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Abstract: Abandoned agricultural fields have recently become more abundant in the U.S. and
remain susceptible to species invasions after cultivation disturbance. As invasive species become
more widespread with increases in anthropogenic activities, we need more effective ways to use
limited resources for conservation of native ecosystems. Remote sensing can help us monitor
the spread and effects of invasive species, and thus determine the species and locations to
target for conservation. To examine this potential, we studied plant communities dominated
by exotic invasive plant species in secondary successional fields in northern Virginia using
ground-level hyperspectral data. Within these communities, ordination analyses of vegetation
surveys revealed differences in species compositions among plots and fields. These differences
among communities were also observed in the spectral data. Stepwise multiple linear regression
analyses to determine which species influenced the ordination axes revealed that many of the
influential species are considered invasive, again underscoring the influence of invasive species
on community properties. Stepwise regression analyses also revealed that the most influential
wavelengths for discrimination were distributed along the spectral profile from the visible to
the near-infrared regions. A discriminant analysis using wavelengths selected with a principal
components analysis demonstrated that different plant communities were separable using spectral
data. These spectrally observable differences suggest that we can use hyperspectral data to
distinguish among invasive-dominated successional plant communities in this region.
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1. Introduction

Abandoned agricultural fields are becoming more prevalent in the U.S., especially in the
northeast and midwest [1], and are easily occupied by exotic invasive plant species [2]. These
invasive species can alter community composition and ecosystem properties, such as resource
availability and use, disturbance frequency, plant community interactions, and the community
compositions of herbivores, soil microbes, and birds [3–6]. These species can also alter community
and ecosystem dynamics during secondary succession [4,7]. The invasive species may take advantage
of open niches during early succession [8], thus affecting the degree, duration, and direction of
ecosystem change. They can have no effect [9], or their effects can be limited to earlier stages of
succession with eventual reclamation by natives [10,11]. Alternatively, they can completely change
the trajectory, rate, species composition, species richness, disturbance regimes, and nutrient cycling
during succession [6,7,12–14]. In order to monitor invasive species, we need to develop better
methodologies for mapping them at fine space-time resolutions.
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The control of these invasive species is resource intensive and, due to the limited availability of
such resources as time and funding, conservation strategies must be targeted. To do this, we must
determine which species are most detrimental to the environment and can most easily be controlled.
Ground-based methods for monitoring invasive species are costly and thus can limit research and
management; alternatively, remote sensing can supplement field data to monitor spatial and temporal
distributions of invasive species [15–18].

Multispectral data have been used to observe vegetation characteristics and discriminate among
species; as an example, Smith and Blackshaw [19] were able to discriminate among two crop species
and five weed species with 89% accuracy using multispectral data with some misclassification
of grasses as broad-leaf plants and vice versa. However, hyperspectral data may provide better
estimates of such vegetation characteristics and more accurately discriminate species due to more
numerous and narrower wavebands [19,20]. In addition to their multispectral analysis, Smith
and Blackshaw [19] observed 90% accuracy in discriminating the crop and weed species using
hyperspectral data; however, the misclassifications were now within grasses and broad-leaf plants
rather than across. Hyperspectral data have recently been used more frequently to distinguish
among individual plant species [17,21–25], and we may be able to examine community properties
and processes spectrally where certain individual species dominate.

When examining plant species and communities with remote sensing, we need to consider
several sources of variation in spectral data. Variation of visible (VIS) reflectance is mostly due
to leaf pigment and nutrient content, while variation in the near-infrared (NIR) region is due to
leaf structure and surface characteristics; variation in the shortwave infrared (SWIR) region is due
to plant water content [26,27]. At the leaf level, reflectance is further influenced by biochemical
processes, stress, and phenological processes (e.g., senescence) [27,28]. Spectral signatures also differ
between sun and shade leaves, as sun leaves have lower reflectance values along the entire spectral
profile than do shade leaves due to greater leaf thickness and pigment concentrations [29]. At the
canopy level, vegetation spectra are influenced by foliar reflectance, foliar transmittance, and crown
architecture [30]. Certain biological traits that influence spectra also vary in response to changes
in the environment; for example, chlorophyll a:chlorophyll b ratios change with illumination [31].
Additionally, absorption bands can be affected by more than one chemical constituent of a leaf, and
one chemical constituent can influence a broad spectral region [32].

Such spectral variability in these characteristics may weaken direct correlations between
biological properties or processes and spectral data. However, these data can be used to
discriminate species and communities if interspecific differences in such characteristics are greater
than intraspecific and intra-individual differences [16]. Spectral differences due to diversity in
pigment content, water content, structural elements, cell size, intercellular space, and cell wall
thickness can assist in differentiating among plant species and communities [33]. In this paper, we
ask: (1) Can plant communities in successional fields in a ridge-and-valley system in northern Virginia
be distinguished using ground-level hyperspectral remote sensing? (2) Which species are most
influential in affecting discriminability? (3) Which spectral variables explain the greatest variance
in community composition?

2. Experimental Section

2.1. Study Site

The Blandy Experimental Farm (BEF) (Figure 1), located in the Shenandoah Valley in Clarke
County Virginia at 39◦09’N, 78◦06’W [34], is a 300 ha biological field station owned by the University
of Virginia since 1926 and operated by the Department of Environmental Sciences since 1983 [35]. The
BEF contains 120 ha of pasture and cropland, 40 ha of woodland, the 60 ha Virginia State Arboretum,
and 80 ha of old fields in early, middle, and late succession [35]. Each of two successional series
(southwest and northeast) contains an early, mid, and late successional field. The successional fields
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are former agricultural fields, abandoned in 2001 (Early 1), 2003 (Early 2), 1986 (Mid 1), 1987 (Mid 2),
before 1910 (Late 1) and before 1920 (Late 2) [1]. Two additional field sites were considered alongside
the successional field chronosequences: near Lake Arnold and a site at a field boundary near the
northeast successional series. Soils are deep colluvial and alluvial sediment from karst limestone,
shale, and siltstone; study sites have well-drained silt loam soil, of the soil Order Ultisol, with
slopes less than 10% [35]. With an elevation of 190 m, the BEF has a mean annual temperature and
precipitation of 11.8 ◦C and 940 mm respectively, an average growing season of 157 days, and average
annual primary productivity of 1.0 kg·m−2 in the successional fields [1,35]. The exotic invasive species
that occupy these fields at BEF have several traits that assist their establishment and spread, and thus
affect community composition (see Appendix, Persistence of invasive plants).

Figure 1. Blandy Experimental Farm, Boyce VA with study site labels including two secondary
successional fields.

2.2. Field Methods

To discriminate plant communities using hyperspectral remote sensing, three 5 m × 5 m
community-level plots were established in the summer of 2014 in each of four sites at the BEF:
Lake Arnold (LA), the northeast boundary (NEB), and the early successional stage in both the
northeast (NEE) and southwest (SWE) successional chronosequences for a total of 24 plots. Only early
stages from the successional series were used for ground-level spectral analyses (Figure 2) because
of vegetation height in later successional stages. From these plots, using a PANalytical Analytical
Spectral Devices (ASD) Inc. (Boulder, CO, USA) FieldSpec® 3 with a 25◦ field of view (FOV), we
collected community-level spectra in the summer of 2014. Hyperspectral reflectance measurements
from 350 nm to 1025 nm were collected from approximately 2.5 m in height for a measurement
footprint of approximately 1.15 m in diameter. We accomplished this by standing on a stool and
using a custom-made polyvinyl chloride (PVC)-pipe extension holding the pistol grip to avoid any
spectral signature from the stool or observer. We collected spectra in a way that maximized coverage
without trampling vegetation, taking measurements in each corner of the plot, in the center, and
the middle of each edge for a total of 12 spectral footprints per plot with each footprint capturing
a subsample of the community (Figure 3). Approximately three spectral samples were collected for
each spectral footprint for a total of around 36 spectra per plot (Table 1), and spectral measurements
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were averaged by footprint. We measured the location of the center of each footprint using a
plumb-line for several plots and calculated the average location for each footprint in the grid. Spectra
were taken during cloud-free days between 10 AM and 2 PM during peak growing season (July)
to minimize diurnal and seasonal variability and minimize soil signatures; the spectroradiometer
was calibrated at approximately 10 min intervals using a Spectralon white reference panel and dark
current measurements. We also conducted vegetation surveys on the 5 m × 5 m grids at 0.5 m
intervals, recording species at the ground level, sub-canopy, and canopy to assess species composition
of the spectral footprints. Grids were established using PVC pipes to mark the periphery of the
5 m × 5 m plots. Pipes had holes drilled at 0.5 m intervals; a string with hooks on either end was
then moved along the pipes, using holes as anchors. The string had knots at 0.5 m intervals, and
plants were surveyed at the knots. Therefore, we were able to map the gridpoints that fell within
each footprint, using the footprint centers measured with the plumb-line, and know which species
were encompassed within each footprint.

(a) (b)

(c) (d)

Figure 2. Examples of early-stage community plots from (a) Lake Arnold; (b) the northeast boundary;
(c) the Northeast chronosequence; and (d) the Southwest chronosequence.

Figure 3. Layout of 5 m × 5 m community-plots. Circles represent spectral footprints taken from
outside the plots so as not to trample vegetation. Vegetation surveys were conducted at each 0.5 m
interval within a plot for a total of 121 points at the ground, understory, and canopy level.
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Table 1. Number and date of community spectra collected; no species-level spectra were used for
this study. Signatures were collected in a two-day period during peak growing season to minimize
seasonal variability and soil signature while providing a fair comparison across plant communities.

Plot Number of Spectra Date of Collection

lacp1 37 5 July 2014
lacp2 36 5 July 2014
lacp3 36 5 July 2014

nebcp1 36 4 July 2014
nebcp2 36 4 July 2014
nebcp3 36 4 July 2014
neecp1 37 4 July 2014
neecp2 37 4 July 2014
neecp3 36 4 July 2014
swecp1 35 5 July 2014
swecp2 36 5 July 2014
swecp3 38 5 July 2014

2.3. Data Analysis and Statistical Methods

To minimize any atmospheric and soil noise in the spectral data, we calculated band depth
from original reflectance profiles, and this band depth profile was used for subsequent analysis.
To obtain band depth, a continuum hull was matched to the original spectral profile, and this
continuum was removed from the original spectral profile to get normalized reflectance; we then
subtracted these continuum-removed reflectance values from one to get the band depth profile.
An example of this calculation is illustrated using an average buckthorn spectral profile (Figure 4).
The continuum hull is comprised of several lines connecting local maxima and has been used by
many researchers to minimize noise, increase discriminability, and increase accuracy in estimating
physiological characteristics [17,36,37]. For more information on continuum removal, refer to Schmidt
and Skidmore [38] and Clark and Roush [39].

Figure 4. Calculating band depth (normalized absorption) from original reflectance using
continuum removal.
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Vegetation survey data were matched to footprints used for spectral data collection using
the grid points that fell within the footprints. To determine discriminability among communities
using community-plot spectra and vegetation surveys, we used PC-ORD (Version 6, MjM Software,
Gleneden Beach, OR, USA) to conduct multivariate non-metric multidimensional scaling (NMS)
ordination analyses. This analysis orients samples in an ordination space based on the similarities
between samples [40]. We used this technique, along with Bray-Curtis distance, to determine
clustering of footprints within plots, by species compositions. Subsequently, we ran a stepwise
regression in SAS (Statistical Analysis Software, Version 9.4, SAS Institute Inc., Cary, NC, USA)
to examine which species most influenced the ordination axes and thus plot footprint clustering,
considering species with a significance level of p < 0.0001.

We ran a similar ordination analysis using footprint-level spectral data to assess spectral
clustering of plot footprints, followed by a multiple regression to examine which wavelengths most
influenced clustering. To reduce correlation among wavelengths prior to running the regression
analysis, we performed a principal components analysis (PCA) in SAS to select uncorrelated
wavelengths that explained most of the variability in the dataset; this was done by selecting
wavelengths with the greatest absolute value of factor loadings. The regression then used these
wavelengths to assess which most influenced the ordination axes. We also assessed the relationships
between species ordination axis loadings and band depth axis loadings to determine whether certain
species may be associated with certain spectral characteristics.

To determine whether we could use spectral data to differentiate among plots and whether the
use of multiple narrow bands would increase discriminability, we ran two discriminant analyses
(DA). One used seven simulated broad bands corresponding with those of WorldView2, and
another used wavelengths selected from the PCA. The WorldView2 bands were simulated using
the reflectance spectra, averaging 400–449 nm, 450–509 nm, 510–580 nm, 585–625 nm, 630–690 nm,
705–745 nm, and 770–895 nm. The eighth WorldView2 band of 860–1040 nm extends past the
wavelengths measured using the FieldSpec3, and thus was not simulated. User’s, producer’s,
and overall accuracies were calculated, along with the Matthew’s Correlation Coefficient (MCC,
Equation (1), where TP = True Positive, TN = True Negative, FP = False Positive, and FN =
False Negative) to test for reliability. MCC values range from 1 to −1, where 1 represents perfect
predictability, 0 represents predictability as good as random, and −1 represents predictability exactly
opposite of expected.

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(1)

3. Results and Discussion

In this study, we asked whether plant communities could be distinguished spectrally, and which
species and spectral attributes were most useful for discrimination. Species composition differed by
field, as found through vegetation surveys and species ordination results, and these differences were
observed spectrally using ordinations of band depth data. Using the bands selected by the PCA in
a discriminant analysis, plots within fields were not as readily distinguished as plots across fields,
perhaps because of greater similarities in species compositions within fields than between fields.
Nevertheless, plots were able to be separated more successfully using narrow bands derived from
hyperspectral data than by using simulated WorldView2 broad bands.

3.1. Species Ordinations

Species compositions differed by fields and by plots within fields (Figure 5). Lake Arnold (LA)
plots predominantly consisted of Galium verum (yellow bedstraw), Poa trivialis (rough bluegrass), and
Bromus japonicus (Japanese brome). In the northeast boundary (NEB), plots were dominated by grass
species including Poa trivialis, Festuca rubra (red fescue), and Festuca octoflora (sixweek fescue). The
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northeast early (NEE) successional plots consisted mostly of Galium verum, Poa trivialis, and Rhamnus
davurica (Dahurian buckthorn). The southwest early (SWE) plots mostly contained Rhamnus davurica,
Solidago altissima (tall goldenrod), and Celastrus orbiculatus (oriental bittersweet) (Figure 5).

Figure 5. Species composition from vegetation surveys of community plots (CP) at Blandy
Experimental Farm in northern Virginia at Lake Arnold (LA), the boundary near the northwest
successional field (NEB), the northeast early successional seres (NEE), and the southwest early
successional seres (SWE), where the y-axis represents the number of intersects (out of the total 121
intersects surveyed in each plot) at which certain species were found.

These differences in species compositions were demonstrated in the ordination results as
footprints clustered by plot and by field in ordination space (Figure 6). Hence, species compositions
were similar within plots and within fields. The species that most influenced axis 1 of the composition
ordination were Solidago altissima (tall goldenrod) and Bromus japonicus (Japanese brome), while axis 2
was most influenced by Festuca rubra (red fescue), Galium verum (yellow bedstraw), Muhlenbergia
schreberi (nimblewill), Achillea millefolium (yarrow), and Bromus commutatus (meadow brome). Axis 3
was most influenced by Galium verum (yellow bedstraw), Solidago gigantea (giant goldenrod),
Dactylis glomerata (orchard grass), Bromus japonicus (Japanese brome), Ambrosia artemisiifolia (common
ragweed), and Lonicera japonica (Japanese honeysuckle) (Table 2).

Many of the species that most influenced the ordination axes were also dominant in the
community plots, especially in a particular field, making them important for discriminating across
fields. As examples, S. altissima was dominant in the SWE plots, F. rubra was dominant in the NEB
plots, and G. verum was dominant in the LA and NEE plots. These three species were influential to
axes 1, 2, and 3 respectively in the species ordinations.

As we had surmised, many of the most influential species are also considered invasive, including
Festuca rubra, Galium verum, Muhlenbergia schreberi, Achillea millefolium, Dactylis glomerata, Ambrosia
artemisiifolia, and Lonicera japonica [41,42]. This supports the idea that these invasive species affect
community composition, and likely community properties as well. Additionally, subordinate species
may be important determinants of ecosystem function because they can influence which species
become dominant and may themselves become dominant if current dominants are suppressed [43].
Thus, invasive species might have effects on ecosystem function and community composition even
at low densities.
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(a) (b)

(c)

Figure 6. Non-metric multidimensional scaling (NMS) ordination results using species composition
from Lake Arnold (LA), northeast boundary (NEB), northeast early (NEE), and southwest early (SWE)
fields at the Blandy Experimental Farm in northern Virginia for (a) axes 1 and 2; (b) axes 1 and 3; and
(c) axes 2 and 3.

Table 2. Stepwise regression results on which species most influence non-metric multidimensional
scaling (NMS) ordination axes. Enough species were retained to have a cumulative R2 of 0.80. All
species indicated here are significant to p < 0.0001.

Axis Species Partial R-Square

Axis 1 Solidago altissima 0.6962
Axis 1 Bromus japonicus 0.1117

Axis 2 Festuca rubra 0.5538
Axis 2 Galium verum 0.1251
Axis 2 Muhlenbergia schreberi 0.0737
Axis 2 Achillea millefolium 0.0433
Axis 2 Bromus commutatus 0.0363

Axis 3 Galium verum 0.3817
Axis 3 Solidago gigantea 0.2266
Axis 3 Dactylis glomerata 0.0813
Axis 3 Bromus japonicus 0.0573
Axis 3 Ambrosia artemisiifolia 0.0476
Axis 3 Lonicera japonica 0.0336

3.2. Spectral Ordinations

Footprint similarities were also assessed using spectral data; we again found clustering of
footprints by plot and by field (Figure 7). Before running a regression analysis to determine which

16595



Remote Sens. 2015, 7, 16588–16606

bands most influenced NMS ordination axis values, a segmented principal components analysis
(PCA) was conducted; the wavelengths selected, based on the greatest absolute value of factor
loadings, were 435 nm, 525 nm, 575 nm, 635 nm, 680 nm, 710 nm, 750 nm, 835 nm, and 970 nm. Band
depths at these wavelengths were entered into a regression analysis to determine which wavelengths
most explained the ordination axes; these wavelengths were 435 nm, 635 nm, 680 nm, 710 nm, 750 nm,
and 970 nm for axis 1; 435 nm, 525 nm, 575 nm, 635 nm, 750 nm, 970 nm for axis 2; and 525 nm, 575 nm,
635 nm, 710 nm, 750 nm, and 835 nm for axis 3 (Table 3).

(a) (b)

(c)

Figure 7. Non-metric multidimensional scaling (NMS) ordination results using band depth values
from Lake Arnold (LA), northeast boundary (NEB), northeast early (NEE), and southwest early (SWE)
fields at the Blandy Experimental Farm in northern Virginia for (a) axes 1 and 2; (b) axes 1 and 3; and
(c) axes 2 and 3.

Table 3. Multiple regression coefficients, assessing which wavelengths most influence non-metric
multidimensional scaling (NMS) ordination axes.

Axis 435 525 575 635 680 710 750 835 970

Axis 1 3.60 . . 7.40 −7.66 −4.78 1.78 . 8.48
Axis 2 6.31 −1.65 3.44 7.28 . . 2.86 . 2.22
Axis 3 . −4.11 6.96 −6.41 . 3.79 5.31 5.59 .

The wavelengths selected through the principal components analysis (PCA) as most
encompassing variability across plots were 435, 525, 575, 635, 680, 710, 750, 835, and 970 nm. The
entire spectral profile was represented, because we used a segmented PCA rather than using the
entire spectral profile. This is important because of the differences in magnitudes of reflectance values
along the spectral profile; the greater the reflectance value at a particular wavelength, the more likely
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that wavelength may be to influence a principal component. Using the segmented PCA allows for
the representation of biologically meaningful features across the entire spectral profile. As examples,
the reflectance values at 435 nm and 575 nm are influenced by carotenoids and chlorophyll more so
than by anthocyanins [44,45]. At 525 nm, there is more influence by anthocyanins than carotenoids
and chlorophylls [44,45]. Chlorophylls a and b have peaks near 680 and 635 nm, respectively [44,45].
Wavelengths in the red edge such as 710 nm and 750 nm can be used to estimate chlorophyll content
because they are less affected by leaf structure and canopy structure [46]. The near-infrared bands,
such as 835 nm, have been used to assess leaf structure [47]. The water absorption feature near 970 nm
is often used to estimate leaf water content [48]. Using these wavelengths, a discriminant analysis
was successfully used to distinguish among communities. The DA revealed that there was high
discriminability across fields, but less discriminability within fields; this is consistent with greater
species composition similarity across than within fields.

Within the band depth ordination results, axis 1 was positively influenced by band depth at 435,
635, 750, and 970 nm and negatively influenced by band depth at 680 and 710 nm. Spectra with
high axis 1 values are characterized by (1) having high absorption associated with carotenoids and
chlorophyll (chl), especially chl b over chl a; (2) having a less steep red edge; and (3) having a large
water absorption feature at 970 nm. Axis 2 was positively influenced by 435, 575, 635, 750, and 970 nm
and negatively influenced by 525 nm. Thus, spectra with high axis 2 values are characterized by high
absorption associated with carotenoids and chlorophylls, especially chl b, and not by anthocyanins;
they also have high absorption at the red-edge shoulder and a large water absorption feature at
970 nm. Axis 3 was positively associated with 575, 710, 750, and 835 nm and negatively associated
with 525 and 635 nm. Spectra with high axis 3 values are characterized by high absorption associated
with carotenoids and chl a, but not by chl b or anthocyanins; they have high absorptions in the
near-infrared plateau.

To determine whether these spectral characteristics may be correlated with certain species, the
species ordination axis loadings were assessed for correlations with band depth loadings. There were
positive correlations between species axis 1 and band depth axis 1 (r = 0.513, p < 0.0001) and between
species axis 1 and band depth axis 2 (r = 0.718, p < 0.0001). There was a negative correlation between
species axis 2 and band depth axis 3 (r = −0.450, p < 0.0001). The species that were most strongly
correlated with axis 1 in the species ordinations were S. altissima and B. japonicus. These species may
be characterized by higher absorption by carotenoids and chl b than by anthocyanins and chl a; they
also may have high absorption in the red-edge shoulder region and the water absorption feature
at 970 nm. The species associated with axis 2 may be characterized by greater absorption due to
anthocyanins and chl b, and higher reflectance in the red edge and near-infrared regions. However,
caution must be used in analyzing these composite spectra, since features from multiple species are
being expressed within one spectral profile.

3.3. Discriminant Analyses

There was high separability among fields, but low separability among plots using simulated
WorldView2 broad bands (Table 4). As an example, 32 out of 36 NEB spectra were correctly identified
as NEB, but only 16 out of those 32 were identified as the correct plot within NEB. Similarly, 32 out
of 36 SWE spectra were correctly identified as SWE, but only 22 out of those 32 were identified as the
correct SWE plot.

In contrast, using multiple narrowband wavelengths selected by the PCA in a discriminant
analysis, we found greater spectral separability of plots (Table 5). As an example, 33 out of 36 NEB
spectra were correctly identified as NEB, and 27 out of those 33 were identified as the correct NEB
plot. Similarly, 35 out of 36 SWE spectra were correctly identified as SWE, and 31 out of those 35 were
identified as the correct SWE plot. User’s, producer’s, and overall accuracies and the MCC values
were greater using narrow bands than using simulated broad bands (Table 6).

16597



Remote Sens. 2015, 7, 16588–16606

Table 4. Confusion matrix for summer 2014 discriminant analysis to test discriminabilty of plots using 7 simulated WorldView2 bands: 400–449, 450–509, 510–580,
585–625, 630–690, 705–745, and 770–895 nm.

Number of Observations Classified into Plot

lacp1 lacp2 lacp3 nebcp1 nebcp2 nebcp3 neecp1 neecp2 neecp3 swecp1 swecp2 swecp3 Total Producer’s Accuracy

lacp1 12 0 0 0 0 0 0 0 0 0 0 0 12 85.7%
lacp2 0 12 0 0 0 0 0 0 0 0 0 0 12 100%
lacp3 2 0 8 0 0 1 0 0 0 1 0 0 12 88.9%

nebcp1 0 0 0 4 5 2 0 1 0 0 0 0 12 44.4%
nebcp2 0 0 0 4 6 2 0 0 0 0 0 0 12 46.2%
nebcp3 0 0 0 1 2 6 0 0 2 1 0 0 12 54.5%

neecp1 0 0 0 0 0 0 4 3 2 2 1 0 12 44.4%
neecp2 0 0 1 0 0 0 3 6 1 0 0 1 12 40.0%
neecp3 0 0 0 0 0 0 2 3 7 0 0 0 12 50.0%

swecp1 0 0 0 0 0 0 0 1 1 5 1 4 12 45.5%
swecp2 0 0 0 0 0 0 0 0 0 2 8 2 12 72.7%
swecp3 0 0 0 0 0 0 0 1 1 0 1 9 12 56.3%

Total 14 12 9 9 13 11 9 15 14 11 11 16 144

User’s Accuracy 100% 100% 66.7% 33.3% 50.0% 50.0% 33.3% 50.0% 58.3% 41.7% 66.7% 75.0%

Overall Accuracy 60.4%

16598



Remote Sens. 2015, 7, 16588–16606

Table 5. Confusion matrix for summer 2014 discriminant analysis to test discriminabilty of plots using wavelengths selected using principal components analysis:
435, 525, 575, 635, 680, 710, 750, 835, 970 nm.

Number of Observations Classified into Plot

lacp1 lacp2 lacp3 nebcp1 nebcp2 nebcp3 neecp1 neecp2 neecp3 swecp1 swecp2 swecp3 Total Producer’s Accuracy

lacp1 11 1 0 0 0 0 0 0 0 0 0 0 12 78.6%
lacp2 1 10 1 0 0 0 0 0 0 0 0 0 12 83.3%
lacp3 2 1 7 0 0 2 0 0 0 0 0 0 12 77.8%

nebcp1 0 0 0 8 3 0 0 0 1 0 0 0 12 88.9%
nebcp2 0 0 0 1 10 1 0 0 0 0 0 0 12 71.4%
nebcp3 0 0 1 0 1 9 0 0 1 0 0 0 12 75.0%

neecp1 0 0 0 0 0 0 8 0 1 2 0 1 12 80.0%
neecp2 0 0 0 0 0 0 1 7 0 0 0 4 12 77.8%
neecp3 0 0 0 0 0 0 1 1 10 0 0 0 12 77.0%

swecp1 0 0 0 0 0 0 0 0 0 11 1 0 12 73.3%
swecp2 0 0 0 0 0 0 0 0 0 2 9 1 12 90.0%
swecp3 0 0 0 0 0 0 0 1 0 0 0 11 12 64.7%

Total 14 12 9 9 14 12 10 9 13 15 10 17 144

User’s Accuracy 91.7% 83.3% 58.3% 66.7% 83.3% 75% 66.7% 58.3% 83.3% 91.7% 75.0% 91.7%

Overall Accuracy 77.1%
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Table 6. A comparison of discrimination accuracies and reliability using simulated WorldView2 broad
bands, and narrow bands from hyperspectral field-measurements.

Simulated Broad Bands Narrow Bands

Matthew’s Correlation Coefficient 0.548 0.745
Overall Accuracy 60.4% 77.1%

Average Producer’s Accuracy 60.7% 78.1%
Average User’s Accuracy 60.4% 77.1%

Therefore, plant communities may be more successfully discriminated spectrally using narrow
bands than broad bands. Additionally, the narrow band values entered into the discriminant analysis
were band depth rather than reflectance values, which may also have contributed to the increase
in discriminability.

3.4. Other Considerations

The spectral differences between fields may also have been due to differences in soil
characteristics among fields. If soil signatures were a large part of the spectral footprints (i.e., for
small-leaved species), these differences in soil signatures in the plots and fields may contribute
to the spectral differences in plots and fields. Depending on vegetation cover, differences in soil
moisture and soil texture can influence spectral data [16,49,50]. Differences in soil characteristics
such as soil nutrients, soil biota, and soil pH could also directly and indirectly influence differences
observed among communities [51]. Land use can influence soil characteristics [52] and species
composition [13,53,54]. The four fields studied at the Blandy Experimental Farm differ in land use
history [1] and in soil characteristics. Therefore, it is important to take land use history into account
when studying invaded systems [55,56] and secondary successional systems [54,57]. Additionally,
species composition can influence soil characteristics by mechanically changing the soil, affecting
nutrient cycling, altering soil biota, and by changing herbivore community compositions [5,58].

As another consideration, band depth may not always be the best way to normalize data
and correct for noise although it is quite commonly used [32,48,59,60]. Additional techniques for
extracting spectral information include the use of first and second derivatives [61,62], and band
ratios [63,64]. Band depth, however, is widely used to estimate vegetation water, nitrogen, lignin, and
cellulose content [32,48] and to discriminate among minerals [59,60], because it reduces the effects
of sensor noise, atmospheric effects, background soil signatures, and variations in topography and
albedo [32,59]. However, the output of this procedure varies depending on the range over which the
continuum is established. Band depth might also not be the most useful technique for all parts of
the spectral profile. Therefore, another noise minimization technique may be better able to preserve
information from the original reflectance spectral profile, for example, in the near-infrared region
where differences are often dampened by band depth calculations.

Additionally, only early-stage spectral signatures were analyzed in this study due to the height
of the vegetation. Therefore, the separability of plant communities in the early stages could not be
compared with separability of plant communities at mid and late stages. Future research with satellite
or airborne imagery could help rectify this short-coming; however, the differences in remote-sensing
platforms, such as spatial and spectral resolutions, would need to be taken into account. Further
research could also be done to assess discriminability across plant communities early and late in the
growing season, but at these times the soil signature may inhibit discrimination; senescence during
late stages of the growing season could also inhibit discriminability.

3.5. Context of Key Findings

Overall, we were able to visualize and analyze differences in communities by species
composition using ordination analyses. Schmidtlein et al. [40] used NMS ordinations to study
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undefined vegetation assemblages and used partial least squares regression analysis to assess which
bands were most influential to the assemblages. Similarly, we used regressions to determine
the most influential species to clustering: Solidago altissima (tall goldenrod), Bromus japonicus
(Japanese brome), Festuca rubra (red fescue), Galium verum (yellow bedstraw), Muhlenbergia schreberi
(nimblewill), Achillea millefolium (yarrow), Bromus commutatus (meadow brome), Solidago gigantea
(giant goldenrod), Dactylis glomerata (orchard grass), Ambrosia artemisiifolia (common ragweed), and
Lonicera japonica (Japanese honeysuckle). Several of these species are considered invasive in Virginia
(F. rubra, G. verum, M. schreberi, A. millefolium, D. glomerata, A. artemisiifolia, and L. japonica), illustrating
how invasive species can influence community composition [41].

We were also able to spectrally separate communities using ordinations. Gao and Zhang [65] also
examined such differences in vegetation, using ground-level spectral data to discriminate salt marsh
communities. These spectral differences by communities may be due to differences in species-level
characteristics since the reflectance in the visible region is influenced by pigment concentration and
reflectance in the near-infrared region is influenced by leaf structure [26], and these characteristics
can differ by species. This idea was supported when we used regressions to determine the most
influential wavelengths for clustering of communities: 435, 525, 575, 635, 680, 710, 750, 835, and
970 nm. These wavelengths are representative of absorption by pigments, leaf structure, and leaf
water content; such features differ by species and by communities that differ in species composition.

Similar spectral features have been used to discriminate among species [17,21–25]. If such
features are able to be detected at the satellite level, discriminability may also be possible using
satellite imagery. Since the most readily available satellite data are multispectral with medium
or coarse spatial resolution, this may be challenging considering the lower discriminability we
observed using simulated broad bands. However, discriminability may become easier with the
advances in hyperspectral satellite technology such as the existing Hyperion and future EnMAP and
HyspIRI satellites. The German EnMAP (Environmental Mapping and Analysis Program) satellite
mission aims to use a pushbroom sensor to collect visible, near infrared, and shortwave infrared
(420 nm–2450 nm) reflectances with 244 bands, high radiometric resolution of 14 bits, a spatial
resolution of 30 m, and a 30◦ off-nadir pointing feature and sun-synchronous orbit that will allow
a four-day temporal resolution; it is scheduled to launch around 2018 [66]. Additionally, the HyspIRI
(Hyperspectral Infrared Imager) mission, scheduled to launch by 2022, will have two instruments on
a satellite in Low Earth Orbit that will collect reflectance measurements from 380 nm to 2500 nm
and 3 µm to 12 µm with a spatial resolution of 60 m and revisit times of 19 days for visible to
shortwave regions and five days for thermal infrared [67]. Advances in high spatial resolution
satellites, such as the WorldView2 and WorldView3 satellites with resolutions of 1.84 m and 1.24 m
respectively for multispectral bands, would also increase species discriminability with the reduction
of spectral mixing; WorldView3 also has decent spectral resolution, with 16 bands from the visible to
shortwave-infrared regions. Using hyperspectral and high-spatial resolution data to monitor plant
communities and how they may be affected by invasion at large spatial extents can aid conservation
efforts and help us preserve the biodiversity that is associated with ecosystem function.

4. Conclusions

We were able to distinguish among plant communities that differed in species compositions
using ground-level hyperspectral remote sensing data. Seven of the eleven most influential species
in defining these plant communities are considered invasive in Virginia, demonstrating the impact of
invasive species on community composition. Plant communities were more accurately discriminated
amongst using narrow bands than by using simulated broad bands, with a 77% overall accuracy
versus 60% percent. Thus, narrow bands provide improved accuracies relative to broad bands in
the study of plant communities, perhaps because narrow bands provide useful details that may be
averaged out by broad bands. In this study, we demonstrated that we could discriminate among early
successional plant communities using remote sensing data collected at the ground-level. Further
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work could be done using airborne or satellite imagery in mid and late successional stages to observe
plant community discriminability at larger spatial extents. However, challenges to this include spatial
and spectral resolutions most commonly available in airborne and satellite imagery. Such research
will become more feasible with advances in satellite technology, such as the upcoming hyperspectral
EnMAP and the available hyperspatial WorldView3 satellites.
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Appendix. Persistence of Invasive Plants

The non-native invasive plant species in this paper have several traits that allow them to persist
in and take over a region. As examples, Carduus acanthoides (spiny plumeless thistle) has numerous,
though not persistent, seeds [68], is tolerant to repeated disturbances [69], and is opportunistic in
colonizing gaps [70]. Rhamnus cathartica (Common buckthorn) has high shade tolerance, high growth
and photosynthesis rates, wide range of tolerance of moisture and drought, unique leaf phenology,
high fecundity, bird-dispersal of fruit, high germination rate, high seedling success in disturbed
sites, and secondary metabolites, especially emodin, which may protect the plant from herbivores,
pathogens, and high light levels; emodin may have allelopathic effects on natives nearby, and affect
soil microbes and unripe fruit consumption/digestion by birds [71]. Celastrus orbiculatus (Oriental
bittersweet) sprawls over or twines around and into the canopy of surrounding vegetation and has
low palatability [72]. It does not have a host preference [73]. It can also persist at low photosynthetic
rates in the shade and respond quickly to increases in light penetration to outgrow competition even
in mature forests [72], is able to spread substantially within the canopy and decrease tree growth
after gap-formation [74]. Oriental bittersweet can outcompete American bittersweet due to greater
tolerance to various environmental conditions (e.g., shade), faster growth and reproduction rates,
ability to increase photosynthetic rates with increases in light, perhaps the ability to perceive and
grow toward nearby vegetation that it could then climb [72], a shorter juvenile period, and greater
seed viability [75]. In addition to changing species composition of plants, these invasive species can
also be host to other types of organisms that could, in turn, affect other plants; buckthorn is the
primary overwintering host for soybean aphids, Aphis gossypii and A. glycines [76,77], and oriental
bittersweet is host for the bacterim Xylella fastidiosa, which, in turn, infects crop plants [72].
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