
Perturbation Method For Probabilistic Search
For The Traveling Salesperson Problem

James P. Cohoon, John E. Karro, Worthy N. Martin, William D. Niebel1

University of Virginia, Department of Computer Science
Charlottesville, VA 22903 USA

Klaus Nagel2

Siemens AG, Corporate Department Technology
Munich, D-81730, Germany

Abstract
The Traveling Salesperson Problem (TSP), is an NP-complete combinatorial optimization problem of substantial importance
in many scheduling applications. Here we show the viability of SPAN, a hybrid approach to solving the TSP that incorporates a
perturbation method applied to a classic heuristic in the overall context of a probabilistic search control strategy. In particular,
the heuristic for the TSP is based on the minimal spanning tree of the city locations, the perturbation method is a simple mod-
ification of the city locations, and the control strategy is a genetic algorithm (GA). The crucial concept here is that the pertur-
bation of the problem (since the city locations specify the problem instance) allows variant solutions (to the perturbed
problem) to be generated by the heuristic and applied to the original problem, thus providing the GA with capabilities for both
exploration and exploitation in its search process. We demonstrate that SPAN outperforms, with regard to solution quality, one
of the best GA systems reported in the literature.
Keywords: Genetic algorithms, Traveling salesperson problem, probabilistic search, minimum spanning tree.

1. Introduction
The Traveling Salesperson Problem (TSP), a classic combinatorial optimization problem, is generally described as follows.
The input is a set ofn cities and a salesperson. The salesperson starts from one of then cities and proceeds to each of the other
cities, then completes the tour with a return to the original city. The goal is to find a tour for the salesperson that minimizes the
total distance traveled. The problem clearly has practical application.

For our purposes, the input to TSP is a complete graph (V,E) whose vertices (cities) are embedded in the Euclidean plane.
The fact that we have Euclidean distances, and thus the triangle inequality, implies that it is not worthwhile to visit any inter-
mediary city more than once. Hence, a solution to TSP is essentially a permutation of the cities.

TSP is NP-complete [3]. Thus it is unlikely that there is a polynomial time solution for the problem. TSP researchers have
concentrated on developing exact algorithms for special cases [4], heuristics [12], randomized algorithms [16], and probabilis-
tic search [5, 9].

In subsequent sections, we consider a simple but effective TSP heuristic, provide an overview of the genetic algorithm
paradigm, present the details of our genetic algorithm SPAN, compare the SPAN method with a state-of-the-art genetic algo-
rithm, and draw conclusions.

For a detailed history of the TSP see the monograph of Lawler, Lenstra, Rinnooy Kan, and Shmoys [11]. For an examina-
tion of TSP genetic algorithms see Potvin’s survey [14].

2. A simple heuristic with bounded performance
Although the primary area of investigation that we consider here is probabilistic search and in particular, a genetic algorithm,
it is first necessary to consider one of the classic effective heuristics that uses a minimum spanning tree as a basis for generat-
ing a tour [18].

Heuristic H(V, E) {
Construct a minimum spanning treeT for graph (V, E)
Perform a depth-first traversal ofT to obtainT', a tour with vertex repetition

1. Correspondence: Email: cohoon@virginia.edu, karro@virginia.edu, wnm@virginia.edu, niebel@cs.virginia.edu;
WWW http://www.cs.virginia.edu.

2. Correspondence: Email klaus.nagel@zfe.siemens.de; WWW http://w1.siemens.de.



Remove subpaths with repeated vertices to yield a tourT''
returnT''

}
A minimum spanning tree(MST) for a graph is a tree of minimum total length for which the vertex set is the same as that of
the original graph and the edge set is a subset of the original graph [10, 15]. Because an MST is a relaxation of the TSP span-
ning requirements, the length of a MST can be no greater than the length of an optimal Traveling Salesperson Tour (TST). The
depth-first transversal ofT yieldsT', a “tour with vertex repetition”, by including each edge of the MST twice. Thus, the length
of T' is at most twice the optimal TST length. Removing repeated vertices fromT' to yield a tourT'' removes all repeated edges
and adds new edges. However, the length of any new edge is no longer than the subpath that it replaced, thus the length ofT''
is no more than twice that of the optimal TST.

The claim that the length ofT'' is no greater than that ofT' follows simply from the triangle inequality, since the reduction
always replaces a subpath inT’ by a single new edge. In the reduction a subpathpst=vsr1r2...rnvt is replaced by a single edge
(vs,vt). Since the vertices are in the Euclidean plane, the triangle inequality assures that the length of the added edge is no
greater than that of the subpath.

The MST for a set of seven vertices is given in Figure 1(a). In this figure, the vertices are labeled according to a depth-first
transversal [1], where the starting vertex was arbitrarily selected. The tour with vertex repetition derived from the MST is given
in Figure 1(b). The repetition-free derived TST is given in Figure 1(c). Observe that this repetition-free tour is nonoptimal.

An analysis of heuristic H indicates that it can be performed inO(n2) time. The dominant step is generating the MST,
which can be done inO(n2) [10, 15]. The other two steps can be done in linear timeO(n) [1, 11]. The subpath removal can in
fact be done simultaneously while doing the depth-first traversal by not generating back-edges to already visited vertices and
instead generating an edge to the next newly visited vertex.

We shall use heuristic H in the course of our genetic algorithm.

3. Genetic Algorithm
Genetic algorithms (GAs) were first proposed by Holland as a technique for adaptive learning [8]. The method has since then
been more widely applied. In particular, there have been many GAs for TSP [2, 6, 7, 13, 19, 20, 21].

A genetic algorithm iteratively manipulates a population of strings, where astring is a representation of a problem solu-
tion. The initial population is a collection of random solutions. Associated with each string is a measure of itsfitness. (When
using a fitness measure to compare two solutions, the better solution has higher fitness.) As TSP is a combinatorial minimiza-
tion problem, a common method for associating a fitness with a TSP solutionπ is to use the valueMaxPopScore- cost(π),

Figure 1. MST and derived TSTS.

(a) MST (b) TST with repeated vertices

(c) Repetition-free TST

1

2

3

4

5

6

7

2

35

6

7
4

1

1

2

3

4

5

6

7



whereMaxPopScoreis the length of the worst tour in the current population andcost() is a function that returns the length of
its tour parameter.

There are two operators for manipulating strings: thecrossoverandmutationoperators. The crossover operator takes two
strings (parents) to produce a new string (offspring). Parent selection is done probabilistically, with strings with higher fitness
more likely to be selected than strings with lower fitness. The standard method for associating a probability with a fitness is

, whereF is the sum of fitnesses for the strings in the population.

The mutation operator modifies a string. The modification is typically applied to a small component of the string. For
example, for a string representing a TST, two adjacent cities in the TST have their tour locations swapped. The selection of
which strings to mutate is done randomly without regard to fitness, i.e., with uniform distribution.

3.1 A basic GA

A basic genetic algorithm is given in Listing 1. The algorithm indicates that the method iterates forNG generations. For each
iteration,NC crossovers andNM mutations are performed. Functionchoose() is the string selection function. Its first parameter
is the set from which the choice is to be made; its second parameter indicates how the choice is to be made (i.e., probabilisti-
cally by fitness, probabilistically byinverse fitness, anduniformlyrandom).

3.2 Current TSP crossover operators

A problem with conventional genetic algorithms for TSP is a meaningful crossover operator; that is, an operator that produces
the offspring’s tour out of elements (building blocks) from its parentsp1 andp2. Let π be the tour represented byp1 and letτ be
the tour represented byp2. Some of the more popular TSP crossovers are variants of the following methods (for a more com-
plete list see Potvin [14]):

Listing 1. A basic genetic algorithm.

Algorithm
Construct initial populationP
Compute fitnesses for strings inP
best= min{score(p) | p in P}
for i = 1 to the number of generationsNG {

Offspring= empty set
for j = 1 to number of crossoversNC {

p1 = choose(P, fitness)
p2 = choose(P – {p1}, fitness)
c = crossover(p1, p2)
if score(c) < best{

best= score(c)
solution= c

}
Offspring= Offspring+ { c}

}
P = P + Offspring
Compute fitnesses for strings inP
for k = 1 to NC {

p = choose(P, –fitness)
P = P – {p}

}
for l = 1 to number of mutationsNM {

p = choose(P, uniformly random)
q = mutate(p)
if score(q) < best{

best= score(q)
solution= q

}
P = P – {p} + { q}

}
Compute fitnesses for strings inP

}
return solution

}

f F⁄



• Basic one-point crossover[14]: Without loss of generality suppose the TSTs of parentsp1 andp2 both begin with the same
city. The operator first randomly chooses a positioni. The offspring tour begins with subpermutationπ1 … πi of parentp1.
The tour is completed by visiting the remaining cities in the order that they occur inp2’s tourτ. With this operator, the off-
spring significantly resembles parentp1, but its resemblance to parentp2 is usually to a far lesser degree. Because of this
situation, many GAs using this operator will produce two offspring for each pair of parents, where the parents alternately
take on the role ofp1 andp2.

• Ordinal representation[7]: For this operator, the value of a string’sith tour entry is the index into a ordered list of cities
not referenced by indices 1, 2, …i–1. For example, if the third tour entry has value 4 and the cities not used in the first two
tour locations are {c1, c3, c4, c6, c7}, then the third city in the tour isc6. The operator works by randomly choosing a posi-
tion i. The offspring tour is derived from the valuesπ1, π2, … πi, τi+1, τi+2, … τn. With this operator, the offspring signifi-
cantly resembles parentp1, but its resemblance to parentp2 is usually minimal. Because of this situation, most GAs using
this operator will produce two offspring for each pair of parents, where the parents alternately take on the role ofp1 and
p2.

• Partially-mapped crossover[6]: This operator tries to maintain the positions of the cities in the parents in the offspring. A
substrings of parentp1 chosen at random replaces a substringt in a copyγ of p2. A cleanup procedure is then applied toγ
to removes duplicates. (If possible, a duplicated is replaced with the city int that was overwritten by the occurrence ofd
in s).

• Edge recombination crossover[21]. From the parents’s TSTs, an adjacency list is constructed for each city.The offspring
tour is constructed by iteratively extending the tour to the cityc with a minimal number of entries in its adjacency list. If
there are multiple cities with a minimal number of entries, then one of those cities is selected at random. After extending
the tour, the adjacency lists are updated to remove occurrences ofc. The process repeats until all cities have been reached.
The advantage of this method is that every edge in the offspring tour comes from one of the parents. Thus in GA parlance,
the offspring is completely constructed from building blocks associated with its parents.

We believe it is the difficulty in recognizing and combining building blocks that makes TSP a hard problem for GAs. In
the section that follows we propose a new representation for a TST string and an accompanying crossover operator. Experi-
ments indicate that the representation and operator can effectively blend building blocks of both parents. We call our method
the SPAN method. The representation and string combination operation is our primary contribution.

4. The SPAN method
In developing a GA for the TSP we had two conflicting goals. The first and primary goal is to generate the best possible solu-
tion. The second goal is to have the method run as fast as possible. As mentioned in the previous section, to generate much bet-
ter solutions we use a different method of representing and combining solutions. To help achieve the second goal we
abandoned the notion of absolute fitness for approximate fitness. An approximation scheme allows us to skip the steps of nor-
malizing the scores to produce fitness values.

4.1 Perturbed city locations

Our string representation maintains two pieces of information for each city—its actual location and a perturbed location. For
example, in Figure 2(a), we show the set of city locations from the instance depicted in Figure 1 along with a set of perturbed
locations. In Figure 2(a), the line segments connect the true location and perturbed location pairs, where black points are orig-
inal vertices and grey points are their perturbed locations. In Figure 2(b), we show the MST for the perturbed locations.
Observe that the MST for the perturbed locations is different from (but similar to) the MST in Figure 1(b) for the true loca-
tions. In Figure 2(c), we show a repetition-free TST for the MST of the perturbed locations. Finally, in Figure 2(d), we show
the TST for the unperturbed city locations using the vertex ordering from the repetition-free TST for the perturbed locations in
Figure 2(c).

It is clear, if we were to have a different set of perturbations, we could have a different MST and different derived tours for
the perturbed and unperturbed city locations. This observation is the intuition behind our approach. We begin by constructing
a population of strings, where each string embodies a distinct set of perturbed locations, and thus a distinct TST.

With such a population, there are a variety of meaningful ways of combining two strings to produce an offspring string.
For example, some of the possible methods are
• The perturbed location of a city in the offspring is the geocenter of the perturbed locations of that city in its parents.
• The perturbed location of a city in the offspring is selected randomly to be one of the perturbed locations of that city in its

parents.
The method we chose for our SPAN method is a variant on the first of the preceding methods.



• To compute the perturbed location of a city in the offspring first compute the geocenter of the perturbed locations of that
city in its parents. Then use that geocenter as the mean value of a two-dimensional normal distribution where the variance
is a function of the true intercity distances. Next draw a random variate from that distribution to use as the perturbed loca-
tion. In practice, the variance for the normal distribution was a scaling of one standard deviation of the true intercity dis-
tances.

There are some properties to this method that are worth noting.

• The MSTs computed from the strings often have similar features because the perturbed locations are not that dissimilar
from the true locations. As such, the MSTs using the perturbed locations are similar to the MST for the true locations.
Therefore, in practice the TSTs derived from the MSTs have an acceptable cost.

• By using perturbed locations, the MSTs for the perturbed locations generally have some differences with the MST of the
true locations. Therefore, the TSTs derived from the MSTs for the perturbed locations are generally different from each
other and different from the TST derived from the MST of the true locations.

Thus, in practice we have a method that produces an offspring that is similar to, but not the same as, its parents. Also,
because of the probabilistic aspects of the perturbation, different matings of the same strings produce different offspring. As a
result, the operator allows for a good search of a given solution-space neighborhood. When coupled with the mechanics of the
GA, we have an effective method that performs a directed but diverse search.

In summary, the crossover operator works in the following manner:

Produce a new set of perturbed locations using the two parents’ sets of perturbed locations as a basis.
Compute, using heuristic H, the repetition-free TSTγ derived from the MST of the offspring’s perturbed

locations.
Compute the TST using the true vertex locations with the vertex order fromγ.

Our mutation operator also uses a perturbation method. The operator chooses a city from the string to be mutated and rep-
erturbs the perturbed location of that city. The new value for the perturbed location is drawn from a two-dimensional normal
distribution where the mean is the previous value of the perturbed location and the variance is a function of the true intercity
distances. The variance for the distribution was a scaling of one standard deviation of the intercity distances. In our experi-
ments, the operator was particularly effective in improving tours by fine-tuning small substrings. The GA for TSP by Valenzu-
ela and Williams [20] also uses a perturbation-like method for the mutation operator. Their mutation operator uses a greedy
nearest-neighbor method where the perturbed locations allow a different permutation to be generated.

Figure 2. Perturbed vertices with MST and derived TSTs.

(a) Vertex perturbation correspondence (b) MST of perturbed vertices

(c) TST derived using perturbed vertices (d) TST derived using true vertices

1

2

3

4

5

6

7

1

2

3

4

5

6

7

2

1 3

4

5

6

7

1

2

3

4

5

6

7



4.2 Approximate fitness

In the genetic algorithm paradigm, determining which solutions are to be involved in crossover is done probabilistically with
respect to fitness—better scoring solutions are more likely to be selected to be a parent than worse scoring solutions. Selecting
which parents and offspring are to survive from the current population to form the starting population for the next generation is
also done probabilistically with respect to fitness—better scoring solutions are more likely to be selected for survival that
worse scoring solutions. Because fitness is calculated with respect to the current population, the fitnesses of the strings should
be calculated twice per generation—once when the offspring are added to the population and then again after the population is
culled to produce the starting population for the next generation. To avoid these linear-time calculations, when a mating is per-
formed, instead of choosing two parents probabilistically with respect to fitness, we choose three strings in a random uniform
manner. The two strings with better costing tours are mated, their offspring replaces the third string [5]. Preliminary experi-
ments using this method for SPAN versus using the traditional selection process indicated that the approximate fitness scheme
did not materially affect the solution quality, but did decrease the running time. Therefore, we use approximate fitness in SPAN.

5. Results

We test our method using nine standard TSP instances, where the number of cities varied from 30 to 225. The instances are
listed in Table 1. Instance Osh comes from Oliver, Smith, and Holland [13], the other instances come from the TSP library of
Reinelt [17].

We chose to compare our method to the EC method of Whitley, T. Starkweather, and D. Shaner [21] (also see reference
[19]), a method producing state-of-the-art GA results for the TSP problem. The EC method uses the edge recombination oper-
ator.

The results that we report in subsequent tables are all averages. Each entry represents the average of 25 runs of the associ-
ated method. For the SPAN method, the number of generations considered is a function of problem size— instances composed
of less then 100 cities ran for 1,000 generations and instances composed of 100 or more cities ran for 2,000 generations. The
EC method was allowed to run until the population was in equilibrium, which for our purposes was no improvement in the
best-seen solution for 500 generations. Only for the smallest problem instance did the EC method require less than 2,000 gen-
erations (terminating after 1938 generations). On average, the EC method required approximately five times the number of
generations used for SPAN. We allowed the EC method more generations to ensure that its solution quality was maximal. The
population size per generation was a function of instance size. For instances composed of less then 100 cities, the population
size was 100; for instances composed of 100 or more cities, the population size was 150. The perturbed location for a city in
the initial population is drawn from a normal distribution whose mean is the true location of the city and whose variance is
1.5s2, where s is the standard deviation of the intercity distances. The crossover rate was set to 90% per generation. The per-
turbed location of a city in an offspring is drawn from a normal distribution whose mean was the average of the perturbed loca-
tions of the city in the parents and whose variance is 0.05s2. The attempted mutation rate was 90% per generation. For each

Table 1: TSP Instances

Instance
Number of

Cities

Osh 30

Eil 51

Berlin 52

St 70

KroA 100

Bier 127

Pr 136

Ch 150

Tsp 225



mutation, a perturbed city location is selected at random and mutated, the new perturbed location is drawn from a normal dis-
tribution whose mean is the unmutated perturbed city location and whose variance iss2. The mutation was introduced into the
population only if the new string had lower cost than the original string. (We also ran an experiment where a mutation was
always accepted. This variant of SPAN produces results that were on average within 1% of the quality of the basic SPAN

method.)

Table 2 shows the percentage improvement of the SPAN method over the EC method. The table indicates that the SPAN

consistently outperforms the EC method. The minimum average improvement is 10.4% and the maximum average improve-
ment is 50.8% average improvement. The overall improvement is 32.1%. Based on these results, we believe significant con-
sideration must be made for using the SPAN method in TSP GAs.

To show that the quality of a SPAN solution is not strictly based on its use of heuristic H, we present Table 3. This table
compares the average solution quality of H and SPAN. The table indicates that a significant percentage of the improvement is
due to the GA aspects of SPAN. At a minimum, SPAN improved the average solution quality by 7.1%. Its best average improve-
ment was 21.1%. Overall, SPAN improved the solution quality by 15.1%. Such results are significant and demonstrate that
SPAN is an effective GA for the TSP.

To show that the quality of a SPAN solution is based in part on its use of heuristic H, we ran an experiment where random
spanning trees were used rather than MSTs. Although the traditional GA features of SPAN caused the population to improve
over time, the final population was not substantially different in solution quality from the original population. We do not rec-
ommend considering random trees as avenue of future investigation.

We also ran an experiment using a variant V of SPAN, where a perturbed location of a city in the offspring was drawn from
a normal distribution whose mean was randomly selected from one of the parents’s perturbed locations for that city and where
the variance is a function of the true intercity distances. Table 4 presents the results of the experiment with V. The results show
that using SPAN’s perturbing method contributes on average a minimum of 3.3% improvement; the maximum average
improvement is 16.7%; and the overall average improvement is 10.5%. Thus we recommend the use of SPAN over the use of V.

A table of average running times is presented in Table 5, with all tests being run on an Alpha workstation. The running
times are all in the acceptable range. We note that the running times of the SPAN method are in fact greater than the running
times of the EC method. The principle reason being that both the SPAN crossover and mutation operators areO(n2) operations
while the EC method has anO(n) crossover and anO(1) mutation operator. For example, the EC solution to the KroA instance
of 100 cities takes on average approximately 10 minutes and the EC solution to the Tsp instance of 225 cities takes on average
approximately 30 minutes. Note that the greater run times for the last 5 instances is primarily because SPAN ran for twice the
number of generations (2,000) with a 50% population increase (150).

Table 2: Comparison of EC and SPAN Solution Quality

Instance
EC

Cost
SPAN

Cost

SPAN

Percentage
Improvement

Osh 491 440 10.4%

Eil 579 481 16.9%

Berlin 10416 8890 14.6%

St 1112 742 33.2%

KroA 41272 23740 42.5%

Bier 200306 137801 31.2%

Pr 198380 112314 43.4%

Ch 14056 7666 45.5%

Tsp 10163 5003 50.8%



6. Summary and future research
We have demonstrated a new GA method for the TSP. This method uses a string representation that associates with each city a
perceived location that is a perturbation of its true location. A perturbed location is generated using a normal distribution
whose mean is the true city location. Our crossover operator takes two strings and produces an offspring, where the perturbed
location of a city in the offspring is generated from a normal distribution whose mean is the average of the parents’s perturbed
location for that city. The score of a string is the cost of the TST derived from the minimum spanning tree of the perturbed
locations. (The true locations are used in measuring the derived TST.)

To speedup our method, rather than using absolute fitness, we use a fitness approximation. To perform a crossover, three
strings are selected with the better two strings used as parents. Our method works quite well in practice. Its solutions as mea-
sured using a broad standard test suite are approximately 32% better than the best previously published GA. The running time
of the SPAN method is very acceptable given its solution quality. For example, the 100-city KroA instance takes on average 27
minutes to solve and the 225-city Tsp instance takes on average 134 minutes to solve.

Table 3: Evaluation of H and SPAN Solution Quality

Instance
H

Cost

SPAN

Percentage
Improvement

Osh 558 21.1%

Eil 570 15.7%

Berlin 10160 12.5%

St 887 16.3%

KroA 28602 17.0%

Bier 153968 10.5%

Pr 137136 18.1%

Ch 9349 18.0%

Tsp 5385 7.1%

Table 4: Evaluation of V and SPAN Solution Quality

Instance
V

Cost

SPAN

Percentage
Improvement

Osh 455 3.3%

Eil 522 7.9%

Berlin 9501 6.4%

St 822 9.9%

KroA 28487 16.7%

Bier 158428 10.0%

Pr 134825 16.7%

Ch 9135 16.0%

Tsp 5417 7.6%



We are currently completing a parallel implementation of the SPAN method. We are also testing the efficacy of our per-
turbed location approach to other problems (e.g. Minimum Steiner Tree Problem). The preliminary results for these problems
are quite encouraging.

7. Acknowledgments
This research was supported in part by the Fulbright Program, National Science Foundation, and the Virginia Aerospace Con-
sortium. Their support is greatly appreciated.

8. References
1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,“Introduction to algorithms,”McGraw-Hill: New York, 1990.
2. L. Davis, “Applying adaptive algorithms to epistatic domains,”International Conference on Genetic Algorithms and

Their Applications, pp. 162-164, Los Angeles, CA, 1985.
3. M. R. Garey and D. S. Johnson, “Computers And Intractability— A guide to the theory of NP-completeness,” W. H. Free-

man and Co: San Francisco, CA, 979.
4. P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, “Well-solved special cases,” in“The traveling salesman problem,”E. L.

Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (editors), Wiley: New York, 1985.
5. D. E. Goldberg,“Genetic Algorithms in Search, Optimization, and Machine Learning,”Addison-Wesley: Reading, MA,

1988.
6. D. E. Goldberg, A R. Lingle, Jr., “Alleles, loci, and the traveling salesperson problem,”International Conference on

Genetic Algorithms and Their Applications,Pittsburgh, PA, pp. 154-159, 1985.
7. J. J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. Van Gucht, “Genetic algorithms for the traveling salesperson prob-

lem,” International Conference on Genetic Algorithms and Their Applications, pp. 160-168, Pittsburgh, PA, 1985.
8. J. H. Holland,“Adaptation in Natural and Artificial Systems,”University of Michigan Press: Ann Arbor, MI, 1975.
9. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,”Science, pp. 671-680, May 13, 1983.
10. J. B. Kruskal Jr., “On the shortest spanning subtree of a graph and the traveling salesman problem,”Proceedings of the

American Mathematical Society, pp. 48-50, 1956.
11. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (editors),“The traveling salesman problem,”

Wiley: New York, 1985.
12. S. Lin and B. W. Kernighan, “An Effective Heuristic for the Travelling Salesman Problem,”Operations Research, pp.

498-516, 1973.
13. I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation crossover operators on the traveling salesman

problem,”International Conference on Genetic Algorithms, Cambridge, MA, pp. 224-230, 1987.
14. J.-Y. Potvin, “Genetic algorithms for the traveling salesman problem,”Annals of Operations Research, pp. 339-370, 1996.

Table 5: Average SPAN running times.

Instance
SPAN

Running Time
(Minutes)

Osh 3.4

Eil 9.6

Berlin 10.0

St 14.0

KroA 107.8

Bier 173.5

Pr 197.2

Ch 241.1

Tsp 539.1



15. R. C. Prim, “Shortest connection networks and some generalizations,”Bell Systems Technical Journal, pp. 1389-1401,
1957.

16. R. M. Karp, “Probabilistic analysis of partitioning algorithms for the traveling-salesman problem,” Mathematics for Oper-
ations Research, pp. 209-225, 1977.

17. G. Reinelt, “TSPLIB — A traveling salesman problem library,”ORSA Journal on Computing, pp. 376-384, 1991. Data
instances are available at University of Heidelberg, http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/
TSPLIB.html.

18. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of several heuristics for the traveling salesman problem,”
SIAM Journal of Computing, pp. 563-581, 1977.

19. T. Starkweather, S. McDaniel, K. Mathias, D. Whitely, C. Whitely, “A comparison of genetic sequencing operators,Inter-
national Conference on Genetic Algorithms and Their Applications, pp. 69-76, 1991.

20. C. L. Valenzuela and L. P. Williams, “Improving Simple Heuristic Algorithms for the Travelling Salesman Problem using
a Genetic Algorithm,”International Conference on Genetic Algorithms, 1997, pp. 458-464.

21. D. Whitley, T. Starkweather, and D. Shaner, “Traveling salesman and sequence scheduling: quality solutions using genetic
edge recombination,” in “Handbook of genetic algorithms,” L. Davis (editor), Van Nostrand Reinhold: New York, pp.
350-372, 1990.


