
Mentat 2.5 User’s Manual

The Mentat Research Group

Technical Report No. CS-94-06
February 17, 1994

Mentat 2.5 User’s Manual

The Mentat Research Group

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903
mentat@Virginia.edu

February 17, 1994

1

Copyright © 1993 by the Rector and Visitors of the University of Virginia.

All rights reserved.

Permission is granted to copy and distribute this manual so long as this copyright page
accompanies any copies. The Mentat system software herein described is intended for
research and is available free-of-charge for that purpose. Permission is not granted for
distributing the Mentat system software outside of your site. The Mentat system is
available via anonymous FTP, please refer interested parties to mentat@Virginia.edu for
more information.

In no event shall the University of Virginia be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of the use of the
Mentat system software and its documentation.

The University of Virginia specifically disclaims any warranties, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The software provided hereunder is on an “as is” basis, and the University of Virginia has no obligation to provide
maintenance, support, updates, enhancements, or modifications.

Portions of the grammer used in the MPL front-end processor is Copyright © 1989, 1990 by James A. Roskind.

This work is funded in part by NSF grants ASC-9201822 and CDA-8922545-01, and NASA grant NGT-50970.

The following people have contributed to the Mentat project: Andrew Grimshaw, Ed Loyot, Jon Weissman, Padmini
Narayan, Emily West, John Karpovich, Laurie MacCallum, Tim Strayer, Brian Paine, David Mack, Virginio Vivas, and
Gorell Cheek.

2

Table of Contents

1.0 Introduction 2

1.1 A Mentat Bibliography 3

1.2 Mentat Distribution 5

1.3 Changes in this Upgrade 6

1.4 Help 7

2.0 Installation 7

2.1 Workstation-Based Mentat Installation 7

2.2 The Multicomputer Version Mentat Installation 11

3.0 Mentat Distribution Directory Structure 11

4.0 Mentat User Commands 13

5.0 Configuring Mentat 16

6.0 MentatView 22

7.0 Mentat Programming Language Compiler 24

8.0 Mentat Library Classes 29

8.1 The Object-Oriented Library 29

8.2 The Mentat Stream Facility 34

8.3 The Array and Vector Classes 36

8.4 File Interface for Array and Vector Classes 48

9.0 Problems at Run-Time 52

February 17, 1994

3

Mentat 2.5
User’s Manual

A user ’s guide to the
installation, utilities. and library
of the Mentat object-oriented
parallel processing
environment.

1.0 Introduction

Mentat is an object-oriented parallel processing system designed to directly address the
difficulty of developing architecture-independent parallel programs. The fundamental
objectives of Mentat are to

• provide easy-to-use parallelism,

• achieve high performance via parallel execution, and

• facilitate the portability of applications across a wide range of platforms.

The Mentat approach exploits the object-oriented paradigm to provide high-level
abstractions that mask the complex aspects of parallel programming, including commu-
nication, synchronization, and scheduling, from the programmer. Instead of managing
these details, the programmer concentrates on the application. The programmer uses
application domain knowledge to specify those object classes that are of sufficient com-
putational complexity to warrant parallel execution.

The Mentat system is made up of two major components: theMentat Run-Time System
(RTS) and theMentat Programming Language (MPL). Programs written in MPL inter-
act with the RTS via compiler generated library calls. The RTS provides a set of services
needed by application programs, including instantiation and scheduling of Mentat
objects, and program graph construction and management.

MPL is an object-oriented, parallel programming language designed to support high
degrees of parallelism yet be easy to use. The MPL syntax is a superset of C++, the
object-oriented extension of C. Users decompose their programs into objects and “tag”
some of these objects as candidates for parallel execution. This programming paradigm

Introduction

Mentat 2.5 User ’s Manual 4

not only supports the decomposition of the program into logically cohesive parts, it also
facilitates software engineering principles such as simplification of large programs and
code reuse.

Mentat’s underlying model of computation is the Macro Data-Flow model. Data-flow
analysis, performed by the MPL compiler mplc, supports parallel execution by detect-
ing data dependencies and blocks only when results from parallel computations are
required. The MPL compilermplc translates MPL code into C++ with embedded run-
time system calls. These calls allow the RTS to automatically manage all communica-
tion and synchronization.

A Mentat network is a collection of hosts which are available to work on an application.
The network is specified by listing the host’s names — along with other host-specific
information — in a start-up configuration file calledconfig.db. Once a Mentat network
is started, users can run their Mentat applications. Using the various utilities provided, a
user can also see the way the application is distributed to the participating hosts, and
even monitor the progress of the application.

An active Mentat network has an Instantiation Manager (im) daemon and a Token Man-
ager Unit (tmu) daemon on each host. Theim handles requests to instantiate (that is,
create) Mentat objects and determines on which host to place them, and performs other
services involving the management of Mentat objects Thetmu provides the token
matching services required by regular (stateless) Mentat objects. When thetmu has col-
lected and matched all of the tokens needed for a regular Mentat object invocation, it
asks theim to initiate an instance of the object to service the request. It then forwards
the tokens to that new instance.

This document explains in detail how to install and use the Mentat system. The installed
Mentat system is superficially just another user account with directories and files. Inside
the Mentat account are all of the utility and system binaries, the Mentat language librar-
ies, man pages, and documentation. However, any user, given the proper permissions,
can start and use the Mentat system; the Mentat account — although a valid user — is
actually a convenient repositoriy for the Mentat system files.

Section 2 steps the reader through unpacking Mentat and verifying that the system has
been properly installed. Section 3 is a tour of the Mentat directories. Section 4 over-
views the Mentat user commands. Section 5 discusses how to configure a Mentat net-
work. Section 6 describes how to use MentatView, the real-time graphical network
monitor. Section 7 discussesmplc, the compiler for the Mentat Programming Language.
Finally, Section 8 discusses the Mentat librarylibmentat.

1.1 A Mentat Bibliography

Along with the overviews given by the several Mentat manuals, detailed descriptions of
the various aspects of the Mentat object-oriented parallel processing system are given in
published papers and technical reports. Below is a bibliography of these papers; please
refer to these for more information.

Details on the Mentat Programming Language are given inMentat Programming Lan-
guage Reference Manual, which is available with the standard Mentat distribution.
Refer to this manual for writing Mentat applications.

Introduction

Mentat 2.5 User ’s Manual 5

The Mentat Approach to Parallel Programming

A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,”
IEEE Computer, pp. 39-51, May 1993.

The Mentat Computation Model

A.S. Grimshaw, W.T. Strayer, and P. Narayan, “Dynamic Object-Oriented Parallel
Processing,”IEEE Parallel & Distributed Technology: Systems & Applications, pp.
33-47, May 1993.

A.S. Grimshaw, “The Mentat Computation Model - Data-Driven Support for Dynamic
Object-Oriented Parallel Processing,” Department of Computer Science Technical
Report CS-93-30, University of Virginia, May 1993.

The Mentat Run Time System

A.S. Grimshaw, J. Weissman, W.T. Strayer, “Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing,” Department of Computer Science Technical
Report CS-93-40, University of Virginia, July 1993.

A.S. Grimshaw, “The Mentat Run-Time System: Support for Medium Grain Parallel
Computation,” Proceedings of the Fifth Distributed Memory Computing
Conference, pp. 1064-1073, Charleston, SC., April 9-12, 1990.

The Mentat Scheduler

A.S. Grimshaw and V. E. Vivas, “FALCON: A Distributed Scheduler for MIMD
Architectures”, Proceedings of the Symposium on Experiences with Distributed and
Multiprocessor Systems, pp. 149-163, Atlanta, GA, March 1991.

The Mentat Communication System

A.S. Grimshaw, D. Mack, and W.T. Strayer, “MMPS: Portable Message Passing
Support for Parallel Computing,” Proceedings of the Fifth Distributed Memory
Computing Conference, pp. 784-789, Charleston, SC., April 9-12, 1990.

Experiences using Mentat

A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with
Mentat on Biological Application,”Concurrency: Practice & Experience, Vol. 5,
No. 4, pp. 309-328, June 1993.

P. Narayan,et. al., “Portability and Performance: Mentat Applications on Diverse
Architectures,” Department of Computer Science Technical Report TR-92-22,
University of Virginia, July 1992.

J.B. Weissman, A.S. Grimshaw, and R. Ferraro, “Parallel Object-Oriented Computation
Applied to a Finite Element Problem,” to appear inScientific Computing, 1993.

Introduction

Mentat 2.5 User ’s Manual 6

J.F. Karpovich, M. Judd, W.T. Strayer, and A.S. Grimshaw, “A Parallel Object-Oriented
Framework for Stencil Algorithms,”Proceedings of the Second Symposium on
High-Performance Distributed Computing, Spokane, WA, July 21-23, 1993.

Mentat Approach to Heterogeneous Processing

A.S. Grimshaw, J.B.Weissman, E.A. West, and E. Loyot, “Meta Systems: An Approach
Combining Parallel Processing And Heterogeneous Distributed Computing
Systems,” TR-92-43, Department of Computer Science, University of Virginia,
December, 1992.

General

B. Stroustrup, “What is Object-Oriented Programming?” IEEE Software, pp. 10-20,
May, 1988.

Margaret A. Ellis and Bjarne Stroustrup, “The Annotated C++ Reference Manual”,
Addison-Wesley Publishing Company, 1990.

The public domain C++ grammar is copyright 1989, 1990 by James A. Roskind
(jar@florida.HQ.Ileaf.COM).

1.2 Mentat Distribution

There are two flavors of the Mentat system: a version for distributed workstation
environment, and a mulitprocessor version for a tightly-coupled MIMD machine. The
workstation architectures supported by the workstation-based version are:

• Sun 3 workstations

• Sun 4 SparcStations

• Silicon Graphic Iris workstations

• IBM RS/6000 workstation

A single Mentat network may contain hosts of any or all of these architecture types. In
this way a MIMD “platform” can be created using a collection of otherwise autonomous
hosts.

The multicomputer verison does not need to create a MIMD platform—it uses the one
that exists within the multicomputer. This version is not currently compatible with the
workstation version. The multicomputer architecture supported by Mentat is:

• Intel iPSC/860 Hypercube (Gamma)

This Mentat distribution is public and free of charge. However, since we wish to keep
track of the community of Mentat users, please refer interested parties to us rather than
passing along the distribution file.

Mentat is a research vehicle and as such is constantly in evolution. There are likely to be
unwanted features and deficiencies within this release. If you find any mistakes or have
any comments, suggestions, or questions, please do not hesitate to call or e-mail to men-
tat@Virginia.edu.

Introduction

Mentat 2.5 User ’s Manual 7

1.3 Changes in this Upgrade

Mentat 2.5 improves on earlier versions in several ways:

• New directory structure

The directory structure of Mentat has been updated and streamlined for ease of use.
A full explanation of the directories can be found in Section 3 of this document.

• Configuration enhancements

The configuration of Mentat hosts has been greatly expanded. Hosts can be grouped
together by processor attributes, network proximity, or other attributes for more effi-
cient scheduling. In addition, multiple Mentat configurations can utilize the same
host. A full explanation of configuration management can be found in Section 5 of
this document.

• Enhanced library

The Mentat library has been updated to include the classes mstream, oolib, and
DD_array (formerly known as app_misc). Use of these classes requires only that the
proper header files be included. A full explanation of the use of these classes can be
found in Section 9 of this document.

• Sequential persistent objects

A new type of Mentat object has been added--sequential persistent objects. This
allows the user control over the order of execution of methods on a persistent Mentat
object.

• Create/Destroy overloading

The create and destroy methods for persistent Mentat objects have been enhanced to
allow overloading. Users may exert more control over the placement and topology
of persistent Mentat objects.

• Inheritence

The Mentat Programming Language has been enhanced to allow for Mentat class
hierarchies. A full explanation of Mentat class inheritance can be found in the Men-
tat Programming Language Reference Manual.

• Heterogeneity

Mentat can now be configured to run on networks of hetergeneous processors. A full
explanation of how to configure a heterogeneous network can be found in Section 5
of this document.

• Regular object multiplexing

Previous releases limited the number of active regular objects to a few per processor.
This release permits up to one thousand per processor.

• Enhanced compiler

The MPL compiler mplc has been enhanced for easier use. Also, many bugs have
been fixed, resulting in a far more robust compiler.

• Bug fixes

We continue the on-going effort to discover and erradicate annoying “features.”

Installation

Mentat 2.5 User ’s Manual 8

• Additional Platform Support

We have added the IBM RS/6000 workstation to the list of supported platforms. We
plan to add the DEC Alpha and the HP workstations soon.

1.4 Help

There are several help services available.

• Reference manuals

This manual and the Mentat Programming Language Reference Manual are
designed to provide all of the support necessary to use the Mentat system.

• On-line manual pages

The Mentat system commands are in manual section 1. The Mentat language fea-
tures are in manual section 3 and 3z; to find a manual entry in section 3z you must
specify the section number: man 3z intro. File types are in manual section 5.

• A Tutorial

The Mentat Tutorial provides a step-by-step course in starting a Mentat network and
using some example applications.

• Electronic mail to mentat@Virginia.edu

We invite you to ask questions and make comments about Mentat through the elec-
tronic mail service. The address mentat@Virginia.edu will put you directly in touch
with the Mentat Research Group at the University of Virginia.

• Electronic mail relay service

For general questions, and questions for which answers may help other users, the
mentat relay is available. These questions and comments are distributed to everyone
registered on the relay. To register for the relay send mail to mentat@Virginia.edu.

2.0 Installation

This section provides the step-by-step process of installing Mentat. As mentioned
earlier, there are two versions of Mentat: a workstation-based version and a version
designed for multicomputers. Each version is packaged in a distribution file that must be
downloaded from the University of Virginia. The steps for unpacking the distribution
files, once gotten, are outlined in the following two sections.

2.1 Workstation-Based Mentat Installation

The workstation-based Mentat system distribution file is available via anonymous ftp
from uvacs.cs.virginia.edu in the pub/mentat directory. The file is archived and
compressed. Once downloaded and unpacked, the file unfolds into the directories and
subdirectories containing the various files need to run the Mentat system. The following
is a list of the procedures you must follow to correctly install Mentat. You should be
familiar with UNIX and UNIX directory structures. Some of the installation requires
system administrator assistance.

Installation

Mentat 2.5 User ’s Manual 9

Setting-Up the Mentat Account

All of the Mentat system support files and binaries, such as the MPL compiler and the
run-time system, should be maintained in a user account called “mentat.” Have your
system administrator create a user “mentat.” The instantiation managers in the Mentat
RTS can use system loading information for scheduling if the Mentat account is a
member of the kmem group. Some platforms (such as the Sun workstations) allow this;
others platforms, or system administrators, may not. The penalty is that the RTS will
make some naive scheduling decisions.

The Mentat account should be active for each machine on which you wish to run Men-
tat. It is important, however, that all the machines are part of a shared file system, and
that the files in the Mentat account are visiable to each machine. (Note that it is all right
to have some machines be in the kmem group while others are not.)

We recommend that you also create a group called “mentat” to which all users of Men-
tat, including the Mentat account, belong. This simplifies protection.

Step 1 Set the protections for the Mentat account first by issuing the command:
$ umask 002

and second by placing the line “umask 002” in the .profile or .login file for the Mentat
account.

Step 2 Move the Mentat distribution file mentat.tar.Z to the home directory of the Mentat
account. (We will refer to this home directory as “/users/mentat”; you may, however,
supply the full path name or use “/home/mentat.”)

Step 3 To reconstitute the distribution file, issue the following command from the home
directory of the Mentat account:

$ cat mentat.tar.Z | uncompress | tar xpBf -
When this is finished check the directory structure — it should look like that given in
Section 3.0.

Step 4 Type the following lines at the UNIX prompt from the home directory if Mentat’s
account is using sh or a derivative (ksh, zsh, bash):

$ MENTAT=/users/mentat
$. $MENTAT/etc/env_sh

If the Mentat account’s shell is the C shell or a derivative (csh or tcsh), issue the
following:

$ setenv MENTAT /users/mentat
$ source $MENTAT/etc/env_csh

Also put these lines in the Mentat account’s .profile or .login file.
The scripts env_sh and env_csh define and export several Mentat environment variables,
including $MENTAT_BIN, the bin directory for system commands and utilities,
$MENTAT_ARCH, the architecture type of this machine, and $MENTAT_USR_BIN,
the bin directory for user applications.

Step 5 Verifiy that $MENTAT_ARCH is set properly by issuing:
$ echo $MENTAT_ARCH

Installation

Mentat 2.5 User ’s Manual 10

This should return the architecture type of this machine. (Valid machine types are
“sun3,” “sun4,” “sgi,” and “rs6000.”) You should verify that $MENTAT_ARCH gets
properly set for each architecture type in your system.

Step 6 There are some permissions that do not get set properly after the unpacking of the
distribution file. To set these permissions, issue:

$ $MENTAT/etc/set_protection
This commnand will warn you that “you are not a member of group kmem” if that is the
case. Run this command once, after unpacking the distribution file.

Step 7 Change directory to $MENTAT/usr/bin. Copy the file sample.config.db to config.db,
and edit config.db. Follow the instructions in config.db, and refer to Section 5 for more
information. The “trialrun” cluster should have only a few machines (1-3) initially to
verify that the system works.

Verifying Mentat

If all went well with setting up the Mentat account and setting the privileges and
environment variables, then the Mentat system is ready to run applications. Now you
should be able to build and execute the example applications described at the end of this
document and, after reading the Mentat Programming Language Reference Manual,
you can build and execute your own Mentat applications. Before going that far,
however, first verify that the system is properly installed by following these steps:

Step 1 Change directories to $MENTAT. Verify that the account “mentat” can run a remote
shell on each of the hosts in the config.db file by issuing:

$ rsh <hostname> finger
where “<hostname>” is the name of a remote host. Some sites “trust” local machines. If
your site does not, you will need an appropriate .rhosts file. See your system
administrator for details.

Step 2 Verify that the config.db file is well-formed by issuing the command:
$ print_config

Look at the output to see if you have specified the hosts and clusters properly.

Step 3 Verify all hosts in the config.db file will respond by issuing the command:
$ check_config

This command will ask each host if there are any Mentat processes present; for our
purposes it verifies that the config.db file will work with utility commands, and that each
host in the config.db file will accept an “rsh.”

Step 4 To start the Mentat network described by the list of hosts in the config.db file, issue the
following command:

$ start_mentat
This command will invoke a remote shell on each of the hosts in the config.db file and
will start the instantiation manager (im) on that host. You should see messages
indicating the progression of start_mentat. If a Mentat network using the same port
number as is specified in the config.db file is already started on some machine in the

Installation

Mentat 2.5 User ’s Manual 11

config.db file, start_mentat will report which machine and who owns the Mentat
processes.

Step 5 If start_mentat completes without error messages, the network is running. You may
verify that the Mentat system is indeed running by issuing:

$ list_objects
This will list all Mentat objects that the system is executing; in this case all of the
machines should respond (indication of a correctly running instantiation manager) but
no objects will be shown. The system is running properly if all hosts respond and the
command returns; if some host is not properly included in the system, the command will
hang just after the errant host’s name is printed. You must interrupt the command with
<ctrl C>, issue the kill_mentat command, check that no Mentat-owned processes exist
on any machine listed in the config.db file, and then go back to Step 2 to try again.

Step 6 Run the shell script “dotest” by issuing the following command:
$ dotest

This shell script in turn calls various benchmark programs. The results of the test should
look something like:

gauss 100 1 elapsed msec = 706
gauss 100 1 elapsed msec = 696
gauss 100 1 elapsed msec = 834

(etc.)

Step 7 It is not necessary or desirable to bring down the Mentat system after each application;
however, there are circumstances when you will need to bring the system down. To
remove all Mentat processes on the hosts in the config.db file, issue:

$ kill_mentat
An indication of the Mentat system’s demise will be printed to the screen, and a
subsequent check_config command will report that no Mentat processes are present on
each of the machines in the config.db file.

Step 8 If kill_mentat fails to kill all of the mentat processes, or hangs in the middle, a more
radical method for clearing the Mentat network may be employed. The command

$ purge_mentat
will remove all Mentat processes on all machines in the config.db file, regardless of who
started those processes or which port number they are using. Use this command with
caution.

Individual Mentat Users

Mentat can of course be run by any user in the mentat group. Each user must insert
several Mentat-specific lines into their .profile or .login file so that the user can use the
Mentat system. As with the Mentat account, the $MENTAT environment variable must
be set in the user’s .profile file as follows:

MENTAT=/users/mentat
. $MENTAT/etc/env_sh

or the user’s .login file:

Mentat Distribution Directory Structure

Mentat 2.5 User ’s Manual 12

setenv MENTAT /users/mentat
source $MENTAT/etc/env_csh

Alternatively, a user wishing to run the Mentat commands in the current login session
must type in the appropriate set of lines at the command prompt.

Custom Mentat Configuration

A Mentat network can be started by creating a config.db file in some directory other
than $MENTAT/usr/bin. The custom Mentat network must be started, used, and killed,
from the same directory as the custom config.db file is, otherwise the Mentat utility
commands will look for the config.db file in the default location (namely, $MENTAT/
usr/bin). In this way muliple Mentat networks can be running at the same time, and as
long as the ports (specified in the config.db file—see Section 5) are different, muliple
Mentat networks can have hosts in common. Use the check_config command to verify
a custom config.db file before starting a custom Mentat networkt.

2.2 The Multicomputer V ersion Mentat Installation

To install Mentat on the Intel Gamma or Paragon, consult the document “Mentat on the
Intel Gamma and Paragon”.

3.0 Mentat Distribution Directory Structure

The Mentat directory structure is shown in Figure 1. There are eight directories under
$MENTAT, three that contain executables, one for libraries, two for help, and two with
source code or include files.

$MENTAT/usr

The usr directory is designed to contain the user-specific files. In particular, the bin
directory contains (1) the default config.db file, and (2) a subdirectory for each

$MENTAT

usr bin

sun3 sun4 sgi rs6000

sourcesman docetc include

bin man1 man3 man5 examples

Figure 1 Mentat Directory Structure

lib

sun3 sun4 sgi rs6000

Mentat Distribution Directory Structure

Mentat 2.5 User ’s Manual 13

architecture. These architecture-specific subdirectories are the repository for application
executables. If you want to run an application on a Mentat network of mixed
architecture types, you must compile that application on a representative of each
architecture and copy the exectuatable to $MENTAT_USR_BIN.

$MENTAT/bin

The bin directory (also known as $MENTAT_BIN) contains all of the Mentat utility
commands.

$MENTAT/lib

The lib directory (also known as $MENTAT_LIB) contains the Mentat library
libmentat. There are two directories under each of the several architecture-specific
subdirectories, att and gnu. There is an appropriately constructed library libmentat for
each architecture and compiler. (Actually, for some platforms we do not support AT&T
C++, so there is only a GNU version of the library under that architecture’s directory.)

$MENTAT/etc

The etc directory contains some useful Mentat scripts, such as set_protection, as well as
the environment scripts env_sh and env_csh.

$MENTAT/man

The man directory contains the manual pages for on-line help with the Mentat system.
There are three subdirectories. The man1 subdirectory contains manual pages
describing the various Mentat uitlity commands. The man3 subdirectory contains
manual pages describing the language and library classes. The man5 subdirectory
contains manual pages describing the various files used by the Mentat run-time system
such as the configuration file.

$MENTAT/doc

The doc directory contains the postscript of all of the documentation incuded with the
Mentat distribution, including this manual, the Mentat Programming Language
Reference Manual, and the Mentat Tutorial.

$MENTAT/sources

The sources directory contains all of the source code included with the Mentat
distribution, specifically, the examples source code in the examples subdirectory. The
Mentat Tutuorial wil step you through some of these examples.

$MENTAT/include

The include directory contains the various header files that the Mentat Programming
Language MPL uses.

Mentat User Commands

Mentat 2.5 User ’s Manual 14

4.0 Mentat User Commands

Any user with properly set Mentat system environment variables can issue the Mentat
commands to start, stop, or monitor the Mentat system. The set of user commands are
listed below, along with some explanation of the use of these commands.

Many of the command use the file config.db to get information about the Mentat net-
work configuration. The commands look in the current working directory for a file
named config.db; failing to find one there, they look in the directory $MENTAT/usr/bin.

Some user commands do not make sense in a multiprocessing environment; these com-
mands are noted.

NOTE: These commands use the contents of the file config.db; if any command is
run in a directory with a config.db file other than the one used to start the Mentat
network, unpredictable results occur.

Check_Config Synopsis: check_config

The check_config command checks each host in the config.db file to determine if Men-
tat processes (the im or tmu) are present and are using the same port as specified in the
config.db file. If such an im process is present on some host, check_config reports who
started Mentat on that host. If Mentat is unstable on some host, check_config asks if it
should clean up any dead processes on that host. This command is useful for confirming
that the hosts in a config.db file do not conflict with a Mentat network already in place.

Check_Host Synopsis: check_host [host_list]

The check_host command will check each host in the argument list for the presence of
any Mentat processes (the im or tmu), and report if they are present. This command is
useful for quickly checking the status of arbitrary hosts without first creating a config.db
file.

Not available for multicomputer version.

Kill_Mentat Synopsis: kill_mentat

The kill_mentat command removes all Mentat processes — that is, the instantiation
manager im and all of its child processes — from the Mentat network described by the
config.db file.

Kill_Mstream Synopsis: kill_mstream

The kill_mstream command is used to remove processes created by the use of
mstreams (named mfileobj and mfilesys) in the event that the user program fails and the
mstream processes do not get destroyed. A kill_objects will NOT remove these pro-
cesses since they are owned by the user and not mentat. This command should be run on
the machine from which the main program was run.

Not available for multicomputer version and for use with g++.

Mentat User Commands

Mentat 2.5 User ’s Manual 15

Kill_Objects Synopsis: kill_objects -a
kill_objects -c class_name
kill_objects -h host_name [-a | -p object_pid]
kill_objects -n host_num [-a | -p object_pid]

The kill_objects command kills the specified Mentat objects while Mentat is running.
When a Mentat application is aborted, some Mentat objects may be left running. By
issuing the kill_objects command, these objects can be removed without disturbing the
whole Mentat system.

Issuing the kill_objects command with the -a flag alone causes all Mentat objects on all
hosts in the config.db file to be killed, including all objects that exist due to someone
else’s application. Use this with caution; you may inadvertently kill other user’s objects.

The -c class_name flag kills all objects with the specified class name.

The -h host_name and -n host_num flags indicate a specific host, either by string or by
number (the number is the order in which the host appears in the config.dbfile). Once a
host is specified additional flags indicate which objects to kill: the -a flag kills all Mentat
objects on that host, or the -p object_pid flag kills only the specified object.

Once the kill_objects command has been issued, peer objects attempting to communi-
cate with killed objects will hang.

Mentat must be running when this command is issued; the command will hang if an
instantiation manager (im) is not present on a host for which objects are being listed.

List_Objects Synopsis: list_objects [-a | -h host_name | -n host_num]

The list_objects command lists the active Mentat objects for the Mentat network as
defined by the config.db file. Mentat objects are created by a running Mentat applica-
tion. If no arguments are specified, list_objects will list all active Mentat objects,
including the objects of other users of this Mentat system. When the list_objects com-
mand is issued with the -h host_name option, only objects of that specific host are listed.
The Mentat system can also refer to hosts by number; when issued with the -n host_num
option, only objects of that specific host number are listed.

Semantically, regular Mentat objects (see the Mentat Programming Language Refer-
ence Manual) are instantiated only for the purpose of executing a called member func-
tion. When the member function has completed, the process executing the regular
Mentat object is killed. This is inefficient for multiple calls on member functions of a
regular Mentat object. Consequently, the Mentat RTS keeps bookkeeping information
about the object in place, even after the member function call completes. To see all
Mentat objects, including these idle objects, issue the list_objects command with the
option -a.

Mentat must be running when this command is issued; the command will hang if an
instantiation manager (im) is not present on a host for which objects are being listed.

Mentat User Commands

Mentat 2.5 User ’s Manual 16

Print_Config Synopsis: print_config

The print_config command parses the config.db file and prints out the configuration
specified. This command is a good way to verify that the config.db file is well-formed,
and that the hosts have the attributes intended. The print_config command searches for
the config.db file first in the current working directory, then in the $MENTAT/usr/bin
directory.

Purge_Mentat Synopsis: purge_mentat

The purge_mentat command removes all Mentat processes from all machines in the
config.db file. The purge_mentat command differs from the kill_mentat command in
that it removes all instantiation managers (im) and their children, without regard to
which port the Mentat network described by the config.db file was using.

Resume_Mentat Synopsis: resume_mentat -a
resume_mentat -h host_name
resume_mentat -n host_num

The resume_mentat command reenables the scheduler to place Mentat objects on the
named host. The list_objects command will show the status of each host; resume_men-
tat changes the status of a host from SUSPENDED to RUNNING. The -a option
resumes placement of Mentat objects on all hosts. The -h host_name option resumes
placement of Mentat objects on host host_name. The -n host_num option resumes
placement of Mentat objects on host number host_num.

Mentat must be running when this command is issued; the command will hang if an
instantiation manager (im) is not present on a host for which objects are being listed.

Not available for the multicomputer version.

Start_Mentat Synopsis: start_mentat [-n nice_value]

The start_mentat command creates and initializes a Mentat system. The start_mentat
command uses the config.db file (either in the current working directory or, failing to
find one here, in the $MENTAT/usr/bin directory) to determine the number and names
of the hosts to be included in the Mentat network. The command then checks the suit-
ability of each of the hosts listed. If Mentat is already running on a particular host using
that port number, or if some other process is using the port number Mentat uses, a mes-
sage will indicate which host is suspect and, if possible, who started Mentat on that host.
If all hosts are suitable for starting a Mentat network, start_mentat invokes a remote
shell on each of the hosts listed. Each remote shell issues commands to create an instan-
tiation manager (im) process on that host.

If start_mentat fails for some other reason, you must first remove all Mentat processes
from the machines where start_mentat was successful.

The -n nice_value option provides the mechanism for starting Mentat processes with a
particular nice value.

Configuring Mentat

Mentat 2.5 User ’s Manual 17

Standard I/O is not well defined in a distributed system. For Mentat, the files stderr and
stdout of all remote processes are bound to the window in which start_mentat is exe-
cuted. Because all Mentat objects are children of one of the remote shells, they all share
the same stdout. Separate input/output streams can be realized using the mstream facil-
ity (see Section 8.0).

Suspend_Mentat Synopsis: suspend_mentat -a
suspend_mentat -h host_name
suspend_mentat -n host_num

The suspend_mentat command will disallow the scheduler from placing Mentat
objects on the named host. Issuing the list_objects command will show the status of
each host; suspend_mentat changes the status of a host from RUNNING to SUS-
PENDED. The -a option suspends placement of Mentat objects on all hosts. The -h
host_name options suspends placement of Mentat objects on host host_name. The -n
host_num option suspends placement of Mentat objects on host number host_num.

Mentat must be running when this command is issued; the command will hang if an
instantiation manager (im) is not present on a host for which objects are being listed.

Not available for multicomputer version.

5.0 Configuring Mentat

When a Mentat network is started there are several pieces of information necessary to
ensure that all hosts in the system have the proper run-time system processes
instantiated, and that these processes have values for their various configuration
parameters. This section describes the Mentat configuration process, and how it uses
either default or user-specified configuration values.

Workstation-Based Configuration

In the workstation-based Mentat, hosts may be partitioned into families and,
orthogonally, into clusters (Figure 2). A family of hosts shares the same attributes such
as processor type and MIPS rating. A complete list is given below.

While families represent processor attributes, clusters indicate locality information that
is used in the location policy during object scheduling. Members of a cluster are
presumed by the im’s (instantiation managers) to be closer together, e.g., they may
reside on the same network segment. The im’s exploit this information and try to
schedule new objects on the same cluster as the creator (unless the creator has specified
via a location hint that the object is to be placed far away). If an idle node cannot be
found in the local cluster, the object is transferred to another cluster.

Currently, the capabilities of different host types are not exploited by the scheduler.
Instead, the hosts are treated uniformly for scheduling purposes. With respect to the
types of hosts that can comprise a configuration, we are currently limited to either
homogeneous sets of workstations, or to workstations that have the same data

Configuring Mentat

Mentat 2.5 User ’s Manual 18

representation and alignment characteristics, e.g., Sun 4’s, IBM RS 6000’s, and Silicon
Graphics.

The Configuration Database

The configuration database config.db contains all of the information needed to configure
Mentat at run-time. It contains the names of all of the hosts, family information, cluster
information, scheduling policy specification and parameters, and other pertinent data.
The configuration database is a text file that may be edited as the configuration changes.
Database information is specified using a simple configuration language. The database
is read and parsed at start-up by utilities such as start_mentat, by application main
programs, and by the instantiation manager (im) and token matching unit (tmu).
Because there may be multiple configuration databases, Mentat first looks in the current
working directory and, if a config.db is not found there, it looks in the directory
$MENTAT/usr/bin.

Parts of a Configuration File

There are four major parts to a configuration file, host specification, family
specification, cluster specification, and global modifiers. The first three parts must
appear in the file in this order; the global modifiers may appear anywhere in the file. In
the first part each host is specified and described using this syntax:

HOST <hostname> { modifier_list }

Every host in the Mentat network must be described in this way. The value of <host-
name> should be the name of the host as returned by issuing the “hostname” command

Interconnection Network (IN)

Cluster 0 Cluster 1

Family of IBM RS 6000’s Family of Sun SparcStation 2’s

Families of nodes share attributes.

Figure 2 Families and Clusters of Hosts

Clusters indicate locality for scheduling.

Configuring Mentat

Mentat 2.5 User ’s Manual 19

on that host; that is, it may be necessary to have a fully-qualified host name exactly as
“hostname” returns, so the message passing system can find the proper host addresses.

Once all of the hosts are properly described, the hosts can be grouped into families,
using the following syntax:

FAMILY <family_name> { host_name_list modifier_list }

The use of a family specification to further describe the attributes of the hosts is
optional. Further, it is not necessary to put each host into a family. However, any given
host may belong to only one family at a time. The family names are arbitrary.

A useful family to create is the “inactive” family. By having as an attribute ACTIVE
NO, no host in the family is used in the Mentat network. Such a family is useful for rap-
idly adding and deleting hosts from a Mentat network while testing.

The last part of the configuration file is the cluster specification, which requires the fol-
lowing syntax:

CLUSTER <cluster_name> { host_name_list modifier_list }

Every host specified with a HOST keyword must be included in one and only one clus-
ter. There may be as many clusters as is necessary to partition the hosts, up to one clus-
ter per host. Usually, clusters describe nearness attributes, such as having a common
subnetwork. The cluster names are arbitrary.

There are four global modifiers that apply to the entire configuration:

IM_PORT port_number
TRANSFER_LIMIT limit
LOCATION_POLICY policy
TRANSFER_POLICY specifier

The modifier IM_PORT specifies a port number to be used by the im. The default port
for the im is 1686. By specifying a unique port, multiple Mentat networks may be run-
ning on any given host, each using a different configuration file. The value port_number
must be an integer greater than 1500.

The modifier TRANSFER_LIMIT specifies the maximum number of hosts/clusters that
will be examined when scheduling. The value limit is an integer.

The modifier LOCATION_POLICY is used to specify the how the scheduler decides
where to place objects. Valid policy values are:

ROUND_ROBIN
BEST_MOST_RECENTLY
RANDOM, or
PROCESSOR_POWER

ROUND_ROBIN indicates that the next host to try when scheduling is selected using a
round-robin policy. BEST_MOST_RECENTLY is a random location policy where the
last hop is used to transfer the task to the best (in terms of a threshold value) host seen so
far. RANDOM places objects randomly in the Mentat network. PROCESSOR_POWER
indicates that objects are placed on processors in order of decreasing MIPS rating.

Configuring Mentat

Mentat 2.5 User ’s Manual 20

The modifier TRANSFER_POLICY specifies whether to transfer the task to a different
host or execute it locally. The transfer policy must be:

LOAD threshold, or
RUN_QUEUE threshold.

The LOAD transfer policy is based on the CPU load of the host. If the CPU load is
greater than the specified threshold, the task will be transferred. The value threshold is
an integer indicating the greatest tolerable load. The RUN_QUEUE transfer policy is
based on the run queue length of the host. If the queue length is greater than the speci-
fied threshold, the task will be transfered.

Modifiers

The modifier list that can be included in the host, family, and cluster specifications is
built from the following modifiers:

• ACTIVE yes_or_no

Default is YES. If NO, Mentat will not use the host or hosts specified by the HOST,
FAMILY, or CLUSTER.

• MENTAT_OBJECTS threshold

The threshold value of Mentat objects allowed on the host or hosts specified. If more
than threshold objects are on a host, then the transfer policy (default, or specified by
TRANSFER_POLICY) will determine whether to transfer the tasks.

• USE_KERNEL_MEMORY yes_or_no

This modifier indicates whether kernel memory should be used when making trans-
fer policy decisions on the host or hosts specified. The default is NO. YES is sup-
ported only for Sun 3’s and Sun 4’s. In order to use kernel memory, Mentat must be
in the group kmem (see your system administrator).

• TMU_MEMORY size

The value size indicates maximum amount of memory that the tmu may use to store
tokens, in 1024 byte units, for the host or hosts specified. Once this limit is reached,
the tmu caches tokens in the scratch directory on disk. The default is 2048 (2 mega-
bytes).

• MAX_IDLE_REGULAR number

This modifier indicates the maximum number of idle regular objects on the host or
hosts specified. Higher values of number improve the performance of codes that use
many different regular object classes, but consume more virtual memory. The
default is 2.

• TYPE host_type

This modifier indicates the processor type of the host or hosts specified. The value of
host_type must be one of SUN3, SUN4, RS6000, or SGI.

• FLOPS number

This modifier indicates the number of millions of floating point instructions per sec-
ond attainable for the host or hosts specified.

Configuring Mentat

Mentat 2.5 User ’s Manual 21

• MIPS number

This modifier indicates the number of millions of instructions per second attainable
for the host or hosts specified.

• NUM_PROCS number

This modifier specifies the number of processors on the host or hosts specified in the
case of multiprocessors such as the Sun Sparc 10, or multicomputers such as the
Intel iPSC/860 Gamma.

• SYSTEM_BIN path_name

This indicates the full path name where Mentat system binaries are located. The
value path_name is a literal string. The default is $MENTAT_BIN.

• USR_BIN path_name

This indicates the full path where user executable object binaries are located. The
value path_name is a literal string. The default is $MENTAT_USR_BIN.

• SCRATCH_PATH path_name

The directory where system scratch files should be located. The value path_name is
specified as a literal string. The default is /tmp.

• VIRTUAL_NODE_SIZE number

On multicomputers (e.g., the iPSC/860 Gamma) this modifier indicates the number
of processors per virtual node. The minimum is 4. Larger numbers make more effi-
cient use of processor resources, but at the risk of the IM or TMU becoming a bottle-
neck. If the application does not dynamically create objects very often, then large
numbers (32, 64, 128) are good choices. The number must be a power of 2.

A sample configuration file is given in Figure 3. Note that comments can be placed any-
where; any text following “//” is treated as a comment. Seven hosts are specified here.
There are three machine types, two of which are described in families, the other is
described in the appropriate HOST specifier. By coincidence, the hosts of the family
IPC happen to be close to each other; they are grouped as a cluster. The same is true for
the acc_RS6000 hosts, and the hosts of type SGI. Global modifiers specify the location
policy, the transfer policy, and the transfer limit. Since no IM_PORT modifier is present,
the default of 1686 is used.

Multicomputer V ersion Configuration

Since the Intel Gamma NX allows only one process per processor, a different process
mapping paradigm is adopted. If each Gamma node ran a copy of the instantiation
manager, then no user processes could be scheduled on the Gamma. Instead, the
allocated Gamma sub-cube is partitioned into sets of virtual nodes comprised of a
number of processors. Each virtual node has a single instantiation manager responsible
for scheduling within the virtual node, and a token matching unit. All virtual nodes
contain the same number of processors and the user may select the number of
processors at configuration time. The first two processors of each virtual node are
reserved for the instantiation manager and token matching unit. Therefore, the
minimum virtual node size is four. Typically there are at least sixteen processors in a
virtual node. When an object instantiation request is accepted within a virtual node, the
instantiation manager executes a “load” onto one of the virtual node processors. If the

Configuring Mentat

Mentat 2.5 User ’s Manual 22

Figure 3 A Sample config.db File

// Comments may appear anywhere
HOST elf { }
HOST acacia { }
HOST palm {

SCRATCH_PATH “/bigtmp”
// host has a large attached disk.

}
HOST disney {TYPE SGI}
HOST sutherland {TYPE SGI }
HOST holmes { }
HOST watt { }
// Generally all host entries should appear
// before all cluster and family entries.

FAMILY acc_RS6000 {
holmes watt
TYPE RS6000
USR_BIN “/home/mentat/usr/bin/rs6000”
SYSTEM_BIN “/home/mentat/bin/.rs6000”

}

FAMILY IPC {
elf
palm
acacia
USE_KERNEL_MEMORY YES

}

CLUSTER one {
elf palm acacia

TRANSFER_LIMIT 2
}

CLUSTER two { holmes watt }
CLUSTER three { disney sutherland }

LOCATION_POLICY RANDOM
TRANSFER_POLICY LOAD 30 // If the load is over 30%,

// transfer the task
TRANSFER_LIMIT 1 // Sets the inter-cluster

// transfer limit to 1,
// rather than the default of 2

MentatV iew

Mentat 2.5 User ’s Manual 23

request is not accepted within the virtual node, the request is passed on to the
instantiation manager of another virtual node.

6.0 MentatV iew

It is often difficult to observe the execution of a parallel or distributed system because
there is often no global knowledge maintained about the state of each node. Even if
global knowledge is available, there is still the problem of how to display this
information in a way that is useful and understandable. MentatView is a monitor for the
Mentat run-time system that addresses this problem by allowing Mentat users to display
various system performance parameters at run-time. The data are displayed as simple
bar graphs that are constantly updated as the system executes. This information can be
used by the user for debugging or by the system manager to see if the Mentat RTS is
making good scheduling decisions, and to see the impact of the Mentat processes on the
nodes in the system.

MentatView shows the user which nodes are in the current Mentat configuration, how
many Mentat objects are on a given node, and what the load and queue sizes are for a
given node. A sample MentatView session is shown in Figure 4. In general, MentatView
provides a way to monitor various system performance parameters while the system is
running. Keep in mind that running MentatView can seriously impact system perfor-
mance; it generates quite a bit of message traffic and uses all of the CPU cycles avail-
able on the host on which it is running.

MentatView runs using the Mentat runtime system on a network of Sun workstations
running UNIX and X Windows. It is not available for the mulitcomputer version of
Mentat.

To run MentatView, perform the following steps:

Step 1 Have X Windows running and ensure that the Mentat run-time system is running.

Step 2 Enter the command:
$ mentatview -display hostname:0.0

where the hostname is the name of the machine on which MentatView’s window is to
appear. The display flag is optional if the $DISPLAY variable is defined; MentatView’s
window will appear on the machine on which it is being executed in this case.

Step 3 Once the MentatView window appears on the screen, a pop-up menu will appear when
any mouse button is pressed with the pointer in the MentatView window. To select a
menu command, position the pointer on the command and press any mouse button. The
commands and their meanings are listed below:

Objects

not yet implemented.

MentatV iew

Mentat 2.5 User ’s Manual 24

(Un) Freeze

This command will stop the updating of graphs in the MentatView window, allowing
the user to freeze an instant of time. This is a toggle command. Selecting it again
unfreezes the MentatView window. This keeps MentatView from generating net-
work traffic that can perturb performance.

Node Legend

This command pops up a window that matches the node numbers used in the Men-
tatView graphs with a hostname. To close the window, place the pointer in the win-
dow and press any mouse button.

Figure 4 Sample MentatV iew Display

Mentat Programming Language Compiler

Mentat 2.5 User ’s Manual 25

Quit

This option exits MentatView. This is the only safe way to exit MentatView. Using
<ctrl-C> or the X window kill command will cause the Mentat RTS to hang.

Step 4 When done using MentatView, click on the Quit option in the MentatView menu.

7.0 Mentat Programming Language Compiler

Programs written in MPL are compiled by the Mentat Programming Language compiler
mplc. The compiler mplc is actually a UNIX shell script that parses the command line
to determine the MPL program filename and any command line switches. The MPL
program filename must have a “.c” suffix. Each Mentat class definition must be
contained in a separate file, and each Mentat class must be compiled separately.
The mplc script then manages a series of parsing and code generation passes. First, the
MPL code is passed through the C preprocessor, removing all includes and defines. The
preprocessed code is then piped into the MPL front-end, called mplfront. The mplfront
parses the MPL code, removing the Mentat keywords and producing C++ code with the
appropriate run-time system calls. The result is a translation file whose name has a
“.trans.c” suffix. For example, an MPL program in a file called “test_matrix.c” is
compiled into a C++ program placed in a file called “test_matrix.trans.c.” Compilation
is then completed when mplc invokes a C++ compiler on the translation file. By default,
the translation file is removed at the end of compilation.

NOTE: mplc supports several C++ compilers, including GNU’s g++; due to prob-
lems with GNU, higher versions than g++ 2.2.2 will not compile.)

The mplc Command

The options to mplc are a superset of the C++ compiler options. All C++ compiler-spe-
cific options are accepted by mplc and passed on to the appropriate phase.

The syntax for the mplc command is:

mplc Synopsis: mplc [-Aarch] [-Ccompiler] [-C++] [-c] [-D name[=def]]
[-E] [-I pathname] [-inherit] [-L directory]
[-nocompile] [-n] [-Q] [-trans] [-v] [cpp options]
[C++ compiler options] [-o target] sourcefile
[objectfiles] [-l library]

where:

-Aarch

Specifies architecture type (the default architecture type is gotten from $MENTA-
T_ARCH; this option overrides that value for cross compiling).

Mentat Programming Language Compiler

Mentat 2.5 User ’s Manual 26

-Ccompiler

mplc supports three C++ compilers: g++, CC, and CC_saber; this flag specifies
which one to use. The default compiler used is CC_saber. Unsupported native C++
compilers can also be used, but some defaults may not be set properly. NOTE:mplc
supports g++ version 2.2.2 only; due to problems with GNU higher versions of
g++ will not compile.

-C++

Run only the C++ compiler leaving intact all of themplc defaults. This is useful for
compiling serial versions of Mentat applications.

-c

Suppress linking and produce only afile.o file.

-Dname[=def]

Define a symbol name. This is equivalent to a #define directive in the source. If no
def is given, name is defined as ‘1’.

-E

Stop at the C++ preprocessing stage. The output ofmplc will be preprocessed C
code only (directed tostdout unless a-o target is specified).

-inherit

Suppress linking and produce afile.inherit file; this file is then linked into another
Mentat class binary file to facilitate inheritance. The class infile.inherit is the base
class.

-Ipathname

Add pathname to the list of directories in which to search for #include files with rel-
ative filenames (not beginning with slash ‘/’). The preprocessor searches for
#include files in the directories named with-I options (if any) before searching in the
standard include directories.

-llibrary

Link with object librarylibrary (for ld(1)).

-Ldirectory

Add directory to the list of directories containing object-library routines (for linking
usingld(1)).

-n

No-execute mode: shows whatmplc would do but does not execute.

-nocompile

Causes mplc to stop processing after the MPL front-end stage. If the-trans option is
not specified, the intermediate file will be deleted andmplc will not produce output.
The default is to complete compilation.

Mentat Programming Language Compiler

Mentat 2.5 User ’s Manual 27

-o target

Name the result of the compilation target.

-Q

Override default libraries, include files, and bindings used by mplc upon the invoca-
tion of the C++ compiler. The user must supply all include path, library path, and
definition binding information, including: the path to the Mentat header files
($MENTAT/include), the path to local versions, if any, of standard header files, the
path to standard header files, the path to the Mentat libraries ($MENTAT_LIB/
<compile type>, where compiler type is “att” or “gnu”), and the link option for the
Mentat library (libmentat.a).

-trans

Keep the intermediate file file.trans.c, which is the output of the MPL front-end pro-
cessing. This is file consists of C++ code. The default is to remove it after compila-
tion.

-v

Verbose mode: show explicitly what mplc is doing.

Makefiles

Often a makefile is used to manage this compilation process. An example makefile is
given in Figure 5. The MFLAGS, CFLAGS, and LFLAGS variables indicate mplc flags,
C flags (such as defines and include file path names), and link flags (such as link file
path names). Note that the result of the compilation is copied to the $MENTA-
T_USR_BIN directory—this is where the Mentat run-time system looks for the execut-
able of a class when a member function is invoked.

The compiler mplc includes some defaults for libraries, include files, and binding when
invoking the C++ compiler. These can be overridden with the -Q option. The include
file path includes the standard compiler header file directory as well as the Mentat
header file directory $MENTAT/include. Some standard include files have, strictly
speaking, illegal C++ syntax; where modifications were necessary, the changed files
were placed in the $MENTAT/include/local directory structure, and modifications were
documented in README files.

Errors Generated by mplfront

The script mplc manages the various passes required to compile MPL code. The first
pass, mplfront, translates MPL code into valid C++ code. To do this, mplfront must
completely parse the MPL code; the mplfront parser is more conservative than various
C++ parsers and as a consequence, valid MPL code may generate error messages. These
error messages can be disconcerting; the messages that indicate real errors usually
include the words “parse error,” and the “make” will fail.

Mentat Programming Language Compiler

Mentat 2.5 User ’s Manual 28

Known Bugs

The following are the known bugs in the current version of mplfront. Some of them are
very rare and have not been seen for a long time; nonetheless we mention them in the
event that you encounter something similar.

• The Annotated C++ Reference Manual1 states that inline member functions
declared inside of a class are not type checked until the complete class declaration
has been seen (p. 171). However, mplfront currently does type checking as the in-
line member function is parsed. This often causes spurious errors, particularly with
some of the standard header files, like “stream.h.” To correct this problem, mplfront
must be rewritten to do type checking as a separate pass, after the initial parsing

1. Margaret A. Ellis and Bjarne Stroustrup, “The Annotated C++ Reference Manual”, Addison-
Wesley Publishing Company, 1990.

Figure 5 A Typica l Makefile for a Mentat Application

MPLC = mplc
MFLAGS = -Cg++
CFLAGS = -O
LFLAGS = -static -lm
HEADERS =
OBJECTS =
TARGET_DIR = $(MENTAT_USR_BIN)

###

all: gauss sblock

clean:
rm -f gauss sblock *.trans.*

gauss: $(HEADERS) gauss.c sblock.h $(OBJECTS)
$(MPLC) $(MFLAGS) $(CFLAGS) gauss.c \

-o gauss $(OBJECTS) $(LFLAGS)
strip gauss
cp gauss $(TARGET_DIR)

sblock: $(HEADERS) sblock.c sblock.h $(OBJECTS)
$(MPLC) $(MFLAGS) $(CFLAGS) sblock.c \

-o sblock $(OBJECTS) $(LFLAGS)
strip sblock
cp sblock $(TARGET_DIR)

Mentat Programming Language Compiler

Mentat 2.5 User ’s Manual 29

phase. To work around the problem, write the member function outside of the class
using the inline keyword.

• Conversion functions (p. 272) cause a syntax error. The mplfront is built around a
public domain C++ grammar.2 There is an error in the current version of this gram-
mar that makes it unable to parse legal conversion functions. A new version of the
grammar has been developed, but the new version has not been incorporated into
this version of mplfront. There is currently no way to work around this problem.
Note the local versions of some header files (like stream.h) may have to be made
with the conversion functions commented out or surrounded by an #ifdef.

Unsupported C++ Features

The following features of C++ are not supported.

• As per the Annotated C++ Reference Manual, p.405, the keyword overload is no
longer supported.

• Extra semicolons outside of the function scope will cause parse errors. These extra
semicolons constitute empty declarations and are not supported as in the Annotated
C++ Reference Manual.

• Although MPL allows for inlined functions, the compiler does not perform an inline
expansion. A normal function call is made.

• Member variables of a Mentat class may not be public, as per the MPL language
specification (see the Mentat Programming Language Reference Manual).

• Operators may not be overloaded in Mentat classes.

• Note that some standard header files still use the notion that classes, structs, unions
and enums defined inside another class, struct or union, have global scope. This is
not the case as described in the Annotated C++ Reference Manual. This may cause
parse errors when compiling the standard header files. The offending code must be
modified or commented out.

MPL Language Features As Y et Unsupported

The following features of MPL have not yet been implemented:

• Location hints. Although these are not currently implemented, the effect of the loca-
tion hint co-locate can be achieved as follows. There are actually two create() func-
tions defined. The first is create() (with no arguments) which works as described in
the language manual. The second, create(&mentat_object) will create a new Mentat
object on the same node as the Mentat object passed as an argument. This achieves
the same effect as using co-locate.

2. The public domain C++ grammar is copyright 1989, 1990 by James A. Roskind (jar@-
florida.HQ.Ileaf.COM).

Mentat Library Classes

Mentat 2.5 User ’s Manual 30

Bug Fixes Pending

• Constructors/Destructors for Mentat classes will not work—use void initial-
ize(), void cleanup() member functions to get the desired effect.

• Passing object references (i.e. &obj) will pass a fixed-sized argument, even if tahe
class has a size_of() member defined.

• Assigning Mentat class variables to Mentat objects returned from a Mentat class
member function (by pointer) will not resolve properly, and the assignment will not
be performed. To work around this, the Mentat object must first be assigned to a
temporary variable. The temporary variable should then be assigned to the Mentat
variable.

• Default arguments to Mentat member functions are disallowed.

• The mplc compiler is being integrated with newer versions of GNU’s g++.

How To Get Help

If you are having difficulty using the compiler or if you have found a bug contact
mentat@virginia.edu. Please include a detailed description of the problem you are
having, and include a copy of the offending code and the makefile you are using. A
daytime phone number would also be helpful. Any comments or suggestions would be
appreciated.

8.0 Mentat Library Classes

In addition to the run-time system’s functionality, the Mentat library libmentat contains
classes that are useful in applications development. The public interface to these classes
is given in several header files found in $MENTAT/include. The classes include:

• The Object-Oriented Library (oolib.h)

• The Mentat Stream Facility (mstream.h)

• The Array and Vector Classes (DD_array.h)

• The Sparse Vector Class (sparse_vector.h), and

• The File Interface for Array and Vector Classes (DD_array_file.h)

8.1 The Object-Oriented Library

The Object-Oriented Library provides those classes that have almost universal
applicability but are not part of C++ or MPL. The class definitions reside in oolib.h in
the $MENTAT/include directory. In particular, classes include:

• mentat_timer: simple CPU stopwatch timer, useful for program timings

• list_element: ordered generic list class

• cell_collection: ordered collection of tagged list_elements

• hash_cell_collection: hash table class with unbounded bucket size

• queue: FIFO queue class

Mentat Library Classes

Mentat 2.5 User ’s Manual 31

• string: variable-size strings

• mem_handle: general memory allocator

• transportable_list: dynamic variable-size memory-contiguous list

Mentat Timer

int overflow()

The mentat_timer class implements a simple stopwatch. The member function

void start()

begins the stopwatch. When the member function

void stop()

is called, the stopwatch stops. The elapsed time is retrieved via the

unsigned long msec()

(milliseconds) and the

unsigned usec()

(microseconds) member function calls. If the usec() call would overflow, the member
function

overflow()

will return 1; otherwise 0. The member function

unsigned long get_time()

returns the current time in microseconds.

List Element

The list_element class implements an ordered collection of cells. The member
function

void append(list_element *entry)

appends a new entry to the back of the list. The member function

void clear()

clears the list of all elements. The member functions

list_element *get_next()
list_element *get_prev()

return the next or previous entry in the list. The member function

void insert(list_element *entry)

puts a new entry at the front of the list. The member function

Mentat Library Classes

Mentat 2.5 User ’s Manual 32

void remove()

deletes the element from the list.

Cell Collection

The cell_collection class implements an ordered collection of cells. The con-
structor

cell_collection(int size = DEFAULT_TCELLS)

takes an optional argument for the maximum number of cells in the collection. The
default is the defined constant DEFAULT_TCELLS. The member function

cell* insert(cell *tokp)

puts a new cell tokp into the collection. The member function

cell* find(cell *ctag)

locates the cell ctag by tag. The member function

cell* get_next()

returns the next cell in the collection. The member function

cell* get_first()

returns the first cell in the collection. The member function

void remove(cell *ctag)

deletes the cell ctag from the collection. The defined constant EMPTY_CELL desig-
nates a nonexistent cell pointer.

Hash Cell Collection

The hash_cell_collection class implements a hash table with unbounded
bucket size. The constructor

hash_cell_collection(int size = MaxEntries)

takes a optional argument for the maximum number of cells in the collection. The
default is the defined constant MaxEntries. The member function

cell* insert(cell *tokp)

puts a new cell tokp into the hash table. The member function

cell* find(cell *ctag)

locates the cell ctag by tag. The member function

cell* get_next()

returns the next cell in the hash table. The member function

Mentat Library Classes

Mentat 2.5 User ’s Manual 33

cell* get_first()

returns the first cell in the hash table. The member function

void remove(cell *ctag)

deletes the cell ctag from the hash table. The member function

virtual int hash()

returns the hash value of the cell item. The defined constant EMPTY_CELL designates
a nonexistent cell pointer. The defined constant EMPTY_BUCKET designates a nonex-
istent cell_bucket pointer. The member function

int full()

returns the 1 if the table is full, 0 otherwise.

Queue

The queue class implements a simple first in, first out queue of pointers. The construc-
tor

queue(int size = P_Q_SIZE)

takes an integer argument size indicating the largest the queue will ever get. The default
is the defined constant P_Q_SIZE. The member function

void enq(void* item)

enqueues an item. The member function

void* deq()

returns the item from the head of the queue. The member function

int count()

returns the number of elements in the queue.

String

The string class implements a variable-size string object. The overloaded construc-
tors

string(int size)
string(char* src)

takes either an integer size or a null-terminated character array src as its argument. The
member function

unsigned size_of()

returns the size of the string object.

Mentat Library Classes

Mentat 2.5 User ’s Manual 34

Memory Handler

The mem_handle class implements a general memory allocation class for doing one’s
own memory management. The constructor

mem_handle(int size_of_objects)

takes an integer size_of_object as an indication of how much memory to acquire.
The destructor

~cell_collection()

It frees all acquired memory when the object leaves scope. The member function

void *get_one()

procures a block of memory of the size specified in the constructor. The member func-
tion

void return_one(void *object)

frees the memory previously held by the structure object.

Transportable List

The transportable_list class implements a dynamic variable-size class that is
useful for building flattened structures such as lists. An advantage to using the trans-
portable_list class is, as its name implies, that the data structures can be package
in such a way as to aid parameter passing between member functions of Mentat objects.
The constructor

transportable_list(unsigned max_count,
unsigned object_size)

takes two arguments: the maximum number of items in the list, and the size of each
item. The member function

char* append(char* mo)

appends the character pointer mo to the current list. The member functions

unsigned get_count()
unsigned get_max_count()

return the number of elements in the list and the maximum number of elements allowed,
respectively. The member function

unsigned size_of()

returns the size of the transportable_list object. The member functions

unsigned get_flags()
void set_flags(unsigned val)

get and set flags for the list.

There are two operators

Mentat Library Classes

Mentat 2.5 User ’s Manual 35

transportable_list& operator=(transportable_list& nl)
char& operator[](unsigned i)

for assignment and indexing.

8.2 The Mentat Stream Facility

The Mentat I/O system, mstream, is based on C++ streams. Default I/O is not
provided by the Mentat environment. Mentat classes that require I/O have to explicitly
open and manipulate I/O streams. The class definition is given in mstream.h.

The Mentat stream facility ensures that I/O operations performed by class instances exe-
cuting on remote nodes will be performed on the application host via the local file sys-
tem (i.e. in the “point-of-launch” environment), and the I/O system guarantees that file
access is performed using the access privileges of the user. For example, tty I/O will be
performed on the host console (as expected) instead of on a remote console.

This facility is not available for the multicomputer version of Mentat and is not avail-
able for use with g++.

void MENTAT_OPEN_FS(mfilesys mfs);
void MENTAT_CLOSE_FS(mfilesys mfs);
void MENTAT_ENABLE_IO(mfilesys mfs);
void MENTAT_DISABLE_IO(mfilesys mfs);

mcout <<
mcin >>
mcerr >>

class mfilebuf : public streambuf {
public:

mfilebuf(mfilesys fs);
mfilebuf(int nfd);
mfilebuf(mfilesys fs, int nfd);
~mfilebuf();
int close();
mfilebuf* open(char *name, int om);
int overflow(int c = EOF);
int underflow();
void setup(mfilesys fs);

};

Enabling I/O

If a Mentat class requires I/O, the header file mstream.h must be included in the source
file associated with that Mentat class. There are four library routines that provide the
basic stream I/O capabilities:

Mentat Library Classes

Mentat 2.5 User ’s Manual 36

MENTAT_OPEN_FS
MENTAT_CLOSE_FS
MENTAT_ENABLE_IO, and
MENTAT_DISABLE_IO

For an application to correctly use the Mentat I/O system, several steps must be fol-
lowed. First, the main program is responsible for instantiating the Mentat file system via
a call to MENTAT_OPEN_FS(mfs), and for shutting down the file system via MEN-
TAT_CLOSE_FS(mfs), where mfs is an unbound instance of Mentat class mfile-
sys. During the open call, mfs is bound to the file system object and becomes the
application handle for the file system. This is only done once. Second, every application
class that performs I/O must be explicitly passed mfs via some access member func-
tion. And finally, once the file system is instantiated, every class that wishes to perform
I/O (including the main thread) must call MENTAT_ENABLE_IO(mfs) first. When I/
O operations are finished, call MENTAT_DISABLE_IO(mfs).

I/O Interface

If the application desires to do simple tty I/O only, then the class object need only
invoke MENTAT_ENABLE_IO(mfs) (and MENTAT_DISABLE_IO(mfs) at the
end). After executing this routine, the standard streams mcout, mcin, and mcerr
become available to the application. These are functionally identical to the C++ streams
cout, cin, and cerr except that the I/O is performed in the point-of-launch
environment. Once an object (or main program) enables I/O, the standard streams
(mcout, mcin, and mcerr) are available to any method or subprogram within that
object. The Mentat I/O system provides an interface that supports user-defined file I/O,
if more general I/O is desired. In keeping with the C++ streams convention, user-
defined streams must be attached explicitly to a stream buffer (C++ class streambuf).
The stream buffer manages the underlying byte streams by buffering incoming and
outgoing I/O. The stream buffer interacts directly with the underlying file system by
performing unbuffered UNIX reads and writes on the appropriate file descriptors. The I/
O operations are assumed to execute in the running environment with the privileges of
the client process. To preserve point-of-launch semantics, we define a Mentat stream
buffer class (mfilebuf) which is functionally identical to streambuf except that it
accesses the underlying I/O system in the host environment.

The Mfilebuf Class

To create user-defined streams, the user must first define the associated stream buffer
object of type mfilebuf which takes the object mfs as a constructor argument:

mfilebuf mybuf(mfilesys mfs)

This ensures that mybuf will execute its underlying I/O operations in the host environ-
ment. The stream buffer is then bound to a specific file for I/O via the open call:

mybuf.open(char* file, open_mode)

To open a file for reading use in, for writing use out, and for write-append use app.
Once a stream buffer has been bound to a specific file via open (the byte source/sink is
now known) I/O can be performed directly on the stream buffer object:

Mentat Library Classes

Mentat 2.5 User ’s Manual 37

mybuf.put(char c)
mybuf.get(char c)

In fact, any operation on stream buffers supported by the C++ stream library is allowed.

User-defined streams are constructed by attaching the stream buffer to a stream object in
the following way:

istream in_stream(&mybuf)
ostream out_stream(&mybuf)

The standard stream insertion operators can be used:

in_stream >> out_stream <<

Once the I/O operations are complete, the stream buffer needs to be closed explicitly
(the user MUST remember to close or the program could have termination errors):

mybuf.close ()

One important caveat: inclusion of the standard stream header <stream.h> might cause
compiler and parse errors. This is explained in the MPL Reference Manual in the Sec-
tion “Unsupported C++ Features,” and a way to work around this is described.

Exceptions

Since we have defined a rather narrow interface for file I/O, the number of exceptional
conditions are few. This is fortunate since there is very little error reporting should
streams be misused. The most common problem is that the open on the mfilebuf fails for
some reason or that a file close operation was omitted. A potential problem is that the
main thread may execute MENTAT_CLOSE_FS while the application class objects are
still running and performing I/O operations. The application must ensure that it is safe to
do the MENTAT_CLOSE_FS by forcing the main thread to wait on application objects
that are performing I/O. This can be done via strict functions and appropriately placed
rtf’s (see MPL Reference Manual) to force a synchronization where the close follows
all I/O operations. If this does not work, the user may omit the MENTAT_CLOSE_FS
but must remember to kill the associated UNIX process (named mfs) when finished.

8.3 The Array and V ector Classes

The header file DD_array.h provides the interface for array and vector classes, and the
header file DD_array_file.h provides the interface for many of the same classes stored
in files. The interface for using sparse vectors is given in sparse_vector.h. The array and
vector classes were developed specifically to overcome some of the problems of using
matrices in a distributed memory environment; namely, the data structures are explicitly
placed in contiguous memory, with member functions to aid in the decomposition and
reconstruction of the structures. Three types of classes are provided:

• Two Dimensional Arrays

• Dense Vectors

• Sparse Vectors

Mentat Library Classes

Mentat 2.5 User ’s Manual 38

Two Dimensional Arrays

The C++ classes DD_floatarray, DD_doublearray, DD_intarray, and
DD_chararray provide an interface for two-dimensional arrays consisting of
elements of type single precision floating point, double precision floating point, integer,
and character, respectively. Because they are stored contiguously in memory, they are
convenient to use when objects of these classes are passed as parameters to Mentat
member functions.

Each array has associated with it three values: the number of rows, the number of
columns, and a status code. The status code, except for a few noted instances, is for use
by the programmer for setting programmer-defined error conditions. The standard linear
algebra operations—addition and multiplication of two arrays, transpose, and addition,
multiplication, and subtraction by a scalar value—are member functions of these
classes. Further, these class provide a broad range of methods to decompose an array
into several subarrays.

In the following discussion remember that the C convention numbers array indices from
zero to the dimension minus one. We are only explicitly showing the methods for one of
the types of DD_arrays, the DD_floatarray; except where noted, analogous meth-
ods exist for DD_chararray, DD_doublearray, and DD_intarray.

Creating a Two Dimensional Array Instance

The constructor

DD_floatarray(DD_floatarray_file* file_class_name)

creates a new array stored in the file represented by file_class_name., where
file_class_name is an instance of the class DD_floatarray_file described
below. The file represented must have previously been opened for either READ or
READ_AND_WRITE. In the event that the file has not been properly opened, an array of
size 0 and status -1 is created.

The following sequence of statements creates a DD_floatarray object:

DD_floatarray_file* file_instance;
DD_floatarray* new_array;
file_instance =

new DD_floatarray_file((string*)file_string, READ);
new_array = new DD_floatarray(file_instance);

The constructors

DD_floatarray(int rows, int cols)
DD_floatarray(int rows, int cols, float* ptr)

create an array instance having rows rows and cols columns. In the former case, the
array is zero-filled. In the latter case, the array is filled with the values stored at address
ptr in row-major order.

Mentat Library Classes

Mentat 2.5 User ’s Manual 39

Creating an Instance of DD_array from an Existing Instance

The constructor

DD_floatarray(DD_floatarray* src)

creates an array instance which duplicates the array pointed to by src. An equivalent
constructor exists for the class DD_doublearray. The method

DD_floatarray* extract_region(int ul_row, int ul_col,
int lr_row, int lr_col)

extracts a region of the array bounded by [ul_row, ul_col] on the upper left corner,
and [lr_row, lr_col] on the lower right corner of the source matrix. The resulting
region is returned as a DD_floatarray.3 Figure 6 shows an example of such a
decomposition.

In the event that the boundaries specified are out of range in the source matrix, the array
is returned with zeros filled into the rows and/or columns that are out of range.

The methods

DD_floatarray* extract_piece_by_columns(int pieces,
int the_piece)

DD_floatarray* extract_piece_by_rows(int pieces,
int the_piece)

decompose the array into pieces different DD_floatarrays. The decomposition
may be column-wise or row-wise. The methods return the the_piece piece from the

3. Note that the order of the arguments has been changed. In prior releases, the column index was
specified first.

Figure 6 Example of Method extract_region()

0

1

2

3

4

5

6

7

8

8

9

1

2

3

4

5

6

source_matrix

0

13579

2 4

5 7 9

24 0

135

dest_matrix

dest_matrix = source_matrix->extract_region(1,2,3,4);

Mentat Library Classes

Mentat 2.5 User ’s Manual 40

decomposition. If the number of columns or rows in the array does not divide evenly,
the excess columns or rows are added to each of the pieces, beginning with the first. The
desired part of the decomposition is returned as a DD_floatarray. Figure 6 displays
an example of such a decomposition.

Accessing Array Elements

The method

float* get_r_ptr(int row_num)

returns a pointer to the element in row row_num, column 0. The following sequence of
statements demonstrates how the pointer returned can be indexed to access the elements
of a particular row:

Figure 7 Example of Method extract_piece_by_rows()

0

1

2

3

4

5

6

7

8

8

9

1

2

3

4

5

6

source_matrix

0

13579

2 4

dest_matrix1

dest_matrix1 = source_matrix->extract_piece_by_row(3,1);

8 246 0

13579

0

1

2

3

4

5

6

7

8

8

9

1

2

3

4

5

6 0

13579

2 4

dest_matrix2 = source_matrix->extract_piece_by_row(3,2);

1 3 52 4

dest_matrix2

Mentat Library Classes

Mentat 2.5 User ’s Manual 41

float element = source_matrix->get_r_ptr(1)[3];
/* If source_matrix is defined as above,

then element = 7. */

The method

float& element(int row, int column)

returns a reference to element in row row, column column. The following sequence of
statements demonstrates how this method can be used to access and change values in an
array:

float value =source_matrix->element(0,4);
/* If source_matrix is defined as above,

then value is equal to 8 */
source_matrix->element(0,4) = -4.44;
/* Now, the element at [0,4] equals -4.44 */

The method

float* operator[num_row][num_col]

returns a reference to the element at [row_num, col_num] in the array. This is illus-
trated by:

float value = (*source_matrix)[0,4];
/* If source_matrix is defined as above,

then value is equal to 8 */

Accessing the State of an Array

The methods

int get_status()
int set_status(int stat)

manipulate the status of the array. The get_status call returns the status of the array.
The set_status call updates the status of the array with status stat. The value of stat
must be of type integer. The status is most often used as a means of returning program-
mer-defined error codes.

The methods

int num_col()
int num_row()

return the number of columns and rows of an array, respectively. The method

int same_dimensions(DD_floatarray* arg)

returns TRUE if the current instance and arg have the same number of rows and col-
umns, otherwise, it returns FALSE. The method

int is_square()

returns TRUE if the array has an equal number of rows and columns, FALSE otherwise.

Mentat Library Classes

Mentat 2.5 User ’s Manual 42

Decomposing Arrays

One of the most useful aspects of the class DD_array is the ability to decompose the
array into several subarrays. These subarrays are also memory contiguous, and can thus
serve as arguments to Mentat methods.

The methods

DD_floatarray** decompose_by_column(int pieces)
DD_floatarray** decompose_by_row(int pieces)

decompose the source array into pieces arrays, row-wise or column-wise, as shown
in Figure 6. The methods return an array of pointers to each of the subarrays, in their
respective orders within the source array. The methods

DD_floatarray** cyclic_decompose_by_column(int pieces)
DD_floatarray** cyclic_decompose_by_row(int pieces)

decompose the source array into pieces. Each column or row is distributed, in order,
among each of the subarrays as shown in Figure 6. An array of pointers to each of the
subarrays is returned.

The method

DD_floatarray** decompose_by_block(int row_pieces,
int col_pieces)

decomposes the source array into row_pieces × col_pieces subarrays. The
source array is decomposed first as in a row decomposition, dividing the array into
row_pieces pieces. A column decomposition is then performed creating the appropriate
number of pieces. An example of this decomposition is shown in Figure 6. An array of
pointers to the newly created subarrays is returned. The subarrays are ordered by
column decomposition order within row decomposition order.

Array Manipulation Methods

The methods

void overlay_region(int ul_row, int ul_col,
DD_floatarray* data)

void overlay_region(int ul_row, int ul_col,
sp_dvector* data)

copy the array or vector data onto the source array starting at row ul_row, column
ul_col. In the event that data is too large to be completely copied, only those regions
of data are copied onto the source. This is an in place operation, therefore nothing is
returned.4 The method

DD_floatarray* transpose()

returns the transpose of the source array. The method

4. Note that the order of the arguments has been changed. In previous releases, the column index
was specified first.

Mentat Library Classes

Mentat 2.5 User ’s Manual 43

Figure 8 Example of Methods for Array Decomposition

0

1

2

3

4

5

6

7

8

8

9

1

2

3

4

5

6

source_matrix

0

13579

2 4

array_ptrs = source_matrix->decompose_by_row(3);

array_ptrs

0

1

2

3

4

5

6

7

8

9

8 246 0

13579
1 3 52 4

1 3 5 7

8

9

1

2

3

4

5

6 0

13579

2 4

source_matrix

array_ptrs

array_ptrs = source_matrix->cyclic_decompose_by_row(3);

0

1

2

3

4

5

6

7

8

8

9

1

2

3

4

5

6 0

13579

2 4

0

1

2

3

4

5

8 46

6

7

8

9

2 0
1 3

579

2 5

13

4

array_ptrs = source_matrix->cyclic_decompose_by_block(2);

source_matrix

array_ptrs

0 2 4 6 8

0 2 4 6 8

1 3 5 7 9
8 246 0

13579 1 3 52 4

Mentat Library Classes

Mentat 2.5 User ’s Manual 44

void print()

prints the contents of the source array to standard output. For a Mentat application, this
would be the window in which the Mentat system was started.

Mathematical Functions

The operators

void operator += (float scalar)
void operator += (DD_floatarray* data)

perform in-place addition of either a scalar value scalar or the array data. The fol-
lowing statement increments each array element by 3.4:

(*source_matrix)+=3.4;
/* This statement adds the value 3.4

to all of the array elements */

Equivalent operators exist for the classes DD_doublearray and DD_intarray
only.

The operator

void operator -= (DD_floatarray* data)

performs in-place subtraction of data from the source array. An equivalent operator
exists for the classes DD_doublearray, and DD_intarray.

The operator

DD_floatarray operator *= (float scalar)

performs in-place multiplication of the source array with scalar. An equivalent
method exists for the classes DD_doublearray, and DD_intarray.

The operators

DD_floatarray* operator * (DD_floatarray* data)
sp_dvector* operator * (sp_dvector* data)

perform matrix-matrix multiply and matrix-vector multiply of the source matrix and
data and returns the result.

In the event that the arrays are not compatible (the number of columns of the source
does not equal the number of columns of the destination), a 0 × 0 array is returned with
a status of -1. Equivalent operators exist for the classes DD_chararray,
DD_doublearray, and DD_intarray each of which return a character, double, or
integer pointer, respectively.

Dense Vectors

When manipulating arrays, there is often a need to manipulate vectors as well. The
classes sp_dvector, dp_dvector, and int_vector have been developed for
this purpose. An instance of sp_dvector represents a single precision floating point
dense vector. Likewise, an instance of dp_dvector represents a double precision

Mentat Library Classes

Mentat 2.5 User ’s Manual 45

floating point dense vector. An instance of int_vector represents an integer vector.
With each dense vector is associated the number of elements and a status code.

While we illustrate dense vectors using the sp_dvector class, for most of the meth-
ods there are equivalent constructor for the classes dp_dvector and int_vector.

Creating a Dense Vector Instance

The constructor

sp_dvector(sp_dvector_file *file_class_name)

creates an instance of sp_dvector where the elements are stored in the file represented
by file_class_name. This method is analogous to the method

DD_floatarray(DD_floatarray_file *file_class_name)

The constructors

sp_dvector(int cols)
sp_dvector(int cols, float *ptr)

create an instance of sp_dvector where cols is the number of elements in the vec-
tor. The latter method initializes the vector with the values stored at address ptr. These
methods are analogous to the corresponding methods for the class DD_floatarray.

All vectors are created as row vectors. To create a column vector, the constructor needs
to be followed with a transpose call (described below).

Creating an Instance of Dense Vector from an Existing Instance

The method

sp_dvector* duplicate()

creates a new vector that is a duplicate of its source. The method

sp_dvector* extract_subvec(int first, int last)

extracts a subvector from the source vector starting with the element at first and end-
ing with element at last. An equivalent method exists for the classes dp_dvector
and int_vector. The method

sp_dvector* extract_piece(int pieces, int the_piece)

extracts a portion of the source vector to create a new vector. This method is analogous
to the method row_decompose() for the class DD_floatarray.

Accessing Vector Elements

The method

float* get_vec()

returns a pointer to the first element in the vector. Elements of the vector can be
accessed by indexing from this pointer as with the method get_r_ptr() in the class

Mentat Library Classes

Mentat 2.5 User ’s Manual 46

DD_floatarray. An equivalent method exists for the classes dp_dvector and
int_vector, each of which return a character, double, or integer pointer, respec-
tively.

Accessing the State of a Dense Vector

The methods

int is_row_vec()
int is_col_vec()

returns TRUE if the vector is a row (or column) vector, FALSE otherwise. The method

int num_elements()

returns the number of elements contained in the vector.

Decomposing Dense Vectors

The methods

sp_dvector **decompose(int pieces)
sp_dvector **cyclic_decompose(int pieces)
sp_dvector *cyclic_reorder(int num_pieces)

decompose the vector in the same manner as the analogous methods decompose
DD_arrays. There are equivalent methods for the classes dp_dvector and
int_vector.

Dense Vector Manipulation Methods

The method

void transpose()

performs an in-place transpose of the vector. The method

void overlay_region(int offset, sp_dvector *data)

overlays the elements of data starting at element index offset. The source vector is
modified, so there is no return value.

The method

void print()

prints the elements of the vector to standard output.

Mathematical Functions

The operators

Mentat Library Classes

Mentat 2.5 User ’s Manual 47

void operator += (float arg)
void operator += (sp_dvector *arg)
void operator *= (float arg)

perform scalar addition, vector-vector addition, and scalar multiplication, respectively.
The method

float dot_product(sp_dvector *arg)

performs the dot product of the source and arg. The result is returned.

Sparse Vectors

The classes sp_sparsevector and dp_sparsevector have been provided as a
means of manipulating sparse vectors. These classes represent single and double
precision floating point floating point sparse vectors. The key member variables of these
classes are the dimension and the number of elements. The number of elements is the
maximum number of non-zeros being represented in the vector. While we illustrate the
various methods using the sp_sparsevector class, equivalent methods exists for
the class dp_sparsevector.

Creating a Sparse Vector Instance

The constructor

sp_sparsevector(int dim, int num_elements)

creates an instance of sp_sparsevector of dimension dim. The integer
num_elements denotes the maximum number of non-zero vector elements that will
be associated with the vector: the vector may contain at most num_elements ele-
ments whose indices range in value from 0 to dim.

The constructor

sp_sparsevector(int dim, int num_elements,
int* index_ptr, float* data_ptr, int num_vals)

creates an instance of sp_sparsevector with dimension dim. The vector is initial-
ized with the elements stored at address data_ptr with their corresponding indices
stored at index_ptr. The integer num_vals indicates the number elements that are
stored at data_ptr. The integer num_elements need not equal num_vals.

In the event that num_vals does not reflect the number of elements with which the
vector is to be initialized, the behavior is non-determinant.

Creating an Instance of Sparse Vector form an Existing Instance

The method

sp_sparsevector* extract(int first_index,
int last_index)

creates a new vector whose dimension and number of elements is that of the source. The
elements of the new vector are those from the source between the indices first_in-

Mentat Library Classes

Mentat 2.5 User ’s Manual 48

dex and last_index. In the event that the boundaries are out of range, a vector of
dimension 0 and status -1 is returned.

Accessing Sparse Vector Elements

The method

int* get_index_ptr()

returns a pointer to the first index of the vector, and the method

float* get_vec_ptr()

returns a pointer to the first value within the vector. The operator

float& operator[](int position)

returns a reference to element whose position is position.

Accessing the State of a Sparse Vector

The methods

int get_dim()
int num_elements()

return the size of the vector and the maximum number of non-zero elements that can be
represented, respectively. The method

int is_full()

returns TRUE if the maximum number of non-zero elements has been reached. It returns
FALSE otherwise. The methods

int get_status()
int set_status(int stat)

return or set the status of the vector. These methods are analogous to the corresponding
methods for the class DD_floatarray. The methods

int get_first_index()
int get_last_index()

return the index of the first and last non-zero elements, respectively.

Sparse Vector Manipulation Methods

The method

int add_element(int position, float value)

inserts the element value in position position within the vector, overwriting any
previous value at that position. It returns SUCCESS or FAILURE. The method

Mentat Library Classes

Mentat 2.5 User ’s Manual 49

int delete_element(int position)

removes the element at position position from the vector, returning SUCCESS if the
element is removed, FAILURE if the element at position is zero.

The method

sp_sparsevector* overlay(sp_sparsevector* vector)

creates a new vector with the dimension of the source and the number of elements equal
to the sum of those for the source and the argument. The elements in the argument are
inserted into the source vector in the proper order. If the two vectors have an element at
the same position, the value is updated to the value of the argument vector. In the event
that the number of elements has been exceeded, the vector contains the first
num_elements elements from each of the vectors. The method

void print()

prints the elements of the vector and their corresponding indices to standard output.

Mathematical Functions

The operators

void operator += (float scalar)
void operator -= (float scalar)
void operator *= (float scalar)

perform scalar addition, subtraction, and multiplication on the values of the vector,
respectively. The method

sp_sparsevector *add(sp_sparsevector *vector)

adds the vector vector to the source. The sum is returned as a new vector with the
maximum number of non-zero elements set to the lesser of the sum of the
num_elements of the arguments or the dimension. In the event that the dimensions
of the two vectors are not equal, a vector of dimension 0 and status -1 is returned. The
method

float dot_product(sp_sparsevector *vector)

calculates the dot product of the two vectors and returns the result. In the event that the
vectors are not of the same dimension, a value of zero is returned. An equivalent method
exists for the class dp_sparsevector.

8.4 File Interface for Array and V ector Classes

The DD_floatarray_file class implements a file interface for two dimensional
single precision floating point arrays. A file consists of a header and the array elements
stored in row-major order. The file header contains a magic number, the file type, the
size of the data elements (in bytes), the number of rows and columns of the array, and
the array elements. The magic number is a means of ensuring that the file version is
consistent with the library functions. The file type is a means of ensuring that the type of
structure is consistent with the library functions. Currently, only files of two

Mentat Library Classes

Mentat 2.5 User ’s Manual 50

dimensional arrays are supported. The state of a file consists of its status, the mode in
which it was opened, and the number of rows and columns contained in the file. The
status of a file can any one of the following:

OPEN

CLOSED

MAGIC_NUM_ERROR

OPEN_ERROR

HEADER_READ_ERROR

HEADER_WRITE_ERROR

FILE_TYPE_HEADER_ERROR, and

BAD_HEADER

Each of these status codes are discussed below. The modes in which a file can be opened
are: READ, READ_AND_WRITE, and WRITE. These modes are also discussed in detail
below.

When using these classes, it is important that the file permissions allow for at least Men-
tat group access since Mentat applications actually use the “mentat” user id instead of
the user’s user id. As with the other classes presented, analogous methods exist for the
classes DD_chararray_file, DD_doublearray_file, and DD_intarray_-
file.

File Initialization Methods

The constructor

DD_floatarray_file(string *fname, int mode)

creates and opens the file, where file_name is the name of the file and mode is the
mode in which the file is to be opened. The allowable modes are: READ, READ_AND_-
WRITE, and WRITE. A file opened for READ allows the file to be read. A file opened for
WRITE allows the file to be written to. However, if a file is opened for WRITE, any
existing file will be erased. This is the only mode in which a file will be created. A file
opened for READ_AND_WRITE may be either read from or written to. However, the file
must already exist. If the mode is READ or READ_AND_WRITE, the header information
is read from the file and the file is ready to be manipulated. If the mode is WRITE, then
the header information must be explicitly written using a call to file_alloc()
(described below). The status is set to OPEN if the open command is successful. In the
event that the open command is not successful, the status is set to one of the following
error codes: OPEN_ERROR, indicating that the file does not exist, the file permissions
have not been properly set, or the disk is full, MAGIC_NUM_ERROR, indicates that the
version number contained in the file is inconsistent with the version number expected by
the class, FILE_TYPE_HEADER_ERROR, indicating that the file type for is inconsis-
tent, or HEADER_READ_ERROR or HEADER_WRITE_ERROR, indicating that there
was an error while reading or writing the header information (such as the file is mal-
formed). Further, an open command may fail if the system-defined limit for number of
file pointers allowed for one file is exceeded. SUCCESS is returned upon successful
completion, FAILURE otherwise.

Mentat Library Classes

Mentat 2.5 User ’s Manual 51

The methods

int file_alloc(DD_floatarray *data)
int file_alloc(int num_row, int num_col)

prepare a file that has been opened for write to accept data. The parameter data is a
DD_floatarray from which the number of rows and columns can be extracted.
Writes the header information to the file.

They return SUCCESS if the header is successfully written. In the event that the header
information is not written, FAILURE is returned, and the status of the file is set to
HEADER_WRITE_ERROR.

This function only prepares the file for writing, in order to write to the file, a call to one
of the write methods described below must be made. The file must already have been
opened, and its mode must be WRITE.

The method

int close_file()

closes the file, resets the file status to CLOSED, and returns SUCCESS or FAILURE,
depending on the outcome of the close.

Accessing the State of a File

The methods

int get_row_size()
int get_col_size()
int get_data_type_size()
int get_header_size()

return the various attributes of the file. The first two methods return the number of rows
and columns contained within the source file, respectively. The latter two methods
return the size of the data to be stored in the file, and the size of header within the file,
respectively.

Reading from a File

The method

DD_floatarray* read_row(int row)

reads the row specified by the parameter row from the file, places it in a
1 × num_columns DD_floatarray and returns the array. The call returns SUC-
CESS if read is successful, otherwise it returns an empty array whose status is -1. The
parameter row must be a valid row within the range specified in the header of the file.

The method

Mentat Library Classes

Mentat 2.5 User ’s Manual 52

DD_floatarray* read_row(int row, int start_col,
int end_col)

reads the row specified by the parameter row from the file, places it in a 1 × (end_-
col−start_col) DD_floatarray and returns the array. It returns SUCCESS if
the read operation is successful, or an empty array whose status is -1, otherwise. The
parameter row must be a valid row within the range specified in the header of the file.
The parameters start_col and end_col must also be within the appropriate
ranges.

The method

DD_floatarray* read_col(int column_number)

reads the column specified by column_number into an appropriately sized
DD_floatarray. The array is then returned. In the event of an error, an empty array
whose status is -1 is returned. The column_number must be within valid ranges as
specified in the file header.

The method

DD_floatarray* read_region(int ul_row, int ul_col,
int lr_row, int lr_col)

reads the portion of the array bounded by [ul_row, ul_col], [lr_row, lr_col],
creates and places it a new DD_floatarray, and returns the result. In the event of a
read error, an empty array whose status is -1 is returned.The region must be a valid
region within the range specified in the header of the file.

The method

DD_floatarray* read_array()

reads the entire array from a file, creates and places it in a new DD_floatarray and
returns the result. In the event of a read error, an empty array, whose status is -1, is
returned.

Writing to a File

The methods

int write_row(DD_floatarray* data, int row)
int write_row(DD_floatarray* data, int row,

int start_col, int end_col)

write row information to the file. In the first method, row row from the DD_floatar-
ray data is written to the corresponding position in the file and a SUCCESS or
FAILURE is returned depending on the outcome of the write. The value of row must be
a valid row within the range specified in the header of the file. The second method
writes row row between columns start_col and end_col from the DD_floa-
tarray data to the corresponding position in the file. It returns SUCCESS or FAIL-
URE depending on the outcome of the write. The values of row, start_col, and
end_col must be valid within the ranges specified in the header of the file.

The method

Problems at Run-T ime

Mentat 2.5 User ’s Manual 53

int write_col(DD_floatarray* data, int column_number)

writes column column_number of data to the corresponding position in the file. It
returns SUCCESS or FAILURE depending on the outcome of the write. The value of
column_number must be within valid array bounds, and the number of rows in the
array must equal those specified in the header.

The method

int write_region(DD_floatarray* data, int ul_row,
int ul_col, int lr_row, int lr_col)

writes the region of the DD_floatarray data bound by [ul_row, ul_col],
[lr_row, lr_col] to the corresponding position in the file. It returns SUCCESS or
FAILURE depending on the outcome of the write.

The method

int write_array(DD_floatarray* data)

writes the entire DD_floatarray data, to the file, and returns SUCCESS or FAIL-
URE depending on the outcome of the write. The number of rows and columns in data
must match those specified in the file header.

The method

void print(string *file_name)

opens the file specified by file_name, prints the contents in row-major order, and
closes the file.

9.0 Problems at Run-T ime

A number of run-time errors can occur while running a Mentat application. Some of the
errors are caused by confusing the C++ semantics with the semantics of MPL. After
gaining experience with the system, the Mentat programmer is less prone to make some
of the mistakes that lead to run-time errors.

Future stack overflow and underflow

If you fail to execute an rtf() for every Mentat member function invoked, then you
will eventually get the error “FUTURE STACK OVERFLOW.” For example,

yy_matrix* mop::f_tsp(string* m) {
yy_matrix* mtp = in_ftsp(m);
rtf(mtp); // if you omit this

}

will eventually cause an overflow.

An rtf() is required for void Mentat member functions as well. On the other hand, if
you include more “rtf’s” than the number of functions called, you will get the error
“FUTURE STACK UNDERFLOW.” This error commonly occurs if private members

Problems at Run-T ime

Mentat 2.5 User ’s Manual 54

on Mentat classes are defined to be helper functions, but the user has changed the
return() to an rtf(). In this case, only a return is necessary.

Memory problems

If you run out of virtual memory on your machine, you may see the error “OUT OF
MEMORY IN RESOLVE, GOODBYE” or “out of memory in message constructor.”
Both of these messages indicate situations that are eventually fatal and are most likely
the result of a memory leak in your program. This may be caused by not releasing the
heap allocated results of Mentat member functions that return pointers.

Failure to instantiate an object

If the scheduler cannot locate a class binary in the current directory or in $MENTA-
T_USR_BIN or the binary does not have group execute permission, then the scheduler
may not be able to create the object and a error message will be issued. When the mes-
sage is reported, the user needs to check which of these situations applies and take the
appropriate action.

Core dumps and memory faults

There are several possibilities. Check if Mentat is running by issuing the list_objects
command. This will tell you if the ims are still alive. You can also see if the tmus are
still working by running the dotest_fib application in $MENTAT/sources/examples/fib.
If this checks out, then there is most likely a bug in the user’s code. There are two cases:
(1) bad MPL code, and (2) incorrectly generated C++ code. We recommend the follow-
ing debugging strategy: use the Mentat I/O system (mstream) to help locate the crash-
ing member function. If it is the user bug, then locating the context will hopefully lead
to an obvious bug fix. If the user is convinced that the MPL code looks fine, then the
file.trans.c file must be inspected. Search for the name of the member function to find
the analogous C++ member function. If the C++ member function seems to have been
generated incorrectly, the user has two options: if the user is a solid C++ programmer
the person can attempt to modify the C++ code and recompile from the file.trans.c file
on down. If not, the user should consult the MPLC section of this manual and find out
the cases for which the MPL compiler may generate bad code. If the user cannot match
their bug to any known compiler bug described in this section, then we wish to be
informed of this situation. Often, a core dump or memory fault is the result of an unde-
fined variable.

If Mentat is not running, then the Mentat run-time system has crashed. Fortunately this
is quite rare. If the config.db files get damaged, the im may crash. If this happens, kill
Mentat (with kill_mentat), fix the config.db file, and try again. If the config.db file is
not damaged, then please let us know about this.

Mentat application hangs

There are two cases where <class>.destroy() may cause a run-time hang-up: (1) the
sequence create(), destroy(), create() on the same Mentat class object, and

Problems at Run-T ime

Mentat 2.5 User ’s Manual 55

(2) the sequence destroy(), destroy() on the same Mentat class object. The sys-
tem will catch these most of the time and will either print a message or just “ignore” the
spurious destroy() or create(), but there may still be cases where (1) or (2)
causes a hang-up. Note that case (1) actually makes sense and we plan on supporting
this in the near future.

