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L. Introduction

The Steiner minimal tree problem was first studied for the euclidean distance ‘meu‘ic. Given a set N of »
points in the euclidean plane, the shortest network interconnecting N is called a Steiner minimal tree {denoted
ESMT or simply SMT) for N, J unctions of edges in the network which are not points in N are called Steiner points
or S-points ; the original points are N-points. The study of the euclidean SMT problem for the special case n = 3 has
a long history back to 17th century with names like Cavalieri, Fermat, Simpson, Torricelli, Heinen, Viviani and
Steiner among others (e.g., [119,187]. However, the n = 3 Steiner problem is also a special case of what is called
"generalized Fermat problem” by Kuhn [109], which asks for a point to minimize the sum of distances between that
point and all points of N, Since only for n >4 the SMT problem asserts its own character distinct from the
generalized Fermat problem, we will consider the 1934 Jarnik and Késsler paper [98] as the first paper on the
“‘genuine’” SMT problem. However, the real awakening of interests in the SMT problem is due to its inclusion in
the popular book Whar Is Mathematics? by Courant and Robbins {37] in 1941, who also attached the name
““Steiner’’ 1o the problem,

2. The Euclidean SMT Problem

Mechanical solutions of the SMT problem by using pegs and elastic bands, or soap films were nicely covered
by Miehle [121]; see also Courant and Robbins [37, p. 392), Steinhaus [160, p. 1191, Gallawa [68], Clark [28],
Polya [129], and the excellent survey paper by Gilbert and Pollak [75]. Soukup [159] provides a solution using a
rubber membrane. These techniques are representative of the class of “‘analog’ techniques that use natural
Systems’ tendencies to find minimum energy configurations to solve optimization problems. However, our survey
will concentrate on mathematical analyses and solutions to the SMT problem,
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An interconnecting network T is called a Steiner tree, ST, if it satisfies the following three conditions
(i) Tis a tree.
(i) Any two edges of T meet at an angle of at Jeast 120°.
(iii) An §-point cannot be of degree one or two.

Clearly, a shortest interconnecting network must be an ST. Note that (i) implies that any point of T can have
degree at most three. (ii) and (jii) together imply that each S-point is of degree exactly three. (i) and (i) together
imply that there are at most n — 2 S-points. An ST is full (denoted FST) if it contains n — 2 S-points. It is easily
verified that each N-point is of degree one in an FST. The graph structure, P, of an ST is called a topology. A full
topology (FP) is the topology for some FST. By a convexity argument it is easily proved that a topology P can have
at most one ST, when the ST exists, it is the shortest interconnecting network for P.

2.1. Exact Algorithms

Melzak [118] first gave a finite algorithm for constructing SMT for general set N; also see Cockayne [30].
The general approach is t0 partition each topology P into full topologies {FP;} and apply what Melzak called a
"euclidean construction” o obtain an FST on each FP;. If each FP; has an FST, then the union of these FSTs yields
the ST for P. If any of the FP; does not have an FST, then neither does P have an ST. Compare the lengths of the
STs of all possible topologies and select a shortest one to be the SMT for N,

Melzak’s algorithm takes exponential time. There are two sources of exponentiality, one minor and one
major. The minor one is due to the euclidean construction which, at each step, chooses one of two possible
substitution points (as there are two equilateral triangles for a given side). Since the correctness of the choice is not
known only until an ST is either constructed or demonstrated to be nonexistent, backtracking is necessary which
requires a worst-time complexity of O (2%) where 5 is the number of S-points in the given full topology. Hwang [91]
recently removed this minor source by showing that when proceeding with a specified sequence of S-points, each
substitution point can be chosen correctly at each step. Thus no backtracking is necessary and the time complexity
is linear.

The major source of exponentially is due to the large number of topologies. If no N-point is allowed to have
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o1 , for n N-points and s S-points. The number is even bigger

3 — n
three edges, the number is 2 [s + 2}

when this restriction is dropped. For example, this number is 5625 for n = 6, 110880 for n =7, and 2643795 for
n=8. Many pruning techniques for quickly eliminating the FPs have been proposed (see [75] for a good

collection), but they do not affect the exponentiality. The two most effective techniques are;

() A cyclic order of N-points. Given an FST, Cockayne {32] defined a cyclic order of the N-points by always
making a left turn, after leaving an N-point, to reach the next N-point (note that Werner [183] defined a
different cyclic order by alternating left and right turns). While it is well known [75] that an SMT must lie in
the convex hull of N, Cockayne extended its validity to the “*Steiner hull’’, obtained from convex hull by
sequentially removing triangles. Cockayne showed that the clockwise order of N-points on the Steiner
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polygon, which bound the Steiner hull, is consistent with the cyclic order he defined. We will call a topology
oriented if the cyclical order of the three edges incident to each S-point is also given, Then the ordering of
N-points on the Steiner polygon not only eliminates many topologies, but also topologies with wrong

orientations.

(ii) Restriction on S-points. It is well known [75] that an S-point s adjacent to two points a and b must lie on
the 120° arc of the circle C(a, b) which circumscribes an equilateral triangle with [ a, &1 as one side. Now if
a (b) itself is an S-point confined to an arc, the arc confining s can be made smaller than 120° since it can
cross neither the arc of a nor the arc of b. Winter [188] showed that for most full topologies a few rounds of

nested confinement will reduce the arc of an S-point to an empty arc, thus eliminating the topology.

Melzak's algorithm has provided the core of many computer programs, The first published version was by
Cockayne and Schiller [33], called STEINER, which can solve cases as large as a 7-point problem. Boyce and Seery
[13] and Boyce {14] improved it to allow solutions of up to 10 points, mostly by using a complex multiplication to
compute the substitution points. Cockayne and Peters’ [34] MFST82 contained a few more geometric tests to
eliminate certain cyclic orders. Winter [188], by using restriction (ii) as well as some criteria for the nonoptimality
of an FST, was able to solve problems of up to 15 points in his GEOSTEINER program. He noted that for n > 15 the
computation time needed to form the unions of ‘“surviving’’ FSTs dominates the computation time needed for the
construction of FSTs. Cockayne and Hewgill [35] improved the first aspect and raised the "solvable” range to 30
points. An algebraic approach for the euclidean construction, which should ease the calculations in these programs,
was recently proposed by Hwang and Weng [92). They need hexagonal coordinates so that the coordinates of an
§-point is readily unavailable once the coordinates of its three adjacent points are known, provided the hexagonal
coordinate system is given by the three directions of the SMT. They showed that starting from a given hexagonal

coordinate system, the transformation to the SMT-defined system can be easily found.

The exponentiality is more a problem inherent with the SMT, rather than just with Melzak’s algorithm.
Garey, Graham and Johnson [70] have shown that the SMT decision problem is NP-complete. For NP-complete
problems *‘decomposability”” is often an important consideration. For the SMT problem decomposability means the

m
partitioning of N into subsets Ny, - - - ,N,; such that N = v N;, IN;nN;i< 1 foralli, j, and the union of the SMTs

for each N; is an SMT on N. There are three decomposition theorems so far. The first is due to the “‘double
wedge’’ property as given by Gilbert and Pollak [75]. The second is a consequence of the “‘Steiner polygon”’
intersecting itself as given by Cockayne [32]. The third is a recent result of Hwang, Song, Ting and Du [93] who
gave conditions under which a quadrilateral ABCD, where (A, B) and (C, D) are two pairs of adjacent points on the
Steiner polygon, can be removed to decompose the Steiner polygon into two smaller polygons linked by an edge.

We close this section by mentioning some works on SMT which do not fit in the above discussions. Few [58]
used a clever argument to show that the length of an SMT for # random points in a unit square is upper bounded by
Y +7/4. Chung and Graham [25] improved it to 995V . Megiddo [117] showed that a game between the N-
points, where the cost of an SMT is to be fairly split, can have an empty core, contrary to the minimal spanning tree



case,

2.2. Heuristic Algorithms

An important consideration for NP-complete problems is the existence of efficient heuristics with provably
good performance. A minimal spanning tree (MST) algorithm can be thought of as a heuristic for SMT, and can be
implemented in O (n logn) time as first demonstrated by Shamos and Hoey [148]. Define the Steiner ratio as

length of an SMT on N
p= m;yn length of an MST on N
Then p is a measure of how good the minimal spanning tree is. Gilbert and Pollak [75] conjectured p = V3'/2 and
proved it for n = 3. Later, Pollak [128] proved it for » =4 (se¢ also Du, Yao, and Hwang [44]), and Du, Hwang and
Yao [47] proved it for n = 5. For general n, the lower bound for p has been steadily pushed up from .5 (Moore as
reported in [75]) to .57 (Graham and Hwang [76]) to .74 (Chung and Hwang [23]), to .8 (Du and Hwang [45))
through geometrical arguments. Recently, Chung and Graham [26] obtained p 2824 by computer-aided
calculations.

Chang [18] and Thompson [168] (also see Korhonen [105]) first had the idea of converting a minimal
spamning tree to an ST through a sequence of “‘local steincrizations’’, i.e., add an S-point 1o connect three points
“close’ to each other and delete an edge from any loops formed. This idea has been the backbone of many
heuristics for both the euclidean and the rectilinear distance metrics, though the exact definition of local
steinerization differ. Chang and Thompson did not tailor their algorithms from the computational complexity
viewpoint since it was not fashionable then. A literal implementation of Chang’s algorithm requires O (n?) time.
Smith and Liebman [151] gave a similar but more complex O (#*) time algorithm. Smith, Lee and Liebman [152]
gave a O (nlogn) algorithm that used Voronoi diagrams and Delauney triangulations. The improvement using
these heuristics over a minimal spanning free is typically 3-4% in expected length; but no improvement in the
worst-case has been demonstrated.

A completely different heuristic using *‘simulated annealing’’ was proposed by Lundy {114, 115]. Such an
approach will successively perturb candidate SMTs searching for an (locally) optimal solution, The perturbation
scheme employed replaces three edges [s,1], [s,2], [3,4] by the three edges [s,3], [s.4], {1,2] where s is an S-point,
Note that such a scheme not only improves the embedding of a topology but explores many different topologies.
Some experimental results were given.

Finally, Soukup proposed a scheme motivated by a physical analog approach [159]. It involves a root-finding
step for a derived polynomial.

2.3. Special Cases

Another important avenue of research with NP-complete problems is the study of special-cases. By using the
special geometry of the given set N, one may obtain an explicit construction or a fast algorithm for an SMT. The

first special set N is the set of vertices of a regular n-gon as studied in the first genuine SMT paper of Jamik and



Kissler {98]. They obtained the SMT for 3<n <5 and also proved that for n =6 or n 213 the SMT is the
perimeter of the n-gon minus a side. Recently, Du, Hwang, and Weng [50] (see also Kotzig [106] and Weng [181))
finished the problem by proving the same for 7<n <12. When N is a set of vertices on a circle with radius r , Du,
Hwang and Chao [48] proved that the SMT is the perimeter of the n-gon minus a longest side when at most one side
can be longer than .557r. Curiously, the result depends crucially on the value of a lower bound of p.

Other special sets N whose SMTs can be efficiently constructed are ladders (Chung and Graham [22]) and
their generalizations (Du and Hwang [52]), vertices on a zigzag line (Du, Hwang and Weng [46]), and vertices on a
splitting wee (Hwang, Weng and Du [90D). We can also restrict N by fixing n. As mentioned in the opening
paragraph, the n =3 SMT was well studjed by 17th century mathematicians. The n = 4 case was studied by Pollak
[128], Ollerenshaw [125], Du, Yao, and Hwang [44], and Du, Hwang, Song and Ting [51]. It should be noted thata
good understanding of the n = 3, 4 cases are crucial in obtaining two of the decomposition results, one by removing
a triangle and the other a quadrilateral,

2.4. Generalizations

So far we have only discussed the euclidean SMT problem on the plane. For higher dimensional euclidean
space Gilbert and Poliak [75] showed that most of the basic properties of SMT still hold. The extension of the
euclidean construction of an FST t0 4 dimensions is nontrivial and has not been attempted. The Steiner ratio was
conjectured {757 to be achieved by the corners of the d-dimensional simplex. However, SMTs for d-dimensional
simplices are not known in general, Chung and Gilbert [21] gave an upper bound for their lengths which approaches
669842 for large d.

Four other types of generalizations have been attempted for the euclidean SMT problem. The first is a
generalization of N from a point-set to other objects, as well as adding other objects in the space as obstacles. The
second is a generalization of the euclidean Space to some other metric space. The third is Gilbert’s flow-dependent
networks. And the fourth is a generalization on the connection property.

For the first type, Cockayne and Melzak [29] extended Melzak’s algorithm to the case that N is a set of point-
sets. Weng [182] used the hexagonal coordinate system to treat the case that N is a set of regions. Trietsch [171]
gave a finite-time algorithm for adding points to an existing network. The SMT problem with obstacles is a
practical problem in pipeline layout or routing heating mains; see Smith and Liebman [151], Liestman [113], and
Smith [156). Provan {131] has given effective approximation algorithms for obstacles for the case where the tree is
confined to a {not necessarily simply) connected polygonal region.

For the second type, Soukup [20, 158] studied nonlinear cost and proved that if the cost function is increasing
in a certain sense, then the degree of each vertex is bounded. He also proved that if the cost function is convex, then
an SMT is full. Sankoff and Rousseau [141] gave a dynamic programming solution for locating S-points of an FST
in an arbitrary metric space in their study of phylogeny.



For the third type, Gitbert {74] first studied the shortest interconnecting network which must satisfies a given
matrix of two-way flows, (i, j), where the cost of an edge with capacity ¢ is g{¢) per mile. When g{c) is a
constant the shortest network is an SMT. But in general, the shortest network loses many of the properties of an
SMT and need not even be a tree. This network was also studied by van de Heyden [174], Trietsch and Handler
[170], and Du and Hwang [49]. Werner [183] considered a flow matrix which affects only the usage, but not the
size, of an edge. Under a linear cost model he showed that if the flow demand decreases at least linearly with the

distance the minimum cost network is an SMT.

The fourth type, directed SMTs, were studied by Lee [110] for drainage networks and by Bhashkaran {11]
and Bhashkaran and Salzborn [12] for gas pipeline networks. In these networks flows are directed from a set of
sources to a designated sink. The latter work proved that the optimal gas-pipeline network must be a tree under a
fairly general set of conditions. Smith [150] formulated it as a ““directed steiner minimal tree’” problem. Nodes
have weights which can be interpreted as source flows. The resulting Steiner tree is “‘directed’ by the flow
interpretation and the edge weights are a function of the flow and its direction. Several different weight function
can be used. Sandifer [140] gave a heuristic for one weight function (CUMSUM).

As mentioned in the introduction the n = 3 case has been alternately generalized as the “‘Fermat problem’’,
where there is only one additional point and all N-points connect (o that point. If each N-point has a weight and the
lengths of the edges to the central point are biased by the weights, then the minimization problem is the ““Weber
problem”’. This is the cornerstone of a vast literature for Location Theory, Some interesting work has been done on
this problem, often misattributing the problem as a Steiner problem, ¢.g., [31, 100, 103,120, 126, 169]. An O (n?)
time algorithm is known {72} for the unit weights case.

3. The Graphical SMT Problem

The graphical Steiner minimal tree (GSMT) problem asks for a minimum tree spanning some designated
vertices of a graph. Formally, a graph G = (V, E) is given, with weights on the edges, and a set N ¢ V is specified.
A solution to the GSMT problem is the minimum weight trez subgraph of G that spans N. The vertices not in N
with degree >3 in the tree are called Steiner vertices. (A more general formulation asks for a minimum weight
subgraph, perhaps cyclic. If the edge weights are nonnegative the two formulations are essentially the same.
Otherwise a simple preprocessing step can be used [79] to handle the negative edges.) Hakimi [79] and Levin
[112] independently posed this problem. While it is possible to motivate the graphical case from the euclidean case,
the two problems have little in common. Recall, however, that some heuristics for the euclidean case have graphical
origins.

Research on the GSMT problem has taken a familiar route. First, some exponential time exact algorithms for
finding the optimal configuration were posed. Then the GSMT problem and its variants were shown to be NP-
complete. Finally, many heuristics and special cases have been considered. Winter has presented an excellent

survey [191].



A.1. Exact Algorithms
Hakimi [79] proposed an exact algorithm that ran in O (2"~ v? + v®) time, where v =|V|, and n =|N| This

algorithm tries all possible choices for the Steiner vertices and for each choice computes the corresponding -
minimum tree. Levin [112] proposed a dynamic programming approach (i.e., precomputing possible subtrees) that
ran in O (3" n +2* n?) time. Essentially the same algorithm was given by Dreyfus and Wagner [43] with a time
complexity of 0 (3" n +2'n? + n®). A branch-and-bound approach has been proposed [60, 149] that uses heuristics
to provide good lower bounds and to choose the next edge for consideration in the backtracking process. Of course,
it is difficult to analyze this algorithm but empirical evidence [61] suggests that it compares favorably to the other
two when n is about % v; Hakimi’s algorithm is favored when # is about v and the dynamic programming approach
is favored when » is small,

Other exponential time exact-algorithms have also appeared without analyses. Hakimi {79] proposed a
recursive approach to enumerate the various tree topologies, and gave a useful theorem to prune the search.
Balakrishnan and Patel [4, 5] gave an algorithm that cleverly generates spanning trees for a derived problem in order
of increasing weight until a solution to the original problem can be inferred. Aneja [3] reformulated the problem as
a set covering problem, presented as a 0-1 linear programming problem. Several relaxation techniques and
improvements were used. Beasley [6] gave a branch-and-bound algorithm where the bounds used Lagrangean
relaxations of several 0-1 lincar programming reformulations; see also [53]. Further constraints were added [7]
leading to improved performance. In fact, the latter algorithm has the best reported performance on large random
sparse graphs; with v =500 and n = 125 less than 6 minutes were required on some sparse graphs. Another 0-1
linear programming algorithm was given by Wong [195] that combined two known approaches from cognate
problems, This formulation admits directions on the edges and hence applies to directed graphs, discussed below,
Segev [146] used similar techniques for a weighted variant of the GSMT problem. Jain [97] used probabilistic
arguments to show that a linear programming relaxation (of an aggregate formulation) can give poor bounds for the
integer solution.

Algorithms for the GSMT problem can benefit from processing the graph, especially those that incrementalty
build the SMT. There are several obvious reductions that can be made (e.g., handling vertices of degree 1) as well
as some nontrivial reductions (e.g., using triangle inequalities when possible.)  These are discussed by Beasley [6],
Balakrishnan and Patel [5], and Iwainsky et al. [95]. In general there are no known theorems bounding the length of
a GSMT, beyond the results discussed in the heuristics section below,

An early result, due to Karp, was the GSMT decision problem was NP-complete [101, 102]. Many restricted
versions remain hard. If G is planar the problem is still NP-complete [69]. Further, Berlekamp showed that the
GSMT remains NP-complete if all edges have unit weights, even if G is bipartite with all edges from N to V—N
(71,p.209]. The problem remains NP-complete for chordal graphs and split graphs [184]. (Hakimi {79] gave
several explicit problem reductions that are implicit for every NP-complete problem.)  Hence there has been much

interest in heuristics and special cases.



3.2. Heuristic Algorithms

Many heuristics have been proposed for finding approximate solutions io the GSMT problem. Those in the
first group are based on known graph algorithms, usually for the minimum spanning tree (MST) problem. A second
group of algorithms use suboptimal variants of exact algorithms, The latter group are not necessarily polynomial-
time.

A straightforward MST-based algorithms has been proposed by El-Arbi {54], and independently by Plesnik
[127], Kou, Markowsky, and Berman [107], and Iwainsky et al, [95]. The algorithm begins by constructing a
complete graph G on the vertex set N with edge weights equal to the lengths of the corresponding shortest paths in
the original graph G. Then an MST is found for G’ and each edge of that MST corresponds to a shortest path in G.
Let G be the subgraph of G that is the union of these paths. The approximate GSMT is the MST of G”’, after
some obvious postprocessing. Let Lygy and Lopy be the length of the approximate GSMT found and the optimal

MST

L
GSMT, respectively. It is known [107] that 7 =2( lm%), where the optimal tree has ¢ leaves; see also

OPT
{54,95,127]. These algorithms run in O(nv?) time, where the construction of G’ dominates. Variants are

discussed in [127].

Wu, Widmayer, and Wong [196] propose an implementation, based on Kruskal's MST algorithm, that does
not explicitly construct G’. Recall, Kruskal’s algorithm begins with v singleton trees and iteratively connects the
two nearest current trees, until one tree remains. To avoid constructing G', the algorithm simultaneously grows
“*shortest path trees”” from each vertex (always adding the least unused edge to one of these trees). When two trees
meet a path between their roots is formed, corresponding to the next edge Kruskal’s algorithm on G’ would have
used. The algorithm runs in O (e log v) time, where e =|E|, and has the same performance bounds as above. A
similar algorithm was independently given by Wang [180]. Widmayer [185] compared all the above algorithms and
showed that no one is always superior to the others.

Widmayer [186] refined the above algorithm (to better handle difficult cases) and used an efficient priority
queue data structure, the Fibonacci heap. The resulting algorithm has the same performance bounds and runs in
O (e +{v+min{e, n?})logv). This algorithm is never (asymptotically) slower than the above algorithms and can
be faster. It has been shown [108] that the Kruskal-based approach is (essentially) optimal for random unweighted
graphs, ie., where each edge is present with probability p. In that case the expected size of the GSMT is

approximately n Hli“)%g—\:’;' (The trivial algorithm of using a shortest-path spanning tree is also nearly optimal for

random graphs!)

Takahashi and Matsuyama [163] gave a heuristic based on Prim’s MST algorithm. Recall, Prim’s algorithm
begins with one singleton iree and iteratively comnects the nearest vertex to it, untif there is one tree. Their
algorithm begins with one vertex of V and connects, with a path, the nearest other point in N, At each step there is
some tree and the nearest unused vertex in N is connected, with a path, to some vertex in the tree. The performance

L
bound is FRIM

7 <2(1- i—), where L pppy is the length of the approximate GSMT. The algorithm runs in O (# v?)
oPT



time. A variant has been proposed that has the same performance bounds and time complexity but uses less space
{94]. The algorithm was independently given by Wang [180] and it is related to the heuristics above [135]. Segev
{146] and Ma [116] have given simple Prim-based algorithms.

Rayward-Smith’s heuristic [64, 134, 135] explicitly selects the Steiner vertices, while the above approaches
implicitly choose them. It is Kruskal-based but does not connect the two nearest subtrees, Instead two trees may be
connected to a Steiner vertex, chosen because it minimizes an ‘‘average distance’’ to the set of all current subtrees,
It runs in O (v®) time and has good empirical performance [135].

Chen’s two heuristics {19] are based on a subroutine for the case of n = 3. (We note that other special cases
of n=2 and n =v are trivially handled by shortest-path and MST routines, respectively.)  An exact O (e log v)
time algorithm is given for this case; if the edges have unit weights then O (&) time suffices. The first heuristic uses
the routine to introduce ‘‘local steinerizations’ into a Prim-based approach. The second heuristic generalizes
Kruskal’s algorithm by linking together three subtrees at each step. The time complexities are O (A n e log v) and

O (n? e log v), respectively, where A is the maximum degree.

Plesnik [127] presented another heuristic based on the identification of neighborhoods which can be
contracted to a point. Before contraction the GSMT problem is solved within each neighborhood, and then the
problem is recursively solved on the contracted graph. Two trivial heuristics have been proposed [163] and shown

to have poor worst-case performance: simply pruning an MST of G and pruning a shortest-path spanning tree of G.

Several suboptimal variations of exact algorithms have been proposed. Aneja [3] gave a greedy variation of
his set-covering approach, Wong [195] used an MST routine as a short-cut in his exact algorithm. Segev [146], in
his work on a generalized GSMT problem, used an MST routine, as well as proposing a subgradient heuristic.

Computational experience with all of these has been encouraging.

For related results see [96, 161, 165, 166, 173].

3.3. Special Cases

Polynomial time algorithms can be found for classes of graphs where enough structure ensures restrictions on
possible GSMTs, It is discouraging that the problem remains hard for planar graphs; in fact for grid graphs (see the
next section). However the problem can be solved efficiently for outerplanar graphs and other classes where there

are strong decomposition theorems. Related results are discussed in the next section.

Perhaps the first result was by Wald and Colbourn [175] for outerplanar graphs. They generalized the result
to the related classes of 2-trees, partial 2-trees, minimum IFI networks and their applications [176-179]: see also
[130]. Series-parallel graphs have similar decomposability characterizations, Takamizawa et al. [164] indicated an
algorithm for series-parallel graphs; see also {36, 133). Winter has similar results for Halin networks [194]. All
these algorithms run in linear time. White et al. [184] gave an O (v?) time algorithm for strongly chordal graphs
with unit edge weighis (but the problem remains NP-complete for strictly chordal graphs with strictly triangular

weight functions).
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Planar graphs can be solved in polynomial time if the vertices of N are found on just k faces of some given
embedding of the graph, i.e., it is k-planar. (Bienstock and Monma have polynomial-time algorithms for finding
optimal embeddings.) The k-planar case was independently solved by Erickson, Monma, and Veinott [55] and
Bern [10] using the dynamic programming techniques of Dreyfus and Wagner. The time complexities are O (v¥
and O(v¥**2 4 n2 y2)_ respectively. Provan [132] generalized these results by casting k-planarity as a specific
*‘convexity”’ property,

3.4, Generalizations

There have been three principle avenues of generalization: changing the definition of the Steiner network,
adding vertex weights, and using directed graphs.

Krarup (in an unpublished 1978 memo) suggested finding the minimum-weight 2-connected (or 2-edge-
connected) subgraph that spans N in G, instead of a tree. Winter has given polynomial-time exact algorithms for
outerplanar graphs [189], series-parallel graphs [190], and Halin networks [192). In the latter paper the 3-connected
case was solved. Duin and Volgenant [53] consider Steiner forests of at most m components. Cornuejols et al. [36]
consider the “‘Steiner traveling salesman problem”, Chung et al. discussed ‘‘Steiner caterpillars™ [27] in
connection with the analysis of a search problem,

Weighted Steiner Tree problem, of which the GSMT f)mblem is a special case. All vertex weights are negative (or
nonpositive) and there is a di'stinguished vertex 5. The desired tree includes s and is of minimum total weight. The
formulation is motivated by having edge weights be the cost of establishing connections (to 5) and the vertex
weights are the payoffs. Exact and heuristic approaches are given. The formulation is actually in terms of directed
graphs. Duin and Volgenant [53] discussed the general problem, where an s is not specified

Smith [150] has worked on a “‘directed steiner minimal tree’’ problem as described in section 2.4, In related
work, Smith and Liebman [153] gave a heuristic based on local steinerizations of a rooted spanning arborescence,
where the local updates use a Weber point instead of a Steiner point.

Wong [195] used a directed graph model with 2 distinguished vertex s, and asked for a minimum-weight
directed tree, rooted at s, that spans N, It was cast as a multi-commodity network flow problem. He gave exact and
heuristic algorithms, both discussed above; see also {53]. Suurballe [162] briefly mentions similar techniques.
Nastansky et al. [123] use a similar model but restrict their attention 1o rooted directed acyclic graphs, with root s,
They give an exact enumerative scheme that can be time-limited to give suboptimal answers. Their model is largely
motivated by a m-dimensional grid graph with all edges directed away from the origin s; Trubin [172] also discussed
this case,

Wald and Sorenson [178] consider symmetric directed graphs and do not specify the root of the Steiner tree,
Further they may require some edges be used. They only present an exact algorithm for 2-rees. The problem is
motivated by query inference applications for databases.
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4. The Rectilinear SMT Problem

Rectilinear Steiner minimal trees (RSMT) are related to both the euclidean and the graphical cases. As with
the euclidean case the basic problem has the n points of N located in the plane, and additional Steiner points may be
used in constructing the minimal length tree. The distance metric is the rectilinear or Manhattan metric, i.e., the
distance from a to b is|x, — x,[+]y, — ¥l

The first investigation of the RSMT problem was by Hanan [81]. He established the following important
“*dimension reduction’’ result. Extend horizontal and vertical lines through each of the points. Define the graph
Gn(V, E) by letting V be the set of intersections of these lines and there is an edge between two vertices if they are
directly connected by a line, horizontally or vertically, Hanan showed that an RSMT is contained in Gy, ie. the
segments of the tree are composed of edges of Gy. An approach for generating candidate RSMTs has been given
[1241.

4.1. Exact Algorithms

While any exact algorithm for the GSMT problem could be used, only one exact algorithm for the RSMT has
been proposed. Yang and Wing gave a straightforward branch-and-bound algorithm [198] and improved it
somewhat {200). It appears to be applicable only for » < 10. Sankoff and Rousseau {141] give a dynamic
programming approach for the case when the topology is fixed. Thomborson et al. [167] give a n9%0" fime
algorithm that computes the optimal RSMT with high probability, when the points are uniformly distributed in the
Lhit square.

The RSMT decision problem is NP-complete [69]. Therefore there has been much interest in heuristics and

special cases.

4.2, Heuristic Algorithms

As with the euclidean SMT problem, a minimum spanning tree algorithm is a simple heuristic for the RSMT.
The rectilinear minimum spanning tree (RMST) is defined in the obvious way, and can be found with any MST
algorithm. (An embedding of the edges of an RMST may “‘overlap’’.)

Hwang [86] established many characterizations of RSMTs that allow thejr form to be sharply limited without
loss of generality. For example, we may assume all free edges consist of at most one horizontal and one vertical

)

segment. He was able to establish

LpmsT(V)
LoprV)

where Lypyst(N) is defined to be the length of the RMST and Lopr(N} is the length of the RSMT. Empirically,
evidence for random data suggests the expected value of the ratio is 1.13 [139,199],

<3
2

The expected length of an RSMT can be bounded. An early result is for RMSTs from which a similar bound
follows for RSMTs. Let RMST(n) be the random variable for the length of the RMST for » points drawn uniformly
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from the unit square. Gilbert [73] established that E]RMST(n)} = O (¥n ). Chung and Graham [25] give a sharper

result;
Vi +0(1) <F(m) €V + 1 +0(1)

where F(n) is the length of the longest possible RSMT on any » points drawn from the unit square. Komlos and
Shing [104] showed that RSMT{(n) > Vi 15 with probability I - o (1), where RSMT(n) is the random variable for
the length of the RSMT for n points drawn uniformly from the unit square. While an RMST can serve as a good
approximation to the RST, Chung and Hwang [24] showed that the semiperimeter of the least bounding rectangle,
an often-used approximation, can be worse by a factor about Y5\ (Such an approximation is optimal if n =3
[811.)

The first nontrivial heuristic was proposed by Hanan in an unpublished report [80]. It found a tree using a
Prim-based line-sweep algorithm, i.e., it built the tree in a greedy fashion from left to right. Four orthogonal sweeps
were suggested. The best implementation seemed to require O (n?) time (e.g., [871). Servit [147] suggested a
simplified approach, which did not optimize each greedy step, that admitted an O (n log n) time implementation.
Richards [136], using data structures used in Computational Geometxy, was able to implement Hanan’s full
algorithm in O(nlogn) time. The wees produced are slightly inferior to those of later heuristics. These
approximate RSMTs are 4% better than the RMST, while later heuristics are usually 7% to 9% better. The six
point-sets given by Soukup and Chow [157] have been extensively used for comparing heuristics.

Fu [67] gave an unanalyzed manual technique to iteratively improve a spanning tree by creating and breaking
cycles. Hanan [82] disproves Fu’s claim of optimality, An O (n*) time solution that uses several ad hoc stages was
proposed [151]. It began by selecting a linear-sized subset of the n? vertices of Gy as candidates for Steiner points.
Then it evaluated each in isolation and entered them into a priority queue. The queue determined the order the
candidates were tried.

Yang and Wing proposed a suboptimal branch-and-bound algorithm which, while still exponential time,
appears o be applicable for n < 30. When compared with known exact results the answers were remarkably close
to optimal [199-201]. It simply uses Prim’s algorithm but instead of choosing one of the two possible one-bend

orientations of the new wire it explores hoth.

Several heuristics begin with an RMST. Since the underlying complete graph has 0(n?) edges, to improve on
the O (n*) time bound requires preprocessing to reduce the size of the underlying graph. The rectilinear Voronoi
diagram (defined anaiogously to the euclidean case) has a Delauney triangulation which contains enough edges to
find the RMST. Since the triangulation corresponds to a planar graph the RMST can be found in O (n) additional
time. Hwang [89] shows, with standard divide-and-conquer techniques, how to find the Delauney triangulation in
O(nlogn) time . It should be noted that the details for the rectilinear Voronoi diagram are more complicated than

for the enclidean case.
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Hwang gave a heuristic for the RST problem, using the above RMST solution, that was based on earlier work
by Lee, Bose, and Hwang [111]. That work built an RSMT in Prim fashion. It used a ‘“3-point connection
scheme’’ instead of simply connecting the nearest unused vertex. This involved a constant time search around the
intended 2-point connection for three points which could be connected in a Steiner fashion, perhaps introducing a
new Steiner point. It ran in O (n?) time with most of the time spent on deciding which point to connect next.
Hwang [88] proposed an O (n log n) implementation that began with an RMST and from that inferred an ordering
of the vertices which the above algorithm could use to decide which node 1o connect next and where to try to

connect it.

Smith, Lee, and Licbman [154] proposed an O (nlogn) time approach based on iteratively improving the
RMST found over the Delauney triangulation. The technique is complex and used 4-point steinerizations as well.
A simplified approach was proposed by Richards [136).

Bern and de Carvalho [8] investigated Kruskal-based approaches atiributed to Thompson. Variations
attributed to Ng and the themselves were proposed that were supposed to be faster than, but usually inferior to, the
original. Thompson began with n singleton trees and at each stage a new- wire connects two trees and the shortest
such wire is chosen. This wire may not necessarily connect terminals but it can be “*slid’” so that it at least has one
endpoint at a terminal, Steiner point, or corner of a previous wire, There are only O (n) such positions. They
assume the points are grid points of an m X m grid. They give an nnusual analysis; even though m is theoretically
unrelated to n {except m > \’;) they assume a data structure with O (m?) is permissible. Thompson’s algorithm is
implemented in O(mn®logn) time and their variation takes O (mn?) time. Their algorithms can, by a small
alteration, be made to run in O (n2logn) time [136].

Bern [9] has shown that the expected improvement of their approximate RSMT relative to the optimal RMST
is bounded away from 0 in the limit, The proven bound, 0.00098, is much less than empirical studies indicate it
should be. Itis also shown that a linear number of Steiner points are expected. The results are for n points drawn at
random from the unit square distributed according to a Poisson process with intensity »; a uniform distribution
remains to be analyzed.

Komlos and Shing [104] proposed a divide-and-conquer algorithm based on two-dimensional partitioning.
They start with n points, assumed to be uniformly distributed in the unit square, and a parameter t. Next iteratively
partition, using medians, the square into small rectangles until each rectangle contains approximately ¢ points. Find
the optimal RSMT for each rectangle and combine these trees to give the final tree, after some clean-up steps. If
each optimal subproblem is solved in f{f) steps then the algorithm runs in O(f {(¢)n + nlogn) time, which is
O(nlogn) for ¢t = O (loglogn) if, say, Levin’s algorithm is used. They show that their approximation is within a
factor of 1+ 0(1/\[;) of the length of an optimal RSMT, with probability 1—o0(1). Another slightly faster
algorithm was presented that depends heavily on the uniformity of the point distribution. Hence, even though the
same probabilistic bound above holds, this algorithm has a worst-case performance that is at least a factor of ¢ of the
length of an optimal RSMT. No implementation was attempted,
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Jiang and Tang [99] begin by collecting statistics for all subproblems using 3 vertices from N, Then, after
some additional preprocessing, a Kruskal-based algorithm is given that favors Steiper points and edges suggested by
the statistics,

Two recent heuristics are presented as automatic wire routing algorithms, for muititerminal nets. Xiong [197]
presented an interesting two pﬁase approach. It is based on the underlying grid graph; to find a nearest neighbor a
breadth-first search is done. The first phase builds an RMST using Prim’s algorithm and tries both embeddings of
each edge and marks commonly used grid edges. The second phase is much the same as the first except embeddings
are chosen that favor marked commonly used edges; some backtracking is dome. Hsu et al. [85] used
straightforward versions of Prim’s and Kruskal’s algorithms but he tried different schemes when a *‘nearest
neighbor” calculation was done. The schemes cleverly take into account the ““magnetic attractions” of the other
points in N,

4.3. Special Cases

The principle special cases studied restrict the placement of the points in N. Aho, Garey, and Hwang {2]
studied the case where all the points lie on the boundary of the grid graph Gy, which has p rows and q columns.
They gave an O (p2q +p ¢*) or O (n?) time dynamic programming algorithm for this case. It was improved to
O(n)timeifp =2, Recently Agarwal and Shing [1] have given an 0 ( P+ ¢q) time algorithm.

An extension to the above approach is to restrict the points of N to lie on the boundary of their rectilinear
convex hull; i.e., each point has one empty open quadrant, Independently Bern {10} and Provan [132] gave O (n%)
time algorithms for this case, based on their algorithms for I-planar graphs. Rem improved the result to o(n®)
time, by using advanced data structures.

Farley et al. [56] looked at minjmal distance rectangle trees (MDRT). Basically, a rectangle tree is a
subgraph of Gy where every point is on the outer boundary and is adjacent to two other boundary points. An
MDRT is a rectangle tree that spans N and preserves the length of shortest paths between N-points in Gy, They
showed that given an instance restricted to an MDRT then the RSMT can be found in linear time. This is a
restricted form of the convex case above, Winter [193] gives a polynomial time algorithm for deciding if an MDRT
exists and exhibiting one if it does.

4.4. Generalizations

There are few generalizations of the RSMT per se. Smith and Gross [155] consider generalizing the metric
from the rectilinear, or Ly, metric to the L, metric, ie., (|x, = x5 [P +|x, - x, 1P )P, They argue that the only
interesting range is 1 < p <2, with respect to applications. They begin with an MST constructed using a generalized
Voronoi diagram, and do local steinerizations,

Sankoff and Rousseau’s (141} algorithm is for the m-dimensional rectilinear metric; but only for fixed
topologies. As mentioned in the previous section, Nastansky et al. [123] and Trubin {172} discussed rooted directed
versions of a m-dimensional rectilinear metric. Gilbert and Pollak [75) and Foulds {65} have shown that the upper
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bound on Lyyst / Lopr goes to % as m increases; see also {139].

5. Phylogenetic Trees

The construction of a phylogenetic or evolutionary tree is a basic problem in biological systematics.” Such a
tree has vertices identified with extant species {operational taxonomic units) and other vertices associated with
hypothetical ancestral species. Typically the tree is rooted and the root is regarded as the progenitor. Clearly this is
an area where Steiner trees are the appropriate mathematical model, but it is difficult 1o agree on the point space and
what metric shouid be used.

The literature is, of course, quite large and only relevent pointers into it are given below. Explicit biological
motivation is given only rarely in the cited literature {16, 17]. Often the easier problem of finding the phylogenetic
tree given its topology is solved, i.e., finding the best positions for the given Steiner points. This is justified since an
educated guess of the topology can be made from other biological evidence. The literature can be grouped into

three major areas.

The first major area presumes that experts have been able to identify characters of the species. Further, each
species is labelled with m states corresponding to m different characters. Each character has an associated set of
character states, which can be strictly ordered, partially ordered, or unordered. A problem is cladistic if they are
strictly ordered and qualitative if they are unordered. A character with 2 states is binary. Species are points in the
space of the m-dimensional cross-product of the character states. Suppose that the ‘distance” between the states of
a given character are given. The distance between two points is the “‘rectilinear’” distance, i.e., the sum of the m
distances across the various dimensions. Usually character states are identified with integer values and the distance
is the rectilinear metric itself. The lowest integer is the ancestral state in the cladistic case; in the ““qualitative”” case
the ancestor is to be chosen but it is cladistic relative to that choice (since the integers imply an ordering). (For
additional discussion see {15,57,1381.)

Four subcases are identified [38], each with its variants . A Wagner tree is a Steiner tree where the character
states are integers; typically it is unrooted. A Camin-Sokal tree is a Steiner tree, where all edges are between points
that reflect a change from an ancestral state to a derived state [15,84]. This is equivalent to the directed rectilinear
Steiner problem where all edges are directed away from the origin (progenitor); the algorithms from the previous
section can be applied here. There are two subcases: the root is specified or it is chosen. A Dollo tree is a Steiner
tree, with binary characters, such that no transition between the two states of a character occurs twice in the tree
(this assumes m = n - 1). The chromosone inversion tree is a Steiner wee with ternary characters with biologically
motivated restrictions on the tree edges. All of the problems have been rigorously defined and their decision
problems shown 1o be NP-complete [38,39,41,62,77]. Perhaps the most interesting algorithmic work has been on
the Wagner problem for fixed topologies [57, 141]. Heuristics have been published [15,57].

The second major area starts with genetic or molecular strings for each of the species. There are three
subcases: the Hamming metric [59, 63, 122], the euclidean metric [16], and the minimum mutation metric [17, 144].
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The Hamming metric asspmes the characters (or nucleotides or alleles or codons) of two sequences can be
compared position by position. Hence, formally, the distance between two strings of m characters is the number of
positions where characters mismatch. In a binary problem each position can be one of two characters. (Note that
the binary Hamming metric problem is equivalent o the binary Wagner tree problem, which remains NP-complete -
[62]) © Heuristics have been presented [66] and optimal algorithms for a given topology are known
[59,83,141, 145]. Note that when the topology is fixed each dimension can be solved independently.

The euclidean metric approach also assumes that sequences can be compared position by position. Cavallj-
Sforza and Edwards [ 16} map each original sequence into a point in m-dimensional euclidean space and give local
steinerization heuristics. Thompson [168] continued this work and Rogers [137] gave related results.

The minimal mutation approach assumes, more realistically, that mutations do not Just change the valye at g
position, but that positions are deleted and added. This makes “‘alignment’” difficult and sophisticated definitions of
the mutation distance (or ““edit distance’’) between strings are needed. In fact, so much evolutionary change has
occurred that it is hard to find sufficiently long subsequences of genetic material to allow comparisons. The work in
this area is based on Sankoff’s algorithm [142] for fixed topologies. This is remarkable due to the complexity of the
metric. It is efficient for long strings but is exponential in n. Various costs can be assigned to the different
Operations (mutate, delete, insert) depending on their naturally occurring frequencies [143]. Of course, by varying
these costs different optimal trees are discovered,

Several algorithms have been used. For a fixed topology there is Sankoff’s algorithm [141, 142, 145), as well
as an iterative improvement approach [143]. For large n Sankoff's algorithm must be used with iterative
improvement. Two approaches have been used to &enerate topologies. One approach uses an algorithm that does
iterative improvement by subtree swapping [17]. Another approach is to generate all topologies satisfying
restrictions, usually biological constraints, (To bolster other independent data for imposing restrictions, a biological
study [78] used smaller unrestricted runs on troublesome sets of species.)

bounds on the distances between pairs of species, using a common scale, The goal is to construct a tree, possibly
with additional nodes, over the n species such that the path distances in the tree for every pair satisfy the given
bounds. The tree may be arbitrary or it may be constrained o be a subgraph of a given weighted graph. For
compiexity results and additional references see {38,42]. This is considered to be an inferior approach.

Other methods have been used, One method uses a variant of the GSMT using a lower evaluation metric,
defined in terms of a finite poset [38]. Another, the cladistic compatibility method, is not essentially a Steiner
problem [40]. Many others have been proposed but they lack sufficient mathematical rigor to be considered here.
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