Applications of Small Scale Reconfigurability to Graphics Processors
University of Virginia Computer Science Technical Report CS-2005-11

Kevin Dale, Jeremy W. Sheaffer, Vinu Vijay Kumar, David P. Luebke,
Greg Humphreys, and Kevin Skadron
{kdale, jws9c, vvov, luebke, humper, skadron} @virginia.edu

Abstract

We explore the application of Small-Scale Reconfigura-
bility (SSR) to graphics hardware. SSR is a relatively new
architectural technique wherein functionality common to
multiple subunits is reused rather than replicated, yielding
high-performance reconfigurable hardware with reduced
area requirements. We show that SSR can be used ef-
fectively in programmable graphics architectures to allow
double-precision computation without affecting the perfor-
mance of single-precision calculations and to increase frag-
ment shader performance with a minimal impact on chip
area.

1 Introduction

Every hardware system makes a tradeoff between perfor-
mance and flexibility. At one end of the spectrum, general
purpose processors provide maximum flexibility at the ex-
pense of performance, area, power consumption, and price.
Custom ASICs are the other extreme, providing maximum
performance at a minimum cost, albeit for only a very nar-
row set of applications.

Modern graphics hardware lies somewhere between
these two extremes; very high performance is desired while
maintaining the flexibility of a programmable processor.
Traditional in-between hardware solutions like FPGAs are
inappropriate for graphics processors because of their large
size and low performance relative to their fixed-logic coun-
terparts [12]. Small-scale reconfigurability (SSR) provides
an attractive compromise; systems that use SSR compo-
nents can approach the high speed and small size of ASICs
while providing some specialized configurability. In this
paper, we explore the applicability of SSR to programmable
graphics hardware.

The simplest example of a reconfigurable component is
two fully functional components connected with a multi-
plexer (see Figure 1). Although these two components are

disjoint, in typical usage they will contain substantially sim-
ilar redundant substructures, which is precisely the situation
in which SSR performs best. Rather than replicate all of the
redundant structure, we can instead create a single compo-
nent with several internal multiplexers, replicating only that
substructure for which additional latency would be accept-
able to our application.

A common SSR unit is the morphable multiplier. These
multiplier-adders can be reconfigured into a multiplier or
an adder in a single cycle. When used to create single-
precision floating point units, morphable multipliers yield
a nearly 17% reduction in total area when compared to the
sum of the sizes of their constituent parts [3].

Graphics processors, like specialized multimedia proces-
sors and DSPs, are a particularly suitable target for SSR
due to their vector-processor like operations. When the
same operation is performed repeatedly in SIMD fashion,
reconfiguration and its associated overhead is infrequently
needed, and any cost can be amortized over many instruc-
tions. Furthermore, SSR-based components typically have
lower static power requirements because less hardware goes
unused.

2 Related Work

Dynamically reconfigurable hardware has been a hot
topic in recent computer architecture literature, especially
in the FPGA and reconfigurable computing communities.
The configurability of these systems serves myriad design
goals, among them improved performance, power, area, and
fault tolerance characteristics.

Even et al. describe a dual mode IEEE multiplier—a
pipelined unit capable of producing one double-precision or
two single-precision multiplications every clock cycle with
a three cycle latency [5]. The authors argue that the reuse
of substructure yields a cheap device that performs well for
both precisions. They further claim that the single preci-
sion mode is particularly useful for SIMD applications, like
graphics, because it is conducive to systems on which the

MUX

(a) Naive reconfigurable hardware

MUX

(b) A more intelligent solution

Figure 1. A naive implementation of reconfigurable hardware can be built by simply multiplexing
between two distinct, unmodified units (left), but a more efficient design would reuse common

substructure to avoid replication (right).

same operation is regularly repeated on large numbers of
data points.

Guerra et al. explore built-in-self-repair (BISR) and its
application to fault tolerance, manufacturability, and appli-
cation specific programmable processor design [6]. Previ-
ous work in the area of dynamic repair had made use of
specialized redundant units to replace damaged units; their
paper describes the synthesis of more general units that can
replace any of several units on a chip when damage is de-
tected. The authors coin the term HBISR (heterogeneous
BISR) for the technique.

A morphable multiplier is a device capable of perform-
ing either a floating point multiply or add using the same
hardware structure [3]. Morphable multipliers require less
area than the sum of the area needed for a separate multi-
plier and adder (in fact, they require only slightly more than
a multiplier alone), while imposing negligible performance
penalties.

Metrics like area, performance, and power are easily
quantified, but it is less obvious how to measure the increas-
ingly important metric of hardware flexibility. Compton
and Hauck have defined a testing method and quantification
metric for flexibility of reconfigurable hardware [4]. Other
examples of relevant research in reconfigurable hardware
include Kim et al. [8] and Chiou et al. [2].

The work in this paper makes use of Brook [1], a stream-
based programming language which allows the program-

mer to write general-purpose applications for a GPU with-
out worrying about the sometimes byzantine details of GPU
programming. Our experiments all use Chromium [7]
to intercept and analyze streams of graphics commands
made by real applications. The primary advantage of us-
ing Chromium is that we ensure that our workloads are not
contrived. Although we use Brook and Chromium without
modification, we have enhanced the Qsilver graphics archi-
tectural simulator [10, 11] to model the necessary aspects of
the fragment pipeline. A detailed description of our modifi-
cations to QSilver and our experimental setup are presented
in sections 3 and 4.

3 Simulation Setup

Qsilver is a simulation framework for graphics architec-
tures that can simulate low-level GPU activity for any exist-
ing OpenGL application [10]. Qsilver uses Chromium [7] to
intercept and transform an OpenGL application’s API calls
and create an annotated trace that encapsulates geometry,
timing, and state information. This trace serves as input
to the Qsilver simulator core, which performs an accurate
timing simulation of the graphics hardware and produces
detailed statistics.

Qsilver is configured at runtime with a description of its
pipeline. In these experiments we simulate an NV4x-like
architecture, with a pipeline configuration similar to that of

Rasterizer Loopback

| I I I - -
| Crossbar |

SFU

FAC| |FAC| |[FAC| |FAC

Texture Operations

(a) Stage 1

Crossbar

FAC| |FAC| |FAC| [FAC

| Stage 2 Router | |sFu

FAC| | |FAC| | [FAC| |FAC

I&'I

(b) Stage 2

Figure 2. Proposed SSR fragment units for our simulation. FAC modules are our Flexible Arithmetic
Units, and SFU modules are Special Function Units used to perform special scalar operations like
reciprocal square root. We feel that these units are representative of those used in the fragment

portion of modern graphics hardware.

NVIDIA’s 6800 GT, so we configure Qsilver to model a sys-
tem with 6 vertex pipelines and 16 fragment pipelines. The
fragments are tiled in blocks of 2 x 2, so we effectively have
4 tile pipelines, each of which can process 4 fragments si-
multaneously. NV4x GPUs use a similar tiled configuration
in the fragment engine.

For these experiments, we enhanced Qsilver to track
fragment shader activity. Our modified Qsilver simula-
tor stores a per-triangle identifier which uniquely specifies
which, if any, fragment shader was bound when that triangle
was being rendered. We also store the text of the fragment
shaders so that they can be analyzed by the Qsilver simula-
tor core.

4 Experiments and Results

In this section, we describe two experiments we per-
formed to validate our hypothesis that using SSR compo-
nents in a modern GPU architecture can benefit certain ap-
plications. We show improved performance in the recent
game Doom III with only a minimal impact on GPU die area
and also demonstrate that double-precision floating point
capabilities can be added to the fragment pipeline without
affecting the performance of single-precision applications.

4.1 Increased Throughput

We first compared the simulated performance of an
NV4x-like fragment pipeline to that of an SSR pipeline ar-
chitecture, whose fragment units are depicted in Figure 2.
The fragment units in our target SSR architecture are sim-
ilar to those found in NV4x GPUs!. However, we replace
both the multipliers and adders in stages 1 and 2 with single-
precision Flexible Arithmetic Units (FACs). FACs can be
very quickly reconfigured to perform either a multiplication
or an addition and use only slightly more gates than a mul-
tiplier. With current technology, these FACs can produce a
result every cycle and can be reconfigured between cycles,
assuming a 400 MHz clock and a two stage pipeline. This
modification gives us significantly more scheduling oppor-
tunities, as we can execute three vector additions in a sin-
gle pass, while an NV4x fragment unit can only perform
one [9]. Moreover, there is more freedom to schedule dot
product and multiply-accumulate operations.

Given these additional scheduling opportunities and the
known scheduling constraints of NV4x GPUs, we hand
scheduled fragment programs intercepted from a 50-frame

! Using those details that have been made available to the public or in-
directly obtained via patents and extensive benchmark tests.

(a)

(b)

Figure 3. Screen captures from Doom Ill. On the left, the color of each pixel is modulated to to indicate
which fragment program generated it. The right image is the unmodified rendering from the game.
Notice that the majority of pixels are generated by programmable fragment shaders.

Doom IIT demo (see Figure 3), which was then simulated
under Qsilver. An NV4x has dedicated hardware for per-
forming common half-precision operations in parallel with
full precision operations; due to limitations with the cur-
rent NVIDIA drivers, we were forced to require NVShader-
Perf (a utility that displays shader scheduling information
for NVIDIA hardware) to schedule programs for our NV4x-
like architecture using the full precision path only. From
the simulation of this data stream, we obtained a 4.27%
speedup over the entire graphics pipeline for the SSR ar-
chitecture.

Equally as important, based on conservative gate count
estimates, each FAC requires 12,338 gates, only 710 more
than a single-precision multiplier (11,628 gates). Replac-
ing the adders (7,782 gates) requires 4,556 additional gates.
This additionally requires the small overhead of a multi-
plexer to configure the FACs. Based on our gate estimates,
with 16 fragment pipelines, the cost of our proposed use of
SSR is 382,464 gates, which is approximately 0.2% of the
total area of NVIDIA’s 6800 GT.

4.2 Dual-Mode IEEE Adders and Multipliers

The GPGPU and scientific computing communities
would like to have the ability to perform double-precision
calculations on the GPU. Unfortunately for them, the gam-
ing industry drives the graphics hardware industry, and
games do not require double-precision. We present a
method by which both gaming and scientific communities
can get what they want.

A dual-mode floating point unit is a small-scale re-
configurable unit capable of performing two simultaneous
single-precision operations or one double-precision opera-

tion. Dual-mode units can be fully pipelined to produce re-
sults every cycle. Like other SSR units, dual-mode multipli-
ers and adders require internal multiplexers for path selec-
tion. Additionally, they require a rounding unit capable of
flexible rounding modes. The total additional structure for
this modification is insignificant. We have conservative gate
count estimates for a dual precision FAC of 38,475 gates;
this is significantly less than the combined gate count of a
dual precision adder (13,456 gates) and multiplier (37,056
gates)—50,512 gates total. Based on component similari-
ties, a configurable single-precision/double-precision FAC,
which we describe here, would require approximately the
same gate count.

We simulate a pipeline in Qsilver that uses dual-mode
multipliers and adders in the fragment engine. Because we
have modified only the multiplication and addition units,
additional precision is not available for specialized opera-
tions such as logarithms or square roots. Although many
scientific applications would benefit greatly from high pre-
cision addition and multiplication alone, a full double-
precision arithmetic engine would be ideal. Dual-mode re-
ciprocal, square-root, logarithm, and other specialized units
are a topic for future exploration.

To validate an SSR-based graphics architecture capable
of both single- and double-precision, we traced four Brook
demo programs through Qsilver:

1. bitonic_sort, a parallel sorting network
2. image_proc(25,25), an image convolution shader
3. particle_cloth(5,10,15), a cloth simulation

4. volume_division(100), a volume isosurface extracter.

Demo || bitonic_sort | image_proc | particle_cloth

volume_division

32-bit cycles || 468 1,292 19,504 254,923,418
64-bit cycles || 877 2,525 38,959 509,846,783
32-bit—64-bit speedup || .534 512 501 .500

Table 1. Single- and double-precision GPGPU computations using SSR. Each application comes with
the Brook distribution. The 32-bit cycles row shows the GPU cycle count for our NV4x-like architecture.
Note that these timings are identical whether we are using a dual-mode unit configured in single-
precision mode or a dedicated single-precision unit. The 64-bit cycles row shows the cycles required
for double-precision after reconfiguration. As expected, none of the programs takes more than twice
as long with double-precision than with single-precision.

The results are summarized in Table 1. This table lists
the cycle counts for each application in both single- and
double-precision modes. Because we retask two single-
precision FPUs for each double-precision FPU, double-
precision calculations effectively cut the throughput of the
architecture. Of course, the double-precision calculations
never require more than twice as long as the corresponding
single-precision calculation. Because the timing results are
identical for dual-mode units configured in single-precision
mode and dedicated single-precision units, we have shown
that by using SSR we can add double-precision addition
and multiplication to the graphics pipeline with only a mod-
est increase in gate count and without affecting the perfor-
mance of the commonly-used single-precision path.

5 Conclusions

We have extended Qsilver to record information on frag-
ment program state in its annotated trace. Our modified
Qsilver core then uses this new information, along with
fragment program listings and timing information, to model
the programmable fragment engine of an NV40-like archi-
tecture. With this framework in place, we have demon-
strated the applicability of Small-Scale Reconfigurability
to graphics architectures. We have shown that it is pos-
sible to increase the throughput of the fragment engine
with only a small increase in die area. In addition, we
have demonstrated that dual-mode multipliers can provide
double-precision in the fragment engine to support scien-
tific computing in the GPGPU community with no detri-
ment to the gamers who drive the market. The vector-like
operations performed on GPUs make them a particularly
good target for such techniques, since need for reconfigu-
ration is rare in SIMD environments, and since the cost of
reconfiguration is amortized over many operations.

6 Future Work

The fragment engine represents only a small portion of
the graphics pipeline. Applications of SSR will likely yield
similar performance improvements in other units as well.

Another area of exploration that is likely to be fruitful
for SSR is power consumption. Whenever portions of a
chip are unused, they use no dynamic power, but they leak
static power. By their very nature, SSR components are
rarely idle, and should therefore leak a minimum of static
power. Power leakage is currently a major issue with GPUs,
and reducing leakage becomes crucial as continuing im-
provements in chip manufacturing technology exacerbate
this problem.

7 Acknowledgments

We would like to thank John Lach for his input on SSR
and Peter Djeu for his collaboration on Chromium exten-
sions. This work was funded by NSF grants CCF-0429765,
CCR-0306404, and CCF-0205324.

References

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, , and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. ACM Transactions on
Graphics, 2004.

[2] L.-Y. Chiou, S. Bhunia, and K. Roy. Synthesis of application-
specific highly efficient multi-mode cores for embedded sys-
tems. ACM Transactions on Embedded Computing Systems,
2005.

[3] S. Chiricescu, M. Schuette, R. Glinton, and H. Schmit.
Morphable multipliers. In Proceedings of the International
Conference on Field Programmable Logic and Applications,
2002.

[4] K. Compton and S. Hauck. Flexibility measurement of
domain-specific reconfigurable hardware. In Proceedings of
the ACM/SIGDA Symposium on Field-programmable Gate
Arrays, 2004.

[5] G.Even, S. M. Mueller, and P.-M. Seidel. A dual mode IEEE
multiplier. In Proceedings of the International Conference on

Innovative Systems in Silicon, 1997.

[6] L. M. Guerra, M. Potkonjak, and J. M. Rabaey. Behavioral-
level synthesis of heterogeneous bisr reconfigurable asic’s.
IEEE Transactions on VLSI, 1998.

[7] G. Humphreys, M. Houston, R. Ng, S. Ahern, R. Frank,
P. Kirchner, and J. T. Klosowski. Chromium: A stream
processing framework for interactive graphics on clusters of
workstations. ACM Transactions on Graphics, 21(3):693—
702, July 2002.

[8] K. Kim, R. Karri, and M. Potkonjak. Synthesis of application
specific programmable processors. In Proceedings of Design
Automation, 1997.

[9] A. Seifert. NV40 technology explained. http:
//3dcenter.org/artikel/nv40_pipeline/
index3_e.php.

[10] J. W. Sheaffer, D. P. Luebke, and K. Skadron. A flexible sim-
ulation framework for graphics architectures. In Proceedings

of Graphics Hardware 2004, Aug. 2004.
[11] J. W. Sheaffer, K. Skadron, and D. P. Luebke. Studying

thermal management for graphics-processor architectures. In
Proceedings of 2005 IEEE International Symposium on Per-

formance Analysis of Systems and Software, Mar. 2005.
[12] V. Vijay Kumar and J. Lach. Designing, scheduling, and

allocating flexible arithmetic components. In Proceedings of
the International Conference on Field Programmable Logic
and Applications, 2003.

