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Abstract

Applications enabled by the increasing availability of high-performance

networks require the ability to share resources that are spread over complex,

large-scale, heterogeneous, distributed environments spanning multiple

administrative domains. We call this the wide-area computing problem. We

argue that the right way to solve this problem is to build an operating system for

the network that can abstract over a complex set of resources and provide high-

level means for sharing and managing them. We describe the design of one such

wide-area operating system: Legion. Through discussion of application

examples, we demonstrate the attractive features of Legion approach to

constructing a wide-area operating system using distributed object components.

1. The Challenge of Resource Sharing

The Boeing Company's designers use simulation as a key tool in making ever more complex airframes at a

manageable cost.  Pratt & Whitney, which designs and supplies jet engines to Boeing, also relies heavily on

simulation.  When Boeing's engineers simulate an airframe's behavior, they need to know how the engine

coupled to that airframe will perform under various conditions. However, Pratt & Whitney cannot release its

proprietary engine simulations because of the significant intellectual property they encode.  This requires an

unwieldy information exchange process, in which Boeing engineers ask Pratt & Whitney engineers to run

their simulation at specified datapoints and then send the results to Boeing by tape. Boeing engineers then

combine the information with their own simulation data and make necessary modifications. Then the whole

process iterates again.

In a completely different domain, Harvard Medical School is performing research on the causes and

symptoms of multiple sclerosis.  The core research group has developed image processing pipelines that

build three-dimensional models of characteristic brain lesions from MRI scans. To significantly advance the
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research, they need MRI scans from multiple partner institutions as well as a way to make a database of

image-processed results available to their research partners.  As a first step, they would like a tool that can

automatically identify MRI scans pertaining to the study whenever they are made at partner hospitals,

securely move those scans over the Internet to Harvard, and then process them.  Very little administrative

support for the tool can be expected at any of the partners.

In another medical setting, seven competing Dayton, Ohio, hospitals [13] are working together to reduce

costs.  By sharing patient records and making them electronically available to emergency room physicians,

expensive and time-consuming tests can be avoided and better care can be provided more quickly.

However, each hospital has its own legacy medical records system, IS personnel, and procedures that must

be brought together in the overall solution.  Moreover, each has a computing base that hosts databases and

programs cannot be shared.  These characteristics significantly increase the challenge of delivering a

common application that spans all the institutions.

Finally, climate modeling groups at SDSC, UCLA and Lawrence Berkeley Laboratory want to couple a

global atmospheric circulation model with a regional, meso-scale, weather model.  The coupled models

would feed data to each other, creating more accurate and detailed combined results.  However, the existing

regional model runs only on a Cray T90, while the global model runs on a Cray T3E and is being migrated

to the IBM SP.  The applications need a way to coordinate and exchange data with one another at run time,

be scheduled to run simultaneously on separate supercomputers, and be easily controlled by a researcher at a

single workstation.

All of these disparate examples share a common thread: the need to share and manage resources.  Those

resources may be hardware, software, or data, but when resources are spread over a networked environment

combining multiple administrative domains, computing platforms, support levels, security policies, and

myriad other factors, sharing and managing them clearly becomes significantly more difficult.  We call this

the wide-area computing problem. Though instances of the problem certainly appear in LAN environments,

the rise of ubiquitous high-bandwidth networking has created both the need and the opportunity to address it.

The preceding cases represent just a sampling of what people want to do.

Resource sharing is a classic computing problem with a long history. The monolithic mainframe

environment led to program, data, and file sharing, mediated by the operating system.  As LANs appeared,

remote file and printer sharing entered the scene.  The Internet allowed the most extensive file sharing

mechanism of all, the World Wide Web.
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The wide-area computing problem can be solved on an ad hoc, case-by-case, basis for each application, and

to date that is often the approach that is used.  Piecemeal solutions are cobbled together with scripts, sockets,

and various network tools, and if all goes well the application can be deployed. However, these solutions

tend to be brittle and limited, and require significant programmer sophistication to implement in the first

place.

From a computer science perspective, the right way to solve the problem is to build an operating system for

the network that can abstract over a complex set of resources and provide high-level means for sharing and

managing them.  But will that approach be useful to the aeronautical engineers and the medical researchers?

What do these users and the developers of their applications need?

2. Demands on a Wide-Area Computing Environment

It is not difficult to produce a long list of desirable features, and we will not develop an exhaustive (and

exhausting) list here.  Instead we will briefly look at some essential points.

Complexity management. Complexity is the programmer' s nemesis: A large-scale system composed of

different architectures, many different sites, hundreds of different applications, and potentially thousands of

hosts. Reducing and managing complexity is therefore critical.  The object-oriented paradigm and object-

based programming techniques provide programmers and application designers with encapsulation features

and tools for abstraction that reduce and compartmentalize complexity.  We firmly believe that object-based

techniques are the key to constructing robust, wide-area systems.

These techniques are not enough, however.  Composable, high-level interoperating services must replace

low-level interfaces such as rsh and sockets in the programmer' s toolbox.  Without such services the

complexity of distributed programming goes up dramatically, increasing both the skill set required to

construct applications and the fragility of the resulting software.

Single system image. A major source of complexity in a wide-area system is the large number of distinct

hosts and file systems.  This can be tackled by providing programmers with an abstraction of a single

machine and associated storage, or a single system image.  "Single system image" means different things to

different people--for some it means a single shared address space, for some the ability to run ps and get a list

of all processes throughout the system.  For our uses, we define a single system image as a universal shared

name space that names all objects of interest to the system and its users: files, processes, processors (hosts),
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storage, users, services, everything. The names should be location independent (i.e., they do not contain any

location information) and should be usable from anywhere in the system. Furthermore, as the programmer

uses resources to create his own objects, he should not be forced to explicitly place them on a particular host

or disk---the system should handle that.  This does not mean that a programmer or user cannot specify or

know an object' s location, but rather that if this information is not relevant to the programmer' s task, it does

not need to be known.

Multiple organizations. Our initial application examples illustrate the need to join multiple organizations

and administrative domains.  A system that facilitates this sort of bridging cannot require that sites follow a

single set of policies.  Instead, it must accommodate a diverse set of local use policies, access control

policies, and computational cultures.  For example, a site might insist that users authenticate via Kerberos

before using its resources, or that users sign an "acceptable use policy" statement, or that from 1:00 PM until

6:00 PM everyday no applications be run that consume more than five CPU minutes.  Extensibility and

flexibility thus become essential system aspects---it must be possible to readily extend and configure the

system to satisfy local requirements.

Resource heterogeneity. Resource heterogeneity is a natural part of the distributed environment. It includes

processor heterogeneity, data format heterogeneity, configuration heterogeneity (e.g., how much memory

and disk, which libraries are available on a host), and operating system heterogeneity.  If heterogeneity is not

managed individual users and programmers must deal with the complexity induced by all of the possible

permutations of hardware, OS, and resources, a task that can rapidly overwhelm even the best programmers.

Scalability. The system must be able to grow without limit, adding new hosts and resources over time. If the

past has shown us anything it is that the number of interconnected computational resources will only

increase.  Users and organizations do not want to have arbitrary limits placed on system size and capacity.

Any solution to the wide-area computing problem must be able to comfortably accommodate the growth.

System architectures must therefore be scalable and conform to the distributed systems principle that "the

amount of service required of any single component of the system must not grow as the system grows."  If

an architecture does not conform, then a component whose load (e.g., requests per second) increases as the

system expands will at some point become saturated, and performance will suffer.

Fault tolerance. Several years ago Leslie Lamport quipped, "A distributed system is one in which I cannot

get something done because a machine I' ve never heard of is down."  This indictment is driven by the fact

that in the absence of mechanisms to deal with failure, application availability is the product of component
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availability. In today' s business climate, an unavailable application can easily cost thousands of dollars per

minute.  A wide-area system must therefore be resilient to failure and provide a failure and recovery model

and associated services to applications developers, so that they can write robust applications.  The model

must include notions of fault detection, fault propagation, and a set of useful failure mode assumptions.

Multi-language and legacy applications. "I don' t know what computer language they' ll be using in a

hundred years, but it will be called Fortran" was a popular refrain in the 80s. There are hundreds of millions

of lines of legacy code today written in languages as varied as Lisp, RPG, Cobol, assembler, C/C++, Java,

and (of course) Fortran.  One thing is certain: those codes will not be replaced overnight and we will still

want to be able to run them in distributed environments.  The implication is that there must be a mechanism

for supporting legacy code without modification, and it must be able to support a variety of programming

languages.  A wide-area computing environment must therefore be language-neutral.

Security. Finally, there is security. This includes a wide range of topics, such as authentication (how do I

know who you are?), access control (who can do what to each resource?), and data integrity (how can I

make sure that no one can read or modify my data in memory, on disk, or on the network?).  Each of these

three issues is present in the Boeing/Pratt & Whitney example above. Clearly we must be able to provide

high levels of security, but there is more to the problem.  Security can be fairly expensive in performance,

restricting capabilities, and other dimensions, and different users and organizations have very different

requirements and want to enforce very different policies. The challenge is to provide each user and

organization with just the right mechanism and policy rules but still allow different users and organizations

to interact.

If we consider these characteristics together it is clear that no commercially available middleware or

operating system meets all of them. The requirements demand a wide-area operating system---not just an

assortment of scripts and glue.  We have spent the last five years designing and implementing one such

wide-area OS: Legion.

3. The Legion Wide-Area Operating System

Legion is structured as a system of distributed objects.  All of the entities within Legion are represented by

independent, active objects that communicate using a uniform remote method invocation service. In many

ways, Legion' s fundamental object model is similar to CORBA' s [1]: object interfaces are described using an
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interface description language (IDL), and are compiled and linked to implementations in a given language

(e.g., C++, Java, Fortran).  This approach enables component interoperability between multiple

programming languages and heterogeneous execution platforms.  Objects provide a clean, natural approach

to the problems of encapsulation and interoperability: because all of the elements in the system are objects

they can communicate with one another regardless of location, heterogeneity, or implementation details.

Objects are thus our building blocks for constructing a wide-area OS.  To understand that system, we will

examine how Legion solves traditional operating system problems such as resource representation and

management, task scheduling and control, naming, file systems, interprocess communication, and protection.

3.1. Resource Representation and Management

The abstraction, control, and management of underlying hardware resources is among the most fundamental

services provided by any operating system.  Because a Legion system runs on top of the unmodified

operating system of each host in the net, it does not need to manage very low-level resources---the local OS

does that job.  At Legion' s level, the resource base instead consists of multiple heterogeneous processors and

storage devices.

Both processors and storage resources are represented as objects, called host objects and vault objects [2].

There are two primary benefits resulting from this object-based approach.  First, each object defines a

uniform interface to host and vault resources in a Legion system.  Host objects provide a uniform interface

to object (task) creation, and vault objects provide a uniform storage allocation interface, even though there

may be many different implementations of each of these.  Second, these objects naturally act as resource

guardians and policy makers.  For example, the host objects used to manage the processor resources at a

given site are the points of access control for task creation at that site.  If an organization participating in

Legion wishes to restrict job creation on local resources exclusively to local users, the host objects at the

organization' s site can enforce this policy.

This object-based model for resource representation allows a tremendous degree of extensibility and site

autonomy.  Applications (acting as resource clients) need only be aware of the generic object interfaces for

the resources they require.  Resource providers can provide desired implementations of the resource objects.

If the administrators of a local site wish to enforce a specialized access control policy for their processing

resources, they can extend the implementation of the basic host object provided by Legion to incorporate the

desired policy.  If the owner of a disk wants to use local Unix-based disk-usage accounting and quota tools,
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he can use a vault object implementation that allocates storage under the appropriate local Unix user-id for

each client.  Of course, Legion provides reasonably configurable default implementations of the basic

resource objects; resource providers do not need to write any code to make their resources available to

Legion.  As new local resource usage policies become desirable, however, Legion explicitly supports such

natural evolution.

It is important to note that resource interfaces are not carved in stone.  If new interfaces for underlying

resources are required, new classes of resource objects can be created to extend or replace existing

interfaces.  For example, a number of the processing resources in several deployed Legion networks require

access through a local queue management system such as Codine [4] or LoadLeveler [5]. On such hosts, an

extended queue-aware version of the Legion host object is used.

3.2. Task/Object Management

Traditional operating systems must provide the user with interfaces to start new tasks and to control the

execution of existing tasks (e.g., suspend, resume, terminate).  In Legion, the notion of a task or process

corresponds closely to the Legion object---objects are the active computational entities within the system.

The Legion interface for object control (as well as the implementation of object management functions, such

as failure monitoring) is associated with a Legion object type called the Class Manager. Class Managers are

otherwise normal Legion objects that are responsible for the management of a set of other Legion objects.

The objects in the set are known as the Class Manager' s instances. These instances have many similarities:

each exports the same object interface and each is subject to the management policies implemented by the

shared Class Manager. Class Managers are themselves managed by higher-order Class Managers, forming a

rooted hierarchy known as a Legion domain. A complete Legion system can be composed of any number of

domains, forming a forest of Class Manager hierarchies.

The interface exported by Class Managers supports a natural set of object (or task) management operations,

such as methods to create objects, destroy objects, and query instance status and location.  Furthermore,

Class Managers serve as policy makers for their instances, controlling activities such as resource usage

(permitting its instance to run only on a known set of trusted hosts, for example).  Internally, Class Managers

act as active monitors for their instances, maintaining up-to-date status information about each.  Class

Managers monitor their instances for failures, and coordinate failure response activities in case of faults.
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An additional Class Manager service is persistence---all Legion objects can be persistent, existing arbitrarily

beyond the lifetime of their creating program.  Since Legion is intended to enable systems containing

billions of objects, it supports the notion of object deactivation to avoid overloading the system with idle

processes in the presence of large numbers of persistent objects.  When an object is not in use it can be

deactivated: its state is saved to stable storage and its containing process is deallocated.  This notion of

object activation/deactivation is similar to traditional operating systems temporarily swapping out a running

job to stable storage then later recovering the job' s state, allowing it to resume.  To make object deactivation

transparent to clients, the Class Manager acts as an automatic reactivation agent for its instances.  If a client

attempts to invoke a method on an inactive object, the object' s Class Manager automatically reactivates the

object, making reactivation in Legion as transparent as resuming swapped-out processes in traditional

systems.

The decomposition of object management responsibilities into an arbitrary number of Class Managers

provides a natural distribution and resulting scalability of object management activities in Legion.

Furthermore, since Class Managers are extensible, replaceable objects, they provide a natural means for

extending or replacing object management mechanisms in Legion.  For example, to enable certain forms of

failure resilience some Legion classes employ replication, in which case an extended version of the Class

Manager creates and manages the replicas of each instance transparently to clients.

3.3. Naming

Naming is a basic interface issue in operating system design.  For example, modern operating systems

typically define a name space for identifying processes (e.g., PIDs in Unix), as well as a file system name

space for identifying files and directories.  In Legion, all entities---files, processors, storage devices,

networks, users, etc.---are represented by objects, so the object naming mechanism is of central importance.

Legion objects are identified by a three-level naming scheme.  At the lowest level each object is assigned an

Object Address (OA), which contains a list of network addresses that can be used to pass messages to the

object (an OA might contain an IP address and port number).  But since Legion objects can migrate, OAs

will vary over time.  Furthermore, clients may not care about object locations.  Therefore Legion defines an

intermediate layer of location-independent names called Legion Object Identifiers, or LOIDs: unique,

immutable identifiers that are assigned to objects on creation.  Although higher level than OAs, LOIDs are

binary, globally unique, variable-length identifiers, and do not constitute a convenient user-level naming

scheme. To address this, the third level naming layer is a user-level, hierarchical directory service called
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context space, which allows arbitrary Unix-like string paths to be assigned to objects. As part of its naming

mechanism Legion provides scalable replicated binding services that allow translation from higher-level

names to lower-level names (i.e., context paths to LOIDs and LOIDs to OAs).  Also, to reduce overall

binding traffic, clients cache bindings in their own memory space.

The Legion naming mechanism effectively reduces the complexity of distributed application design by

providing a single global name space for all entities within the system.  A typical distributed environment

supports separate name spaces for files, hosts, and processes, whereas Legion supports the same global name

space for all of these entities and more.  Furthermore, at the highest level (context space) this naming

mechanism presents an extremely simple interface of Unix-style paths.

3.4. File System

In traditional operating systems, persistent storage is typically managed in the form of a file system.

Legion' s use of persistent objects, coupled with the Legion global naming service, enables Legion to fully

subsume the notion of a file system.  Users are presented with familiar concepts of paths, directories, and

universally accessible files, but Legion' s "file system" is also populated with other arbitrary object types

such as Host objects, Class Managers, and user application tasks.

Legion' s support of a generalized persistent object space in place of a traditional rigid file system provides

the basis for an extensible file system service in which individual files are customized to better suit

application requirements.  For example, Legion file objects can be made to support application-specific

access patterns.  Consider a file logically containing a two-dimensional grid of data items: in a traditional

file interface access to a single row or column of the grid might require multiple file operations, but in

Legion an extended file type can be used to represent the 2-D file object, providing additional methods

allowing row and column access.

3.5. Interprocess Communication

To enable interprocess communication, Legion supports a variation of remote method invocation designed

to address the needs of wide-area applications.  Wide-area systems communication can be costly, in terms of

both latency and bandwidth.  Applications in the wide-area operating system require effective tools for

reducing interprocess communication, and for tolerating the high latencies involved. To address this issue,

Legion supports a remote method invocation model known as macro-dataflow (MDF) in addition to (and

built upon) a basic, low-level message-passing service.
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MDF is an asynchronous remote method invocation protocol that enables multiple concurrent method

invocations from a single client as well as the overlap of remote methods and local computation.

Furthermore, MDF methods encode data-dependencies for remote method results.  In MDF, a remote

method caller need never receive the results of that method.  If the results are needed only as parameters for

other future method invocations, this fact is encoded in the method invocation protocol and the remote

method implementation will forward the results directly to the objects that will handle the appropriate future

invocations.  Legion automates this protocol, enabling the client (typically through the use of a Legion-

aware compiler such as MPLC [6]) to specify complete program graphs of interdependent remote method

invocations, and enabling objects to match incoming parameters into complete method invocations

(including data dependencies).

3.6. Protection

Security is an integral part of the services required from a wide-area OS.  Resource providers in the system

desire protection from user applications and from parts of the system outside their local domain.

Furthermore, they require the ability to ensure that local resources are managed by the wide-area OS in a

manner that preserves local policies.  Applications programmers have a complementary set of concerns,

wanting to ensure that the desired security properties of their applications are achieved.  To enable the

expression and enforcement of security policies, by both resource providers and application programmers,

Legion provides a set of security mechanisms developed as an integral part of the Legion object architecture.

The basic security service provided by Legion is user-selectable data privacy and integrity within the Legion

message passing layer.  Legion allows messages to be fully encrypted for privacy, digested and signed for

integrity checking, or sent in the clear if low performance overhead is an application priority.  Cryptographic

services in Legion are based on the RSA public key system [7]. To protect against certain kinds of public

key tampering, objects encode their RSA public keys directly into their LOIDs.  Simply by knowing the

name (LOID) for an object, a client is assured of being able to communicate securely with that object.

In any operating system, access control and resource protection are central issues. In Legion, all resources

are represented by objects, so access control and resource protection are specified entirely at the object level.

Access control in Legion is enforced autonomously by invoked objects on a per-method basis using a

mandatory internal method called MayI.  When a method invocation arrives at an object, it is first processed

by the object' s MayI method, which can enforce an arbitrary access control policy.  Typically, access control

decisions are made by MayI on the basis of credentials passed along with method parameters.  Credentials
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consist of a free-form set of rights signed by a responsible client.  For example, a credential might read, "the

bearer has the right to call the read method on file ' paper.txt' , signed Adam," where "paper.txt" and "Adam"

are object names.  The default MayI implementation is based on user-configurable access control lists,

including the notion of groups (supported by Group objects).

In order for system-level access control mechanisms to interface with and apply to human users, operating

systems must define mechanisms for user identity and authentication.  Like all other Legion entities, users

are represented by objects which are assigned unique LOIDs.  While the user' s LOID contains his public key

the user keeps his private key safe through arbitrary local means, such as a smart card.  Trusted Legion

programs executed by the user (e.g., the Legion login shell) rely on the user' s private key to sign appropriate

credentials for outgoing methods.  These credentials form the basis for authenticating the user and are

typically used in conjunction with per-object access control lists to enforce user access control.

Figure 1. The Legion System. Legion acts as a wide-area operating system, providing the abstraction of a globally
accessible object space to users. This object space is supported by, and provides an interface to, a widely distributed,
heterogeneous resource base spanning multiple administrative domains.
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4. Legion in Practice

The set of services provided by Legion comprise a wide area, cross-domain, heterogeneous operating system

(see Figure 1, above).  The primary goal of this operating system is to effectively support wide-area

applications.  So how are applications structured to use Legion' s services and to satisfy their requirements in

this wide-area OS environment?  To answer this question we return to one of our motivating examples: the

MRI data collection system for Harvard Medical School.

The components of the MRI data collection application run on central servers at Harvard and on front-end

computers located at the MRI centers. The architecture is a simple star.  At each leaf node there is an MRI

collection object that scans the local disk for specially tagged MRI images that have been dumped by the

scanner.  These images are copied into the persistent data space of the object so that they will not be lost

when the scanner' s "dumping directory" is automatically wiped.  Periodically the MRI collection object calls

the central processing object at Harvard to upload the data in encrypted form, authenticating itself through

the inclusion of appropriately signed certificates in the method invocations.  When it receives a complete

batch of scans, the central processing object starts an image processing pipeline, which consists of objects

automatically scheduled onto local compute servers. The results are inserted in the project' s image database.

When a leaf node is rebooted, the node' s host object starts automatically and registers with its manager in the

larger Legion net.  The Class Manager object for the MRI collection component detects, via polling of the

host object manager, that the node is up and requests a restart of the MRI collection object for that node.

The host object on the node handles the request, detecting simultaneously if the MRI collection object has

been upgraded and, if so, downloading the new executable automatically.  As it comes up the MRI

collection object recovers its state, which may included as-yet-untransmitted MRI scans.

Both the host object and MRI collection object Class Managers have replicated persistent state.  If the Class

Manager goes down, its own higher-order Class Manager will detect the loss and restart it using the replica.

This detection and restart behavior recurses up a tree of metamanagers (typically only one or two levels) to

the root Legion manager object, which has a hot spare.

The Class Manager, host, and other objects in the system are all configured with strict access control.  Calls

to various objects must present credentials to gain authorization.  The MRI collection application and its

Legion infrastructure is owned and accessible only by a small set of Legion users at Harvard.  These users
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can centrally monitor and configure the system using Legion tools that provide views of all the hosts,

objects, etc., that are running or down.

5. Related Work

There is a rich literature on distributed systems going back over two decades.  A good starting place is Sape

Mullender' s two distributed systems books [9,10].  These books are a collection of lecture notes from five

separate instances of "The Advanced Course in Distributed Systems." Another good source is the Coulouris,

Dollimore, and Kindberg textbook [11]. An excellent treatment of distributed operating systems can be

found in Tanenbaum [12].

5.1 Metacomputing Systems

The Globe project [13], at Vrije University, shares many common goals and attributes with Legion.  Both

occupy middleware roles (running on top of existing host operating systems and networks), both support

implementation flexibility, both have a single uniform object model and architecture, and both use class

objects to abstract implementation details.  But where a Globe object is passive and is assumed to be

physically distributed over potentially many resources in the system, a Legion object is active.  In addition,

we don' t preclude the possibility of an object being physically distributed over multiple resources but we

expect that it will usually reside within a single address space.  These different views of objects lead to

different mechanisms for interobject communication: Globe loads part of the object (called a local object)

into the address space of the caller whereas Legion sends a message of a specified format from the caller to

the callee.  Another important difference is Legion' s use of core object types.  Our core objects are designed

to have interfaces that provide useful abstractions that in turn enable a wide variety of implementations.  We

are not aware of similar efforts in Globe.  We believe that the design and development of the core object

types define the architecture of a system, and ultimately determine its utility and success.

The Globus project [14], at Argonne National Laboratory and the University of Southern California, and

Legion share a common base of target environments, technical objectives, and target end users, as well as a

number of similar design features.  However, we have fundamentally different philosophies driven by

fundamentally different high level objectives.  Globus strives to provide a basic set of services that makes it

possible to write applications that operate in a wide-area environment.  The Globus implementation is based

on the composition of working components into a composite metacomputing toolkit.  Legion strives to

reduce complexity and provide the programmer with a single view of the underlying resources.  Legion

builds higher-level system functionality on top of a single unified object model.
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The Globus approach of adding value to existing high-performance computing services, enabling them to

interoperate and work well in a wide-area distributed environment, has a number of advantages.  For

example, this approach takes great advantage of code reuse, and builds on user knowledge of familiar tools

and work environments.  But this sum-of-services approach has a number of drawbacks: as the number of

services grows in such a system, the lack of a common programming interface and model becomes a

significant burden on end users.  By providing a common object programming model for all services, Legion

enhances the ability of users and tool builders to employ the many services that are needed to effectively use

a metacomputing environment: schedulers, I/O services, application components, and so on. Furthermore, by

defining a common object model for all applications and services Legion allows a more direct combination

of services.  For example, traditional system-level agents such as schedulers can be migrated in Legion just

as normal application processes are, since both are normal Legion objects exporting the standard object-

mandatory interface. We believe the long-term advantages of basing a metacomputing system on a cohesive,

comprehensive and extensible design outweigh the short-term advantages of reusing existing parallel and

distributed computing services.

5.2. Legion and CORBA

CORBA, the Common Object Request Broker Architecture [8], is a well-known distributed object standard.

CORBA' s most recent version, 3.0, defines communication protocols, naming and binding mechanisms,

invocation methods, persistence, and many other features and services essential for an object-based

architecture.  Its feature set and Legion' s overlap in many areas.

Nevertheless, the two architectures are distinct in their underlying emphasis.  CORBA was initially a

reaction to the software integration problem.  Differences between software components in location, vendor,

implementation language, or execution platform made building integrated applications difficult if not

impossible.  The CORBA developers focused on enabling interoperability, and the architecture provides a

common, object-based playing field where components can communicate and interact.

In contrast, the Legion project began with fundamental computing resources on a wide-area network---CPU,

disk, data, etc.---and built an overarching framework for them.  This OS-style approach targeted the ability

to manage and reason about these resources.  The goal was to reconstruct a coherent computing environment

with core OS capabilities over a complex, heterogeneous environment.  One outcome of this approach is that

Legion can be used simply for its high-level OS services to run, schedule, and manage legacy applications in

a network.  But it also provides the same sort of common playing field as CORBA (and can mimic the

CORBA standard) for integrating applications.  The two aspects combined give Legion its real power.
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As CORBA evolves, some operating system-type services are starting to be defined for it.  Scalability and

other wide-area concerns are becoming more important.  It remains to be seen how well its architecture will

accommodate these changes.

5.3. The World Wide Web

What is commonly referred to as the "Web" is not a single entity whose characteristics can be isolated and

analyzed.  Instead, the Web is a broad category of applications, protocols, and libraries, primarily focused

upon content delivery to end-user clients running Web browsers.  Advances in Web browser interfaces and

functionality have driven the Web revolution, transforming the World Wide Web from a tool used by a few

scientists into the omnipresent phenomenon it is today.  Given the Web' s broad scope, and the fact that the

Web is most users' primary experience of distributed computing today, it is important to consider the Web' s

role in the wide-area OS.

First, we argue that the Web in its current form clearly does not constitute a wide-area OS of its own.  Basic

operating system issues, such as resource management and task scheduling, are simply not defined as part of

the Web' s structure.  We view this not as an indictment of the Web, but a recognition of the Web' s real

strengths as a remote access medium for distributed content, and as a ubiquitous interface technology for

accessing distributed applications.

Given these strengths, the Web constitutes a perfect front-end, or interface, to applications running in wide-

area OSs, such as Legion (see Figure 2, below). Application interfaces can be written in Java, or they may

use HTML and the Common Gateway Interface (CGI).  They can communicate with back-end applications

using either native socket protocols or HTTP, or using higher-level interfaces provided by the wide-area OS.

Viewed this way, the Web and wide-area OSs such as Legion are complementary.  For many users, the Web

provides the most natural window into the Legion universe.
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Figure 2. Legion and the Web. The Web provides an ideal interface technology for building front-ends for distributed
applications.  Core applications execute within Legion, using the Legion wide-area OS services. Clients running web
browsers interact with applications in a variety of ways, ranging from standard HTTP and CGI, to control via active
content using sockets or Legion method invocation as communication media.

6. Conclusion

Rapidly falling wide-area bandwidth prices are bringing with them increasing demand for wide-area

applications: applications whose physical and software components are geographically distributed,

run on multiple platforms, and often overlap multiple administrative domains.  Complexity management in

this environment is critical to reduce the cognitive burden on designers and programmers.  We believe that

simply extending existing tool sets and cobbling together ad-hoc solutions with scripts and sockets is a

fundamentally flawed approach to the problem. Instead, system software that provides higher level

abstractions is required.

Wide-area OS software has the ability to simplify the construction of applications for wide-area systems

much in the same way that operating systems simplified the development of applications for single CPU

Legion Services

W W W

Legion
Appl icat ions

Leg ion  OS
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systems over thirty years ago.  We further believe that object-based approaches to wide-area operating

systems are best-suited to the problem due to their complexity encapsulation properties.

Five years ago we set out to design and build a wide-area OS. We started from scratch and designed the

system from first principles to meet the needs of a wide-area, multi-organization system.  The result, Legion,

is an operational system that is running at a number of sites in the United States, including the two NSF

supercomputer centers (SDSC and NCSA), two of the DoD supercomputer centers (NAVO and ARL),

NASA ARC, and at a number of universities.  (See <http://legion.virginia.edu> for more information on

Legion.)

A number of scientific applications have been ported to Legion from areas as diverse as molecular biology,

materials science, ocean and atmospheric science, electrical engineering, and computer science.  Our

experience to date has been good---users have responded particularly well to the concept of a single global

object space, and the subsidiary notion of a global extensible file system that the object space supports.

 Furthermore, the object model has proven a convenient medium for expressing a range of user-required

system services such as the Message Passing Interface (MPI), a popular library for developing distributed

memory parallel programs.  Starting from our successful base of system deployment and application

support, we are continuing the development of higher-level services in Legion, driven by the demands of

exemplary applications, such as those described in this paper.
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