
MAGIC: Path-Guided Concolic Testing

Zhanqi Cui
†, ‡, §

, Wei Le
§
, Mary Lou Soffa

§
, Linzhang Wang

†, ‡
and Xuandong Li

†, ‡

†State Key Laboratory of Novel Software Technology, NanjingUniversity, P. R. China
‡Department of Computer Science and Technology, Nanjing University, P. R. China

§Department of Computer Science, University of Virginia, USA
zqcui@seg.nju.edu.cn;{weile, soffa}@cs.virginia.edu;{lzwang, lxd}@nju.edu.cn

Abstract

Concolic testing has been proposed as an effective tech-
nique to automatically test software. The goal of concolic
testing is to generate test inputs to find faults by executing
as many paths of a program as possible. However, due to
the large state space, it is unrealistic to consider all of the
program paths for test input generation. Rather than ex-
ploring the paths based on the structure of the program as
current concolic testing does, in this paper we generate test
inputs and execute the program along the paths that have
identified potential faults. We present a path-guided testing
technique that combines path-sensitive static analysis with
concolic testing. The program under test is statically ana-
lyzed before testing to find potential faults (suspicious state-
ments) and corresponding suspicious path segments. Then
the program is tested, guided by static information, to avoid
generating test inputs for safe paths. A tool, MAGIC, has
been implemented based on our technique to test for buffer
overflow. We have experimentally evaluated MAGIC on a
set of C benchmarks, and the results show that compared to
concolic testing, MAGIC found about 2.5 times more faults,
and using the path information, MAGIC triggers the faults
25.3 times faster on average for a set of benchmarks.

1. Introduction

To improve the quality of software before release, dy-
namic testing and static analysis are the most widely used
techniques for detecting faults [19]. Static analysis can find
faults at the implementation stage, when fixing a fault is rel-
atively cheap [8]. In addition, static analysis is cost effec-
tive, as it does not require the execution of a program. One
major drawback of static analysis is that it potentially re-
ports false positives, preventing real and important faults to
be found. Dynamic testing, on the other hand, is effective in
avoiding false positives and confirming realistic bugs with

concrete test inputs [2]. Using the runtime information, we
are able to debug the program to fix the fault. However,
most dynamic testing techniques need an adequate test suite
that can trigger faults, which is not available in most cases.

To address the problem of generating an adequate test
suite, concolic testing [12] [16] has been proposed to auto-
matically test software, with the goal of exploring as many
paths of a program as possible. In concolic testing, the pro-
gram under test is concretely executed and symbolically
evaluated simultaneously. Instrumentation is inserted to
the program to collect the symbolic path constraints and
value updates during program execution. The symbolic
constraints are solved to generate test inputs targeting a new
path. When symbolic values cannot be collected, symbolic
expressions are simplified by using the corresponding con-
crete values. Concolic testing terminates either when 1) no
more new paths can be further executed due to incapability
of solving complex constraints, 2) all of the paths in a pro-
gram have been executed, or 3) a time threshold is reached.
Considering that there is an exponential number of paths,
often only a small portion of the program paths are actually
covered by concolic testing [12] [16].

Our insight is that rather than executing as many paths as
possible to trigger faults, we should only execute paths that
have been identified as potentially containing faults. That
is, we should guide the concolic testing to generate test in-
puts along paths which have potential faults. Recently, a
tool, Marple [13] has been developed to identify both the
statements where a fault potentially occurs (which we call
suspicious statements), and the path segments that can pro-
duce the faults (which we callsuspicious path segments).
In Marple, program paths are categorized into four types:
infeasible, safe, vulnerable, anddon’t-know. Don’t-know
paths are those that static analysis cannot determine due
to the presence of library calls, complex pointers or loops.
Both the vulnerable and don’t-know paths are considered as
suspiciouspaths. Analyzing a program using Marple be-
fore testing provides suspicious statements and correspond-



ing suspicious path segments. The advantages of combin-
ing static analysis and dynamic testing are twofold: on one
hand, the suspicious information provided by static tools
can be used to guide dynamic testing, and on the other hand,
the runtime information provided by dynamic testing can be
used to confirm and refine the results of static analysis.

In this paper, we present a hybrid technique to automat-
ically find software faults, where static analysis is first ap-
plied to identify suspicious statements and path segments,
and test inputs are then generated for these suspicious paths
to trigger the faults. A novelty of our work is that our tech-
nique is path based, i.e., we direct dynamic testing to the
path segments rather than a program point. Given only a
suspicious program point, both safe and infeasible paths
can traverse it [13], and efforts for generating test inputs
for these paths are not useful for triggering faults. Com-
pared to program points, path information is more precise,
and can help further reduce the search space for test input
generation.

This research addresses three challenges. Considering
that the number of suspicious paths can still be huge, we
need to develop a representation of path information used
in testing. Also, static analysis produces false positivesand
negatives. We need to understand the impacts of the poten-
tial imprecision in guiding test input generation. Further-
more, not every execution that exercises a faulty path nec-
essarily triggers the fault; besides path constraints, we also
need to track fault conditions for test input generation.

Our technique proceeds in three steps. First, the pro-
gram under test is analyzed by a path-sensitive static anal-
ysis tool. Both the suspicious statement and corresponding
path segments along which a fault could occur are identi-
fied, represented using apath graph. Second, reachability
relationships from each branch to these path segments are
computed. In the third step, we execute the program with
an initial input, and use the reachability information and the
path graph to select the paths of interest. During execution,
we generate test inputs that 1) can reach a suspicious state-
ment along a corresponding suspicious path segment, and 2)
can trigger the fault condition at the suspicious statement.

We have implemented our techniques in a tool called
MAGIC (MArple-GuIded Concolic testing). Currently, this
tool handles buffer overflow for C program; however the
technique is applicable for multiple types of faults, includ-
ing both data-centric, e.g., integer overflows, and control-
centric faults such as memory leaks [14]. The static in-
formation is provided by our path-sensitive static analyzer,
Marple, and the dynamic testing components are built based
on concolic testing technique. We have experimentally
evaluated MAGIC on four diverse C benchmarks. The ex-
perimental results show that compared to concolic testing,
MAGIC can detect more bugs with less runtime overhead.

The main contributions of this paper include:

• automatic test input generation to exploit statically
identified faults,

• application of static path information for reducing the
cost of dynamic testing,

• the implementation of the techniques for detecting
buffer overflows, and

• an experimental study that demonstrates the effective-
ness of our technique.

In Section 2, we use an example to intuitively explain the
technique. In Section 3, we present an overview of MAGIC.
In Sections 4 and 5, we give detail designs of static and
dynamic components. Section 6 shows our experimental
results, and Section 7 compares the related work. We give
conclusions in Section 8.

2 An Example

In Figure 1, we show an example adapted from the
benchmark WuFTP-1 [20]. This example contains three
paths and two buffer write statements at lines6 and10 re-
spectively. A buffer overflow exists at line10. Using this
example, we show how concolic testing and our technique
find this buffer overflow.

Applying concolic testing for buffer overflow [18], we
first execute the program with an initial input. Without loss
of generality, we assume in the first run,argc=1, which
means that no command line argument is supplied to the
program. Under this input, the program takes the execution
path 〈2, 3, 4(T), 5〉. During execution, the symbolic path
constraint [argc !=2] is collected. As the goal of concolic
testing is to cover as many paths as possible, in the second
run, the tester inverts the path constraint to [argc=2], aim-
ing to exercise the branch4(F). Suppose a command line
argument“a” is generated forargv[1]. Running this input,
path〈2, 3, 4(F), 6, 7, 8(F), 10〉 is taken. Along this path, the
tester checks the buffer safety at lines6 and10, and deter-
mines that both lines 6 and 10 are safe for this execution.
Meanwhile, the tester also derives that line 10 can be an
overflow if the length of argv[1] is larger than 8. Using this
buffer overflow condition, the tester can generate an input
“aaaaaaaaa” forargv[1], which leads the execution to path
〈2, 3, 4(F), 6, 7, 8(F), 10〉, and exploits the buffer at line 10.
Since there are still paths that have not been covered, the
concolic testing continues to invert the path constraint at
line 8, aiming to take branch8(F). A string“.” is generated
as the input forargv[1] to exercise〈2, 3, 4(F), 6, 7, 8(T), 9〉.
For this example, concolic testing generates a total of three
test inputs and covers all the three paths of the program.
Buffer write statements at lines 6 and 10 are checked for
each path that exercises them.

Our observation is that not all of the buffer write state-
ments are equally suspicious for buffer overflows. Even for



1 main ( i n t argc , char ∗∗argv ){
2 char mappedpath [ 1 0 ] ;
3 char ∗pa th ;
4 i f ( a rgc != 2 )
5 re turn ;
6 s t r c p y ( mappedpath , ‘ ‘ / ’ ’ ) ;
7 pa th = argv [ 1 ] ;
8 i f ( pa th [ 0 ] == ’ . ’ ) )
9 re turn ;

10 s t r c a t ( mappedpath , pa th ) ;
11 }

5. return;

2. char mapped_path[10];

4. argc != 2

7. path = argv[1];

9. return;

8. path[0] == '.'

10. strcat(mapped_path, path);

true

true

false

false

3. char *path;

6. strcpy(mapped_path,̀ ̀ /'');

Figure 1. An Example

a suspicious statement, not all the paths that traverse it are
faulty. To save the cost of test input generation, we should
direct the testing along suspicious paths.

Applying our technique, we first statically identify that
line 10 is suspicious for buffer overflow along path seg-
ment〈6, 7, 8(F), 10〉, and line6 is safe, which implies that
no checks are needed for this statement at run time. We
then perform a reachability analysis, and find that branch
4(F) reaches the suspicious path segment, but branch4(T)
cannot. Based on the above static information, we run a
concolic testing. The program is first executed with no ar-
guments along path〈2, 3, 4(T), 5〉. As branch4(F)can reach
the suspicious path segment, we inverse the symbolic path
constraint and generate an input“a” . Under this input, the
program executes〈2, 3, 4(F), 6, 7, 8(F), 10〉. Since the sus-
picious path segment is traversed, the tester determines if
the buffer overflow is triggered. As the buffer overflow is
not triggered under this input, the tester integrates the buffer
overflow condition at line10, and generates a new input
“aaaaaaaaaa”to exploit the buffer overflow.

With the static information, we do not need to explore
the program nodes that cannot reach the suspicious path
segment, e.g., branch4(T). Only paths that cross a suspi-
cious path segment are checked for buffer overflow. For
instance, no effort is needed to generate test input for path
〈2, 3, 4(F), 6, 7, 8(T)〉. Testing can be terminated early when
the potential faults are triggered. We exploit the overflow at
line 10by only generating two test inputs, and the possibil-
ity of buffer overflow is checked only once along one path.

3 An Overview

This section provides a high level description of MAGIC,
including the components of MAGIC and their interactions.

3.1 Components

MAGIC consists of five components, shown in Figure 2.
Marple and the reachability analyzer are the two static com-

ponents. Marple is a static path-sensitive analyzer that re-
ports the suspicious statements as well as the suspicious
path segments. The reachability analyzer calculates reach-
ability relationships from each branch of the program to
the suspicious path segments. The dynamic testing com-
ponents are built based on concolic testing, including a pro-
gram instrumentor, a test input generator and a test driver.
The program instrumentor inserts statements to the program
to collect symbolic constraints and concrete values during
testing. The test input generator generates test inputs us-
ing symbolic path constraints and fault conditions. The test
driver executes the program with test inputs and performs
symbolic evaluation simultaneously.

Our testing components make several improvements on
traditional concolic testing. First, we use boundary values
to initiate the test input, which is experimentally shown to
achieve a better branch coverage than using a fixed given
value as the input. Another enhancement is that we dy-
namically change the program state at runtime when a fault
is perceived to avoid the crash of the program; otherwise,
manual effort has to be involved to fix the fault before test-
ing can continue. Furthermore, we model program opera-
tions that are potentially related to the production of a cer-
tain type of fault. For instance, to trigger a buffer overflow,
we handle string libraries and pointer operations. Concolic
testing might never be able to exercise desired paths if these
operations are not modeled. In addition to path constraints,
we also construct fault conditions for test input generation.
The goal is to ensure the generated inputs not only can ex-
ercise a desired path but also trigger faults.

Static Analysis

Path-Sensitive Fault
Detector

Dynamic Testing

Reachability Analyzer

Program Intrumentor

Test Input Generator

Test Driver

Figure 2. Components of MAGIC

3.2 Workflow of MAGIC

As shown in Figure 3, MAGIC first statically analyzes
the program and reports suspicious statements and path seg-
ments. Based on the program source and the path segments,
MAGIC runs a reachability analysis to determine, for each
branch, whether the execution at the branch is able to reach
any of the suspicious path segments. MAGIC instruments
the program to collect information needed at runtime. Test-
ing runs on the instrumented program with an initial test



input. During execution, the tester determines whether the
current execution can traverse any suspicious path segment.
Meanwhile, the tester collects concrete and symbolic val-
ues; when a suspicious fault is encountered, the symbolic
constraints regarding path constraints and fault conditions
are solved by a constraint solver for potential test inputs.
Testing terminates when a program input is discovered that
can trigger the fault, or the paths that traverse the set of sus-
picious path segments are all examined, which show that
the suspicious statement is likely safe along the reported
suspicious path segments. The details of static and dynamic
components are presented in Sections 4 and 5.

Program
Uder Test 1. Path-Sensitive

Static Analysis

2. Reachability
Analysis

3. Program
Instrumentation

5. Test Input
Execution

Testing
Reports

Instrumented
Program

Suspicious
Path Segments

Reachability
Relationships

4. Test Input
Generation Finished

No

Yes

Figure 3. The workflow of MAGIC

4. Path-Based Static Analysis

We first describe the static components of MAGIC, in-
cluding Marple and the reachability analyzer. The focus is
to explain how the static analysis works and also the choice
of static information provided to dynamic testing.

4.1 How Marple works

To guide dynamic testing, we need both the suspicious
statements and the path information about the statements.
We require that 1) the static information should be as pre-
cise as possible, as high false negatives in static results can
lead to missed faults, while high false positives can result
in extra overhead by directing dynamic testing along safe
paths; and 2) the static analyzer should achieve reasonable
coverage, which means the fault detection should be per-
formed along as many paths as possible. Marple is used not
only because it provides the desired information, but also it
has reasonable precision and coverage [13].

Exhaustively identifying path information incurs high
overhead. Marple applies a demand-driven algorithm to ad-
dress the scalability. In Figure 4, we show how a demand-
driven algorithm works to identify suspicious path seg-
ments. First, Marple scans the program source and con-
structs queries at the statements where a fault could hap-
pen. For example, to detect buffer overflow, we raise a
query at the library callsstrcpyandstrcat, or a direct buffer

Program
Uder Analyze

Raise
Queries

Propagate
Queries

Update
Queries

Evaluate
Queries

Suspicious
Path

Segments
Path

Classification
no yes

Safe
no

Resolved

Figure 4. Marple

assignmenta[i]=’x’ . The query asks whether the safety
constraints at the statement can be satisfied. In the case
of buffer overflow, the query is whether the string length
at the current program point can be larger than the buffer
size. The query is propagated backwards towards the be-
ginning of the program along the paths reachable from the
suspicious statement. During propagation, the relevant val-
ues or ranges of program variables are collected to resolve
the query. The propagation of a query terminates when an
infeasible path segment is encountered (we run an infeasi-
ble path detection before fault detection). The propagation
of a query also terminates when a resolution is reached un-
der one of the two cases: 1) the collected information is
sufficient to determine if the safety constraints can be sat-
isfied, or 2) don’t-know factors are encountered such as li-
brary calls, complex loops or pointer arithmetics. The state-
ment where the propagation of a query terminates is called
a resolution point.

Based on the resolution of a query, the path segments tra-
versed by the query are categorize intoinfeasible, safe, vul-
nerable, anddon’t-know. Vulnerable and don’t-know paths
will be supplied to guide the dynamic testing. Further de-
tails of Marple are provided in the paper [13], including the
techniques that handle the branches, loops and procedures,
as well as optimizations to further speedup the analysis.

4.2 Representing Path Information

To determine what path information we should provide
to dynamic components, we first need to understand the
semantics of two types of suspicious path segments. In
Marple, a path segment is determined as vulnerable if: 1)
along the path segment, the fault always occurs independent
of program inputs, e.g., a buffer overflow with a constant
string, or 2) there exists an entry point along the path seg-
ment, where users can supply an input to trigger the fault,
e.g., a buffer overflow with an external string. As its deter-
mination is independent on any other information beyond
the path segment, any execution that traverses the vulnera-
ble path segment (with a proper input supplied at the entry
point along the path segment for the second case) can trigger
the fault. A don’t-know path segment is determined when



the query encounters don’t-know factors. If the don’t-know
factors are resolved, the query is potentially propagated fur-
ther before being determined as vulnerable, in which case,
the don’t-know path segment can be viewed as a partial vul-
nerable path segment. Some of the don’t-know paths can
be safe and thus executions along don’t-know paths do not
necessarily trigger the fault.

There are choices on the number of suspicious path seg-
ments we should present. In testing, we only need to
demonstrate the exploits of the buffer overflow along one
execution. However, presenting one path segment for test
input generation is not sufficient. The reasons are twofolds.
First, static information can be imprecise. For example,
even a buffer overflow potentially occurs at the statement,
a suspicious path segment randomly picked from the static
results can be infeasible. Although we have applied a static
analysis to remove some of the infeasible paths, infeasible
path detection is an undecidable problem, and we can not
remove all of them for a program. The second reason is that
concolic testing is not always able to generate a test input to
exercise a given path, as some of the symbolic constraints
are too complex to solve. We also can choose to enumerate
all of the suspicious path segments; however, this solution
is not scalable as there potentially exists a large number of
suspicious path segments, and both storing and accessing
them at runtime can incur unacceptable overhead. There is
also the choice of using a fixed number of path segments.
The challenge is to determine a reasonable number and also
strategies to select the path segments.

In this paper, we developed apath graphto represent a
set of suspicious path segments that end at the same suspi-
cious statement. A path graph is a directed graph(N, E),
where:

• N is a finite set of nodes. Each node is a program state-
ment that occurs in a suspicious path segment. The
graph has multiple entries, and each resolution point
is an entry. The graph has only one exit, which is the
suspicious statement.

• E is a finite set of the directed edges. For any pair of
statements〈li, lj〉 found along a suspicious path seg-
ment, whereli is the predecessor oflj , we add an edge
to the graph fromli to lj.

As an example, we show in Figure 5 (a) and (b), two sus-
picious path segments ending at the same suspicious state-
mentr. s1 ands2 are two resolution points. Figure 5(c) is
the path graph constructed for the suspicious path segments
in (a) and (b).

The path graphs are generated by Marple. Each path
graph corresponds to a fault. In Marple, computation of
path graphs is a forward analysis following the fault de-
tection. As described above, in fault detection, queries are
propagated backwards for resolutions. During propagation,

r r

s1 s2

l1

l2

l3

l2

r

s1

l1

l2

s2

l3

(b)(a) (c)

Figure 5. A path graph for two suspicious
path segments

queries are stored at each program node. To construct the
path graph, we start at the node where a vulnerable or don’t-
know resolution was derived. These nodes are first added to
the graph as entry nodes. Marple then determines for each
successor, whether the query at the current node was ac-
tually propagated from either of its successors; if so, the
successor(s) is added to the graph, and an edge between the
predecessor and successor is also added into the graph. The
process continues until the suspicious statement, where the
query was initially raised, is reached.

In testing, generating an input that potentially covers a
path segment in a path graph is more efficient than generat-
ing an input based on individual path segments. The reasons
are as follows. Concolic testing generates a test input for a
new path by inverting a particular branch. Given a path,
concolic testing potentially needs to invert a set of branches
from an initial execution, and take several iterations before
a desired test input can be generated. On the other hand, if
a set of path segments are given in a graph, concolic testing
has more flexibility in choosing which path to exploit. The
testing terminates as long as any suspicious path segment in
the graph is triggered.

It should be noted that by integrating suspicious path
segments into a path graph, some path-sensitive informa-
tion is potentially lost; that is, a path segment found in the
path graph might not be a suspicious path segment reported
by Marple. To remove this imprecision, we can annotate
path identifications (e.g., using queries) for each edge dur-
ing the construction of the path graph. The tradeoff is that
using the annotated path graph, more information needs to
be compared at runtime, incurring additional performance
overhead, while the imprecision of a path graph might lead
the test input generation to some safe path.

4.3 Reachability Analysis

In our dynamic testing, we need to generate test input
for the path that starts at the beginning of the program and



traverses any path segment in path graphs. We use reacha-
bility analysis to determine whether any of the branches in
a program can actually reach the entries of the path graphs;
if not, we terminate the test input generation along the cor-
responding branch.

Algorithm 1 takes the interprocedural control flow graph
of a program (ICFG), and a set of path graphs reported by
Marple as inputs. The results of reachability is stored in
a map, where for each branch, we report a set of entries
of path graphs that the branch can reach. In Algorithm 1,
lines1-5 determine for each branch statement, whether the
entries of the path graph can be reached. The core analy-
sis is achieved in a recursive procedureReach(see line8).
At line 10, we get the immediate successors of the current
branchb. For each successorbi, if bi is an entry of the path
graph, then we add it to the setreachableat line13; other-
wise, we recursively call procedureReachon bi at line14.

Algorithm 1. Calculating Reachability Relationship
INPUT : icfg: the ICFG of the program,G: a set of path graphs
OUTPUT: reachability: amap<branch,<set> entries of path graphs>
1 for eachbranch statementb in icfg
2 initialize reachable{}
3 Reach(b, &reachable)
4 reachability[b] := reachable
5 end
6 return reachability
7
8 PROCEDURE: Reach(statementb, setreachable)
9 //recursively traverse statements can be reached from b
10 setsuccessors:= immediate successor statements ofb in icfg
11 for eachstatementbi in successors
12 if bi is an entry of any path graphg ∈ G
13 reachable.push(bi)
14 Reach(bi, reachable)
15 end
16 end

5. Dynamic Testing

In our dynamic testing, we apply the reachability infor-
mation and the suspicious statements/path segments com-
puted above. Since collecting and solving symbolic con-
straints are important for generating the test input, we sym-
bolically model fault conditions, as well as the semantics of
certain program statements that are relevant to trigger faults.
In this section, we first present the goals of program in-
strumentation and techniques. We then show our modeling
techniques for four types of program statements. Finally,
we explain how the static information is used to generate
test inputs.

5.1 Program Instrumentation

Instrumentation is inserted in the program source. Dy-
namic testing runs on the instrumented programs and takes
actions according to the instrumentation. Four types of ac-
tions are applied based on the types of program statements;

a general goal is to collect symbolic path constraints and
fault conditions needed for test input generation at runtime:

• if an input statement is encountered, we add a new in-
put variable into asymbolic map. The symbolic map
records the symbolic values of current live variables,
and also symbolic path constraints and fault condi-
tions;

• if a binary and unary variable operation is met, we
record the symbolic values of the results;

• for conditional branches, we record the conditions for
both false and true branches in the symbolic map; and

• for a suspicious statement, such asstrcpy or pointer
dereferences, we construct fault conditions to deter-
mine inputs that can trigger the fault.

5.2 Buffer Overflow Vulnerability Model

One main difference of MAGIC and concolic testing is
that MAGIC is focused to trigger particular types of fault.
Here, we describe the vulnerability model we developed for
buffer overflow. In this model, we provide a mapping from
a buffer write statement to an overflow condition. We also
provide the actions we take at statements related to buffer
and pointer operations. For each buffer, we not only con-
sider the buffer size and the string length, but also the con-
tents of the buffer up to a certain number of bytes. We spec-
ify a buffer using a 3-tuple (size, L, C), where:

• sizeis a symbolic expression for the size of the buffer;

• L = {len1, len2, ..., lenn} is a set of symbolic expres-
sions representing the lengths of strings stored in the
buffer, as shown in Figure 6. Since′\0′ can occur mul-
tiple times in a buffer, we record string lengths that are
relevant to every′\0′ for precision. Dependent on the
location of the pointerp to the buffer, the string ob-
tained viap can be relevant to any of recorded lengths.

• C = c1, c2, ...,cv is a sequence of symbolic expressions
representing the firstv characters of the buffer [18].
The tradeoff here is that the more content of a buffer
is modeled, more precise the symbolic analysis can
achieve, however, with higher overhead.

We use a pair (addr, off) to specify a pointer to a buffer,
whereaddr is the beginning of the buffer andoff specifies
the symbolic offset fromaddr. In Table 1, we show how
buffer overflow conditions can be constructed based on the
type of program statements at runtime. In the first column,
we show three examples of suspicious statements. We ex-
plain the construction of buffer overflow conditions in the
second column. Consider the first row of the table as an ex-
ample. ps andpd are two pointers. A string in the buffer



len1

len2

buffer

pointerp

\0 \0

pointerp

Figure 6. Multiple Strings in a Buffer

Table 1. Modeling Buffer Overflow Conditions

Suspicious Operations Overflow Conditions
Supposepd = (addrd, offd)
Supposeps = (addrs, offs)

strcpy(pd, ps)

(bd (sized , Ld, Cs) := δ(addrd)) 6= null;
(bs (sizes , Ls, Cs) := δ(addrs)) 6= null;
Len(bs, ps) - offs >= sized - offd

Supposepd = (addrd, offd)
Supposeps = (addrs, offs)

strcat(pd, ps)

(bd (sized , Ld, Cs) := δ(addrd)) 6= null;
(bs (sizes , Ls, Cs) := δ(addrs)) 6= null;

Len(bs, ps) - offs + Len(bd, pd) >= sized

Supposep = (addr, off )
*p := var

(b (size, L, C) := δ(addr)) 6= null;
off > size

pointed to byps is copied to the buffer pointed to bypd. At
runtime, when such a suspicious statement is encountered,
we first find in the symbolic map the buffers associated with
ps andpd. This action is specified usingδ in the second col-
umn. If the mapping is successful, shown asbd 6= null and
bs 6= null in the table, we determine whether the string
from ps copied topd potentially cause an overflow. See
Figure 7.

In the figure, we show that the available buffer space is
[sized − offd]. The string being copied has a length of
[lens−offs], wherelens represents the length of the string
stored in buffers. As we mentioned in Figure 6, multiple
string lengths can be recorded for a buffer, and we need
to select a proper length depending on the location of the
pointer. We useLen(bs, ps) to represent this action. The
second column first row in the table indicates that if the
string length is larger than or equal to the available buffer
size, a buffer overflow can occur.

offd

sized

offs

lens=Len(bs,ps)

\0

bd

bs

Figure 7. Buffer Overflow Condition

Besides operations modeled by concolic testing [16], our
testing components also model additional buffer and pointer
operations. Table 2 presents a partial list. In the first col-

Table 2. Symbolic Semantics of String and
Pointer Operations

Operations Symbolic Semantics

p (addr, off) := input(size)
create a bufferb (size, {size}, {c1, c2, ...,cn}),
addr := &b, off := 0

p (addr, off) := malloc(size)
create a bufferb (size, {}, {}),
addr := &b, off := 0

supposep = (addr, off) b := δ(addr)
free(p) deleteb

supposestr = (addr, off) create a new bufferb (size, {size}, {}),
char str[size] addr := &b, off := 0

supposepd = (addrd, offd)
supposeps = (addrs, offs)
pd := ps ± v

addd := adds, offd = offs ± v

supposep = (addr, off) b (size, L, C) := δ(addr)
*p := ’\0’ L := L ∪ {off}

umn, we present the type of program statements, and in
the second column, we specify actions MAGIC takes at the
statement to construct the symbolic map. Consider the first
row of the table. When the program executes the statement
p (addr, off) := input(size), MAGIC creates a new bufferb
on the symbolic map. The three parameters of a buffer are
initialized: the size of the buffer issize, a string length is
alsosize, and the firstn bytes of characters are set based on
the input string. After the buffer is created, MAGIC estab-
lishes a mapping between the buffer and the pointer using
addr:=&b andoff:=0.

5.3 Path-Guided Test Input Generation

Algorithm 2 takes the path graphs of suspicious path seg-
ments reported by Marple, and generates the program inputs
that can trigger faults.

At line 2, initial program inputs are generated. Primi-
tive input variables are given value0, and strings are initial-
ized as empty strings. If boundary values of the inputs are
known, MAGIC uses their lower and upper bounds.

In the second step, MAGIC executes the program with
the generated inputs (seeRunProgram at line 3). Dur-
ing execution, MAGIC collects both the branches that the
execution covers and the symbolic path constraints at the
branches. When a path is discovered to traverse a suspi-
cious path segment in any given path graph, MAGIC deter-
mines if a buffer overflow occurs; if not, MAGIC integrates
the buffer overflow conditions with a set of path constraints
and generates a new test input. If a buffer overflow is con-
firmed, MAGIC removes the path graph corresponding to
this suspicious statement. Also, when a buffer overflow is
determined, MAGIC allocates a new memory space for the
buffer with the overflowed size and continues the execution,
in an attempt to trigger more faults along the same execu-
tion. When the execution terminates, we store a sequence of
branches and symbolic path constraints, collected along the
execution, into the branch listB and the constraint listC.



Path GuidedSearchat line6 uses the branch listB and
the constraint listC collected from the previous execution
to generate test inputs that excise the suspicious paths. The
for loop at line8 examines the collected branch one by one
in a reverse order; for each branch, MAGIC determines
whether itspaired branchis either able to reach the en-
tries of any path graph inG (see line11) or on a suspicious
path segment (see line15). If so, at line21, MAGIC at-
tempts to generate a new test input using a set of path con-
straints collected along〈B[1], B[2], ..., B[i − 1]〉 with the
inverted path constraint at branchB[i]. The generated input

at line 23 executes path
〈

B[1], B[2], ..., B[i − 1], B[i]
〉

.

If the current branch cannot reach the entries of the path
graphs or is not on any suspicious path segment, MAGIC
proceeds to examine the next branch at line8 in the same
way. The testing process terminates when all suspicious
statements are triggered or all suspicious path segments are
covered.

Algorithm 2. Path-Guided Test Input Generation
INPUT : G{g1, g2, ...,gl}: a set of path graphs of suspicious path segments
1 initialize branch list B{} andconstraint list C{}
2 I = GenInitInput()
3 RunProgram(I, &B, &C)
4 PathGuidedSearch(B, C)
5
6 PROCEDURE: PathGuidedSearch(branchlistB, constraintlistC)
7 bool inversePath:= false
8 for (i:=sizeOf(B); i >= 1 ; i- -)
9 get the PairedBranchB[i]
10 for eachsuspicious path graphgk in G
11 if B[i] can reach any stop point ingk

12 inversePath:= true
13 break
14 end
15 else ifpath

〈

B[1], ...B[i-1], B[i]
〉

traverses a path segment ingk

16 inversePath:= true
17 break
18 end
19 end
20 if (inversePath= true)
21 I’ := solve (C[1] ∩ C[2] ∩ ... ∩ C[i-1] ∩ ¬ (C[i]))
22 initialize branch list B’{} andconstraint list C’{}
23 RunProgram(I’ , &B’ , &C’ )
24 PathGuidedSearch(B’, C’)
25 end
26 end
27 end

6. Implementation and Evaluation

We implemented MAGIC for testing buffer overflows.
Our goals are to evaluate its capability for generating inputs
to detect and trigger faults and also to determine its per-
formance. For comparison, we also constructed two other
tools. Tool I implements the techniques of SPLAT [18],
which model buffer lengths and the first several bytes of
buffer content on top of basic concolic testing to trigger
buffer overflows. Different from MAGIC, it does not use
boundary values as initial inputs, and terminates when a
fault is found. In the experiments, we needed to fix the fault
and run the tool again until no more faults were found. We

constructed Tool II by isolating the dynamic testing compo-
nents from MAGIC; that is, it does not use any static infor-
mation. Comparing Tool II and MAGIC, we can determine
the usefulness of the path information in guiding test input
generation.

MAGIC is implemented on top of CREST [3] and
Marple [13]. Both MAGIC and Tool I are implemented us-
ing Microsoft Phoenix SDK1, and applied the Yices con-
straint solver2. The machine used for experiments is the
Intel Duo Core 2.26 GHz processor with 2GB memory. We
selected a set of benchmark programs, including WuFTP-1,
Sendmail-2, polymorph-0.4.0 and gzip-1.2.4. The first two
are buffer overflow benchmarks [20], containing typical and
realistic buffer overflows. Polymorph-0.4.03 is a real-world
program, used to simplify file names in UNIX. Gzip-1.2.44

is a file compression program.
We ran a preliminary set of experiments to determine the

time threshold we could use for the tools. The experimen-
tal results show that for all of the benchmarks, testing ei-
ther terminates within1500seconds, or is no longer able
to trigger more faults beyond1500seconds. Thus, in our
experiments, we decided to double the number and set the
time threshold at3000seconds. The goal is to ensure that
for most of the benchmarks, testing terminates before reach-
ing this threshold, and even when the termination is forced
by the time threshold, the number of faults reported by the
tools reflect the actual detection capability of the tools.

6.1. Capability of Triggering Faults

We first ran experiments to determine the capability of
the three tools for triggering faults. The results are shown
in Table 3. The first two columns give the benchmark pro-
grams and their sizes. For each tool, we show the number
of faults triggered, the number of faults that were missed
and the total time that it takes to finish the testing. By
manually confirming suspicious statements/path segments
reported from Marple, we are able to know the number of
buffer overflows a testing tool is supposed to trigger. We
therefore can determine the number of faults missed in test-
ing. Also, here we only report the performance of dynamic
testing. The overhead of static analysis can be found in the
Marple paper [13].

Comparing the results of Tool I and Tool II, we find that
more faults are triggered using Tool II than Tool I. Across
all benchmarks, Tool I missed10 faults and Tool II only
missed2. The reasons for being able to trigger more faults
in Tool II are: 1) MAGIC models string contents more
carefully, e.g., tracking multiple′\0′ for a buffer; and 2)

1http://connect.microsoft.com/Phoenix
2http://yices.csl.sri.com/
3http://sourceforge.net/projects/polymorph/
4http://www.gzip.org/



Table 3. Comparison of Testing Time and Fault Detection Capa bility
Size Tool I: SPLAT techniques Tool II: MAGIC without Static Information MAGICBenchmarks

(LOC) Detected Missed Time Detected Missed Time Detected Missed Time

WuFTP-1 0.4k 2 0 1342 s 5 0 1325 s 5 0 20 s
Sendmail-2 0.7k 3 1 1618 s* 4 0 1459 s 4 0 171 s
polymorph-0.4.0 1.7k 0 7 >3000 s 5 2 >3000 s 5 2 >3000 s
gzip-1.2.4 8.2k 3 2 463 s 5 0 1071 s 5 0 951 s

∗ Constraints solver crashed when applying SPLAT on s2, this is the time when constraints solver crashed.

Table 4. Comparison of Test Input Generation Costs
Tool I: SPLAT techniques Tool II: MAGIC without Static Information MAGICBenchmarks

Attempts Generated Time Attempts Generated Time Attempts Generated Time
WuFTP-1 13995 1748 30897ms 7828 1254 19408ms 23 20 199ms
Sendmail-2 1335 1084 54531ms 30377 1201 3869ms 5362 253 685ms
polymorph-0.4.0 492061 3335 116743ms 46019 1615 66658ms 227 122 690ms
gzip-1.2.4 4258 485 8652ms 12533 1178 25628ms 5687 1178 5005ms

MAGIC uses boundary values, instead of a fixed default
value, which enables more branches to be covered in test-
ing. The times used in testing are comparable for the two
tools, except for gzip-1.2.4, where Tool II executes more
paths than Tool I due to the use of the boundary value, and
thus takes longer to terminate. Since more paths are exe-
cuted, more faults are found.

Comparing Tool II to MAGIC, we discover that 1) both
the tools trigger the same number of faults, which shows
Marple does not report false negatives that can impact this
testing, and 2) MAGIC is more efficient to find these faults.
The testing time is reduced because paths which do not tra-
verse any suspicious path segment are avoided. Among the
benchmarks, the time reduction in gzip-1.2.4 is the least.
One reason is that for this benchmark, Tool II is not able to
cover a certain number of paths due to complex symbolic
constraints, and thus testing terminates early. Another rea-
son is that for this benchmark, some of the don’t-know path
segments are short, and thus in MAGIC, the guidance is not
significant.

6.2. The Effort to Generate Test Inputs

In another experiment, we compared the effort of gen-
erating test inputs with the three tools. Table 4 presents
the experimental results for each tool. UnderAttempts, we
display the number of paths (or path segments) that are tar-
geted for test input generation, i.e., the number of times that
symbolic constraints are sent to the constraint solver for po-
tential test inputs. UnderGenerated, we give the number
of test inputs that are successfully generated from the con-
straint solver. The numbers count both the test inputs that
can trigger faults, and the inputs generated in the process
of searching for suspicious path segments. UnderTime, we
show the total time spent in the constraint solver in generat-
ing test inputs from the symbolic constraints.

Our experimental results show that MAGIC largely re-
duces the search space for generating test inputs, as both the

number of paths explored and the number of test inputs gen-
erated in the testing process reported by MAGIC are much
less. The time used for test input generation is also reduced
accordingly.

7. Related Work

There is a large body of work on detecting software faults
statically and dynamically. Most of the dynamic methods,
such as ProPolice [10] and CRED [15], focus on how to
instrument code and detect software faults more efficiently
at runtime, rather than generating test inputs to trigger vul-
nerabilities. In this section, we only include the work that
is closely related to our research, including path based test
input generation, and hybrid solutions for faults.

Techniques for path based test input generation have
three general categories: 1) EXE [5] and KLEE [4] sym-
bolically execute a program along program paths, and gen-
erate inputs based on collected symbolic path constraints;
2) SAGE applies trace information and symbolic path con-
straints to generate test inputs [11]; and 3) DART [12],
CUTE [16], SPLAT [18] and CREST [3] are concolic test-
ing tools, which use both symbolic and concrete values to
generate the test inputs. CREST [3] proposes several search
strategies to improve the branch coverage for concolic test-
ing. SPLAT [18] models buffer operations and determines
at runtime whether a buffer overflow can occur at each
buffer access; if so, SPLAT generates a test input to trig-
ger the fault. The above techniques all exhaustively explore
program paths to generate test inputs, and thus the scalabil-
ity is an issue. Testing has to give up when a certain number
of paths are executed. MAGIC is different in that the testing
is guided along suspicious paths, and it explores the paths
that are more likely to trigger the faults.

Another area of related work includes hybrid techniques
for software faults. Aggarwal et al. [1] integrate static in-
formation computed by BOON [17] to reduce the number
of test inputs for more efficient dynamic analysis. There are



also tools Check ’n’ Crash and DSD-Crasher [6] [7] that de-
tect vulnerabilities in Java programs. Check ’n’ Crash uses
fault conditions computed by ESC/JAVA for generating test
inputs that can trigger faults. Since the static information
is intraprocedural, Check ’n’ Crash reports high false pos-
itives. DSD-Crasher applies Daikon [9] to infer predcon-
ditions for each function to remove some of the false posi-
tives. Different from these tools, MAGIC applies statically
computed interprocedural information to guide the testing,
and the faults triggered are real faults. Also, path infor-
mation instead of information at a program point is used,
making the test input generation more cost-effective.

8. Conclusions

This paper presents MAGIC, a path-guided concolic test-
ing framework for automatically generating test inputs to
exploit statically identified faults. MAGIC consists of both
the static and dynamic components: the static components
include a path-sensitive analyzer, and a reachability ana-
lyzer; and dynamic components implement concolic test-
ing that in particular is able to trigger buffer overflows in
a program. Our experiments show that in MAGIC, the dy-
namic testing confirms statically reported buffer overflows,
and also determines some of the don’t-know static warn-
ings as faulty. MAGIC also helps classify false positives, as
if no inputs can be generated to exploit the suspicious path,
we are more confident that the suspicious path is safe. We
also find that guided by the path information, our testing
runs much faster than concolic testing in identifying all of
the faults. Although we only implemented buffer overflow
detection for our experiments, more types of faults can be
included.

References

[1] A. Aggarwal and P. Jalote. Integrating static and dy-
namic analysis for detecting vulnerabilities. InCOMPSAC
’06: Proceedings of the 30th Annual International Com-
puter Software and Applications Conference, pages 343–
350, 2006.

[2] A. Bertolino. Software testing research: Achievements,
challenges, dreams. InFOSE ’07: 2007 Future of Software
Engineering, pages 85–103, 2007.

[3] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. InASE ’08: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 443–446, 2008.

[4] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. InOSDI’08: Proceedings of the
8th USENIX conference on Operating systems design and
implementation, pages 209–224, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: automatically generating inputs of death. In
CCS ’06: Proceedings of the 13th ACM conference on Com-
puter and communications security, pages 322–335, 2006.

[6] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combin-
ing static checking and testing. InICSE ’05: Proceedings of
the 27th international conference on Software engineering,
pages 422–431, 2005.

[7] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher: A
hybrid analysis tool for bug finding.ACM Trans. Softw. Eng.
Methodol., 17(2):1–37, 2008.

[8] P. Emanuelsson and U. Nilsson. A comparative study of in-
dustrial static analysis tools.Electron. Notes Theor. Comput.
Sci., 217:5–21, 2008.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. InICSE ’99: Proceedings of
the 21st international conference on Software engineering,
pages 213–224, 1999.

[10] H. Etoh. Gcc extension for protecting applications from
stack smashing attacks, December 2003.

[11] L. M. Y. GODEFROID, P. and D. MOLNAR. Automated
whitebox fuzz testing. InNDSS ’08: Proceedings of Net-
work and Distributed Systems Security, 2008.

[12] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed au-
tomated random testing. InPLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 213–223, 2005.

[13] W. Le and M. L. Soffa. Marple: a demand-driven path-
sensitive buffer overflow detector. InSIGSOFT ’08/FSE-
16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages
272–282, 2008.

[14] W. Le and M. L. Soffa. General, scalable path-sensitivefault
detection. Technical Report CS-2010-11 by Computer Sci-
ence Department, University of Virginia, 2010.

[15] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. InIn Proceedings of the 11th Annual
Network and Distributed Systme Security Symposium, pages
159–169, 2004.

[16] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit test-
ing engine for c. InESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 263–272, 2005.

[17] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vulnera-
bilities. InNetwork and Distributed System Security Sympo-
sium, pages 3–17, February 2000.

[18] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer
overflows with length abstraction. InISSTA ’08: Proceed-
ings of the 2008 international symposium on Software test-
ing and analysis, pages 27–38, 2008.

[19] M. Young and M. Pezze.Software Testing and Analysis:
Process, Principles and Techniques. John Wiley & Sons,
2005.

[20] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis
tools using exploitable buffer overflows from open source
code.SIGSOFT Softw. Eng. Notes, 29(6):97–106, 2004.


