the RTLs produced for the C function for a machine with branch registers. In order to
make the RTLs easier to read, assignments to b[0] that are not transfers of control and updates ©
b[7] at instructions that are transfers of control are not shown. The machine with branch registers had
two less instructions due to two noops being replaced with branch target address calculations. Since
branch target address calculations were moved out of loops, there was only eleven instructions inside of

loops for the branch register machine as opposed to sixteen for the machine with a delayed branch,



int foo (a)
int az
{
int L, 3, ki

=08 k=0
for {i = 0 1 < 57 i++4)

if {a < 1)
Jry
if {J == 5)
for (i = 0; i < 10; L+#+y |
if {a < -5}
k #= 67
else
K o4 Ty
;
return k;

Figure 2: C function

r[4] = Lir[31} + a.l; /¥ loadary a intoreg ¥/
r{3] = 0; /% 4 = 07 %/
r(3] = 0; /% ko= Op %/
r{2} = 0; f* 4 o= 0 5/
Lig: eec = r{4] 2 r{2]; /* compare a to 1 */
PC = go >= 0, Ll4; /> ifwas »= thengote T14 */
ri{2} = r[2] + 17 /% L4+ (delay slot filled) */
{3} = r[5] + 1} FARN T E OV
Li4: ¢c¢ = xr[2) ? 5; /* compare L to 5 */
PC = ¢t < 0, Li6} /* ifwas < then gote Lié */
WL = NI7 /* noop (delay slot not filled) */
ce = ¢[5] ? 5; /* compare % to 5 */
PC = ¢ 1= 0, L19; /% ifwas 1= thengoto 119 */
WML = Nir /* noop (delay slof not filled) */
r{2] = 0z /1 o= 0y */
L2227 co = r{4} % -5; /* compare a to -5 */
BC = go »= 0, L23; /* fwas >= thengoto 123 */
{2} = r{2) + 1; /* L++ (delayslot filled) */
PC = L20; /* geto L2G */
c[3] = r[3] + 6; /* k = 6y (delay slot filled} */
L23: r[3) = r[3) + 7 /* k 4= F; *f
L20: ¢t = r{2} % 10C; /* compare 1 to 10 */
PC = cc < 0, L22; /* ifwas < then goto 122 */
NI, = NL; /* noop{delay slot not filled) */
L19: PC = RT; /* returnto caller */
r[0] = ri{3); /* set refurnvalue to X (delay slot filled)*/

Figure 3: RILs for C Function with Delayed Branches



b4} = B[7]; /* save return address */

b[2] = b[0] + (L16 - LC5); /* cale address of 116 */
LC5: b1} = b[0} + (L14 - LC2); /* ealc address of L14 */
LC2: r{4} = L{ri{3l] + a.]; /* lpadarg a intoreg */
r{5] = 0; /Y =0 %/
r{3] = 0; /¥ ko= 07 */
r{2] = 0; FASE S -
L16: b{7] = r{4] »= r{2}, bii} | bi0l; % if a >= i then b{?] = L14 */
r{2}] = ri{2} + 1;p{0] = bi{?}; [t iae; PC o= B[T] ¥/
rls] = ris)] + 1; I G xS
Lld: bi?} = r[2) < 5, b(2] | b{Ci; f* if L < 5 then b7} = Ll6é */
Bl7F = b[D] + (Li% = LCLY;b[0] = bi7); /% calcaddressof 1197 PC = b{7] */
ICL: b[7} = x[5] != 5, b[7] | bl0}; /Y Y 1= 5 then D[TI = L19 */
bll} = B[0] + {L23 - LCO);b[0} = bI7]; /* calcaddressof L23; PC = b{7] */
LCO: b3} = b[0] + {L20 - IC4); /* calc address of L20 */
IC4: pl2) = b{0] + {L22 - LC3}: /* cale address of 122 */
LC3: r(2] = O; /* 1 = 0p */
L22: p[7] = xr(4] »>= -5, bI{1] | bi0]; /% 0 Y 1= 5 then B{T] = L23 */
(2] = £[2] + 1:bi0] = B(7]; % 144 PC o= BETY R/
r{3)] = r{3} + 6;b{0] = b[3); /* X 4= 6p PC = L20 */
L23: r[3] = z{3] + T} FARE S ¥
1205 BI7] = r[2] < 10, bi2] | bICG]; /% if i < 10 then b[7] = L22 */
NI, = NL;b[0] = b[7}; /* noopr PC = b{7] */
Li9: x{0] = r[3]:b[0] = b{d4]; % return ki */

Figure 4: RTLs for C Function with Branch Registers

REDUCTION OF PIPELINE DELAYS

Most pipeline delays due to branches on conventional RISC machines can be avoided on this
machine since branch target instructions are prefetched. Figure 5 contrasts the pipeline delays with a
three stage pipeline for unconditional transfers of control on a pipelined machine without a delayed
branch, with a delayed branch, and with branch registers. The three stages in the pipeline in this figure

are:;

1. Fetch~
2. Decode
3. Execute

The branch target instruction cannot be fetched until its address has been calculated. For the first two
machines, this occurs in the execute stage of the jump instruction. A conventional RISC machine without

a delayed branch would have an N-1 delay in the pipeline for unconditional transfers of control where N



JUMP F|DE

TARGET F|D|E
(a) no delayed branch

JUMP FID|E

TARGET F|DIE
(b) with delayed branch

JUMP F|DIE

NEXT F

TARGET D|E
(c) with branch registers

Figure 5: Pipeline Delays for Unconditional Transfers of Control

is the number of stages in the pipeline. The next instruction for the machine with a delayed branch and
the machine with branch registers represents the next sequential instruction following the jump instruc-
tion. Thus, 2 RISC machine with a delayed branch, where the branch is delayed for one instruction,
would have an N-2 delay in the pipeline. Finding more than one useful instruction to place behind a
delayed branch is difficult for most types of programs [McH86]. A jump instroction for the machine with
branch registers represents an instruction that references a branch register that is not the PC (b {01). The
branch register referenced is used during the decode stage of the jump instruction to determine which one
of the set of instruction registers is to be input as the next instruction to be decoded. While the jump

instruction is being decoded, the next sequential instruction is being fetched and loaded into i [0], the

.12-



defanlt instruction register. If b[0] had been referenced, then 1[0} would be input to the decode
stage. Since a different branch register is referenced for the jump instruction, its corresponding instruc-
tion register containing the branch target instruction would be input to the next decode stage. Thus,
assuming that the branch target instruction has been prefetched and is available in the appropriate instroc-
tion register, the machine with branch registers would have no pipeline delay for unconditional transfers

of control regardiess of the number of stages in the pipeline.

The example in Figure 6 shows the actions taken by each stage in the pipeline stage for an ancondi-
tional transfer of control in the branch register machine, assuming that the jump sequentially follows the
previously executed instruction. The subscript on the actions denotes the stage of the pipeline. In the
first stage, the jump instruction is fetched from memory and the PC is incremented to the next sequential
instruction. In the second stage, the jump instruction is decoded and the next sequential instruction after
the jump is fetched from memory. In the third stage, the jurp instruction is executed, the prefetched
instruction at the branch target in i (4] is decoded, and the instraction sequentially following the branch
target is fetched. Since the address in a branch register is incremented after being used to prefeich an
instruction from the cache, the branch register contains the address of the instruction after the branch tar-

get.

T
r{1] = r{1} + 1; b[0] = b[4]; A A

J N R F
U E G T
M X E E

..................... PIpCING SAEE ACHONS oo R

(£00) = M[b(0]1]; B[O} = b{0) + 4;) =

é"{iiii;}':&)'é";"i"[‘c}']",-'}; ........................................................................ 1

P (L[0) = M[B(0)]5 B(O] = b{0] + 45),

T

L (L10] = MIb(4]1; bIO) = 18] + 47), E D | F

Figure 6. Pipeline Actions for Unconditional Transfer of Control
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Figure 7 contrasts the pipeline delays for conditional transfers of control for the same three types of
machines. As for unconditional transfers of control, the conventional RISC machine without a delayed
branch would have a N-1 pipeline delay and the RISC machine with a delayed branch would have a N-2
pipeline delay for conditional transfers of control. The compare instruction for the machine with branch
registers will assign one of two branch registers to a destination branch register depending upon the result
of the condition in the compare. It will also make an assignment between the corresponding instruction

registers. The conditional jump instruction represents the instraction following the compare instruction

COMPARE F|D|E

JUMP F|DE

TARGET FIDIE
(2) no delayed branch

COMPARE F|D|E

JUMP F|D|E

TARGET F|D|E
(b) with delayed branch

COMPARE F|DE

JUMP F|DJ|E

NEXT F

TARGET DE

(¢) with branch registers

Figure 7. Pipeline Delays for Conditional Transfers of Control
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that references the destination branch register of the compare instruction. The branch register referenced
is used during the decode stage of the conditional jump instruction to cause the corresponding instruction
register to be input as the next instruction to be decoded. Therefore, the decode stage of the target
instruction cannot be accomplished until the last stage of the compare instruction is finished. This results

in an N-3 pipeline delay for conditional transfers of control for a machine with branch registers.

The example in Figure 8 shows the actions taken by each stage in the pipeline for a conditional
transfer of control, assuming that the compare instruction sequentially follows the previously executed
instruction. In the first stage, the compare instruction is fetched from memory and the PC is incremented
to the next sequential instruction. In the second stage, the compare instruction is decoded and the jump
instruction is fetched from memory. In the third stage, the compare instruction is executed (resulting in
assignments toboth b{71 and 1[77), the jump instruction is decoded, and. the instruction sequentially
following the jump is fetched. If the condition of the compare is not true, then b (7] and i [7] receive
the same values from the fetch operation. In the fourth stage, either the target instruction or the next

instruction after the jump is decoded and the instruction after the instruction being decoded is fetched.

To avoid pipeline delays, even when the branch target instruction is in the cache, the branch target
address must be calculated early enough to be prefeiched from the cache and placed in the instruction
register before the target instruction is to be mput to the decode stage. Assuming there is a one cycle
delay between the point that the address is sent to the cache at the end of the execute stage and the
instruction is loaded into the instruction register, this would require that the branch target address be cal-
culated at least two instructions previous to the instruction with the transfer of control when the number

of stages in the pipeline is three. This is shown in Figure 9.

EXPERIMENTAL EVALUATION
In an attempt to reduce the number of operand memory references, many RISC machines have
thirty-two or more general-purpose registers (e.g. MIPS-X, ARM, Spectrum). Without special compiler
optimizations, such as inlining [Sch77] or interprocedural register allocation [Wal86], it is infrequent that

a compiler can make effective use of even a majority of these registers for a function. In a previous siudy
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b[7] r[8] < 5 =-> b[3] | bi0];
r[l] = r[1l] + 1; bi0] = b[7};

]
mw "2 0on
o
X 2
- QR
Mmoo T e

e PIpeline stage actions

s3]

#

L (100) = MIBLO11; BIO] = b[O] + 4:),

| (DECODE = 1(01;), '
P (1[0] = M[b[0]]; B[] = b[O] + 47), D | F

1

%..i.b..t.;f} .=..;.€.5..] ..é...b...:;..g[5.]....5...};{.53...;..:é.;................“...................
EA[7] = ri5] < 0 ~> i[3) | MIB{O]1;), B D | F
{(DECODE = £(0]:), (i[0] = M[b[0]]; bI0] = b[O] + 47),

{(c[1] = r{l] + 1;), (DECODE = 1[7]:) B Dl F
;:(i[()} = MI[B[T1]; B[0]) = b{7] + 4;),

Figure 8: Pipeline Actions for Unconditional Transfer of Conirol

es!

ADDR CALC F|D
INST
JUMP F
NEXT F
TARGET

e
wj
tm

v,
1

Figure 9: Prefetching to Avoid Pipeline Delays

we calcolated the number of data memory references that have the potential for being removed by using
registers. We found that 98.5% could be removed by using only sixteen data registers. In order to evalu-
ate this scheme, two machines were designed and emulated. An environment, which allows the fast con-

struction and emulation of proposed architectures, was used to simulate both machines. Detailed meas-
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urements from the emulation of real programs on a proposed architecture are generated in this environ-
ment. This is accomplished by creating a compiler for the proposed machine, collecting information
about instructions during the compilation, inserting code to count the number of times sets of basic blocks
are executed, and generating assembly code for an existing machine from the RTLs of the program on the

proposed machine. Appendix I shows the set of test programs used for this experiment.

The first machine served as a baseline 10 measure the second machine. The baseline machine was

designed to have a simple RISC-like architecture. Features of this machine include:

32-bit fixed-length instructions

reference to memory only by load and store instructions
delayed branches

32 general-purpose data registers

32 floating-point registers

three-address instructions

simple addressing modes

RS A ol e

Figure 10 shows the instruction formats used in the baseline machine.

Format 1 (branch with disp, i=0)

opeode | cond |i displacement
6 4 1 21
Format 1 (branch indirect, i=1):
opcode | condli ignored 15l
6 4 1 16 5
Format 2 (sethi, jignored):
opcode| rd | j immediate
6 5 2 19
Format 3 (Remaining instructions, i = 0}
opcode | rd | sl |i immediate
6 5 5 1 15
Format 3 (Remaining instructions, i = 1)
opcode|! rd | sl |i ignored 52
6 5 5 1 16 5

Figure 10: Instruction Formats for the Baseline Machine
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The second machine was a modification of the first to handle branches by using branch registers.

Features of the branch register machine that differ from the baseline machine include:

only 16 general-purpose data registers

only 16 floating-point registers

8 branch registers

8 instruction registers

no branch instructions

a compare instruction with an assignment

an instruction to calculate branch target addresses
smaller range of available constanis in some instructions

e A o a a

If one ignores floating-point registers, there are approximately the same number of registers on each
machine. Figure 11 shows the instruction formats used in the branch register machine. Since the only
differences between the baseline machine and the branch register machine are the instructions to use
branch registers as opposed to branches, the fewer number of data registers that can be referenced, and
the smaller range of constants available, the reports generated by this environment can accurately show

the impact of using registers for branches.

Format 1 {(cmp with immed, i = 0)

opcodei condf bsl} sl |i immediate br

6 4 3 4 1 11 3
Format 1 {cmp withreg, i= 1)

opcode | cond| bsl| sl |i| ignored rs2 | br

6 4 3 4 1 7 4 3
Format 2 (sethi, inst addr calc):
opcode | rd immediate br
6 4 19 3
Format 3 (Remaining instructions, i = G}
opcode | rd | sl i immediate br
6 4 4 1 14 3
Format 3 (Remaining instructions, i = 1)
opeode! rd | ml i ignored s2 | br
] 4 4 1 10 4 3

Figure 11: TInstruction Formats for the Branch Register Machine
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The branch register machine executed 6.8% fewer instructions and yet performed 2.0% additional |
data memory references as compared to the baseline machine. The ratio of fewer instructions executed to
additional data references for the branch register machine was 10.1 to 1, Approximately 14% of the
instructions executed on the baseline machine were transfers of control. The reduction in the number of
instructions executed was mostly due to moving branch target address calculations out of loops. Another
factor was replacing 39% (almost 3 million) of the noops in delay sfois of branches in the baseline
machine with branch target address calculations at points of transfers of control in the branch register
machine. There were also additional instructions executed on the branch register machine to save and
restore branch registers. The additional data references on the branch register maching were due to both
fewer variables being allocated to registers and saves and restores of branch registers. Table I shows the

results from running the test set through both machines.

millions of millions
machine instructions of data
executed references
haseline 183.19 61.99
branch register 170.75 6322
diff -12.44 +1.23

Table 1: Dynamic Measurements from the Two Machines

By prefetching branch target instructions at the point the branch target address is caleulated, delays
in the pipeline can be decreased. In the baseline machine, there were 7,95 million unconditional transfers
of control and 17.69 million conditional transfers of control. Assuming a pipeline of three stages, not
uncommon for RISC machines [GiM87], then each branch on the baseline machine would require at least
a one-stage delay. Also assuming that each instruction can execute in one machine cycle, and no other
pipeline delays except for transfers of control, then the test set would require about 208.83 million cycles
to be executed on the baseline machine. As shown previously in Figures 5 and 7, the branch register
machine would require no delay for both unconditional and conditional branches in a three stage pipeline

assuming that the branch target instruction has been prefetched. As shown in Figure 9, the branch target
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address must be calculated at least two instructions before a transfer of control 1o avoid pipeline delays
even with a cache hit. We estimate that only 13.86% of the transfers of control that were executed would
result in a pipeline delay. Thus, the branch register machine would require about 22.09 million (10.6%)
fewer cycles 1o be executed due to fewer delays in the pipeline alone. There would be greater savings for
machines having pipelines with more stages. For instance, we estimate that the branch register machine
would require about 30.04 million (12,8%) fewer cycles to be executed due to fewer delays in the pipe-

line alone assuming a pipeline with four stages.

HARDWARE CONSIDERATIONS

An instruction cache typically reduces the number of memory references by exploiting the princi-
ples of spatial and temporal locality, However, when a particular main memory line is referenced for the
first time, the instructions in that line must be brought into the cache and these misses will cause delays.
When an assignment is made to a branch register, the value being assigned is the address of an instruction

that will likely be brought eventually into the instruction cache.

To take advantage of this knowledge, each assignment to a branch register has the side effect of
specifying to the instruction cache 1o prefetch the line associated with the instruction address. Prefetch
requests could be performed efficiently with an instruction cache that would allow reading a line from
main memory at the same time as requests for instruction words from the CPU that are cache hits are
honored. This could be accomplished by setting a busy bit in the line of the cache that is being read from
memory at the beginning of a prefetch request and setting it t0 not busy after the prefetch has completed.
To handle prefetch requests would require a quening mechanism with the size of the queue equal to the
number of available branch registers. A queuve would allow the cache o give priority to cache misses for
sequential fetches over prefetch requests that do not have to wait. Directing the instruction cache to bring
in instructions before they are used will not decrease the number of cache misses. It will, however,
decrease or eliminate the delay of loading the instruction into the cache when it is needed to be fetched

and executed.
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The machine must determine if an instruction has been brought into an instraction register and thus
is ready 1o be decoded after the corresponding branch register is referenced in the preceding instraction.
This can be accomplished by using a flag register that contains a set of bits that correspond to the set of
instruction registers. The appropriate bit could be cleared when the request is sent to the cache and set
when the instruction is fetched from the cache. Note that this would require the compiler o ensure that

branch target addresses are always calculated before the branch register is referenced.

FUTURE WORK

There are many interesting areas involving branch registers that remain to be explored. The best
cache organization to be used with branch registers can be investigated. An associativity of at least two
would ensure that a branch target could be prefetched without displacing the current instructions that are
being executed. A larger number of words in a cache line may be appropriate in order to less ofien have
cache misses of sequential instructions while instructions at a branch target are being loaded from
memory into the instruction cache. Another feature of the cache organization to investigate is the fotal
number of words in the cache. Since instructions to calculate branch target addresses can be moved out
of loops, the number of instructions in loops will be fewer. This may improve cache performance in

machines with small caches.

The exact placement of the branch target address calculation can affect performance. The begin-
ning of the function could be aligned on a cache line boundary and the compiler would have information

about the siructure of the cache. This information would include

1. the cache line size
2. the number of cache lines in each set
3. the number of cache sets in the cache

Using this information the compiler could attempt to place the calculation where there would be less
potential conflict between cache misses for sequential instructions and cache misses for prefetched
branch targets. By attempting to place these calculations at the beginning of a cache line, the potential

for conflict would be reduced.
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Prefetching branch targets may result in some instructions being brought into the cache that are not
used (cache pollution). Since most branches tend to be taken [LeS84], we have assumed that this penalty
would not be significant. By comparing cache kit rates on the branch register machine and the baseline
machine, the performance penalty due to cache pollution of unused prefetched branch targets could be

estimated.

CONCLUSIONS

Using branch registers to accomplish transfers of control has been shown to be potentially effec-
tive. By moving the calcnlation of branch target addresses out of loops, the cost of performing branches
inside of Ioops can disappear and result in fewer exccuted instructions. By prefeiching the branch target
instruction when the branch target address is calculated, branch target instructions can be inserted into the
pipeline with fewer delays. By moving the assignment of branch registers away from the use of the
branch register, delays due to cache misses of branch targets can be decreased. The performance of an
instruction cache could also be enhanced since the number of instructions in loops will be fewer,
Enhancing the effectivencss of the code can be accomplished with conventional optimizations of com-
mon subexpression elimination and code motion. A machine with branch registers should also be inex-

pensive to construct since the hardware would be comparable (o a conventional RISC machine.
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APPENDIX I: TEST PROGRAMS USED IN EXPERIMENT

Class Name Description or Emphasis
cal Calendar Generator
ch C Program Beautifier
compact Huffman Coding File Compression
diff Differences between Files
grep Search for Patiern
. ies nroff Text Formatting Utility
Unix System Utilities od Octal Dump
sed Stream Editor
sort Sort or Merge Files
spline Interpolate Smooth Curve
tr Translate Characters
we Word Count —
dhrystone | Synthetic Benchmark Program
matmult Multidimensional Arrays and Simple Arithmetic
Benchmark Programs | puzzle Recursion and Array Indexing
sieve Simple Iteration and Boolean Arrays
whetstone | Arxithmetic Operations
mincost VLSI Circuit Partitioning
User Code vpee Very Portable C Compiler
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