Examining Routing
Solutions

S. Bapat, J.P. Cohoon, P.L. Heck,
A.Ju,L.J. Randall

Computer Science Report No. TR-91-18
October 1, 1991

EXAMINING ROUTING SOLUTIONS

S. Bapat, J. P. Cohoon, P. L. Heck, A. Ju, L. J. Randall
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

ABSTRACT

A visualization tool, Examine, is presented to aid
router development. Examine has the ability to dis-
play routing operations in a variety of ways (e.g.,
selective display of layers and nets). In addition,
Examine has rudimentary animation facilities that
enable a router developer to view a sequence of
routing frames or a routing frame composite.

INTRODUCTION

Developing VLSI physical design tools is a sophis-
ticated process. Although a variety of develop-
ment aids exist for coding, debugging, and
managing this software, there are almost no tools
that help computer-aided design developers to
find improvements in performance and functional-
ity. In particular, if a developer is to understand
and evaluate the effectiveness of a new and com-
plex heuristic or data structure, visualization tools
are necessary that can adequately trace and ani-
mate a router’s execution.

Viewing the ordinary output of a router or
placer through the standard graphical display rou-
tines of a design system is ineffective during tool
prototyping. Normal output and display routines
are intended for a circuit designer’s use in evaluat-
ing and modifying a particular circuit layout.

Standard algorithm visualization tools such as
Brown'’s Balsa II system [1] are similarly inappro-
priate for router visualization as they are intended
for pedagogical and documentation purposes and
have more complicated user-interfaces.

Since our research focus is developing state-of-
the-art routing and placement systems, we deem it
worthwhile to develop a physical design visualiza-
tion tool set. The focus of this paper is one such
tool. The tool is named Examine and it aids router
development by allowing the progress of routing
algorithms to be quickly evaluated through a
friendly graphical interface.

Examine is an X- and Motif-based Unix tool
that makes extensive use of color and shading. It
enables a router developer to examine interconnec-

tion output in a variety of ways:

e highlight just one interconnection or a col-
lection of interconnections in isolation or in
tandem with the other interconnections;

e zoom or pan a desired region of the routing
solution;

e view interesting interconnections on all lay-
ers or on specific layers using any desired
layering order;

e display a sequence of frames of a router’s
progress. The frames can be viewed either
in isolation or as a composite picture. In addi-
tion, the sequence can be viewed in normal
or in reverse order;

* maintain an Encapsulated Postscript history
of the routing displays.

In Figure 1, a copy of a typical Examine raster
display is given. The figure shows that Examine is
divided into three major window panes. The top
pane, the control pane, allows the router developer to
configure the appearance of the router output in the
middle pane, which is called the workspace pane. The
bottom pane is the message pane and it is where sta-
tus messages and warnings are displayed. In the
figure, the workspace pane is displaying a proto-
type router’s solution to Burstein and Pelavin’s Dif-
ficult Switchbox example [2]. In particular, Exam-
ine’s user is considering the prototype’s perfor-
mance on nets 3, 15, 18, and 20.

In the remainder of this paper, we discuss Ex-
amine in greater detail and suggest how it may con-
tribute to a developer’s understanding of a routing
tool.

INPUT SPECIFICATION

Examine expects as input a simple ASCII stream
that describes the basics of the routing solution. The
stream can come from either standard input, com-
mand line file name argument, or as the result of
Examine initiating a routing command sequence. In
Figure 1, the input was generated by the latter-most
method — running prototype sroute through filter
s-to-e which removes some extraneous debugging

N et

Figure 1. — Examine displaying selected interconnections of sroute for the Difficult Switchbox.

Figure 2. — Default Examine display for sroute’s
Difficult Switchbox solution.

messages and converts the router’s output to
Examine’s desired input format. This format is a
sequence of workspace display requests. The
requests have two forms — normal and simple.

The normal form begins typically with one of
the following lower-case letters: t, v, w, or 0. The let-
ters indicate respectively terminal, via, wire, and
obstacle. Following the letter is an object identifica-
tion tag which is normally a net identification num-
ber. Following the tag is either a single location co-
ordinate ora pair of location coordinates. It is a sin-
gle coordinate for a terminal or via display request,
where the coordinate specifies the center of the ter-
minal or via. For the wire and obstacle display re-
quests, it is a pair of coordinates that specifies the
starting and ending locations of the object. The last
part of a display request specifies the layer(s) on
which the object is to appear. For all but via re-
quests, this a single layer identification number.
For a via request, the starting and ending layers are
both indicated.

In the simple form, the input request does not
specify exact x- and y-coordinates for a display re-
quest. Rather, a location is specified through track
and column numbers. A simple request sequence is

Figure 3. — Viewing Net 3 of the Difficult Switch-
box solution.

initiated with either the command s or § and is ter-
minated with a second s or 5.

For the above normal and simple commands,
Examine uses default values for the width of the
objects. If a developer prefers to specify these val-
ues, there are upper-case equivalents to the display
requests that allow size specification. The obstacle
and wire display requests take a width specifica-
tion as their final argument. The via and terminal
display requests take width and length specifica-
tions as their final arguments.

There are two other display request com-
mands. One is the input break-point request which
is denoted by either b or B. This request both indi-
cates a temporary pause in the processing of the
display requests and serves to group a series of dis-
play requests into a single routing frame.

The remaining request type is the deletion re-
quest. A deletion request is surrounded by ad or D.
In between these markers, the developer may spec-
ify vias, terminals, and (partial) wire segments that
should no longer be displayed. The removal is ap-
plicable to the current and successive frames. This
feature is intended for routers with rip-up and re-
route capabilities.

Figure 4. — Viewing layer 2 of the Difficult Switch-
box solution.

BASIC OPERATION

The standard method of operation is to pipe the
output of a router to an appropriate filter that pro-
duces the desired Examine routing display
requests. This is the case for Figure 2, where proto-
type sroute’s complete solution to the Difficult
Switchbox is being displayed.

As depicted in Figure 2, the initial display of a
solution shows all interconnections, terminals,
vias, and obstacles. In addition, the display shows
all layers in standard order.

If a router developer prefers to view a single net
then the Display All option is un-set and the Current
Net scrollbar is slid to the appropriate point and the
Update Display button is selected. If the scrollbar re-
quest is set to net 3, the result would be the work-
space pane depicted in Figure 3. Observe that a
stipple pattern is used to highlight the current net.

If a router developer instead prefers to view the
interaction of the current net with respect to some
other nets, the Active Net widget may be accessed
and the other nets of interest may be entered. If the
interesting active nets were 15, 18, and 20, an Up-
date Display selection would produce the display of
Figure 1. Observe that the current net and active
nets in Figure 1 have different stipple patterns. The

router developer also has the option by setting Dis-
play All to view the remaining nets. These remain-
ing nets would be displayed using the standard
stipple pattern.

If the router developer prefers to see a selected
layer(s), the appropriate Layer button(s) can be de-
selected. This is demonstrated in Figure 4 where
the two-layer routing solution of Figure 2 is dis-
played with layer 1 turned off. Although the con-
trol panel displayed in Figure 2 implies a seven
layer limit, this is just the default.

Since Examine will see its greatest use in the
prototyping of multi-layer routers, particular
attention was paid during its development to
ensure that color and shading layering cues were
present, as well as other layering display mecha-
nisms. For example, in addition to its layer selec-
tion capabilities, Examine has the capability to
display the layers in an arbitrary order. This is per-
formed by entering the desired sequence in the Lay-
ering Order widget. Another layering option
allows the current layer ordering to be permuted
either forward or backward. This is done respec-
tively through Shift Front or Shift Back button selec-
tion.

If the router developer instead prefers to exam-
ine a different solution or a different router’s per-
formance, it is not necessary to exit Examine.
Rather, the developer may issue a Unix command
pipe to generate the new input to Examine. For
example, to examine a different input file, the Unix
command cat can be used. A different example is
depicted in Figure 4, there the Routing Filter widget
specifies a routing command pipe in which sroute
solves the switchbox instance burstein.difficult and
pipes its output through the filter s-to-e.

CINEMA VERITAE

As stated above, we expect that Examine will
receive its greatest use in visualizing the output of
multi-layer routers. In particular, we believe devel-
opers will be interested in examining a series of
routing actions either individually or in composite
form. To aid this interest, Examine allows the
router developer to group the routing requests —
each such request group is called a frame.

Since color cues are vital for understanding a
multi-layer router’s solution, such solutions are
inappropriate for depiction in this paper. There-
fore, we use a simple Lee-Moore maze router [5] as
our example router for discussing animation. The

Figure 5. — Viewing the routing background
(Frame 0) of a maze routing solution.

routing displays produced in the next four figures,
show the progress of a maze router running a vari-
ant of Soukup’s heuristic maze routing improve-
ments [6] on a single layer problem instance. For
the problem instance in question, the developer
wishes to determine which routing locations are
considered by the router during its routing explo-
ration. '

To allow an Examine user to specify a routing
“background” that is common to all frames, Exam-
ine follows the convention that all routing display
requests that occur before the first break-point are
displayed in every routing frame or composite.
These requests are considered Frame 0. A sample
Frame 0 for the maze routing solution under con-
sideration is given in Figure 5.

A developer may walk through the frames by
first selecting the Next Frame button and then push-
ing the Update Display button as desired. Similarly,
if a developer prefers to walk backward through
the frames, the Previous Frame may be selected. If a
developer prefers to jump forward or backward to
a particular frame, the Frame scrollbar can be slid to
the appropriate point.

In Figure 6, a composite frame is depicted of
Frames 0-6 of our maze routing example. In this
and in subsequent figures, the small squares repre-

Figure 6. — Viewing composite frame 6 of the maze
routing solution.

Figure 7. — Viewing individual frame 10 of the
maze routing solution.

sent grid cells the maze router has explored. The
squares are drawn using via requests.

Figure 7 shows individual Frame 10 of our

o

Figure 8. — Viewing composite frame 16 of the
maze routing solution (target cell is reached).

routing trace. In the figure, the maze router is
starting its two-way expansion around the obstacle
that is in front of the target terminal. Finally, Figure
8 shows composite Frame 16 which corresponds to
the maze router discovering simultaneously two
different shortest paths to the target terminal.

If a router developer prefers to view a “film”
version of a frame sequence, the Animate button is
selected. The next update of the display will then
iteratively display each frame up through the cur-
rent frame. Examine makes uses of visible polygon
determination algorithms for a smooth updating of
the display [4].

OTHER FEATURES

While the workspace window is sufficient for the
edividund revtine of ~ aelatiiely. simwls channaloy
either to view the “big picture” or and an extreme
a channel Touting softition for a variation of Deut-
sch’s Difficult Channel example [3], where the
magnification factor is 1/ 61 of normal magnifica-

Figure 9. — Panning a channel routing solution.

o
oy
g

Figure 10. Encapsulated postscript version of a
_Iouting display,

fwarvaxe L e I A

important Examine provides a developer with the

~Inro

Setfing ‘the Recori UiSpiaiy Buitton and by ety a
file name in Base Snapshot Name widget. The Gener-
ate Suffix widget is useful if the developer wishes to

save a series of routing displays. If it is set, a copy
of each routing display is individually stored. All
of the copies will have the same base name and the
suffices will be numbered in the order that they are
generated. Figure 10 shows the displays the output
associated with the capture of the routing in
Figure 2. :

FUTURE ENHANCEMENTS

We are also considering different composition fea-
tures. For example, we are adding the ability to
view a composite image that is composed of an
arbitrary, user-specified frame subset. We are also
investigating whether placement visualization aids
are appropriate in Examine or whether a different
visualization tool is needed

(6]

and Its Application, IRE Transactions on Electronic
Computers ec-10(3), September 1961, pp. 346-365.
Soukup, J., Fast Maze Router, 15th ACM/IEEE
Design Automation Conference, Las Vegas, NV,
1978, pp. 100-102

SUMMARY

Examine is a visualization tool that enables router
developers to trace and animate a router’s execu-
tion in a variety of ways. For example, Examine has
the ability to selectively display layers and nets. It
also has rudimentary animation facilities that
enable a developer to view a sequence of routing
frames or a routing frame composite.

ACKNOWLEDGEMENTS

The authors’ work has been supported in part
through Virginia Center for Innovative Technology
award 5-30971, Defense Advanced Projects
Research Agency (DARPA) contract N00014-89-
J1699, and the SIGDA Design Automation fellow-
ship. This support is greatly appreciated.

REFERENCES

[1] Brown, M. H., Algorithm Animation, MIT Press,
Cambridge, MA, 1988.

[2] Burstein, M., and R. Pelavin, Hierarchical Wire
Routing, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems cad-2(4),
October 1983, pp. 223-234.

[3] Deutsch, D.N., A ‘Dogleg’ Channel Router, 13th
ACMY/IEEE Design Automation Conference Pro-
ceedings, San Francisco, CA, 1976, pp. 425-433.

[4] Foley,].D., A. van Dam, S. K. Feiner,]J. E
Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, Reading, MA,1990.

[5] Lee, C. Y. An Algorithm for Path Connections

