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Abstract

Local synchrony is a distributed approach to providing logically synchronous capabilities
in an asynchronous system. Local synchrony provides a logical timeline to memory
access, and thus a total ordering to the steps of a distributed computation, without many of
the inherent consequences of global synchronization. Local synchrony offers a framework
for the implementation of various concurrency control mechanisms, including combining
and isochrons (parallel operations). We show the implementability of local synchrony, and
demonstrate its compatibility with existing protocols for fault-tolerance in general purpose
multiprocessors. The results of our research are threefold. We show first that practical
implementation of local synchrony is feasible in general, asynchronous, MIMD architec-
tures. We show that such implementations are compatible with existing hardware fault tol-
erance systems and present a correct rollback algorithm for our general implementation.
Finally, we present both analytic and empirical studies which illustrate the performance
characteristics of such implementations. Our analytic modeling technique extends in novel
ways probabilistic modelling methods often employed for interconnection networks. Our
work establishes the practicality and feasibility of local synchrony as a means of providing
support for concurrency control.
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1.0  Introduction
A major focus of research in parallel processing is global memory: where to situate it, how

to access it, and how to maintain its coherence. An important emphasis in any parallel architecture

design is the speed with which processing elements in the system may access global memory. To a

large extent, the speedups in processing power to be gained by using multiple processors to attack

a single problem are directly related to memory cycle time. The longer memory cycle times of par-

allel processing architectures place severe limits on the processing speedups that can be achieved

by utilizing the concurrency of such machines.

Much attention has been focused on improving memory access speed in both shared-mem-

ory and message-passing architectures. The proposals made by researchers in this field generally

ask “In what ways can we shorten the cycle time of a single memory access in a multiprocessor

system?” Their solutions include speeding up the transfer of a message through a given system by

implementing better routing algorithms, and/or distributing memory in ways that reduce slow-

downs caused by message traffic bottlenecks. Other work has proposed introducing multiprocessor

cache memories [YYF85] [DSB88] [BNR89] [RAK89] and distributing memory [BaJ88], or bal-

ancing the message load [ReT86] to limit contention.

Another approach would be to ask: “Can we achieve better system utilization by increas-

ing the amount of productive activity during global memory references, and reducing the amount

of inter-process synchronization required?” Combining systems [GGK83] [GLR83] [Pfi85]

[RBJ88] [TuR88], which reduce actual memory traffic by merging accesses to the same global

variable, take this approach.

A method along these same lines would be to limit non-productive global memory refer-

ences, thus freeing up system resources that could then be used for productive activity. Concur-

rency control requirements can generate a significant amount of the global memory traffic in a

parallel computation. Concurrency control traffic only indirectly performs useful work, by facili-

tating (in a way that meets the synchronization requirements) the execution of later productive
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accesses. When multiple entities (i.e., processes) are competing for the use of multiple resources

(i.e., global variables), extreme care must be taken to enforce proper accessing principles. Concur-

rency control principles guarantee that the result of the parallel computation will be equivalent to

some possible sequential execution. Our work seeks to limit or eliminate non-productive global

memory accesses by building into the system architecture the concurrency control requirements

necessary for correct parallel execution.

In [RWW89], we addressed the problem of parallel atomic access to global memory. A

system that provides atomic access to multiple global memory locations eliminates much of the

inter-process synchronization currently necessary in parallel programming. To provide such

atomic access, we must enforce a specific ordering of distributed events. In asynchronous systems

it is generally impossible to order events at different locations by their physical occurrence

[Lam79]. However, if events are arbitrarily ordered and executed such that all sequencing (atomic-

ity and sequential consistency) constraints are met in the same way at all locations, the effect will

be as if all events occurred with the correct synchronization in force.

In order to implement parallel memory access operations, or isochrons, Williams [Wil93]

proposed a system of logical clocks, which provide a logical ordering of global memory accesses,

in turn facilitating the synchronization necessary to guarantee atomicity and sequential consistency

of parallel memory accesses. This system of logical clocks describes a logical timestamp ordering

system for the global memory accesses of a parallel computation.

One method of implementation for this system of logical clocks is by:

1. Assigning a unique logical timestamp to each global memory access. The logi-
cal timestamps are designed to provide a total ordering of global memory
accesses meeting all sequencing constraints.

2. Constraining all elements within the system to process global memory accesses
in logical timestamp order. Thus accesses are emitted from the processes in
order, kept ordered as they traverse the network, and executed in order when
they reach global memory.

We call this method local synchrony. We are interested in this conservative logical times-

tamp ordering system for several reasons: it can be implemented using only local decision-making
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by elements within the system; the timestamping system can be implemented implicitly, so an

access need not be significantly larger than already necessary for conventional routing; and the

system does not require elements to reach physical barriers in order to achieve synchronization.

Consider a shared memory architecture consisting of a number of processing elements

(PEs) connected to a number of memory modules (MMs) by an interconnection network of switch-

ing elements. PEs communicate only by sending accesses to global memory. In a local synchrony

implementation, each PE assigns a unique identifier to each access. The identifier acts as a times-

tamp for the access’ execution at the MM. PEs release accesses in ascending order by timestamp.

Switching elements merge incoming streams of sorted accesses to keep all access streams in times-

tamp order. MMs execute accesses in timestamp order. Nodes (PEs, MMs, switching elements)

stay in loose synchronization because they must process accesses in order, which means that they

must have input from each neighbor in order to make processing decisions. This is local syn-

chrony.

An example of a local synchrony implementation is an isotach network [RWW89]

[WiR91]. Such an implementation provides hardware support for the task of controlling the con-

currency of parallel computations—in particular, in enforcing atomicity and sequential consis-

tency.

Atomicity and sequential consistency are important properties of parallel computations

that are expensive to enforce using existing techniques. The atomic action is a group of one or

more operations issued by the same process thatappears to be executed indivisibly, without inter-

leaving with other operations.

Atomic actions are typically specified by operations on locks or semaphores or by critical

sections or monitors implemented with locks or semaphores. Existing hardware support for atomic

actions is designed to make locking more efficient. The principle drawback to the use of locks in

implementing atomicity is the unnecessarily restricted access to shared variables implied by lock-

ing. Variables cannot in general be partitioned so that each atomic action can, by acquiring a single
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lock, control all the variables it must access and no others. Atomic actions either acquire a single

lock, and lock some variables unnecessarily, or acquire multiple locks. To avoid deadlock, an

atomic action that requires multiple locks must typically obtain the locks sequentially. During this

lock acquisition phase, the variables controlled by already-acquired locks are unavailable to other

processes. A local synchrony implementation enforces atomicity without using locks or sema-

phores.

Sequential consistency means that the order in which accesses are executed is consistent

with the order specified by each individual process’s sequential program [Lam79]. Maintaining

sequential consistency is a problem in multiprocessors because stochastic delays in the network

allow operations issued by the same process to arrive at global memory in an order inconsistent

with the order in which operations were issued. The simplest solution, which would be to disallow

the pipelining of memory accesses, is undesirable because pipelining is an important way to lessen

effective memory latency. A local synchrony implementation enforces sequential consistency

without restricting the pipelining of operations.

A local synchrony implementation can be used to implement data-dependent atomic

actions (where one or more actions within an atomic action are dependent upon the results of one

or more of the other constituent actions) using split operations [WiR89]. Williams has described a

family of cache-coherency protocols [Wil93] based on isotach networks. Local synchrony also

facilitates FIFO combining [Ran87], which allows access combining to be implemented without

the costly associative search necessary in conventional systems. In light of the many possible uses

of local synchrony implementations, it is desirable to know whether local synchrony can be imple-

mented correctly and efficiently, in order to provide the benefits described above to parallel com-

putations.

Our work concerns the implementation of local synchrony. We address implementation

issues for local synchrony on general parallel processing architectures. We discuss some of the

fault-tolerance capabilities of a local synchrony implementation. We also provide both analytical
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and simulation studies that model and evaluate the performance of local synchrony, compared to

conventional implementations, for several operating environments.

Previous work has provided some general implementation information for local synchrony

[RWW89] [Wil90]. We explore this area in depth. We present an implementation plan for local

synchrony on an NYU Ultracomputer-type architecture, including operative algorithms, a low-

level switch design realizable with current technology, and a proof of deadlock freedom. We then

present a general implementation that can be realized on any parallel architecture and give a for-

mal proof of correctness for the technique. Our general solution is a significant advance over other

possible approaches because it provides greater opportunities for parallelism with smaller memory

requirements.

A locally synchronous system has several properties which adapt well to current fault-tol-

erance research in both hardware and software. We explore these properties and how they may be

advantageously exploited. We then present and prove correct a local synchrony checkpointing and

rollback procedure that is compatible with our general implementation technique.

In order to demonstrate that local synchrony implementations are both valuable and feasi-

ble, we must show convincingly that the performance costs of implementing such a system are

moderate compared to the benefits gained. We first present analytical models of local synchrony

implementations by advancing existing modelling techniques. These analytical studies validate

our simulation studies of the same implementations. The simulation studies compare local syn-

chrony implementations to conventional implementations under workloads that include atomicity

and sequential consistency constraints. We show that, while the conventional implementations out-

perform local synchrony in situations where these constraints are minimal, local synchrony outper-

forms by a significant factor conventional systems under workloads with high atomicity and

sequencing constraints.



6

The remainder of this dissertation is as follows:

Chapter 2 contains an overview of MIMD architectures, background information on local

synchrony and related topics, and discussion of fault-tolerance and performance issues related to

the implementation of local synchrony.

Chapter 3 includes a motivation for our work and a specific implementation of local syn-

chrony, including a proof of deadlock freedom and a low-level switch design for the communica-

tion network. Also we present an alternate deadlock-freedom proof, covering certain architectures,

that does not require the use of ghost messages.

Chapter 4 presents a general implementation technique that allows local synchrony to be

implemented on most parallel processing architectures. We prove that implementations developed

using our technique are correct and deadlock-free, and show that our technique provides more

opportunities for parallelism and uses less memory than other approaches.

Chapter 5 discusses the fault-tolerance capabilities of local synchrony implementations

and presents a simple scheme to provide a measure of fault tolerance in the presence of hardware

redundant paths. Then we present a checkpointing and rollback procedure, which provides roll-

back capability for the general implementation, and prove the algorithm correct.

Chapter 6 presents several analytical models of local synchrony implementations on an

NYU Ultracomputer-type architecture using both a low-throughput and a high-throughput switch

design. We use these analytical models to validate our later simulation studies. The simulation

studies compare the performance of local synchrony and conventional implementations under var-

ious workloads with varying degrees of sequencing constraints. We also compare local synchrony

to another timestamp ordering implementation, ltu ordering.

Chapter 7 presents conclusions and an overview of the future work we intend for this area.
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2.0  Background
This section presents relevant topics, literature review, and a background overview as an

introduction to our area of research. Sections 2.1 and 2.2 present an overview of concurrent archi-

tectures, define several terms which will be of importance in later discussions, and discuss the

nature of communication in a multiprocessor environment. These sections act as an introduction to

the general area of our work.

Section 2.3 introduces combining systems and reviews relevant research in this area. Sec-

tion 2.4 presents Williams’ [Wil93] approach to concurrency control. This is the main theoretical

background for our work. The basis of our work is the implementation of a concurrency control

mechanism which meets Williams’ constraints of atomicity and sequential consistency, and

ensures conflict-free serial schedules [Wil93] for any execution. These conditions are discussed in

this section.

Section 2.5 presents the concurrency control mechanismisochrons [Wil93]. Isochrons are

a concurrency control mechanism, designed for multiprocessing systems, which are compatible

with the concurrency control approach defined in section 2.4. Isochrons provide a limited form of

atomic access in multiprocessing architectures.

Section 2.6 presents local synchrony as a method for the implementation of isochrons. The

main thrust of this dissertation is research leading to implementations of local synchrony on inter-

esting multiprocessing systems, which will facilitate the implementation of isochrons and other

high-level concurrency control mechanisms. Section 2.7 reviews research related to concurrency

control, isochrons, and local synchrony.

Sections 2.8 and 2.9 present previous work on fault tolerance and performance issues in

multiprocessing systems.

2.1  MIMD Architectures

Our research deals with asynchronous multiprocessing computers utilizing theMultiple-

Instruction Stream, Multiple-Data Stream (MIMD) [Fly66] system architecture. A MIMD proces-
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sor generally consists of a number of nodes connected by communication channels that are–usu-

ally–organized in a regular pattern (e.g., a hypercube). Each node may include zero or more

processing elements and zero or more memory elements, as well as the routing hardware necessary

for each of the node’s input/output channels. Each processing element may execute a different pro-

gram—as opposed toSingle-Instruction Stream, Single-data Stream (SIMD) architectures, where

each element executes the same program, albeit with different data.

This model encompasses bothmessage-passing systems, in which processes communicate

by sending messages to each other, with each processing node ‘owning’ a section of global mem-

ory, andshared-memory systems, in which processes communicate through global memory, which

is shared. Message-passing systems may be cast as a subset of shared memory systems in which

any node containing a section of global memory also contains a processing element which controls

access to that memory. We choose to use the shared-memory model for our discussion and

research, given the ease with which message passing can be implemented in it.

Multiprocessing systems may be eithersynchronous, in which processing occurs in lock-

step phases governed by a global clock, orasynchronous, in which processing elements operate

independently. The operation of a synchronous system is well suited to applications which are

highly data-parallel in nature, consisting of groups of similar processes performing similar opera-

tions. These types of systems are very close to SIMD systems in operation. Many applications,

however, are not easily cast in the data-parallel paradigm. These applications are better suited to

the asynchronous model. Our work investigates the efficiency and fault-tolerance of local syn-

chrony as a way to achieve the benefits of synchronous processing on asynchronous processors,

without unduly compromising the benefits (e.g., performance) of asynchronous operation.

Padmanabhan [Pad90] distinguishes betweendirect andindirect interconnection schemes.

In a direct interconnection scheme, processing elements are connected in a network using point-to-

point links. An indirect scheme separates the architecture into processors and memory (or com-

bined processing/memory nodes) and a switching network. Generally, indirect architectures are
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designed under the shared memory paradigm, while direct architectures are usually message pass-

ing systems. Exceptions to this rule include the indirect binary cube, which is an indirect message

passing design.

Equidistant architectures are a special kind of multiprocessing system. Distance refers to

the number of network stages or point-to-point steps which a given memory access must traverse

in order to reach its destination. In an equidistant system, the distance an access requested by any

processing element travels to any shared memory location is constant for all processing elements

and memory locations. Equidistant architectures generally take the form of shared-memory, indi-

rect machines (e.g., the NYU Ultracomputer [GGK83]).

Non-equidistant systems are usually directly interconnected and include most message-

passing and several shared memory designs. In a non-equidistant architecture, a node generally

includes both processing and memory elements, along with switching hardware. Examples of non-

equidistant architectures are numerous and include hypercubes [Sei85], cube-connected cycles

[PrV81], rings, toroids, and meshes.

2.2  Routing, Message Transfer, and Deadlock

A multiprocessor with a uni-path network architecture has a unique physical path from

any processing element to any memory element. Uni-path systems tend to be limited to equidistant

systems, but neither is a requirement for the other. The Ultracomputer is again a good example of

this class of architectures. Routing decisions in such a system are straightforward. In order to reach

its destination, a message has only one possible choice of path at a given point, so routing deci-

sions may be hard-wired into the switch. With the advent of hardware redundancy schemes for

fault tolerance (section 2.8), this type of system has largely been replaced by multi-path systems.

In a multi-path system, a message bound for a given memory location may travel any of a

number of possible paths in order to reach its destination. Routing schemes for such systems tradi-

tionally emphasize deadlock freedom first. A second priority for these systems is to route mes-

sages along the shortest possible paths in order to limit network latency. Since much of our work
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involves multi-path routing systems that can be implemented in the hypercube environment, we

discuss several types of hypercube routing schemes here.

Each node in ann-dimensional binary cube is labeled with ann-digit binary number and is

directly connected ton of its neighbors. The label assigned to each of these neighbors differs from

that of the given node in one binary digit, or one dimension of the cube. Thus, the Hamming dis-

tance—or length of the shortest path—between any two nodes is the number of digits with differ-

ent addresses.

A simple routing scheme in this environment would compare the current node address of

the message with its destination, then route the message along one of the output lines crossing a

dimension that the message must cross in order to reach its destination. This scheme is provably

minimal. The selection of possible lines along which to route the message can be non-determinis-

tic, or can take into account any criteria, such as network load or faulty lines.

Dally and Seitz [DaS87] describe a system calledE-Routing, where the message always

crosses the highest-order uncrossed dimension that needs to be crossed. E-routing may also be

low-order, crossing the lowest-order dimension first. Dally and Seitz prove that E-routing is dead-

lock-free for the hypercube. The authors present a method for creating deadlock-free routing

schemes usingVirtual Channels [DaS87], and Dally goes on to show that virtual channels also can

provide increased efficiency in parallel communication systems [Dal90].

It is important to distinguish here betweenphysical, virtual, androutable paths. The net-

work topology of any given architecture defines physical paths, which are made up of actual phys-

ical links between nodes. Some routing schemes will cast a given physical link as several virtual

links for resource allocation and deadlock freedom purposes. Thus, several virtual paths can exist

over a given physical path. Finally, routing schemes for multi-path architectures often will not uti-

lize all physical paths from one node to another. Thus, a routable path is a physical or virtual path

used by the routing scheme. For example, in the Hypercube architecture, there are two minimum-
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length paths from node 11 to node 00, 11-10-00 and 11-01-00. High-order E-routing will only pass

messages along the first path, however, so 11-01-00 is a physical path but not a routable path.

More interest has recently focused on dynamic systems that route messages based on cur-

rent network load conditions and the presence of faulty nodes or links in the network [ChS89].

One important factor in the design of these types of systems is the method of gathering local or

global information on load conditions and faults. Another important issue is the level of compati-

bility with concurrency control mechanisms and network performance enhancements such as com-

bining, which require certain path restrictions.

An entirely separate routing issue concerns how messages are transferred from node to

node. InStore-and-Forward networks, a message is stored completely at a node, and forwarded to

the next node as a whole. This is the simplest scheme, and a significant volume of work has been

produced on deadlock-free routing algorithms for these systems [Gun81][MeS80][Gel81]. These

algorithms assign a partial order to resources by utilizing a structured buffer pool, ensuring that

circular wait situations which cause deadlock cannot occur.

Wormhole systems [Dal87] break messages into small manageable packets. Routing infor-

mation is contained in flow-control digits or flits. In wormhole routing, the head of a message

(including routing flits) is advanced directly from incoming to outgoing channels at a node. As

packets appear on the input channel, they are passed to the output channel. As this process occurs,

messages can spread out across the network, with the requirement that the packets comprising a

message always occupy contiguous channels. If the head of a message is blocked, the backed-up

packets of that message then prohibit any channels they occupy from being used by other mes-

sages until the message header becomes unblocked and the message resumes transmission.

Because message flits cannot be interleaved in buffers, the priority buffer approach to

deadlock freedom is not feasible for wormhole systems. However, Dally and Seitz [DaS87] show

that assigning a partial order to channels rather than using buffers is sufficient for deadlock free-
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dom in wormhole systems. This is the virtual channels approach, in which links between nodes are

treated as multiple virtual links through context switching.

A third approach with similarities to both systems is Virtual Cut-Through[KeK79]. Here

messages are broken up and allowed to spread throughout the network, but a node may not accept

any part of an incoming message unless it can buffer the whole message (in the event that it is

blocked). The deadlock properties of this type of system are identical to those of store-and-forward

systems, although in low-traffic situations Virtual Cut-Through may offer greater throughput at

less cost and network complexity.

Communication schemes are important to our work, because the implementation of local

synchrony may alter network switching and routing algorithms. We show that changes in the com-

munication systems of multiprocessors due to the implementation of local synchrony will not

introduce the possibility of deadlock into the system, and that local synchrony will be compatible

with the communication schemes (or variants) discussed above.

2.3  Combining

The objective of memory access combining is to reduce message traffic to and from

heavily used global memory locations in a multiprocessor. One method of achieving this goal

involves identifying accesses bound for the same memory location during transmission through an

interconnection network, and molding these accesses into a single access, the result of which

implies a given sequential ordering of the combined accesses. The NYU Ultracomputer was the

first to combine accesses to global memory [GLR81][GLR83]; combining was later proposed for

the IBM RP3 [Pfi85].

The Ultracomputer is an equidistant, shared-memory multiprocessor consisting of a num-

ber of processing elements, each with its own private memory, and a number of memory elements,

which house global memory. Processing elements and memory elements are separated by an

omega or banyan interconnection network, which provides a unique, same-length path from each
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processing element to each memory location. An example of a small Ultracomputer is shown in

figure 1.

FIGURE 1.  Ultracomputer.

As a simple example of combining, consider the following: Process 1 releases access

WRITE(A,5) into the interconnection network. Process 2 releases the access READ(A). Assume

at some point, at some switching element in the network, the two accesses are held concurrently.

The switching hardware can then combine the two accesses into one access: WRITE(A,5). When

this operation is completed, the result is as if both operations had been completed in sequence:

WRITE(A,5); READ(A). The new WRITE operation is sent toward memory, while the combining

information for the original messages is stored in the switch. When the combined operation returns

successfully to the switch, the relevant combining information is extracted from the combining

information queue through associative search. The READ access from Process 2 is sent back with

the value 5, and the WRITE access from Process 1 is returned successfully.

In order to add power to the combining mechanism, Kruskal, Rudolph, and Snir [KRS88]

have proposed the implementation of the READ-MODIFY-WRITE [Rud81] formalism in combin-

ing systems. Such a system would have as its basic memory access operation RMW(X,f), where X

is the shared variable and f is a function to be performed on that variable. The RMW operation is

equivalent to an indivisible execution of the function:

PEs

MMs

Switching
Elements
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function RMW(X,f)
begin
temp := X;
X := f(X);
return(temp)

end

A READ operation may be represented in this formalism by performing the identity func-

tion, f(X)=X, while a WRITE operation is represented by performing the operation f(X)=c, where

c is the constant to be written supplied by the process making the access.

The RMW formalism allows the implementation of much more powerful atomic memory

operations. Using RMW operations as the basic, atomic form of memory access in a multiprocess-

ing system gives the designer the freedom to implement almost any operation of the form:

memval := memval op val

where op is an operation which need not be associative. Possible implementations include the four

arithmetic functions, all sixteen Boolean functions, and synchronization functions like full/empty

bits. Kruskal, Rudolph, and Snir prove that their combining algorithm is correct by showing that

the execution of a given combined operation is equivalent to a possible serial execution of the

operations from which it is composed [KRS88].

A by-product of this work, which is important to our research, concerns the orientation of

combined operations. When two operations are combined, the resulting combined operation, when

performed, achieves the same result as some serial execution of the original operations. Consider a

system which implements two basic operations: READ and WRITE. In this system, WRITE(B,3)

and WRITE(B,4) might be combined into WRITE(B,4), which would, when executed, have the

same effect as WRITE(B,3) followed immediately by WRITE(B,4). Thus, the orientation of the

combined operation is the serial execution WRITE(B,3); WRITE(B,4). [Note: throughout this

work, separation by semi-colons represents sequential orientation, while separation by commas

denotes parallel (to the observer) orientation.]

A system implemented as above could combine two READ or two WRITE accesses in

any orientation. In the case where a READ and a WRITE operation are to be combined, however,
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a specific orientation is necessary in the combined operation. The combined operation must be a

WRITE, as the variable must be modified, and, because WRITE operations are not generally

designed to return the previous value of the variable, the READ operation must be oriented after

the WRITE.

Now consider a system implementing RMW operations. RMW operations always return

the previous value of the memory location, and can thus be combined in any orientation. In gen-

eral, any pair of RMW operations that can be combined can be combined in either orientation

[KRS88].

Little research has gone into memory access combining on non-equidistant architectures.

The most important addition to the combining literature has been the work at Yale on the Fluent

Architecture [Ran87] [RBJ88]. While the goal of this work had little to do with combining systems

(its goal was efficient PRAM emulation), Ranade was able to show that, given some synchroniza-

tion, combining operations in the network could be greatly simplified, removing the need for asso-

ciative search when decombining. The use of synchronization in this case helps to ensure that

messages leaving a given node will return to that node in the same order. The Fluent machine is a

non-equidistant, shared-memory machine, but in the implementation of the combining system, the

designers emulate an equidistant network in order to achieve their results. A message leaving a

given node will travel the same distance before returning, regardless of the distance to its destina-

tion. This means that most messages will travel significantly farther than necessary in order to be

serviced.

In [WiR91], Reynolds and Williams show that atomic actions can be combined in a

recombining network, without compromising the integrity of the atomic actions. We use this result

in designing combining switches for local synchrony, which allow the component accesses of iso-

chrons to be combined if necessary.



16

2.4  An Approach to Concurrency Control

Perhaps the most important problem when working in an asynchronous multiprocessing

environment is concurrency control. When multiple entities (i.e., processes) are competing for the

use of multiple resources (i.e., global variables) extreme care must be taken to enforce proper

accessing principles. The motivation for our own work in this area is parallel memory operations

[Wag87] [RWW89] or isochrons [Wil93]. Isochrons allow a process to perform exclusive opera-

tions on sets of global variables without the need for locking or global synchronization. Local syn-

chrony is a concurrency control mechanism which supports isochrons.

Definition: The execution trace of a parallel program is equivalent to a serial
schedule if all accesses to shared variables are executed in an order that is consis-
tent with some serial execution of the same program.

In [Wil93], Williams characterizes the goal of concurrency control for parallel programs

as ‘to ensure that every execution is “serializable.”’ Williams’ notion of serializability considers

several important factors which extend beyond the definition of a serial schedule given above. The

following discussion draws on definitions and results appearing in [Wil90].

A parallel execution and a serial execution are said to beconflict equivalent if, in both exe-

cutions, each shared variable is accessed by the same operations and conflicting operations are

executed in the same order. Operations conflict if their combination changes the variable, in other

words if they are not both reads. Since read operations do not change the state of a variable, they

cannot conflict. Williams formally describes a parallel execution to be serializable if there exists a

conflict equivalent serial execution,Es, with the following properties:

1.  Atomicity - Accesses specified as atomic actions in the parallel execution are
executed in Es in sequence, without interleaving with other accesses.

An Atomic Action is a group of accesses, issued by the same process, that appear to be exe-

cuted indivisibly, without interleaving with other accesses. An atomic action has the effect of mod-

ifying the state of a group of global variables as if the process submitting the atomic action has

exclusive access to those variables while the atomic action is being executed.

2.  Sequential Consistency - Any two accesses made by the same process are exe-
cuted in the order specified by the process, if any.
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The accesses of a given process are sequentially consistent if the order in which they are

executed is consistent with the order specified by the process’s sequential program [Lam79]. In

other words, the memory access requests of a process must be executed in the order in which the

process submitted them. Violations of sequential consistency can arise in multiprocessing systems

because of network delays and the varying distances that access requests must traverse in order to

be executed.

3.  Version Consistency - Any two accesses to the same variable are executed in Es
in the order specified by the program, if any.

Version consistency means that the execution is consistent with any data dependencies

specified by the program. These types of dependencies arise when the program specifies the order

in which different accesses to the same data should occur. For example, a program might specify

that a given variable, modified by a writer, must be read by a specified reader before it can be again

modified by the writer. Version consistency is generally enforced by different types of locking

mechanisms.

Williams’ characterization of the goal of concurrency control for parallel programs is

influenced by literature on concurrency control for concurrent databases, by Lamport’s definition

of sequential consistency [Lam79], and by Shasha and Snir’s definition of correct execution of par-

allel programs [ShS88]. These and related works are discussed in more detail in the following sec-

tions. Our work with local synchrony is derived from this goal as stated, and from the need to

provide sequentially consistent and atomic execution of parallel programs in asynchronous multi-

processor environments.

2.5  Isochrons

Our main goal is to explore implementation issues regarding local synchrony. Local syn-

chrony meets the criteria for sequential consistency and atomicity as defined in [Wil93] and dis-

cussed in section 2.4. One benefit would be that local synchrony supports isochrons [Wil93], a

concept derived from parallel operations [Wag87] [RWW89]. An isochron consists of a set of

memory accesses emitted by a given process which appear to be executed simultaneously, so that



18

memory coherency is maintained. Preserving the coherency of memory means that it must not be

possible for a process to observe an inconsistent state in global memory due to interleaving of

other accesses with those of the given process.

Isochrons are a limited form ofatomic action. The general form of atomic actions is a

group of operations which are performedatomically [OwL82], meaning that no process other than

the issuer can observe or affect an intermediate state in the execution. This general form of atomic

actions allows data-dependent operations. For example, a process issuing an atomic action is able

to perform an operation which reads the value of one global variable and writes that value to

another, atomically. The issuer is thus able to observe the intermediate state of the execution of the

atomic action. This situation allows the issuer to make conditional changes to the atomic action,

based on intermediate results of that action. Isochrons, however, enforce a stronger requirement,

which removes this capability. In a system implementing isochrons, no process,including the

issuer, can observe or affect any intermediate state in the execution of an isochron. Thus, isochrons

do not support global data-dependent operations.

Consider the readers and writers problem for a pair of shared variables, A and B. A and B

contain values which may be read by a number of readers, and may be updated by a number of

writers. A reader must read both variables, and a writer must write both. If process 1 emits two

READ operations, READ(A) and READ(B), while process 2 emits WRITE(A,2) and

WRITE(B,3), it is possible that the order of access to the shared variables would be READ(A);

WRITE(A,2); WRITE(B,3); READ(B). In this case, process 1 does not receive a coherent set of

responses, but instead receives half ‘old’ data and half ‘new’ data.

A common solution to this problem is to utilize a lock or locks to ensure exclusive access

to the relevant data. In order to modify A and B, a process would have to acquire the locks on the

objects before it would be able to modify the data. The locks would have to ensure the exclusion of

both readers and other writers during the time the given writer was accessing the data. This serial-
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izing of accesses to shared data inhibits concurrency significantly if several processes are access-

ing the same data regularly.

In general, the processes of a parallel program will need atomic access to different sets of

shared variables at different points during their execution. In order to avoid deadlock due to pro-

cesses circularly waiting for each other to give up locks, processes must be made to acquire locks

in a specific order. This situation can cause processes to contend severely in acquiring high priority

locks, which further slows access to the required data by requiring more global memory accesses.

Alternatives to resource ordering in this situation admit the possibility of starvation.

Isochrons provide deadlock- and starvation-freedom without the use of access-intensive

locks. The use of isochrons in the above example would allow only access orders in which the

order of execution at each memory location is consistent with a serial schedule providing atomic

access. To a monitoring process, the order of execution would appear to be one of the following:

READ(A), READ(B); WRITE(A,2), WRITE(B,3) or WRITE(A,2), WRITE(B,3); READ(A),

READ(B). Note, however, that the actual order of execution of the memory accesses could be

READ(A); WRITE(A,2); READ(B); WRITE(B,2). While there are several different possible exe-

cution orders, from the viewpoint of any given process the set of operations in a given isochron

would appear to have been performed indivisibly, or simultaneously.

The execution of a parallel program is said to be sequentially consistent if “the result of

any execution is the same as if the operations were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order specified by its pro-

gram” [Lam79]. An isochron program, when executed, must be sequentially consistent and also

ensure the atomicity of parallel accesses to global memory. This idea is similar to Reed’s notion of

Concurrent Atomicity [Ree83]:

For all executed steps o not in A (the atomic action), either o precedes all
steps in A, or o follows all steps in A.

Isochrons are an attempt to apply this property to memory access in distributed systems.

They have the potential to be an extremely powerful concurrency control mechanism: they could
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reduce the need for much of the locking and synchronization of memory access in shared memory

architectures, and thus significantly reduce global memory access traffic.

The implementation of isochrons requires a system which guarantees exclusive access to

distributed memory locations. Our own requirements for such a system exclude explicit locking of

locations and process synchronization in making this guarantee. Local synchrony [RWW89]

[Wil93] meets these requirements though implicit logical timestamping of global memory

accesses. Our research studies the implementation of local synchrony on various asynchronous

architectures. The next section presents Williams’ [Wil90] theoretical definitions for Locally Syn-

chronous systems.

2.6  Local Synchrony

In [Wil90], Williams describes a set of clock conditions. These conditions describe the

operation of a timestamping system for global memory accesses in a parallel architecture. A sys-

tem operating under these conditions is shown to have a conflict-free serial execution which meets

the requirements for sequential consistency and atomicity discussed in section 2.4. In [RWW89], a

method of implementation is described which meets these clock conditions. This concurrency con-

trol mechanism is called local synchrony.

Williams distinguishes the following types of events:

Definition:  An issue event occurs when a process queues a global mem-
ory access to be sent for execution. Issue events occur in the sequentially
consistent order specified by the issuing process.

Definition:  An execute event is when a global memory access actually
occurs.

Definition:  An emission event occurs when an access issued by a process
is actually sent. An access issued by a process may, for one reason or
another, be held until a later time before being sent to memory. The actual
sending of such an access would constitute an emission event.

By definition, the sequence of events for an access is always: issue, emission, execute.

Because local synchrony is a logical timestamping system, two or more of these events might
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occur at the same logical time. Each event is assumed to be atomic. In other words, each process

issues operations one at a time, and each operation is executed at memory one at a time.

In [Wil90], two relations are defined on operations:

OPi → OPj (precedes) if
(1) each accesses the same variable and the execute event of OPi occurs before
that of OPj. or
(2) each is issued by the same process and the issue event of OPi occurs before
that of OPj. or
(3) OPk exists such that OPi → OPk and OPk → OPj.

OPi iso OPj if both OPi and OPj are from the same isochron.

Consider a global clock mechanism which assigns a ‘time’, C(OPi), to every execute

event. Let C(Opi) consist of an ordered pair (tick, tock), and let C(OPi)<C(Opj) if C(OPi) lexico-

graphically precedes C(Opj). The tick component of C(OPi) defines the timing relationship

between OPi and other execute events scheduled by other PEs. The tock component defines the

relationship between OPi and other execute events scheduled by the same PE. An execution Ep of

a parallel program is then serializable if it conforms to the following clock conditions:

Condition 1: OPi → OPj ⇒ C(OPi)< C(OPj)

Condition 2: OPi iso OPj ⇒ C.tick(OPi)= C.tick(OPj)

These conditions guarantee that no two execute operations are executed in Ep at the same

logical time. Williams goes on to show that any isochron program, Ep, that conforms to these con-

ditions is sequentially consistent and preserves atomicity of isochrons by proving that Es is

sequentially consistent, atomic, and conflict equivalent to Ep [Wil90]. Since all execute operations

are executed at distinct logical times, those times define a serial schedule, or total ordering, of the

global memory accesses of Ep.

While it provides a total logical ordering to memory accesses in a distributed system, local

synchrony requires physical ordering of only accesses to the same memory location, or, more real-

istically, to the same memory element. One can see that inconsistencies in the state of global mem-

ory can exist with this implementation. Consider the readers and writers example in section 2.5,

where Process 2 must perform indivisible writes on two global variables, A and B, located at mem-
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ory elements M1 and M2, respectively, and Process 1 must perform indivisible reads. If process 2

submits the isochron:

 P2: A:WRITE(2) || B:WRITE(3);

there is no guarantee that these accesses will be performed at the same physical time. For

example, at physical time i, M1 might be performing accesses in logical time unit t, and perform

the write of A. Meanwhile, M2 might be only executing accesses in logical time unit t-2. Due to

heavy access traffic at its MM, M2 might not get to logical time unit t until physical time i+j. So

there is a physical interval of length j during which another process, P3, might read both A and B

and receive an inconsistent version of the state which A and B together represent. However, in

order to do this, P3 must emit separate, non-isochronic accesses which will be performed during

logical time units t+1 and t-1, respectively. Atomicity is only guaranteed for isochronic accesses,

or accesses performed at the same logical time unit. Sequential consistency, with respect to

accesses to the same global variable, is guaranteed for all accesses.

FIGURE 2.

Figure 2 gives an accurate representation of this scenario. One can see that, in order for a

process within the system to ‘see’ an inconsistent state of memory, its accesses to that memory

would have to be during different logical time units, and thus not isochronic. It is impossible for a

process within the system to receive inconsistent data from an isochronic access to memory.

The importance of this limited form of synchronization should not be underestimated.

Local synchrony provides a computation with total orderings of events and synchronization with-
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out requiring globally synchronous processing. A global memory access which occurs physically

before another might occur logically after, given that the two events represent accesses to different

global memory locations. This flexibility allows a system to perform in a generally asynchronous

manner, while gaining much of the power of synchronous operation.

The main focus of our work pertains to local synchrony as defined in this section. Our

research concerns the implementation of local synchrony in various multiprocessing environ-

ments. The definition of local synchrony outlined in this section, and specifically the clock condi-

tions of local synchrony defined by Williams, provide a basis for any implementation of the

system.

2.7  Schemes Related to Isochrons and Local Synchrony

In database concurrency control, timestamp ordering protocols guarantee concurrency

control for any set of accesses without specific locking of the relevant data. Each access is

assigned a specific ‘execution time’, and accesses to a given global variable are constrained to be

executed in timestamp order. To be executed, a READ access must have a timestamp greater than

the last WRITE, and a WRITE access must have a timestamp greater than any preceding access

[BeG81]. In the basic timestamp ordering system, this means that an access will be aborted if it

does not meet the above requirements.

Conservative timestamp ordering systems eliminate rollbacks by executing accesses only

if no older access will ever be received [BeG80] [Mil79]. This type of system is generally based on

global knowledge about accesses currently in the system and the current timestamps of processes.

Timestamp ordering systems generally enforce a policy of sequential consistency, which dictates

that processes issue timestamps in ascending order.

Local synchrony may be cast as a conservative timestamp ordering system. Local syn-

chrony is constrained to produce sequentially consistent serial schedules for global memory

accesses. The atomicity of isochrons is guaranteed with no possibility of rollback. Bernstein and

Goodman [BeG81] state that, in a conservative system, “When a scheduler [node] receives an
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operation O that might cause a future restart [logical time conflict], the scheduler [node] delays O

until it is sure that no future restarts [logical time conflicts] are possible. Either of the two general

implementation techniques (sorted transmission, sorting at memory) fits this description.

There are several differences between databases and applications programming which

affect the problem solver in this area [Wil93]. First, database systems generally require full recov-

erability of data in the case of system failure, whereas a parallel program can just be rerun. A data-

base manager is therefore generally able to incur greater overhead in ensuring that transactions are

performed correctly, whereas a concurrency control concept for a parallel operating system must

incur a minimum of overhead in order to preserve memory cycle time. Concurrency control in

databases generally requires only atomicity of transactions, because the nature of the database

environment guarantees sequential consistency. Concurrency in parallel programs also requires

sequential consistency, but it must be explicitly enforced by a system such as local synchrony.

Atomic Actions are a concept designed to provide exclusive access to multiple data items.

An atomic action is a set of accesses released by a process which, when executed, appear to have

occurred simultaneously, allowing no interleaving of accesses by other processes during their exe-

cution. Atomicity may be ensured by an underlying system based on two-phase locking or times-

tamp ordering. Atomic actions were developed in the database literature by Eswaran et al

[EGL76]. Reed [Ree83] suggests a timestamp ordering implementation of atomic actions based on

timestamping by physical clocks and the use of version histories in memory. A physical clock is

based at each processing element, and the clocks are kept loosely synchronized by a global clock

synchronization algorithm. Again, while this implementation does allow the implementation of

atomic actions, the problem of aborted operations still exists.

Concurrency control as applied to parallel architectures and operating systems has only

recently come under study. In [Lam78], Lamport proposed a system of logical clocks, which

would provide partial ordering to the events of a system of processes. These clocks would consist

of a function that assigns a number to each event occurring at a given process, in increasing order,
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where the number would be considered the time that the event occurred, although this number

would have no relation to actual physical time. When a process sends a message to another pro-

cess, Lamport requires only that the receive time of the message be greater than the send time,

since one would generally assume that a message must be sent before it is received. Lamport’s

clock conditions are:

Condition 1: If a and b are events in process Pi, and a ⇒ b, then Ci(a) < Ci(b).

Condition 2: If a is the sending of a message by process Pi, and b is the receipt of that
message by process Pj, then Ci(a) < Cj(b).

Since ordering by physical occurrence of events at different processes in a distributed sys-

tem is not generally possible, Lamport first generates partial orderings for events occurring in indi-

vidual processes, and to inter-process communication, using the logical clock, then provides a total

ordering of events by arbitrary ordering of the processes themselves. Note that this total ordering

represents a sequentially consistent (by the clock conditions) serial schedule, meaning that this

ordering of events is equivalent to a possible ordering of events if the computation were simulated

on a traditional Von Neuman machine. Lamport uses this ordering to solve synchronization prob-

lems.

Jefferson [Jef83][Jef85] has proposed a more general theory of logical time in Virtual

Time Systems. Such a system consists of a group of processes that execute in coordination with

logical clocks, and which obey certain conditions. These conditions echo Lamport’s clock condi-

tions, except that they also restrict the processing of events received by a particular process:

Condition 1: The virtual send time [Ci(a)] of a message must be less than or equal to its
virtual receive time [Cj(a)].

Condition 2: All messages directed to a particular process must be processed in non-
decreasing virtual receive time order.

The semantics of such systems obey the requirement that, “If an event A has a virtual time

less than that of event B, then the execution of A and B must be scheduled so that A appears to be

completed before B starts” [Jef83]. Note that there is no requirement for actual physical ordering
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of events in such a system. The requirement is only that, to the processes in the system, the events

appear to have occurred in the given order.

The goal of Virtual Time systems is to create a temporal coordinate system in which a dis-

tributed computation can be embedded that will provide correct, logical orderings of the events of

that computation. Again, the correctness of the logical orderings corresponds to their providing a

proper serial schedule. Jefferson’s protocol is optimistic, utilizing state-saving and roll back in

order to meet its clock conditions. Cascading rollbacks are a significant problem with the Time

Warp approach, although Jefferson has shown that there is a limit beyond which rollback cannot

occur in a given computation: namely, the earliest current virtual time of any event in the system.

Local synchrony is a conservative timestamp ordering protocol, which guarantees serial

scheduling and sequential consistency, as well as the atomicity of isochrons, without the possibil-

ity of rollback.

Awerbuch [Awe85] utilizes a system similar to local synchrony in order to simulate syn-

chronous architectures on asynchronous networks. Awerbuch uses the notion of safety—where a

node knows that it is finished with its operation for a given time unit—to generate a barrier for the

whole network. This barrier is passed when a simulated global clock recognizes that it has been

reached (all nodes are safe) and generates the next synchronous step. Safety is recognized by a

node when it receives confirmation from each of its neighbors that they will send it no more work

prior to the next barrier. Local synchrony elements use safety in order to safely proceed to the next

logical time unit.

Ranade [Ran87] uses end-of-stream (EOS) messages, similar to local synchrony tokens, to

emulate a CRCW PRAM on a butterfly. Unlike local synchrony, EOS messages are sent after each

access. The EOS messages act to synchronize the operation of the system. The passage of EOS

messages from an input to an output line represents timesteps of the ‘global’ clock as represented

at each switch. Combining is implemented in such a way that only one access is executed at any

memory location during any timestep. A main difference between Ranade’s work and local syn-
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chrony is that Ranade requires that all messages travel the same distance to reach memory. This

distance is larger than the minimum necessary traveling distance. Local synchrony allows mes-

sages to travel the minimum distance defined by the architecture to reach memory. The Fluent

machine is also a specifically targeted implementation. Our implementation of local synchrony is a

general approach, which can be implemented on any connected architecture (as defined in chapter

4). Ranade also failed to note that atomicity could be guaranteed using such systems.

Ranade also, in order to guarantee bounds on the emulation, is able to implement efficient

(no associative search) combining by keeping accesses sorted as they traverse the network. Effi-

cient (FIFO) combining is discussed in section 2.2.

In [ChM79], Chandy and Misra present a scheme for distributed simulation. The Chandy/

Misra system is a conservative timestamp ordering system much like local synchrony. The

authors’ implementation scheme is less efficient than ours, however, and their proof of deadlock

freedom is slightly flawed. Kumar [Kum86] proves the Chandy/Misra system to be deadlock-free

for feedforward networks consisting of fork and join nodes. In [ChM87], Chandy and Misra

develop the idea of conditional knowledge, which increases the efficiency of their distributed sim-

ulation scheme.

This section provides us with a background with which to present an Operative Condition

of local synchrony. This condition will constrain our research toward efficient and fault-tolerant

implementations of local synchrony by focusing our efforts on implementations which specifically

meet this condition. The operative condition of local synchrony stems from the clock conditions

discussed in the previous section, and is stated in this way:

 A local synchrony implementation is a conservative (logical timestamp) ordering
system for global memory accesses. Thus, an entity (PE, switch, or MM) operating
in a Locally Synchronous manner must perform actions on a given resource (chan-
nel, memory location) in a manner which preserves a logically serializable sched-
ule of global memory access.

An entity operating in a conservative manner is constrained not to perform any action until

it has, with certainty, performed all (logically) previous actions. Local synchrony requires only
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that the MMs operate conservatively in processing global memory accesses. However, an imple-

mentation of local synchrony may include conservative operation by switches and/or PEs as well.

2.8  An Implementation of Local Synchrony

In [Wil93], Williams presents basic implementation suggestions for local synchrony on an

equidistant network and discusses extensions to this technique for non-equidistant architectures.

Williams does not present specific local synchrony implementations or prove deadlock freedom.

We present here the general implementation technique. For simplicity, we make several assump-

tions, which are based on those of Williams in [Wil93]:

1. The system is a network of nodes communicating over FIFO channels with finite
but unbounded delay.

2. Each node consists of a switch, a processing element (PE) and a switch, a mem-
ory module (MM) and a switch, or a PE, an MM, and a switch.

3. Each process runs on its own PE. There is no multiprogramming or process
migration.

Local synchrony may be characterized by the serializability, or constructible serial sched-

ule, of all accesses performed. This serial schedule is represented by timestamp ordering of global

memory accesses. Each node stays consistent with this serial schedule by loose synchronization

with neighboring nodes.

This loose synchronization among nodes is implemented in the following way: each node

in the system periodically emits a set of control signals, or tokens, one along each of its output con-

nections to other nodes. These tokens represent the boundaries between the logical timesteps of the

node’s own local logical clock. For the purposes of further discussion, we will define ltui at a given

PE to be that period of time between the sending of token i-1 and token i. During an ltu, a PE may

emit zero or more accesses (accesses may only originate in nodes containing a PE).

In order to implement local concurrency control, the switch associated with each node

must route all accesses received from its neighbors during its previous ltu before generating its

next ltu. Switches may route accesses without regard to their timestamp order within the current

ltu, in which case accesses must be buffered and sorted at the MM, or by merging sorted streams of
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accesses by timestamp. We shall discuss these and other schemes for the transport of accesses in

section 6.4. For simplicity, the reader may wish to assume in the following discussion that accesses

are kept sorted by timestamp throughout their traversal of the network. Given the operative condi-

tion of local synchrony, MMs must process accesses (perform execute events) in a conservative

manner.

Extended from [Wil93], a PE schedules emission events subject to two constraints:

1.  All the accesses in any given isochron are emitted in such a way that the execute
event of each will occur during the same ltu.

Constraint 1 is a restatement of the second clock condition, which guarantees atomicity for

isochronic accesses. In a general implementation, isochronic accesses may have different distances

to traverse in order to be executed. In this case, Constraint 1 requires the PE to guarantee that

accesses arrive at memory during the same ltu. Constraint 1 is relatively simple to meet in an equi-

distant implementation. A PE must emit all the accesses in a given isochron during the same ltu. In

a non-equidistant implementation, however, guaranteeing Constraint 1 is somewhat more difficult.

Ways to guarantee Constraint 1 include holding accesses with shorter distances to travel for later

emission, or routing messages along longer than necessary paths.

Let T(I) be the beginning logical time unit in which isochron will be emitted into the net-

work. Let D(I) be the maximum distance any one access of I will have to travel to memory.

Finally, let OPi be a member access of isochron I. d(OPi) is the distance that OPi must travel in

order to reach memory. OPi will then be emitted into the network at time:

 t(OPi) = T(I) + D(I) - d(OPi).

This is one possible implementation of Constraint 1; it guarantees that all the member

operations of a given isochron will arrive for servicing during the same ltu. The main requirement

for this type of operation is that a given processing element must be able to ascertain the distances

that its accesses must travel in order to be serviced.

2. Any pair of accesses from a given process that access the same variable must be
emitted in such a way that the execution events take place in the order specified
by the process.
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Constraint 2 provides sequential consistency for the accesses of a given PE. Sequential

consistency is guaranteed in the execution of accesses by ensuring that they are executed in issue

order. This ordering may be guaranteed through different combinations of routing, buffering, and

sorting schemes for accesses. For example, rather than emit accesses in issue order, a PE might

route an access in such a way that it is executed after an access emitted later but routed along a

shorter path. This works because the logical time to traverse a path to memory is a function of dis-

tance, or the number of switching elements an access must go through to reach its destination.

The logical time of execution of each access is determined by the issuing PE through

explicit timestamping, implicit timestamping (determined by ordering conventions implemented

in the system), or a combination of the two. The timestamp for access OPi, denoted TS(OPi)

[Wil93], is an ordered pair (tick, tock), where the tick component is itself an ordered pair (ltu, pid).

The ltu component of TS(OPi) is the ltu in which the execute event of OPi will occur. In order to

assign ltus, the PE is required to be able to compute the number of local synchrony ltus that will

pass while a given access travels to its destination. This number of ltus is equal to the distance

which the access must travel.

Note that, due to Constraint 1 above, an access issued by a process may be held by the PE

for later emission. In order to preserve the definition of the precedes relation (→) given in section

2.6, the PE must ensure that ltu components are assigned in non-decreasing order as accesses are

issued, rather than emitted. This topic will be discussed further in chapters 3 and 4.

The pid component is an ID unique to the issuing PE. The use of this pid in the timestamp

assigns a disjoint interval of logical time during each ltu to the accesses issued by the given PE.

This disjoint interval provides atomicity for isochrons. This technique for providing atomicity is

widely used in database concurrency control [Ree83] [RSL78].

The tock component of the timestamp provides sequentially consistent ordering for any

operations accessing the same variable, from the same process, in the same ltu, i.e. TS(OPi).tock =
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j if OPi is the jth access from the PE identified by TS(OPi).tick.pid to be executed during ltu TS(O-

Pi).tick.ltu.

Williams makes the following propositions regarding the operation of the system as

described. These propositions relate equally well to the technique presented here:

 Proposition 1: For any pair of accesses, OPi and OPj,
OPi iso OPj ⇒ TS(OPi).tick = TS(OPj).tick.

Proposition one is true by PE Constraint 1, which guarantees that the ltu component of the

timestamps of each operation in an isochron will be the same, and by the fact that an isochron is

defined to be a group of operations emitted by one process, and thus all having the same pid.

Proposition 2: For any pair of accesses, OPi and OPj, issued by the same pro-
cess, if OPi is issued before OPj, TS(OPi) < TS(OPj).

Proposition 2 is true because the assignment of timestamps is constrained to be non-

decreasing by issue order. If OPi is issued before OPj, then either OPi.ltu < OPj.ltu, or OPi.tock

<OPj.tock, and thus TS(OPi) < TS(OPj).

Proposition 3: For any pair of operations, OPi and OPj, that access the same
variable, if the execute event OPi occurs before OPj, then
TS(OPi) < TS(OPj).

Proposition 3 stems from the requirement that operations either be transmitted through the

network in timestamp order, or be sorted by timestamp order at memory before their execute

events occur. This, of course, guarantees that accesses will be executed in timestamp order.

Proposition 4: For any operation OPi, C(OPi) = TS(OPi).

Williams shows that the algorithm specified by the above propositions and the conditions

on operation of the PEs and switches correctly implements the clock conditions for equidistant

systems[Wil90]. Clock condition 2 follows directly from propositions 1 and 4. Clock condition 1

is implied by propositions 2, 3, and 4. For any pair of operations, OPi and OPj, OPi → OPj ⇒

C(OPi) < C(OPj). There is a case for each alternative in the definition of the → relation:

Case 1: If OPi and OPj access the same variable and OPi is executed before OPj
then C(OPi) < C(OPj) by propositions 3 and 4, together with the fact that each
MM executes operations in the order in which they arrive at memory.

Case 2: If OPi and OPj are issued by the same process and OPi is issued before OPj
then C(OPi) < C(OPj) by propositions 2 and 4.
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Case 3: Otherwise, if OPi→OPj, there is a sequence of operations OPi→...OPk...→OPj.
By induction on the length of the sequence, C(OPi) < C(OPk) and C(OPk) < C(OPj).
Thus C(OPi) < C(OPj).

This argument may be applied directly to non-equidistant systems, given that the restric-

tions on the assigning of ltu and tock components of the timestamp discussed above are in force.

It is important to note that explicit timestamps as described above are not necessary to the

implementation of local synchrony. The ltu component of the timestamp can be implicit in the gen-

eral implementation technique. The tock component is implicit if one assumes that accesses are

transported along FIFO channels, and that any sorting of messages by timestamp, if performed, is

stable. In a non-equidistant system such as the hypercube, only the pid need be explicitly repre-

sented in each access, in order to ensure correct ordering of accesses from different PEs within log-

ical time units.

The notion of convexity was introduced in [RWW89]. For a wide class of networks,

including the Ultracomputer’s Omega or Banyan network, there exists a convex labeling; i.e., an

assignment of pids to PEs, such that the source of all input channels to a given switch is a set of

PEs with contiguous pids, and, for any two inputs, A and B, the pids of all sources covered by

input A must be uniformly greater or less than the pids of all sources covered by input B. For

example, consider a switching element having two input channels, A and B. If the inputs on chan-

nel A may come only from the nodes with pids 0, 1, 2, and 3, and the inputs on channel B may

come only from the nodes with pids 4, 5, 6, and 7, then the inputs to the switching element are con-

vex. Let us assume that the lower pids have higher priority. Note that, if the element is merging

sorted streams of accesses coming in along channels A and B by timestamp, it will always choose

channel A over channel B during the same ltu. When implementing local synchrony in such sys-

tems, even the pid component of the timestamp need not be explicit, as the switching decisions

concerning which access to route first are statically based on the input channels themselves.

The implementation of local synchrony in convex systems is highly compatible with com-

bining. In order to facilitate combining of accesses PEs can add a fourth component to the implicit
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timestamp (although this component is for combining purposes only and does not affect the logical

ordering of events). Accesses are then sorted and issued in timestamp order, by ltu, combining

component, pid, and finally rank (of accesses from the same PE to the same memory location). The

combining component of the timestamp is generally implemented as the address of the memory

location to be accessed, although several options are possible.

Switches in this implementation perform the sorted merge, which brings accesses bound

for the same variable together for combining. Accesses are combined in the orientation (serial

ordering), which preserves the pid ordering that is essential to correct ordering of execution events.

All four correctness propositions hold for this alternative implementation. The level of compatibil-

ity of combining and local synchrony for systems not easily shown to be convex will be an impor-

tant topic of our research, and will be discussed in the next chapter.

This section has presented a general implementation technique for local synchrony which

is shown to meet the clock conditions defined in section 2.6. While this technique provides

groundwork for our research into local synchrony implementations, there are several important

areas which are not addressed here. Of major importance is the question of deadlock. Deadlock sit-

uations are most complex and prevalent in direct, non-equidistant architectures such as the hyper-

cube.

A simple solution to the problem of deadlock can be found in the work on the topological

equivalence of different types of networks and architectures. In [Wu80], Wu and Feng demonstrate

the equivalence of data manipulators, flip networks, omega networks, regular SW banyan net-

works, and indirect binary n-cubes. Agrawal [Agr83] goes on to show that all such log2 N stage

interconnection networks are topologically equivalent. Padmanabhan [Pad90] presents the exact

structural relationship between binary n-cubes and the hypercube, bridging the gap between equi-

distant and non-equidistant architectures. Saad and Schultz [SaS88] also show that various topolo-

gies, most importantly linear arrays (meshes), may be mapped into the n-cube topology.
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A deadlock-free implementation of local synchrony on an Ultracomputer, then, could be

translated to the hypercube through topological equivalence, which allows the hypercube to emu-

late the Ultracomputer architecture. Of course, the efficiency of any such implementation would be

questionable. The main advantage of a direct, non-equidistant architecture such as the hypercube is

that it is not equidistant; i.e., that groups of processes may be clustered on closely connected sets

of nodes. To emulate equidistance on such an architecture would negate this advantage.

The implementation technique presented in this section also leaves open the questions of

efficiency and fault tolerance of a given implementation. This section presents general guidelines

for a local synchrony implementation. Our work proves this implementation to be deadlock-free

and suggests a specific implementation plan.We go on to present a correct and deadlock-free gen-

eral implementation technique which is applicable to any useful parallel architecture.

2.9  Fault Tolerance

It is important that a complex system degrade gracefully in the presence of hardware faults

of one kind or another. Simple error detection schemes and error correction codes protect most

systems from transient errors, which affect the system for short periods of time. When an entity

fails entirely, for a finite period or indefinitely, the computation may be completely compromised

by loss of information. The types of faults important to our work are connection faults, where the

connection between two nodes fails, and node faults, where a node ceases to process correctly or

fails entirely, with or without a loss of information. The tolerance of these types of faults has two

facets: how to detect faults, and how to tolerate them. The detection of faults in a multiprocessing

system generally occurs in the low level operating system, or in the hardware itself. Our work will

focus on ways that a locally synchronous system can tolerate system faults once they have been

detected.

A main thrust of fault-tolerance research is redundancy: tolerating faults by providing

extra nodes or connections which may be put into use in the event of a fault. Banyan type intercon-

nection networks for uni-path, equidistant architectures such as the NYU Ultracomputer can be
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given a measure of connection fault tolerance by connecting switching units in the same stage

[TYZ85] [TYZ86]. Adding an extra stage to the network makes it a multi-path design, which can

be used to tolerate both node and connection faults by replicating messages along all possible

paths [BaD89], or by utilizing non-faulty paths after faults have been detected [PaL83]. Redun-

dancy schemes have also been proposed for the Butterfly [BaB87] and the Hypercube [IIS82],

where an extra dimension is added to the cube for fault-tolerance and load-balancing measures.

Once faults are detected in a multi-path system, be it a redundancy enhanced NYU Ultra-

computer or a normal multi-path Hypercube, most research on tolerating those faults has been in

the area of dynamic routing systems which can detour messages around faulty nodes or connec-

tions in their normal path. An important condition that must be maintained is Dynamic Full Access

(DFA) [VaR86], which means that a message from any given process within the system must be

able to reach any destination available to it. If DFA does not hold, then at least part of the system

has been cut off from the rest by faults, and either the computation must be reconfigured to run on

one part of the fractured system, or it must be halted.

The designer of a dynamic routing system must take into account the degree to which his

design depends on global knowledge, the gathering of which can seriously impact processing effi-

ciency. Fault-tolerant routing in a multi-path system such as the Hypercube can be implemented as

a simple depth-first search [ChS89], where a node can initiate a forward search of the system in

order to efficiently route messages around faults. Chen proposes either simple fault avoidance,

where a node reroutes a message only when it has direct knowledge of a fault in the path, or single-

layer communication, where a node receives information about faults local to its neighbors as well.

In a local synchrony implementation, the problem of fault tolerance becomes more com-

plex, because local synchrony makes explicit presumptions concerning the length of the path along

which a given access will travel in order to be executed. Combining also restricts paths to the

extent that combined accesses must be decombined during their return from memory. A multiply

combined access must be decombined correctly; i.e., in the reverse of the order in which it was
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combined. These issues must be addressed to provide a fault tolerant implementation of local syn-

chrony and combining.

Another facet of fault tolerance research that we address is rollback recovery. A compro-

mised computation must be rolled back to a previously saved coherent state. Randell [Ran75] and

others have pointed out that the domino effect, in which a rollback causes further rollbacks in a

chain, can be eliminated if state savings can be synchronized. Others [TKT92 et al.] have proposed

different methods for achieving this type of synchronization.

Local synchrony provides built-in logical synchronization which facilitates coherent state

saving and rollback. We present a rollback algorithm for the general implementation of local syn-

chrony in section 5.3. Our work draws on the logical time aspects of local synchrony. We use the

local synchrony ltu as a soft barrier [BGSS89] in order to save state and perform rollback. There is

no need for physical synchronization to achieve coherent rollback without the possibility of cas-

cading rollbacks in our implementation.

2.10  Performance Issues

The analytical study of the performance of interconnection networks and multiprocessing

architectures is an important and difficult problem that has attracted much research in the last

decade. Most of this research has dealt with the study of interconnection networks for indirect sys-

tems: delta, banyan, and omega networks.

Research in this area, in order to make analysis tractable, generally makes several simpli-

fying assumptions about the system and traffic. The most important general assumption relating to

our work is that networks operate synchronously. Synchronous operation is assumed in all known

performance studies of shuffle-exchange networks. Many of these studies also assume that mes-

sages in the system may not block; if a message is blocked it is lost from the system. In the case of

local synchrony, this assumption would be invalid, as accesses must be executed once they have

been emitted. Thus, our discussion will consider studies in which messages may not be removed

from the system, but must be blocked.
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There are three general approaches to analytical modeling of these types of systems.

Researchers using Markov analysis have had some success [LiK91] [WuL92] [Mer91], but the

combinatorial explosion of states involved in this technique makes complex models difficult.

Queueing networks have also been suggested [WiE90]. Both of these techniques have significant

drawbacks when applied to locally synchronous systems. In general, neither field can handle the

multiplicity of message types or the infinite priority scheme which is inherent in a timestamping

system of this type.

The third approach is probabilistic mean value analysis. This type of analysis has been

applied with success to banyan networks and their equivalents [Jen83] [YLL90] [KiL90] and to

direct binary n-cubes [AbP89].

In [Jen83], Jenq presents an analytical model for the performance of Banyan (Omega) net-

works composed of 2-input, 2-output switching elements in a synchronous, single buffered,

packet-switching system. This model forms the basis for later work by Yoon et. al. [YLL90],

which extends the model both to n-input, n-output switching elements and to multi-buffering of

packets, and others. In [KiL90], the authors apply the probabilistic technique to non-uniform traf-

fic patterns. Jenq’s model is outlined here, and in section 6.2 we present an analytical model for

locally synchronous systems based on and extending Jenq’s probabilistic method.

Jenq assumes a synchronous network, where a clock cycle, t, consists of two phases, t1

and t2. During t1, information relating to the state of input buffers passes from the last stage back-

ward to the first stage, so individual switches may make decisions as to which packets may be for-

warded. Packet switching then occurs during t2. Jenq also makes the following simplifying

assumptions:

1. The packet load on the inputs to the network, that is, the input buffers to those
switches in stage 1, is uniform.

2. The packets arriving at each input link are destined randomly.

With these simplifying assumptions, Jenq points out that the state of a given switching ele-

ment is statistically identical to that of any element of the same stage. Jenq further assumes that the
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states of the input buffers of a given switching element are statistically independent, although he

points out that, because of packet collisions, this is not generally the case. This assumption is made

in order to simplify the model, and Jenq later presents a more complicated model which takes

packet collisions into account, and shows that the simple model provides good analysis at a signif-

icant reduction in complexity.

Jenq introduces the following notation:

n = The number of stages in the switching network.

p0(k, t) = Probability that an buffer of a switching element at stage k is empty
at the beginning of the tth clock period.

 p1(k, t) = Probability that an buffer of a switching element at stage k is full at
the beginning of the tth clock period.

q(k, t) = The load on an input buffer at stage k during the tth clock period. In
other words, the probability that a packet is ready to be transmitted
to the buffer during the tth clock period.

r(k, t) = Probability that a packet in a buffer at stage k is able to move for-
ward during the tth clock period, given that there is a packet in that
buffer.

Jenq then goes on to present the following equations which govern the relationships

among these variables:

 q(k,t) = 0.75p1(k-1,t)p1(k-1,t) + 0.5p0(k-1,t)p1(k-1,t) + 0.5p1(k-1,t)p0(k-1,t)
for k = 2,3,4,...,n (EQ 1)

 r(k,t) = [p0(k,t) + 0.75p1(k,t)] [p0(k+1,t) + p1(k+1,t)r(k+1,t)]
 for k = 1,2,...,n-1 (EQ 2)

 r(n,t) = p0(n,t) + 0.75p1(n,t) (EQ 3)

 p0(k,t+1) = [1-q(k,t)][p0(k,t) + p1(k,t)r(k,t)] (EQ 4)

 p1(k,t+1) = 1 - p0(k,t+1) (EQ 5)

These equations define a state transition for the model, and the quantities q(k), r(k), p0(k),

and p1(k) converge to time independent quantities for any given n and q(1). The important perfor-

mance measures, normalized throughput, S, and normalized mean delay, d, may then be quantified

by:

 S = p1(k)r(k) for any k (EQ 6)

d = (1/n)∑(1/r(k)) for k = 1 to n (EQ 7)

Jenq presents data derived from the model for various n and q(1).
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Several other performance studies also consider throughput and delay for different types

of networks. Dias and Jump [DiJ81b] [DiJ81a] consider the performance of both buffered and

unbuffered delta networks, compared to crossbar-type switches. This analysis is extended in

[KuJ86]. Kruskal and Snir [KrS83] present asymptotic analysis of unbuffered and buffered Ban-

yan networks, compared to equivalent networks.

Analytical studies have also considered the bandwidth, or number of requests accepted (by

the network) per cycle, of several types of both unbuffered and single-buffered shuffle-exchange

networks [Pat81] [YLL87]. Other performance analyses have been conducted for fault-tolerant

versions of these types of networks [KuR85] [YoL89].

Finally, performance studies have been presented for combining systems [Lee86]

[Won86]. These studies report performance measures for combining systems in normal operation,

where a random distribution of requests is assumed, and in cases of hot spots [Pfi85], situations in

which more requests are targeted for certain outputs.

The studies discussed so far have considered only indirect and mostly equidistant network

configurations. [AbP89] and [Abr90] take up the analytical study of the performance of directly

connected architectures related to the hypercube. Abraham provides mathematical models and dis-

cusses performance characteristics of direct binary d-cube networks. The results of these analyses

compare favorably to those for indirect shuffle-exchange networks.

This section has reviewed work in performance analysis, specifically the probabilistic

method of Jenq. In Chapter 6, we present analytical performance models of local synchrony imple-

mentations based on and extending the probabilistic approach.
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3.0  Preliminaries
This chapter provides a motivation for our later work on the implementation of local syn-

chrony. First we review some of the terminology used throughput this work.

A shared memory architecture consists of elements: PEs, MMs, and switches. Sev-
eral elements may be grouped into a single physical node.

An access is a request sent by a process to shared memory. An MM will return a
response to each access. When distinguishing accesses and responses is unneces-
sary, we may use the term message.

In local synchrony, accesses are assigned unique logical timestamps. Each times-
tamp includes information about the logical time unit (ltu) of the access, the source
(pid) of the access, and the rank (among accesses from the same source) of the
access. The timestamp may also include information about the destination (dest) of
the access.

A ghost message [Ran87] is a message which contains only logical timestamp
information. A ghost message serves only to increase network efficiency and facili-
tate deadlock freedom.

The local synchrony ordering constraint forces PEs, switches, and MMs to process
accesses in order by their logical timestamp.

The logical time of an entity within a local synchrony implementation is the logical
timestamp of the most recent message processed by the entity.

A message traverses a step in the network when it moves from one element to a
neighboring element. A message must travel a distance of some number of steps to
reach its destination.

In local synchrony implementations, tokens are passed to mark the barriers between
ltus.

Isotach networks [ReW91] are special local synchrony networks which enforce the
isotach velocity invariant, that a message requires one ltu to proceed one step in the
network.

An architecture exhibits locality if accesses to shared or distributed memory from a
PE in the architecture can have varying distances to travel. For example, the Ultra-
computer exhibits no locality (all accesses travel the same distance), while a hyper-
cube exhibits moderate locality (there are log n different distances an access might
have to travel). We assume that shared memory can be emulated on distributed
memory architectures.

An architecture exhibits convexity if the source of inputs to a given element is a set
of PEs with contiguous pids. Convexity was defined in more detail in chapter 2.

The raw power of a network is a measure of the network’s throughput and delay
under loads which do not include any concurrency, atomicity, or sequential consis-
tency constraints. In all analytical studies and in most simulations, the raw power is
measured for a full input load (i.e., the network inputs are always full).
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In section 3.1 we discuss various methods of concurrency control by contrasting locking

methods (two-phase locking [EGL76]) with access-ordering methods. Using simple arguments,

we show that local synchrony can outperform traditional locking systems if the local synchrony

implementation has greater than a certain fraction of the raw power of a similar locking implemen-

tation. In section 3.2 we detail a banyan-network implementation of local synchrony that includes

a proof of deadlock freedom, based on the use of ghost messages. In section 3.3 we present a low-

level switch design for the implementation discussed in section 3.2. Finally, in section 3.4 we out-

line the minimum requirements for deadlock freedom in a local synchrony implementation. We

prove that the inherent knowledge possessed by a given switch is sufficient for deadlock freedom

in a convex network, without the use of ghost messages.

3.1  An Alternative to Locking

Our motivation is to investigate alternatives to locking as a method of enforcing atomicity

in multiple-access shared memory operations. Local synchrony is one of several solutions that

guarantee sequential consistency and atomicity for all accesses at the hardware level, instead of

higher-level software approaches such as locking.

Before an atomic access can be executed in a simple locking system, at least one access is

needed to acquire the lock for each memory location. Even if these lock accesses can be pipelined

(admitting the possibility of thrashing and livelock), at the very least the delay incurred by acquir-

ing locks doubles the time required to execute the atomic action. Truly livelock- and deadlock-free

locking systems must serialize their locking accesses, which considerably lengthens atomic access

times. This is true even without considering the possibility of contention for locks, which may

block the progress of lock acquirement for extended periods.

We have investigated alternative systems such as local synchrony in the hope of demon-

strating that implementing sequential consistency and atomicity constraints for all accesses at a

lower (hardware) level can lead to better performance in comparison with locking systems. We call

these systems access ordering systems, because their fundamental purpose is to ensure that
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accesses are executed in a specific order. Although these systems may lengthen the latency of a

single access, an atomic action can be requested without generating the overhead of locking

accesses, and any atomic action, once requested, is guaranteed to execute without further involve-

ment of the requesting PE.

The latency cost of execution for an atomic action consists of four elements: Ct, the cost of

transporting the action to and from memory; Ce, the cost of actually executing the action; Ca, the

cost of ensuring atomicity; and Cc, the (potential) cost of contention for access to memory loca-

tions. Note that all networks suffer reduced efficiency as contention rises, because more accesses

are bound for fewer buffer cells and memory locations (causing serialization delays)—access com-

bining can be helpful in limiting this effect. We consider here concurrency control mechanism-spe-

cific costs related to contention. We assume that Ce is constant and unaffected by any concurrency

control system we discuss.

In simple locking, a PE generates a request for each lock it needs to acquire. There is no

ordering constraint on lock requests, so they may be pipelined. If all locks are acquired, then the

atomic action can be sent and executed. If all locks are not acquired, any acquired locks must be

relinquished and re-acquired with the entire group in order to avoid deadlock. Thrashing and live-

lock are still possible, however.

Livelock-free locking (2PL) [EGL76] orders lock requests according to a pre-set priority

and emits them one at a time. As each lock is acquired, the next may be requested. This system

eliminates deadlock and livelock, at a larger lock acquirement cost. Some enhancement will ensure

that a lock request will always be filled before later requests, guaranteeing fairness and eliminating

possible starvation. In either locking system, contention causes delay as lock requests become less

successful. We note that more recent enhancements have improved the efficiency of the 2PL

approach. In this discussion we are merely making motivational arguments, and we feel it unnec-

essary to unduly complicate our discussion by introducing these enhancements to the comparison.

Our simulation studies in section 6.3 utilize a more realistic enhanced version of 2PL.
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In memory sorting, accesses are buffered at the MMs. Each PE sends End-of-Stream

(EOS) tokens that indicate when all accesses (in the current set) have been sent. When the MM

receives the EOS token from each PE, accesses can be executed according to a pre-set priority

which guarantees atomicity. The handling of EOS tokens may slow progress through the commu-

nication network. Accesses are generally blocked for several network cycles prior to execution

while the MM receives all accesses and all EOS tokens, and possibly while being sorted (in-line

sorting may also occur as each access arrives). Contention at any given MM causes longer delays

there, because the MM must accept and sort more accesses before execution.

Table 1 presents a comparison among the Ct, Ca, and Cc of several types of concurrency

control systems. ‘Minimum’ means there is no extra cost specific to the type of system identified.

Note, accesses that compose the actual atomic action can be pipelined in all cases.

Our thesis is that the extra costs associated with Ca and Cc in locking systems will out-

weigh the extra costs associated with Ct in access ordering systems, local synchrony in particular.

Table 1: Latency cost comparison for several concurrency control systems.

Type Name Ct Ca Cc

Locking Simple
Locking

Minimum. Lock accesses must
be generated and exe-

cuted. They can be
pipelined.

Locks acquired must
be relinquished and
lock accesses resent
if all not acquired.

Thrashing, livelock,
starvation possible.

Locking Livelock-Free
Locking

Minimum Lock accesses must
be generated, sorted,
and executed. They
cannot be pipelined.

Lock accesses which
do not acquire locks

must be resent.

Access
Ordering

Memory Sort-
ing

Some added latency
due to EOS token

handling.

Accesses buffered at
memory and sorted
before execution.
Limit on buffered

accesses.

Longer wait for
access execution.

Access
Ordering

Local
Synchrony

Extra cost associated
with access sorting

within the communi-
cation network

Accesses sorted
before entering the
communication net-

work.

Minimum.
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3.1.1  Local Synchrony vs. Locking

This section acts as a motivation for our work in the area of implementation of local syn-

chrony. In the following discussion, we assume that the latency of a locally synchronous network

is a linear function of the latency of a conventional network, and compare the expected perfor-

mance of a local synchrony implementation to a 2PL implementation. Our assumption of linearity

is based on networks under a full access load that is uniformly distributed (e.g., there are no

hotspots), for which out simulation data (presented in Chapter 6) suggests a roughly linear rela-

tionship in the networks’ performance. We make these assumptions only to simplify and facilitate

the arguments in this section. Our simulations in Chapter 6 utilize a highly efficient implementa-

tion of 2PL which is more in line with current concurrency control trends in order to make better

conclusions about the actual value of local synchrony implementations.

Consider the cost of performing an atomic access to n global variables in shared memory.

For our comparison with local synchrony we choose a simple locking system that acquires each of

n variable locks, then performs the multiple access. We assume the architecture consists of an

equidistant, shared-memory multiprocessor. Delay is measured in units of cycle time of switching

elements within the ICN.

Some definitions:

LN - The latency (measured in switch cycles) of the network in normal operation

LLS - The latency of the network in local synchrony operation

C2PL - The cost of the multiple access using simple locking

CLS - The cost of the multiple access using local synchrony

We first consider the livelock-free locking system (2PL) presented in section 3.1. In order

to guarantee that livelock cannot occur, each lock must be acquired sequentially in a specified

order. We consider here only the best case for livelock-free locking, in which all locks are granted

on the first request.

We will assume, for simplicity, that LLS = F*LN, where F is a simple factor. In order to

both simplify the comparison and give weight to our final results, we will discount the effects of
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contention for locks in our calculations. We assume that locks are always acquired but that the pro-

cess must acquire each lock in sequence before acquiring the next.

Since local synchrony is not required for accesses returning from memory, we assume a

low-latency network with latency LN is in place. The true total latency for normal operation

(L’N)and local synchrony (L’LS) is the sum of the time spent crossing the network to memory

(term 1), the time spent actually performing the access at memory (we assume a single cycle—

term 2), and the time spent returning to the PE (term 3):

L’N = LN + 1 + LN = 2*LN+1 (EQ 8)

L’LS = LLS + 1 + LN = F*LN + LN + 1 = LN * (F + 1)+ 1 (EQ 9)

The cost of an n variable multiple access for 2PL is then:

C2PL =(n * L’N) + (L’N+(n -1)) = (2n+2)*LN + 2n (EQ 10)

To acquire a single lock takes L’N cycles. Since the locking system must acquire locks in

order, and cannot acquire a lock until the previous lock has been granted, it takes a minimum of

n*L’N cycles to acquire the locks. The actual accesses can then be pipelined and will be finished in

L’N+(n-1) cycles (the first access takes L’N cycles, with the succeeding accesses arriving one per

cycle after that). For local synchrony, the cost of an n variable multiple access is:

CLS = L’LS + (n - 1) = LN * (F + 1)+ n (EQ 11)

Using local synchrony, only the actual accesses need be sent, and these accesses may be

pipelined. Thus the entire atomic action can be performed in L’LS+(n-1) cycles (the first access

takes L’LS cycles, with the succeeding accesses arriving one per cycle after that).

We can measure the break-even point in relation to n by substituting values for F into the

equation CLS = C2PL. By solving for F, we find that local synchrony will have lower latency for F

< 2n+(n/Ln)+1. For example, if we were performing 5-access actions on a 5-stage banyan network

(assuming minimum switch latency), F <= 11 would mean that local synchrony has lower latency

for the multiple access. In fact, we measure F to be between 2 and 4 in both our analytical and sim-

ulation studies (this is a rough measurement of F based on latency from PE to MM only–the actual

value would be less if using a low-latency return network). This indicates that local synchrony is a
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significantly better concurrency control mechanism than simple locking, although the cost of

locally synchronous operation is higher for a single access. We suggest that an architecture utiliz-

ing a locally synchronous network for concurrency and a low-latency network for singleton opera-

tions (similar to the RP3 [Pfi85]) might achieve an extremely high degree of efficiency.

If we assume that the local synchrony implementation must use a locally synchronous

return network (as would be the case if simplified FIFO combining were in effect), then the cost of

a single locally synchronous access (again assuming a single cycle for the execution of the access

at the MM—term 2) would be:

L’LS = LLS + 1 + LLS = 2*F*LN + 1 (EQ 12)

Each traversal of the network (to [term 1] and from [term3] memory) now requires the

locally synchronous network latency LLS. The total cost of a locally synchronous multiple access

would grow to:

CLS = L’LS + (n - 1) = 2*F*LN + n (EQ 13)

In this scenario, local synchrony will have lower latency if F < n+(n/2LN)+1. In the exam-

ple discussed above, F< 6.5 would be necessary. Again, our rough estimate from analytical and

simulation studies is that F is between 2 and 4. Furthermore, the equations illustrate that as n

increases, the ‘break-even’ value of F also increases, while the general performance differences

between the two systems remain static. As the networks perform larger and larger multiple

accesses, local synchrony provides an improving alternative to locking.

Let us now assume that lock requests may be pipelined. This is the simple locking system

presented in section 3.1. Note that the pipelining of lock requests introduces the possibility of live-

lock and thrashing. We consider here only the best case for simple locking in which all locks are

granted on the first request. Pipelining of lock requests significantly affects the latency of an

atomic access. Equation 5 gives the cost of a multiple access in this paradigm:

C2PL = (L’N + (n -1)) + (L’N + (n -1)) = 2 * (2*LN + n) (EQ 14)

The lock requests are pipelined (the first access takes L’N cycles, with the succeeding

accesses arriving one per cycle after that). After all lock requests have been granted, the access
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requests can also be pipelined (the first access takes L’LS cycles, with the succeeding accesses

arriving one per cycle after that). Again, we can measure the break-even point in relation to n by

substitution. Even with the advantage of pipelining of lock requests, local synchrony will have

lower latency for all n>1 if F is reduced to 3 (this uses the original, non-combining network

assumption for local synchrony). Both simulation and analytical results for the simple equidistant

implementation indicate F is between 2 and 3.

Note that this comparison considers only the best-case scenario (no contention) for the

locking systems discussed. In any useful computation there will be some contention for locks,

which will adversely affect system performance for locking systems. In an access ordering system

the effect of contention is limited to possible slowdowns that are due to multiple accessing of the

variable itself. The effect is less significant here because an access is still guaranteed to be exe-

cuted (a lock request may not be granted). The use of access combining can also help to limit this

effect.

This argument assumes that each network always accepts new inputs immediately

(throughput = 1.0). Chapter 6 will demonstrate that, in terms of raw power, local synchrony imple-

mentations have generally lower throughput than locking systems. We point out, however, that

slightly lower throughput (our data show the throughput of the local synchrony implementation is

always greater than half the throughput of the locking system) has little effect on the cost argument

made above. This is because lower throughput only extracts a linear cost before accesses enter the

network, not during their journey through the network, and because locking requires the release of

at least twice the number of accesses as local synchrony for the same atomic action.

For example, our simulation studies for banyan networks with similar switch architectures

predict throughputs of approximately 0.46 for the locking system and 0.26 for local synchrony

(our measurements of local synchrony operation indicate that its throughput is always greater than

half that of simple locking). The throughput of the network corresponds to its acceptance rate. We

can rewrite equations 3 and 4 to take this acceptance rate into account. It takes an access an aver-
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age of (1/0.46) - 1 cycles to be accepted into the locking network, while a local synchrony access

takes (1/0.26) - 1 cycles to be accepted. The cost of an n access atomic action in the locking system

is then:

C2PL = (1/0.46) - 1 + (n +1) * TLN + (n-1)*((1/0.46) -1)
= (2n+2)*LN + 1 + n/0.46 (EQ 15)

It takes the first lock request (1/0.46) - 1 cycles to be accepted into the network. The rest of

the lock requests and the first access are performed serially, and we assume that network inputs are

not multiplexed, so each of those enters an empty input and is not assessed the acceptance charge

(the only traffic ahead in the input are previous lock requests which have already returned). The

rest of the accesses may be pipelined and thus are assessed the acceptance charge. The cost of an n

access atomic action in the local synchrony system is:

CLS = n*((1/0.26)-1) + TLLS= ((0.74*n)/0.26) + LN * (F + 1)+ 1 (EQ 16)

Since all accesses are pipelined in local synchrony, all are assessed the acceptance charge

of (1/0.26)-1 cycles. We again solve for F and find that F=2n+1+(n/(0.46*LN)) - ((0.74*n)/

(0.26*LN)). For five access atomic actions in a five stage network, the ‘break-even’ point for local

synchrony would be approximately F<=10.4, which is not considerably different than our previous

result (F<=11).

3.2  An Implementation of Local Synchrony

In this section, we present an implementation of local synchrony on an equidistant Ban-

yan-type network, discuss various implementation mechanisms, including the switch operation

algorithm, and present a proof of deadlock freedom for the implementation. In Chapter 4 we

present a general technique which allows local synchrony to be implemented on any shared mem-

ory architecture.
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FIGURE 3.  An n=16 Banyan architecture.

3.2.1  Implementation Plan

We consider the implementation of local synchrony on an Ultracomputer-like Banyan net-

work consisting of log2n stages of n/2 switching elements per stage, where n is the number of pro-

cessors (PEs) and memory modules (MMs). For this implementation, we assume switching

elements are 2-input, 2-output. Figure 3 illustrates an n=16 Banyan architecture. We assume the

basic, indivisible shared-memory access for such an architecture to be the atomic fetch-and-op.

We discuss seven issues of importance in any such implementation with respect to switch

architecture: the transport mechanism, the routing mechanism, buffer management, flow control,

the message ordering system, the combining system, and the deadlock avoidance system. The first

four of these have been identified in [ReF87]. Figure 4 shows a diagram of a simple SE.

FIGURE 4.  Simple Switching Element.
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3.2.1.1  Message ordering system

We discuss this system first because several other issues rely on the decisions made here.

Local synchrony requires that shared memory accesses each be assigned a unique timestamp,

which represents a logical execution time for that access. Accesses are then ordered by timestamp

at some point prior to execution. This timestamp includes information pertaining to the logical

time of execution, the ID of the sending PE, and the access order for the accesses from that PE.

Combining information (the destination address) is also included in the timestamp if the imple-

mentation is to include FIFO combining.

Accesses could be transferred through the network unsorted, leaving the MMs to ascertain

when to conservatively execute a given access. Scalability arguments lead us to choose a system in

which the sending PEs sort accesses before emission. The network acts as a merging network for

sorted streams of accesses. Note that a given PE must generate all the accesses that will be emitted

during a given ltu before any accesses can actually be emitted, unless the PE can guarantee that

accesses will be generated in timestamp order.

Local synchrony requires only that accesses be executed in timestamp order at shared

memory. It is therefore possible to implement a separate, low-latency network to return the results

of executed accesses to the PEs. Such a network would route accesses without regard to their

timestamps, which could shorten access latency times. Such an implementation, however, elimi-

nates the system’s ability to perform FIFO combining. In order to demonstrate the feasibility of

FIFO combining, we assume in our further discussion that accesses remain sorted on return from

shared memory.

3.2.1.2  Transport mechanism

We choose the store-and-forward access transport paradigm for the implementation,

although local synchrony is compatible with wormhole routing [DaS87] and virtual cut-through

[KeK79]. We assume that shared memory accesses have a fixed size, which greatly simplifies the

model (for this discussion, we assume word access, although local synchrony is not limited in this
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respect). Because the implementation of local synchrony provides a basis for isochrons, word size

accesses may be used without losing the flexibility of variable size memory access. An isochron

provides atomic access to any number of shared memory words.

The size of the shared memory access packet depends on several factors. Generally, how-

ever, the additional information required by a local synchrony implementation can be implicitly

represented. Variables in the packet size are the number of PEs and the size of the virtual shared

memory, the size of operands for the memory operations to be performed, and combining informa-

tion, if combining is in effect. FIFO combining, as discussed in section 2.4, can increase the size of

the packet, if packets carry information about where they have been combined.

Consider, for example, an Ultracomputer architecture with 64K processors, an address

space of four gigabytes, and 32-bit operands. In such a system, a packet (data unit) size of 16 bytes

would be sufficient to implement local synchrony. Four bytes would cover the destination address

in shared memory (216 address spaces per MM). The PID element of the timestamp would con-

sume 2 bytes. Other elements of the timestamp can be implicitly represented (we will assume that

separate ‘dummy’ packets mark changes in the ltu and that accesses from the same PE cannot

‘pass’ one another.). The operation to be performed, along with a ghost message bit, would fit eas-

ily into one byte. The operand of the operation fills a 4 byte word. Finally, combining information

for the network (16 stages) would take 2 bytes. This leaves more than 3 bytes of space for error

correcting codes and other information.

Buffering complexity using the store-and-forward paradigm with fixed-sized packets is

relatively simple. At least one packet buffer is necessary at each input channel at all times. More

complex buffering strategies are possible as long as they meet this criterion.

3.2.1.3  Routing mechanism

The routing mechanism employed by a local synchrony implementation may be separated

into two distinct steps. First, the router chooses the next packet to be routed from among those at

the head of each of its input channels by choosing the packet with lowest logical timestamp.
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Because the streams of input packets are already sorted, this amounts to a conservative choice of

the earliest timestamped, not-yet-routed packet. We also note that the routing mechanism must

have a packet (or a ghost message, which in this implementation is represented by a packet) on

each of its input channels in order to determine which will be routed next.

The second step is to route the chosen packet to the correct output channel. If we assume

that the portion of shared memory held by a given MM is a contiguous set of addresses, and that

the MMs are ordered contiguously in the architecture, then routing is simply checking whether the

destination address of the packet is greater than or less than a given address and choosing the out-

put channel accordingly.

3.2.1.4  Deadlock avoidance system

Ghost messages [Ran87] [RBJ88] avoid deadlock within the network by disseminating

information from SE to SE as soon as it is available. Ghost messages are similar to the null mes-

sages found in parallel simulation literature [ChM79]. Null messages ensure deadlock freedom in

groups of processes that communicate via message passing in a parallel simulation.

When an SE passes (or is waiting to pass) an access on a given output channel, its other

output channel may be idle. This condition can cause deadlock. Deadlock can be avoided by pass-

ing a ghost message, a copy of the temporal components of the access most recently sent (or wait-

ing to be sent) on the other output channel. The timestamp of this ghost message can break

potential deadlocks further along in the network.

Ghost messages are identified by a special bit set within the access packet. Alternatively,

the destination address of a ghost message will never be within the destination range covered by

the receiving SE. Ghost messages require little or no processing and do not clog the network, since

they utilize otherwise idle communication channels and otherwise empty buffer cells.

A ghost message provides an SE with the lowest possible timestamp of any future access

that will arrive on that channel. This allows the SE to make more routing decisions and break pos-
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sible deadlocks. An incoming ghost message that becomes the next to be routed by a given SE

must be propagated along each of that SE’s output channels.

The information contained in a ghost message is superseded by the arrival of a normal

access or another ghost message, either of which would have a later timestamp. Ghost messages

are overwritten (erased) in such a case. Erasing ghost messages that have been superseded by new

ghost messages or actual accesses limits the proliferation of ghost messages within the network,

although it is possible for ghost messages to reach the memory edge of the network, where they

would be deleted.

In section 3.2.2, we present a proof of deadlock freedom based on ghost messages.

3.2.1.5  Buffer management

Buffer management can be simple or complex in this implementation. Simple buffer con-

trol reserves a certain number of packet cells for each input channel. More complex buffer man-

agement can draw from a pool of cells to queue incoming and outgoing packets on all channels.

Local synchrony, which cannot abort (remove without executing) accesses once they enter the sys-

tem, requires that each input channel have access to at least one packet cell (or already be using

one) at all times to avoid buffer deadlock. An implementation might also include buffers on output

for flow control purposes. For the purposes of analysis, we can think of output buffer cells as extra

input buffer cells for the next stage.

Because local synchrony is a conservative system, the simple buffer management scheme

is appropriate. Deciding how many cells to assign to a given input channel must be done with care,

however, since excess buffer cells will adversely affect the combining system, as discussed in sec-

tion 3.3.1.7.

3.2.1.6  Flow control

A receiver-controlled protocol can achieve adequate flow control of packets within the

network. We will assume that packet transmission fault-tolerance is controlled by a lower-level

send-acknowledge system, which we will not discuss here, because the implementation of local
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synchrony has no effect on such systems. In normal operation, the receiving node uses a control

line to signal the sender that it has open input buffers for that channel. When the receiver’s input

buffers are full, the control line signal is changed, notifying the sender that no input will be

accepted until the control signal returns to normal.

Because local synchrony depends on a continual flow of information for the network to

operate smoothly, this receiver-controlled protocol must be augmented when necessary to allow

receivers to request action from idle senders. Receivers would use another control line to request

action on a given channel when holding input on other channels. This request requires the sender

to make progress as soon as possible. Senders can request action on their own input channels if

necessary.

This system would be especially useful at the input stage of the network, where SEs could

request that idle (with respect to shared memory access) PEs pass information that will allow the

network to avoid blocking. In response to an action request, an idle PE would increment its logical

clock and send a token.

A flow control policy must also be implemented in order to use the mechanism described.

This policy would depend on the buffer management mechanism in place. In a simple system,

where each input channel is permanently assigned a single packet buffer, this policy would be

straightforward. Where buffer cells are dispensed from a pool, however, the flow control policy

must enforce limits on the number of cells available to any one channel and guarantee that each

channel has access to at least one buffer cell at all times. This guarantee is necessary to avoid

buffer deadlock within the network.

3.2.1.7  Combining system

Dancehall-type networks like the Banyan network are highly compatible with access com-

bining [GLR81] [KRS88]. Because the implementation presented here assumes that accesses are

ordered during transmission to and from shared memory, accesses combined at a given SE will

return in the same order in which they left the switch. This allows us to implement FIFO combin-
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ing, which in turn allows combining information to be processed more quickly without changing

the combining mechanism.

The size of a combining buffer and the size of an access are the same, given that accesses

themselves carry information about whether they were combined at a given stage (see section 2.4).

Combining two accesses changes, at most, only the operation and operand of the forwarded com-

bined access, and the combining bit for that stage of the network. The other access may be copied

into the combine buffer, and used to decombine the accesses on return.

Since combined accesses return to a given SE in the same order they left it, decombining

information can be kept in a FIFO queue [Ran87], instead of the traditional associative search

queue. Each access packet can include bits that determine whether a given access was combined at

a given stage in the network. An SE then needs merely to check one bit of the returning packet

and, if the packet was combined at that SE, pop the decombining information off the FIFO com-

bining information queue.

The timestamping system can also be modified by including the destination address in the

timestamp. In the Banyan network, the paths to a given MM from the PEs form a tree. The paths of

two combinable accesses, sent by different PEs in the same ltu, will converge at some point in the

network. If the streams of accesses are sorted by destination address and the other components of

the timestamp (in this order: ltu, destination address, pid, tock, as defined in section 2.5), combin-

able accesses will be combined at this point. This guarantees that all combinable accesses within a

given ltu will be combined, given the size limits on the combining information queues. We expect

that streamlining and simplifying the combining mechanism in this way will expand its power and

usefulness.

The size of the necessary combining queue in a given node in the network depends on the

size of the network, the stage in which the node resides, and the amount of space allotted to com-

munication buffers in each node. Local synchrony causes the network beyond the outputs of a

switch to act like a large FIFO queue. The size of this ‘virtual’ queue is the maximum number of
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outstanding combined accesses that a switch can have at any given time. The maximum necessary

combining information queue size is given by:

CMAX = nS+oM+t (EQ 17)

where S is the number of switches reachable from the given switch, n is the number of

buffer cells in a switch available to an access from the given switch, M is the number of MMs

reachable from the given switch, o is the number of buffers available at an MM, and t is the num-

ber of buffer cells at the given switch that can hold combined messages before decombining. Note

that this limit does not take into account the limits on the number of accesses that a given switch

might receive within a given logical time unit. If that number is less than the above limit, the pres-

ence of tokens in the access stream will further reduce CMax.

It may be practical to limit the size of the combining buffer, since it is unlikely that the net-

work will be operating at capacity, that all inputs will be combinable, and that the ‘virtual’ queue

ahead of a given switch will contain only accesses that passed through that switch. More complex

input buffering schemes can allocate many more cells to a given channel, thus making CMax quite

large. Local synchrony is not compromised if two combinable accesses are not combined. The

only effect of this situation is a potential loss of throughput.

3.2.2   Deadlock freedom

Our discussion of deadlock freedom for local synchrony on Banyan (Equidistant) net-

works relies on the following assumptions about the implementation:

1. The network communicates with fault-free systems that provide input and con-
sume output at the rate the network operates.

In other words, there is always input at the network inputs, and output is consumed imme-

diately at network outputs. This assumption only simplifies progress assertions about the PEs and

MMs attached to the network, and does not limit the applicability of the proof.

2. Switches in the network are able to buffer at least one access (packet) on each
input channel. Once a packet occupies a buffer cell it can only progress toward
its destination; it may not be aborted.
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Because local synchrony guarantees that accesses will ultimately be executed in order, to

make routing decisions switches must buffer incoming accesses on each input channel. Accesses

must not be aborted once they have entered the network, since this will, in most cases, compromise

the operative conditions of local synchrony.

3. Switches in the network perform routing operations sequentially.

In other words, an SE may perform only one operation at a time. An SE may not, for

example, block, attempting to output a routed access while at the same time choosing and routing

its next access.

Assumption 3 is a simplifying assumption that clarifies the proof. Alternatively, SEs may

multiplex operations for more efficiency, given that conservatism is maintained and that an SE will

not block on a lower priority operation without returning to a previously blocked higher-priority

operation.

4. Switches in the network are able to make routing decisions based on a known pri-
ority scheme.

In order to implement local synchrony, accesses are assigned timestamps, which arbitrate

the routing decisions of switching elements. These timestamps provide a static priority system

guaranteed to arbitrate the routing decision for any two accesses. The routing operation of a switch

merges two sorted (by timestamp) streams of accesses.

We assume the network itself consists of 2-input, 2-output switching elements and that all

SEs and communication channels are fault-free.

Deadlock is characterized by the occurrence of a circular set of dependencies, in which

each element within the set requires progress by another element within the set before the element

itself may progress. In the case of a Banyan network with the above assumptions, the set may only

include switching elements.

It is clear that the zero-stage (1 PE, 1 MM) and the one-stage (2 PEs, 2 MMs, 1 SE) cases

are deadlock free, since the largest possible set of SEs in either case has fewer than two members.
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We will first discuss the two-stage case (4 PEs, 4 MMs, 4 SEs). We will then state lemmas leading

to our proof of deadlock freedom.

Figure 5 illustrates the two-stage case. The architecture is shown in figure 5a. We assume

that information flow is left to right. Figure 5b illustrates the two possible circular dependencies.

FIGURE 5.  a) Two-stage Banyan Network b) deadlock dependency graphs

In each case, a left arrow (whether horizontal or diagonal) represents a consumer’s depen-

dency on the producer. A stage 0 node (consumer) awaits input from a stage 1 node before it may

itself progress.This is a type 1 dependency. Since the producers (10 and 11) in this situation are

also blocked, deadlock has occurred.

The right arrows (whether horizontal or diagonal) represent a producer’s dependency on

the consumer. A node in stage 1 cannot progress because the input buffer in the node that will

receive its next access is full. The stage 1 node then depends on the stage 0 node to progress before

it may progress. This is a type 2 dependence.

Deadlocks, such as the one in figure 5b, can be broken if information about each produc-

er’s latest action passes from the producer to each of its consumers. This information already

passes to the consumer receiving the latest access from the given producer. The other consumer

may receive this information as a ghost message [Ran87], which reports the last timestamp of an

access sent by the producing switch.
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With the information supplied by the ghost message, one of the two consumer nodes (00

and 01) will be able to progress, because no access will arrive on its empty input channel that has a

lower timestamp than the access on its other input channel. The access can then be passed, break-

ing the deadlock.

In figure 6a, for example, SE 10 sends an access with timestamp t=5 to SE 00, then blocks

trying to send an access with timestamp t=6 to SE 00. SE 11 sends an access with timestamp t=7 to

SE 01, then blocks trying to send an access with timestamp t=8 to SE 01. Deadlock occurs. How-

ever, SE 11 can send a ghost message to SE 00 based on the access sent to SE 01,having timestamp

t=7, as seen in figure 6b. Now SE 00 is able to process the timestamp t=5 access sent from SE 11,

as it can conservatively choose that as its next action. Thus deadlock is avoided.

FIGURE 6.  a) Deadlock b) Ghost message solution

While local synchrony provides a timestamping system guaranteeing that all timestamps

are unique, this is not a requirement for deadlock freedom.Ties may be broken, in the case of a

ghost message and an access, by sending the access (and erasing the ghost message, since it is no

longer useful).

Furthermore, a ghost message having a later timestamp can supersede an earlier ghost.

message. An arriving ghost message may therefore overwrite a ghost message already in the input

queue. This limits the proliferation of ghost messages in the network.

The ghost message may take several forms, depending on the timestamping scheme in use.

The rest of our discussion will characterize circular dependencies in larger banyan networks and

show that ghost messaging is sufficient to guarantee deadlock freedom for all such cases.
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We now consider deadlock in a network of any given size. Such a situation can be charac-

terized by a deadlock dependency graph (DDG) [DaS87], which includes each node in the set of

deadlocked nodes and arcs representing a given node’s dependencies on others within the set.

There are only two types of dependencies that can cause an SE to block and possibly con-

tribute to deadlock in a banyan network implementing local synchrony. The only situations in

which an SE can block are type 1) waiting on input from one of its input channels, and type 2)

waiting to output on a full output channel.

In the figures below, type 1 blocking will be represented by a left arrow, and type 2 block-

ing by a right arrow. This corresponds to the uni-directional flow of information [in this case, from

left (PEs) to right (MMs)] in the banyan network. A node’s inputs are on the left, its outputs on the

right. Figure 7 gives an example of a DDG.

FIGURE 7.   Sample deadlock dependency graph (DDG).

Lemma 3.1: In a local synchrony implementation on a Banyan network, the DDG
representation of a deadlock must include both type 1 and type 2 arcs.

Proof: Type 1 arcs point left. Type 2 arcs point right. Due to the nature of the network in question,

arcs may not ‘wrap around’ from one side of the network to the other. Lemma 3.1 must hold for

there to be any circularity--and thus any deadlock. ■

There are certain conditions under which ghost messages will be generated and propa-

gated within the deadlocked set of nodes (those nodes in the DDG). Since a ghost message must

use the same channels as normal accesses, only idle channels (those on which a type 1 dependency

is based) may be used for their transmission among the nodes in the DDG. For the purposes of this
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proof, we need only consider ghost messages originating at nodes in the DDG on which another

node holds a type 1 dependency.

Also, since a ghost message comes from information about an access to be output by the

node, ghost messages are only generated at nodes in the DDG having a type 2 dependency (nodes

that have routed an access but are unable to send it due to full buffers ahead). An example of such

a type L node within the DDG is shown in figure 8. Note that input channel dependencies are

unimportant.

FIGURE 8.  Type L node within the DDG.

Lemma 3.2: At least one type L node must exist within the DDG.

Proof: A DDG must include a minimum of one circular path of dependencies which, if followed

from a given node, will return to that node. Consider any circularity within a DDG: there must be

at least one leftmost node within the circularity (a ‘leftmost’ node would be any node in the left-

most stage of all those nodes within the circularity). Any one of the set of leftmost nodes is a type

L node. None of its inputs may be involved in the circularity, so both outputs must be. The node

cannot have the same type of dependencies (both type 1 or both type 2) on each output, or there

would not be a circularity in the DDG. It must thus be a type L node. Any node in the DDG that is

also in the leftmost stage of the network (nearest the PEs) must be a type L node, by virtue of

assumption 1 above and the node’s inclusion in the DDG. ■

Lemma 3.2 guarantees that at least one ghost message will be created in the DDG by

showing that at least one node that will generate a ghost message (type L) must exist within the

DDG. Lemma 3.3 discusses properties of ghost messages created in the DDG.

Lemma 3.3: When a set of nodes is deadlocked, for each ghost message, G, gener-
ated by a node within the DDG, there exists a blocked access A, at the front of an
input queue of some node in the DDG, such that timestamp tG of G is greater than
timestamp tA of A.

Proof: Figure 9 depicts two nodes from a DDG. As we have discussed, only type L nodes within

the DDG will generate and propagate ghost messages. Node A is a type L node, and thus will gen-

erate a ghost message, G2, based on A2, the access it has most recently queued for output to node

L



62

B. Node B, then, holds at the front of its input queue an access, A1, which, by virtue of the conser-

vatism of local synchrony, is guaranteed to have timestamp tA1 < tA2 = tG2. ■

FIGURE 9.  Illustration of proof of Lemma 3.3.

Lemma 3.4: Ghost messages generated at type L nodes in the DDG will cause
information (either a ghost message or an access) to be propagated on every channel
in the DDG having a type 1 dependency.

Proof: By contradiction. Note that type 1 dependencies must exist within the DDG, according to

lemma 3.1. Consider a channel (A), with a type 1 dependency, that will not receive information

(either ghost message or access) from other nodes in the DDG. Figure 10 illustrates this situation.

The node where the dependency arrow ends (N1) cannot have a type 2 dependency on its other

output channel, because it would then be a type L node and would create a ghost message that

would be propagated along channel A. Node N1 also cannot have type 2 dependencies on both

input channels, because then it would not be blocked. N1, therefore, must have at least one type 1

dependency on one of its input channels (B). Neither ghost message nor access information may

propagate on channel B, because N1 would then be able to propagate a ghost message or an access

along channel A. [Note that if N1 has type 1 dependencies on both its input channels, then no

information can be propagated on one of those channels (B, in our discussion), because N1 would

then have input on both channels and would thus be able to send information on channel A.] This

scenario, in which no information is propagated on either input channel, is a generalization of the

case we discuss. Each channel is then part of a chain of dependencies that eventually reaches a

contradiction. We consider one of those channels (B) next.

FIGURE 10.  A chain of dependencies.

Since channel B receives no propagated information, the node where channel B ends (N2) must

have the same dependency topology as N1, and so on; thus, a chain of dependencies exists. This

chain of dependencies (channels A, B, C,...) are all type1. It cannot go on indefinitely, but only to

A

B
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the left edge of the network. We have established that the nodes in the chain must have the depen-

dency topology of N1, and—because of the nature of the chain—stages, the chain must end at a

node N’ that is in the leftmost stage. N’ must be blocked, because of the type 1 dependency on it,

and its inclusion in the DDG. Assumption 1 places input on each of N’s input channels. If blocked,

N’ must have a type 2 dependency on its other output channel, and will therefore be a type L node.

This will generate ghost message at N’, which will propagate ghost messages or accesses on the

chain of dependencies in question. Each node within the chain of dependencies is blocked waiting

for input and may therefore propagate information on the output channels that form the chain when

input arrives, in the form of a ghost message or access. This contradicts our hypothesis and proves

lemma 3.4. ■

We now present the main theorem of this section:

Theorem 3.1: Ghost messages are sufficient to break any possible deadlock in a local
synchrony implementation on a Banyan (equidistant) network.

Proof: According to Lemma 3.1, a non-empty set of nodes with one or more type 2 dependencies

on their input channels must exist within the DDG. Choose from this set the node (N) that has A1,

the access of least timestamp, at the front of one of its input queues. Node N cannot have type 2

dependencies on either of its output channels, because the nodes connected to those channels

would then have earlier timestamped accesses, according to the conservative properties of local

synchrony. If Node N has type 1 only or no dependencies on its output channels, then it must have

a type 1 dependency on at least one input channel, or it would not be blocked. Thus, choosing node

N places A1 at the head of the input queue of a channel with a type 2 dependency. Node N is illus-

trated in figure 11.

FIGURE 11.  Node N, as chosen in the proof of theorem 3.1.

Lemma 3.3 and the choice of node N means that A1 has an earlier timestamp than every ghost

message generated by nodes in the DDG. Lemma 3.4 guarantees that a ghost message or an access

will be propagated to node N along the other input channel. Either situation guarantees progress

and node N will be able to make a routing decision. Figure 12 illustrates each possibility. Within

the DDG, only ghost messages are generated after deadlock has arisen. Because of this, the trans-

fer of an access from node to node within the DDG denotes progress. Thus, if the information

propagated to node N is an access (A2), the deadlock is already broken, and progress will continue

as node N routes either A1 or A2 (see figure 12a).

A1
N
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FIGURE 12.  Progress at node N, due to ghost message propagation. a) Arriving access A2 denotes
progress has already occurred. b) Arriving ghost message allows routing of access A1.

If the propagated information is a ghost message (G), the router will choose A1, as it has a lower

timestamp, according to lemma 3.3. Once chosen for routing, A1 may be sent, since there are no

type 2 dependencies on the output channels of node N. Thus a node (N) makes progress within the

DDG, and the deadlock is broken (see figure 12b). ■

3.3  A Local Synchrony Switch Design

We present the design for a locally synchronous combining switch to be used in the MIN

interconnection network of an equidistant Banyan shared memory multiprocessor (e.g. the NYU

Ultracomputer [Got87]). The switch is synchronous and consists of two components: a forward

path component, which handles the transfer of accesses to the shared memory and combining; and

a reverse path component, which handles the transfer of responses to the PEs and decombining.

Local synchrony allows simplified combining and decombining of accesses, which requires no

associative search of combining queues.

The switch design is for a 2x2 switch node. The access message length is 64 bits, which

allows the architecture to include, for example, 64 PEs and MMs, each with 216 memory locations,

with a small set of supported memory operations. Routing information is included in the fixed-

length access message. While a single access is designed to manipulate only a single 32-bit mem-

ory word, locally synchronous operation allows double- or multi-word loads, stores, and other

operations to be performed atomically, eliminating the need for variable length access messages or

specific design for double-word operations (in fact, local synchrony in combination with split

operations [Wil93] allows any memory operation to be performed on double-length or more mem-
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ory words using fixed length accesses, whether or not the memory is contiguous or distributed

among several MMs). Since we are able to eliminate the need for variable length accesses, our

design may be implemented in a single cycle switch, as opposed to other designs, which require

multiple-cycle operation.

We find, after considering the implementation of this design using off-the-shelf compo-

nents, that expected performance is comparable to current combining switches for non-locally syn-

chronous operation [DiK92]. Our work compares directly to these designs.

3.3.1  Architecture Overview

The multistage interconnection network that links PEs and MMs in the NYU Ultracom-

puter and other similar architectures generally consists of two separate networks, a forward net-

work, which transmits global memory accesses to the MMs, and a return network, which transmits

responses to the PEs.

Each switch within the network, then, consists of one component for each of these net-

works. The forward path component (FPC) and the return path component (RPC) are separate enti-

ties, each performing its own operations. A combining network must communicate information

about access combining between the FPC and the RPC. Figure 13 presents an overview of the

switch architecture. Note that information (about combining of accesses) flows only from the FPC

to the RPC; this is the only connection between the two components.

FIGURE 13.  Overview of switch architecture.

Combining information is stored in a combining information buffer (CIB). For our pur-

poses, we will include the CIB in the design of the RPC. Another advantage of local synchrony is

that responses will arrive at a switch in the same order that their accesses left that switch. Combin-

FPC

RPC

CIB
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ing information can therefore be kept in a FIFO queue and merely popped off of the queue in

order, unlike the associative lookup that is necessary in the general implementation of the combin-

ing switch.

The implementation we present here takes advantage of the limitations on the number of

possible outstanding combined accesses from any one switch. The combining information queue is

implemented in a way that guarantees all possible combining (within the limits of the local syn-

chrony ltu). Locally synchronous operation already guarantees that any combining operation will

occur at the earliest possible switch within the network. This is not the case with conventional

combining systems.

3.3.1.1  Packet Format

An access packet in our implementation consists of two 32-bit sub-packets, the routing/

address sub-packet (fields 1–6) and the data sub-packet (field 7). Each is handled separately but

concurrently within the switch, because each requires a different manipulation. Table 2 presents

the packet format.

The first two fields indicate non-access designation for the packet. An arriving packet may

be a ghost message, which transmits flow control data only among switches, or a token, which

delineates local synchrony ltus

The 6 bit MM address and 6 bit PE address allow 64 PEs to access any of 64 MMs. In

order to differentiate between responses, most conventional systems must apply an outstanding

request index to pipelines accesses. Local synchrony eliminates the need for the PE to explicitly

include an outstanding request index in the access message. The PE receives responses in the order

their respective accesses were sent out. The MM/PE address and the memory location accessed

Table 2: Packet Format

Ghost Token MM Addr Mem Loc Op Code PE Addr Data

1 bit 1 bit 6 bits 16 bits 2 bits 6 bits 32 bits
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combines with the implicit priority induced by tokens and the order in which the accesses are

released to create a unique identifier, or local synchrony timestamp, for each access.

3.3.1.2  Operations Supported

For this design, we implement a small set of completely combinable memory operations.

While this set of operations is smaller than those associated with other combining systems, in

many cases the added power of locally synchronous operation replaces the need for more complex

accessing. Our goal was to limit combinable access types to a set of operations that could be com-

bined in any combination. This is not generally the case in conventional combining systems

[DiK92]. Limiting the size of global memory contained within each MM, or limiting the size of the

network, would allow more types of memory operations, if necessary.

Local synchrony requires that combinable operations be combinable in any orientation

(perceived order of execution). This is possible for many types of operations. Our design allows

only four types of operations. We choose a FETCH&STORE operation (the value returned is the

previous value of the memory location) and a REPLACE&ADD operation (the value returned is

the final value of the memory location, rather than the initial value, as in FETCH&ADD) to imple-

ment simple access operations. We choose REPLACE&ADD rather than FETCH&ADD because

the combine and decombine operations are simpler in the former. The other two operations are left

undefined, but might be used for other combinable operations or non-combinable operations such

as split operations [Wil93], broadcast, or partial word operations. The REPLACE&ADD operation

with operand of zero implements a simple load.

Table 3: Combining Situations

Input 0 Input 1 Sent Saved Return 0 Return 1

R&A(A) R&A(B) R&A(A+B) R&A(B) R&A(R-B) R&A(R)

R&A(A) F&S(B) F&S(B) R&A(A) R&A(R+B) F&S(R)

F&S(A) R&A(B) F&S(A+B) R&A(B) F&S(R-B) R&A(R)

F&S(A) F&S(B) F&S(B) F&S(A) F&S(R) F&S(A)
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Table 3 indicates the ways in which these operations are combined and decombined within

the switch. Any combination of these simple operations, in any order, may be combined within the

network, if they are bound for the same memory location. The Sent column represents the com-

bined operation forwarded, while the Saved column represents the operation saved in the combine

buffer. The Return columns indicate the decombined responses to the original accesses (R denotes

the value returned in the combined response).

The situations defined by rows 2 and 3 of Table 3 are delineated by use of the ghost bit in

the saved operation. Since no ghost message will ever be combined (see section 5.3.1.7), the ghost

bit of the saved operation will always be zero. The FPC uses the ghost bit to differentiate between

the two different combinings, which have the same sent and saved accesses. The RPC recognizes

the difference by checking this bit in order to make the correct decombining decisions, then reset-

ting the bit to 0 when the response is decombined.

3.3.1.3  Flow Control Logic

The use of ghost messages disseminates flow control information within the network. We

require that some message--either a true access, a ghost message, or a token message--be transmit-

ted from each output of each switch during each cycle. Because ghost messages travel only on oth-

erwise idle channels, and are overwritten by later ghost messages or true accesses, they do not

adversely affect the performance of the system. Ghost messages only enhance the flow of true

accesses within the network.

This design implements flow control by using load inhibit signals, which instruct receiv-

ing edge sensitive latches to accept input if the previous input has been forwarded. The load inhibit

signals for the input latches of a switch are also sent to the sending switches at the previous stage,

where they signal re-transmission of the previous output, which has been saved in an output latch.

The switch operation generates a ghost message for each idle channel during each cycle.

Untransmitted ghost messages are ignored, because a message (ghost or true access) with similar

or updated information will be generated during the next cycle. Untransmitted ghost messages in



69

input latches may be flushed as well. Ghost messages therefore use only idle channels and will not

slow down or hold back true access or responses.

3.3.2  Forward Path Component Design

Figure 14 presents the design of the FPC. The components of the FPC and RPC are com-

patible with current off-the-shelf technology. Each input and output channel is 64 bits wide, with

an incoming packet divided into its constituent sub-packets and placed in 32 bit edge sensitive

latches (A).

The routing control (G) makes a routing decision based on several inputs, and tells the

MUX components (B, C) which sub-packets to forward to the output buffers (D). Edge sensitive

output latches save the outputs in case they are not accepted by the next stage of the network--a

condition indicated in each cycle by the load inhibit line signals presented by each switch at the

end of the previous cycle.

In this design, the switch passes at most one true access per cycle, and from that access

creates a ghost message to send on the unused output. The routing control signals which outputs

will be ghosts, and this signal becomes the ghost bit directly at the output.

The routing control also informs the combining control (H) whether inputs are to be com-

bined and which packets to send to the combining information buffer at the switches RPC. Finally,

the routing control sets control lines that inhibit loading of input and output latches and enable out-

put from output latches and buffers.
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FIGURE 14.  Forward Path Component architecture.

The operation of the forward path component during a normal cycle is as follows:

1. Input (and output) latches [As and Fs in figure 14] latch in new packets.

2. Routing control [G in figure 14] compares incoming packets, deciding which to
route next. The comparison also indicates combinability.

3. Routing control disseminates decision data. This data tells B, C, and H which
packets to propagate (and tells C whether to add). Routing control also sets out-
put enable and load inhibit lines for combining control [H], latches, and output
buffers.

4. B,C,H propagate packets. Routing control sets ghost bits for each output buffer.

5. End of cycle. Output latches latch in previous output (in case it is not accepted at
the next stage). Input latches latch in new data, if open.

3.3.2.1  Routing Control

The routing control (figure 15) makes routing decisions based on the values of several

inputs, both from the packets currently in both input and output latches, and from signals received

from the next stage of the network. These inputs are:

Load inhibit input lines - These signals are sent by the switches at the next stage con-
nected to the outputs. They indicate whether the previous cycle’s outputs were
accepted (These outputs are held in the output latches [F in figure 14]).
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e. Combine information output
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Output ghost bits - These signals (from the output latches) indicate whether or not the
previous cycle’s outputs were ghost messages. If a ghost is not accepted, it does not
need to be re-transmitted (its successor will be at least as informative).

Token bits - The token bits from each input indicate the inputs that are tokens, which are
treated differently than other messages.

Comparator signals - The comparator operates on the MM address and the memory loca-
tion as a local synchrony timestamp. Its output determines which input to route (the
least timestamp) or, in the case of operations bound for the same memory location,
whether to combine accesses.

Operation bits - The type of operation for each input informs the data MUX/adder (C in
figure 14) how to proceed, and informs the combine output control (H in figure 14)
which, if any, packets to send to the combining information buffer in the RPC.

FIGURE 15.  Routing control architecture

3.3.2.2  Routing Control Algorithm

Following is the algorithm by which the routing control makes its decision for a given

cycle. The algorithm takes the form of a large case statement:

1. If one or more load inhibit input lines are ON, and at least one of the inhibited
lines has its ghost bit OFF (check input from output latch): inhibit load on all
input and output latches and signal a negative output enable to the combining
control, which will be forwarded to the RPC. In this case, there has been no real
change (i.e. transfer of true accesses) during the last cycle, so the switch must
perform those operations again.

2. Otherwise (output latches open/buffers enabled for all further cases): if both
token bits are ON, propagate either input (it will be sent on both outputs) and
open both input latches (will flush both tokens).
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3. Otherwise: if one token bit is ON, propagate the non-token, opening only its
latch.

4. Otherwise: if the comparator output signals combinability (true on the Port1=-
Port2 control line) and neither input is a ghost (or a token, checked for above),
combine operations as described in table 2. This involves propagating one of the
routing sub-packets and either one or a sum of the data sub-packets, signaling the
combining control which sub-packets to send to the RPC, and determining the
state of the ghost bit in the saved packet. Output is enabled from all output buff-
ers (as opposed to output latches, which will have output enable/load inhibit sig-
nals OFF).

5. Otherwise: propagate the input representing the output of the comparator deci-
sion (Port1 < Port0? [This decision takes advantage of convexity for collisions --
Port0 always comes from a higher priority PE.]). If the other input’s ghost bit is
ON, open both latches (this will flush the ghost, allowing at least a new copy of it
to be installed), otherwise, open only the latch of the chosen input.

3.3.2.3  Ghost bit control

The ghost bit control (M in figure 15) takes as input the routing decision of the routing

control and the ghost and destination bits of the inputs. The routing decision from the routing con-

trol informs the ghost bit control which input will be forwarded. The dest bit indicates for which

output the chosen message is meant. The ghost bit is set as follows:

Input ghost bit (the ghost bit for the chosen input) ON - set ghost bits of both output
buffers to ON.

Input ghost bit OFF- set ghost bit of the output buffer to which the message is not
destined to ON -- set the ghost bit of the buffer to which the message is destined to
OFF.

The ghost bits of tokens will be set unnecessarily, but the ghost bit of a token message is

unimportant.

3.3.3  Return Path Component Design

The design of the return path component generally follows the same pattern as the FPC.

Differences in architecture and operation are due solely to the need for decombining of responses,

rather than combining of accesses. Figure 16 presents the RPC architecture.

The main difference between the operation of the FPC and the RPC is that, in order to

decombine responses, the RPC must employ a two-level system packet selection. The first level

(C,D) selects the next returning packet, while the second level (D,E) decombines, if necessary.
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The combine queue (A) is a simple FIFO queue that receives combining information from

the switch’s FPC. The routing control's decision is the same, with the following addition: after

choosing the next response, the routing control checks to see if the response is to a combined

access. The routing control then tells the second level of selection components which packet (or

combination, for the data packets) to forward.

All latches remain closed in the decombining situation, and the second decombined

response is emitted in the next cycle (latches must remain closed in order to save the information

from which decombining is performed). This situation necessarily serializes the decombining

operation, making it a two-cycle process. Section 3.3.6 discusses ways to improve this operation.

The normal cycle operation of the RPC is as follows:

1. Input (and output) latches [Bs and Hs in figure 16] latch in new packets.

2. Routing control [F in figure 16] compares incoming packets, deciding which to
route next. Routing control also checks whether next response was combined at
this switch.

3. Routing control disseminates first- and second-level decision data. First level
data informs the input MUXs [C,D] which packets to propagate. Second level
data informs the routing MUX [D] which packet (between chosen and saved
combined) to propagate, and tells the recombine ALU [E] how to proceed (input
select, add 0, add negative, add). Routing control also sets load inhibit and output
enable signals, and pops enable signal for combining queue [A].

4. D, E propagate packets. Routing control sets ghost bits for each output buffer. B
propagates routing control’s decision data as a new routing bit for this stage
(MM id information).

5. End of cycle. Output latches latch in previous output (in case it is not accepted at
the next stage). Input latches latch in new data, if open. Combine queue accepts
new data and pops front, if necessary.



74

FIGURE 16.  Return Path Component architecture

3.3.4  Combining System

The operation of the combining system in this design was chosen for its simplicity, keep-

ing bandwidth considerations in mind. Section 3.3.6 discusses more complex extensions to the

combining systems.

Local synchrony ensures that responses returning to a given switch from global memory

arrive in the same order in which their respective responses left the switch. Thus, the design of the

combining information queue is merely a FIFO queue. In our implementation, we assume that this

queue is long enough that it will never overflow. This is possible because there is a maximum

number of accesses which, having passed through a given switch, can be outstanding from that

switch (have not returned). The equation for CMAX is given in section 3.2.1.7. For this design we

have, for the maximum queue length (only those switches in the stage furthest away from the MMs

need queues of this length):

CMAX = nS + oM + t = 5*(26-2) + 1*(26) + 2 = 376 (EQ 18)
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Each switch (S) could buffer two combined accesses and three combined responses (n).

Each MM (M) could buffer one combined access, assuming MMs have one input latch and no out-

put latches (o). The given switch can buffer only combined responses on its two RPC response

inputs (t).

The combining information queue holds an entry for each access that leaves the switch,

whether it is combined or not. On return, therefore, the RPC need only check the combine queue

for each response and decombine if necessary. Since no token is ever combined, we use the token

bit to indicate combining in the saved information, and the RPC routing control checks this bit. If

an access is not combined, the FPC might send a copy of it to the combining queue for error check-

ing, or the FPC might send nothing at all. Because the FPC will indicate when an access has left,

the RPC will reserve a space in the FIFO for that access.

Only true accesses are combined. The routing control ensures that two tokens or two ghost

messages cannot be combined, nor can a token be combined with a true access or ghost message.

The MM address of a ghost message is guaranteed to be unreachable from any switch where the

ghost is sent. No ghost’s ‘timestamp’ will match a true access compared to it, so a ghost message

will never be combined with a true access. The routing control also blocks output to the combine

information queue when passing a token or a ghost message. The combine information queue

records only the transfer of true accesses.

As we implement it here, local synchrony guarantees that all combinable accesses within a

given ltu will be combined. Combinable accesses are guaranteed to meet and be combined at the

earliest possible point within the network. This is necessary because if two combinable accesses

were to meet and not be combined, then later combining might compromise the order of execution

of the accesses.

3.3.5  Packaging

The implementation of the switch presented here uses current off-the-shelf components.

We are able to package an entire switch, including FPC, RPC, and combine information queue,
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using 6 chips. Two of these consist mainly of FIFOs which implement the combine information

queue. The other four are Actel A1280 field programmable gate arrays, two each for the FPC and

RPC. The A1280 has 140 pins of user I/O and contains 1200 logic gates. In each component, one

A1280 handles the routing information (including the routing control) and one handles the data

information.

Since the logic involved in the switch is relatively simple, the chip count is limited by the

necessary pin counts for I/O. We simplify the design in several places to achieve pin counts low

enough to allow implementation with the above-mentioned components. Our main simplification

is to implement the switch so that the data being broadcast on either output during a given cycle is

the same, with the exception of a single bit. Thus, we can use single buffer/latch combinations to

implement both output ports, rather than separate sets of latches for each port. The exception is the

ghost bit, which must have separate buffer/latches for each port. In this way, for example, we limit

the output from each sub-component of the FPC to 33 bits rather than 64 bits, which allows the

pins necessary for the combining information port to be allocated within each sub-component.

The FPC as a whole has 130 bit-inputs and 132 bit-outputs (this number takes into account

the multiplexing suggested above). The RPC has 195 bit-inputs and 67 bit-outputs. The combining

information queue has 66 bit-inputs and 64 bit outputs. The entire switch has 260 bit-inputs and

134 bit outputs. Table 4 shows pin counts and approximate gate counts.

3.3.6  Design Extensions

We present here several methods for extending this design to more varied and useful archi-

tectures and situations.

Table 4: Pin and logic gate counts for various sub-components

Sub-component Pin Count (I/O) Logic Gate Count

FPC Routing 136 (66/70) ~500

FPC Data 132 (68/64) ~250

RPC Routing 138(100/38) ~600

RPC Data 134(102/32) ~600
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No PE Address—It is possible to eliminate the need for each access to carry its PE

address. This will free up those bits for other purposes, like expanding the number of PE/MMs, the

size of global memory, or the number of possible operations. In [DiK92], the authors present the

design for a switch that replaces the routing bit of the MM address with a bit designating the input

port that received the access. When the access reaches global memory, it has a full address for the

PE to which it must return.

This approach is feasible in our design, but somewhat complicated because the MM

address is necessarily part of the ‘timestamp’ for each message, and the timestamp of a ghost mes-

sage might change relative to other accesses using this protocol. The MM address and memory

location of a ghost message must be changed to all ones or all zeros, depending on which port is

sending it out. This does not affect the operation of the system, however, the routing control must

explicitly forbid ghost messages from being combined, since this situation may now occur.

Non-Sequential Combining—One bottleneck apparent in our design is that decombining

responses is a sequential operation that requires two switch cycles to perform. In fact, by adding

more complexity to the RPC we could reduce the decombining operation to a single switch cycle.

This would involve splitting the output ports, and providing each with a separate recombining

ALU. Although we can achieve the added logic using current components, this would increase the

pin count beyond the limits of the A1280, thus creating a split that would separate the RPC data

component into at least two and possibly three sub-components.

Space Ahead—Because there is a limit on the number of outstanding accesses that a PE

may have during a given ltu, we may be able to eliminate the need to block inputs to switches by

using FIFO queues on output ports. Although this will greatly expand the necessary size of the

combining information queue, it may be possible to use another combining protocol in tandem

with this idea that limits its size.

There is only one message cell per input to the switch. Thus, a token sent by a given

switch cannot reach its next destination until, at a minimum, that switch has passed the previous
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token to output. At this point, there are only a finite number of true accesses that can pass through

the switch before it receives a token on its other input, and the token is passed.

In fact, if the network is operating at capacity (the PEs never send out a ghost message),

the number of true accesses and ghost messages that will pass through the switch (N) is no greater

than the maximum number of true accesses that might pass through the switch during this ltu. We

can use this information to implement FIFO queues on output ports that can buffer a number of

accesses equal to N. In this way (again, given that PEs never send out ghost messages), we guaran-

tee that a switch will be able to output during each cycle. This eliminates the need for blocking,

along with its added complexity.

The FIFOs generally must be long, however (for this design, assuming that a PE can issue

8 accesses per ltu, the FIFO would have to be able to buffer 256 messages [25*8]). The literature

[Won86] suggests that buffering more than 2 or 3 accesses at a port is counterproductive.

Scalability—This design scales quite well to larger networks and applications. Adding

information to the packet in 32-bit increments allows for 64-bit or larger data words, or larger net-

works (an addition of another 32 bit sub-packet would allow 220 PE/MMs, with an additional 60

operations, for example). Because the switch is designed to expand ‘sideways,’ enlarging the

packet size would not generally affect the cycle time of the switch, except that the necessarily

larger comparators and adders would have longer cycle times. Any design would face this same

problem in scaling.

Asynchronous Processing—This design can be modified easily for asynchronous process-

ing. The FPC or RPC cycles whenever it has input on both of its ports. A handshake protocol can

be used to indicate when full input has been received.

Another extension to either synchronous or asynchronous processing means that the

switches need not send a message on each output during each cycle if we were to add memory to

the switch itself. This memory would retain the timestamp of the last message sent from a given
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input or output. The switch would then need to send a message only when it was able to update the

latest timestamp. This would require significant added complexity.

3.4  Minimum Requirements for Deadlock Freedom

In this section we show that, in the case of the Ultracomputer and other equivalent archi-

tectures, it is possible to achieve deadlock freedom in a local synchrony implementation without

the use of ghost messages. We make the same assumptions about the system and implementation

of local synchrony, but assume also that the system does not generate and distribute ghost mes-

sages. The only difference in operation, other than the lack of ghost message generation, is in the

handling of tokens.

Deadlock freedom without ghost messages relies on general information about the times-

tamps of messages that might arrive on a given input to a node. This inherent knowledge, which

can be found in the makeup of the logical timestamps applied to accesses, allows a node in some

cases, to feed a token on an output even when tokens have not yet been received on either input.

We begin by considering the DDG as defined previously in this chapter. At the center of

any DDG is a deadlock circularity. To break deadlock, we must be able to break this circularity at

any point. Consider a deadlock circularity that is part of the DDG. Lemma 3.2 states that any left-

most node in the deadlock circularity must be a type L node.

Lemma 3.5: There are at least two type L nodes in the deadlock circularity.

Proof: By lemma 3.2, there is at least one type L node in the circularity. Assume that there is only

one, N0. By definition of the network topology, the set of nodes to the right of N0 that are serviced

by N0 is divided into two disjoint subsets, each serviced by one of the outputs. There is no connec-

tion between any node in one subset and any node in the other. Thus the circularity that causes

deadlock cannot exist unless it passes through another node, Nk, at or left of the stage in which N0
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resides. Since N0 is a leftmost node, Nk must be in the same stage, and, by lemma 3.2, must be a

type L node. Figure 17 illustrates this argument. ■

FIGURE 17.  An example of deadlock in a banyan network. Nk must be in the same stage as N0.

Corollary to lemma 3.5: There are at least two leftmost type L nodes in the deadlock cir-

cularity.

Proof: Lemma 3.5 shows that at least two type L nodes exist in any deadlock circularity. Let us

choose N0 and Nk such that a subsequence of the dependencies in the deadlock circularity is

{N0,..., Nk}, and includes no other type L node, where N0 --> N1 is a type 2 dependency. The def-

inition of the circularity makes this choice possible. We simply inspect the circularity and choose

two leftmost nodes in sequence. ■

Lemma 3.6: If N0 and Nk are as described above, then Nk-1 --> Nk is a type 1
dependency.

Proof: Assume the converse. Then Nk-1 --> Nk is a type 2 dependency, which means that Nk-1 is

left of Nk--by definition of Nk a contradiction. ■

Corollary to lemma 3.6: Let Nl be any other type L node that is part of the deadlock cir-

cularity. Nl-1 -> Nl is a type 1 dependency.

Proof: Let LASTi be the timestamp of the last access chosen for output by node i. LASTi includes

accesses chosen but not sent, due to blocking ahead. Let LASTi,j be the timestamp of the last

access output or chosen for output on line {i, j}. Let a type L’ node be defined as a node in the

N0

Nk
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deadlock circularity with a type one dependency on one input and a type 2 dependency on the

other input, where both dependencies are part of the deadlock circularity (and thus none of the

node’s outputs are part of the circularity). We can show the existence of type L’ nodes to be similar

to the existence of type L nodes. Since there is no type L node between N0 and Nk in the deadlock

circularity, only one type L’ node, Nj, exists between them, and {N0,..., Nj} consists entirely of

type 1 dependencies, while {Nj,..., Nk} consists entirely of type 2 dependencies. ■

Lemma 3.7: If N0, Nj, and Nk in the deadlock circularity are as described above,
then logical time unit LASTm.ltu <= LAST0.ltu, for any m = {1,k}.

Proof: By virtue of the type 1 dependency on N0-->N1, LAST1 < LAST0 and thus LAST1.ltu <=

LAST0.ltu. This same reasoning is applied to N1-->N2 and so on through Nj-1-->Nj, with the result

that LASTj < LAST0 and thus LASTj.ltu <= LAST0.ltu. By virtue of the type 2 dependency on Nk-

->Nk-1, LASTk,k-1 = LASTk-1. Again, this same reasoning is applied to the succeeding nodes

between Nk and Nj, with the result that LASTj = LASTk,k-1 and thus LASTj.ltu = LASTk,k-1.ltu,

and, by substitution, LASTk,k-1.ltu <= LAST0.ltu. LASTk.ltu = LASTk,k-1.ltu, because a token is

sent on each output when the ltu changes, and thus LASTk.ltu <= LAST0.ltu. ■

Corollary to lemma 3.7: LASTm <= LAST0, for any m = {1,k-1}.

Lemma 3.8: For any type L nodes Nm and Nn in a deadlock circularity,
LASTm.ltu = LASTn.ltu.

Proof: Construct the sequence of type L nodes within the circularity from any type L node to itself

- {N0, N1, N2,...,Np, N0}. By lemma 5.3, LAST0.ltu >= LAST1.ltu >= LAST2.ltu >=...>= LAST-

p.ltu >= LAST0.ltu. LAST0.ltu = LAST0.ltu, and thus LAST0.ltu = LAST1.ltu = LAST2.ltu =...=

LASTp.ltu. ■

We now make some observations about the network topology and the logical timestamp-

ing system used by local synchrony. There are two basic variations to the timestamping system. In

either system, the ltu is the first element of the timestamp. When FIFO combining is part of the

implementation, the memory address of the access is the second element of the timestamp. When

FIFO combining is not in force, the timestamp may be simplified, with the PE id being the second

component of the timestamp.

The network architecture presented in this implementation has the characteristic of con-

vexity, both for PEs and MMs. In other words, it is possible to number PEs and MMs to ensure that
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the inputs of any switch node come from distinct, contiguous sets of PEs (by id) and the outputs

cover distinct, contiguous sets of MMs.

When sorting accesses in the same logical time unit by PE id, we see that a switch will

send all the accesses arriving on one input for that ltu before sending any arriving on the other

input. This is because all the accesses arriving on the line in question are from PEs with lower ids

than the PEs sending all the accesses arriving on the other input. In effect, one input has higher pri-

ority than the other at all times during any ltu. By the same logic, when sorting accesses in the

same ltu by memory location, we see that a switch will send all the accesses bound on one output

during that ltu before sending any bound on the other output.

This may not be the most efficient method of implementing the timestamping system. For

example, hashing of addresses or ids might generate a non-serialized use pattern for communica-

tion lines. In the absence of a ghost messaging system, however, implementing the timestamping

system in this way guarantees deadlock freedom.

FIGURE 18.  Node A as described above. Note: {0, i} < {j, n}

Consider node A in figure 18. Node A is passing accesses based first on ltu, then on the

address of the variable accessed. Node A’s output 1 covers MMs M0 through Mi, while output 2

covers MMs Mj through Mn. The MM numbering and the timestamping system has been designed

so that {0,i} have higher priority than {j, n}. Thus, during the processing of any given ltu, once

node A passes the first access (during that ltu) along output 2, it may pass a token on output 1,

because it will pass no more accesses on output 1 during the current ltu.

We restrict the following arguments to the case of FIFO combining, where accesses are

sorted first by ltu, then by address of the variable accessed.

Lemma 3.9: Given a deadlock dependence circularity, there exists some type L
node, Nk, which can emit a token on its empty output.

A

Output 1

Output 2

(to MMs M0 through Mi)

(to MMs Mj through Mn)
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Proof: Assume the converse. Choose a leftmost node, Nj, in the circularity. By lemma 3.2, this

node is a type L node. By assumption, Nj has a type 2 dependency on its high priority output. By

the corollary to lemma 3.5, at least one other leftmost type L node, Nk, exists in the circularity.

Choose Nk such that no other leftmost type L node is in the subsequence {Nj,...,Nk} of the circu-

larity. Since Nj and Nk are at the same stage of the network, and by virtue of the circularity itself,

outputs {j, j+1} and {k, k-1} each cover the same subset of MMs. By assumption, this set of MMs

is high priority compared to the set covered by the other output of Nj and Nk. Nk does not have a

type 2 dependency on output {k, k-1}, and thus must have a type 2 dependency on its other output,

which is the low priority output. The high priority output of Nk is thus empty, and a token can be

emitted on that output, since no other accesses will be sent on that output during the current ltu. ■

A key result follows:

Theorem 3.2: Inherent knowledge is sufficient to break any possible deadlock in a
local synchrony implementation on a Banyan-type equidistant network.

Proof: We assume without loss of generality that all other dependence in the DDG is related to the

deadlock circularity; i.e., that any type1 dependency comes from attempts to pass information

through nodes in the circularity, and any type 2 dependency comes from waiting for information to

be passed through nodes in the circularity. Lemma 3.9 states that there exists some type L node,

Nk, within the deadlock circularity, that can emit a token on its empty output (the one with a type 2

dependency). Choose type L node N0 such that there is no other type L node and only one type L’

node, Nj, between N0 and Nk (lemma 3.6). By lemma 3.8 and the emission of this token, LASTk,k-

1.ltu = LAST0.ltu + 1. This contradicts the corollary to lemma 3.7. Node Nk-1 now has a token on

one input and, by assumption, has input on its other input, so it may progress by sending accesses

from the non-token input until a token arrives. At this point, node Nk-1 may send a token on both

outputs. This process is repeated at each preceding node until a token is passed to node Nj on its

empty input. Nj will then be able to progress by sending the accesses that have been blocked in

type 1 dependencies. Progress continues at each preceding node, including N0, until the node is

able to send tokens on its outputs as well. Each preceding pair of type L nodes is able to progress

to the next ltu in sequence. Since this is a circularity, at some point the progress chain will reach

back to Nk, which will progress to the true ltu change (of course, Nk will not release another token

on {k, k-1}). Thus, the emission of one token, guaranteed by lemma 3.9, will cause the entire

deadlock circularity to progress until at least each type L node has increased its ltu by 1. When this

has occurred, another token can be released, and so on. ■
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FIGURE 19.  a) Deadlock b) Inherent knowledge solution

We give a simple example of this process, using a two-stage network as in figure 19 above.

SE 10 sends an access with timestamp 5.5 to SE 00, then blocks trying to send its next access, with

timestamp 5.6, to SE 00. SE 11 sends an access with timestamp 5.7 to SE 01, then blocks trying to

send its next access, with timestamp 5.8, to SE 01. Deadlock occurs because no SE can progress.

This situation is depicted in figure 19a. Because SE 11 has sent an access to SE 01 during ltu 5,

however, it can determine that it will not send any more accesses to SE 00 during this ltu. It can

thus send a token (timestamp = 6.0) to SE 00. This breaks the deadlock, as SE 00 is then able to

progress (figure 19b). The fact that a token has been received by SE00 guarantees that SE 10 will

progress until it reached the next ltu, and thus the deadlock is broken.

3.5  Summary

In this chapter we have laid the foundation for later work by providing a motivation for

investigating implementations of local synchrony. We first made a simple argument showing that

local synchrony can outperform locking systems given certain assumptions, that we will show

later are reasonable.

Then we presented an implementation of local synchrony and showed that it is feasible

and deadlock-free. Our plan covered most aspects of implementation, including operative algo-

rithms, transfer and routing mechanisms, buffer management and flow control, and the combining

system.

Also we presented a low-level hardware design for a switch to be used in the implementa-

tion, and discussion of the minimum requirements for deadlock-freedom in convex local syn-
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chrony implementations. In the next chapter we show that local synchrony can be implemented

efficiently on any shared memory architecture.
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4.0  A General Implementation Technique
In this chapter, we show implementability for local synchrony in a correct and deadlock-

free way on any shared memory architecture. Our implementation scheme preserves any locality

(defined in chapter 3) present in the physical architecture, and provides greater opportunities for

parallelism and less overhead than other approaches.

Our presentation proceeds as follows: in section 4.1, we define correctness criteria for

local synchrony implementations. In section 4.2, we discuss two different approaches to imple-

mentation of local synchrony, based on the logical service time of a switching element (the logical

time taken in a single step in the network). Each approach has different problems in implementa-

tion. We discuss these problems at length, as well as our reasons for choosing one over the other.

In section 4.3, we define a class of directed graphs, which we call LS graphs, and show

how an LS graph may be used to represent the communication interconnections of a given shared

memory architecture. In section 4.4, we present a local synchrony implementation for such archi-

tectures.

In section 4.5, we prove that the implementation of local synchrony on the LS architecture

of section 4.4 is correct and deadlock-free. Finally, in section 4.6, we present an algorithm which,

for any candidate shared-memory architecture, will generate an LS graph which is mappable onto

the candidate architecture. This algorithm may be used in conjunction with virtual channels

[Dal92] to provide a correct and deadlock-free implementation of local synchrony on any shared-

memory architecture without compromising any locality (defined earlier as the proximity of all or

part of shared memory to a given PE) exhibited by that architecture.

Section 4.7 gives several examples of such translations for interesting architectures. Sec-

tion 4.8 discusses the operation of virtual switching elements, which are used with virtual channels

for local synchrony implementation. Section 4.9 discusses memory requirements for implementa-

tion and compatibility with different routing schemes.
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4.1  Correctness of a Local Synchrony Implementation

The notion of correctness of a local synchrony implementation is directly related to the

goals of local synchrony itself. By abstracting the operation of local synchrony to a logical level,

we may say that in executing a given computation, PEs release a sequence of messages, bound for

various MMs, with strictly decreasing (among messages from the same PE) and strictly unique

(among all messages) priority. The priority system is based on a possible physical ordering of

events by execution time in a general system, and thus messages released later in the stream have

strictly lower priority than those released earlier.

For a given distributed computation, the goal of a local synchrony implementation is to

complete the computation, and ensure that the MMs consume messages in strict order by decreas-

ing priority. Because the goals of local synchrony are met when the MMs consume messages we

do not consider here the handling of responses from MMs. Responses may be handled normally, or

in a locally synchronous manner. We assume, without loss of generality, that the responses are han-

dled by a separate network within the architecture.

We also assume correct operation of the PEs and MMs. PEs are failure-free and produce a

stream of accesses, bound for the MMs and ordered by a given timestamping or priority system

which guarantees that each message has a unique priority. MMs are failure-free, have a single

input, and consume messages as they arrive.

In order to recognize the completion of a computation, we assume that PEs release a

sequence of messages with strictly decreasing and unique priorities, followed by an End-of-Com-

putation (EOC) message which marks the end of that PEs message stream for this computation.

The EOC message has lower priority than any computation message released by any PE and has

equal priority to the EOC message of any other PE.

In a correct implementation of local synchrony, any deadlock-free computation will exe-

cute deadlock-free. A computation will also progress toward a termination state. In the termination

state, all computation and EOC messages have been sent by PEs and have been consumed by MMs
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in strictly decreasing priority order. The last message sent on all communication lines is an EOC

message.

The three elements that determine correctness for a local synchrony implementation, then,

are deadlock freedom, the correct order of consumption of messages by the MMs, and a guarantee

of progress to the termination state. We will show in section 4.5 that the implementation and LS

architectures we describe meet the requirements of correctness and deadlock freedom. We will

then show how an LS graph can be generated for any candidate architecture. Such an LS graph can

be mapped onto the candidate architectures using virtual channels [Dal92], allowing correct and

deadlock-free implementation of local synchrony on the candidate.

In the next section, we outline two approaches to local synchrony implementation, based

on the logical time taken by a message in negotiating a single network step. A correct implementa-

tion is possible by using the isotach approach (a message’s timestamp is incremented by a single

ltu at each step), or a ‘time propagate’ approach (a message has the same timestamp at all times).

We discuss each approach and their good and bad qualities as possible implementations for local

synchrony. We choose the approach which best suits the goals of local synchrony.

4.2  Approaches to Local Synchrony Implementation

There are two approaches to implementing local synchrony. We shall see that each of the

approaches presented has flaws: one because the system performance is inconsistent with the goals

of local synchrony; and the other because directed loops within an architecture can cause deadlock

unless certain buffer and switch operation requirements, which we feel are unrealistic, are

enforced. We choose the approach that best fits the goals of local synchrony, and then show that it

can be implemented efficiently and correctly.

In local synchrony, sources (PEs) generate messages with a unique logical timestamp and

are required to release messages in timestamp order. Other nodes are also required to release mes-

sages in timestamp order.
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As logical systems, local synchrony and the Chandy/Misra logical simulation [ChM79]

are quite similar. While the method of message generation is different, the results are the same:

sources generate and send streams of messages in a timestamp order, and all other nodes are

required to process messages conservatively by timestamp (while Chandy and Misra never men-

tion conservatism, it is implied by the algorithms presented). Once a message has been queued for

output by its source, it is treated the same in either system.

Chandy and Misra present a convincing proof that their system is correct and deadlock

free, yet in fact they neglected to consider some possibilities which are admissible under their

requirements but can still deadlock. For example, differences in the service times of nodes in a

fork and join loop can cause deadlock unless finite but unbounded buffer cells are in use. Figure 20

depicts such a situation. Consider this to be a queueing network, where jobs arrive at a node, are

processed in some finite time called the service time, and then are sent on through the network.

FIGURE 20.  Queueing network which could deadlock.

Let the service time at A, B, and D be 1 and the service time at C be 1000, and let each

node be able to buffer only 1 job (message). Let jobs be of the form [t, p], where t is the send time

from the previous node, and p is the path information that declares which branch the job will take

at A. Suppose the input to A is {[1,C],[2,C],[3,C],[4,C],[5,B],...}. Processing will proceed as fol-

lows:

1. Node A receives [1,C] and passes [2,C] to C and [2,NULL] to B.

2. Node B receives [2,NULL] and passes [3,NULL] to D. Node C receives [2,C]
and passes [1002,C] to node D. Node A repeats step 1 with [2,C].

3. Node D receives [3,NULL] and [1002,C] and sends [4,NULL]. Node B receives
[3,NULL] and sends [4,NULL] to node D. Node C receives [3,C] and blocks try-
ing to send [1003,C] to node D. Node A receives [3,C] and blocks trying to send
[4,C] to node C, either after or before sending [4,NULL] to node B.

4. If [4,NULL] reaches node B, it is sent on to node D and onward.

A
B

C
D
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At this point, the network is deadlocked. Node D cannot conservatively pass [1002,C],

because a job with smaller timestamp could arrive from node B. In fact, such a job ([5, B]) exists,

but will not reach node A until node D sends [1002,C]. The only solution to this problem is to pro-

vide node D with a buffer queue which is long enough to provide protection from this type of

deadlock (in this case, the queue would have to have 998 job slots). This solution is sub-optimal

due to low utilization of buffer space and the need for network analysis to generate the queue sizes.

In general, finite but unbounded buffer cells would be necessary to guarantee correct and dead-

lock-free operation.

Because the service time of nodes is uniform over all nodes in our approaches to imple-

mentation of local synchrony, this type of deadlock cannot occur in a local synchrony implementa-

tion. However, we shall see that the Chandy/Misra system can still deadlock under conditions and

implementations which are consistent with the goals of local synchrony.

4.2.1  The Time Propagate Approach

In the time propagate approach, an intermediate node receives a message and passes it on

in the same logical instant, i.e. with the same execution priority or logical timestamp. This

approach is the most intuitive and simple way to enforce the ordering constraints of local syn-

chrony, which guarantee sequential consistency, version consistency, and atomicity of global

memory accesses. As we shall see, however, the time propagate approach is counter to the stated

goal of local decision making, which is central to the philosophy of local synchrony itself.

Consider the architecture depicted in figure 21. Input streams of messages are provided.

Nodes A, B and C are intermediate nodes in the system. Each conservatively chooses the next low-

est priority on its inputs (input streams are guaranteed to arrive in priority order) and passes that

message on. Nodes D and E are sink nodes which consume messages as they arrive (in priority

order).



91

FIGURE 21.  Example architecture.

For situations involving directed loops, Chandy and Misra describe some arcs as predict-

able and require that any directed loop have at least one predictable arc. In the local synchrony

implementations, arcs are not generally predictable, but knowledge of the message priority scheme

allows intermediate nodes to know what the next lowest possible priority on an incoming line may

be. This guarantees that at any time there is at least one predictable arc in a directed loop, even

though that arc may not be predictable in general (such a line is only predictable when the sender

can generate the next possible timestamp).

In the following example we use logical timestamp information to generate a unique four-

digit priority for each message. The third digit of the priority, which represents the source ID of the

message, is the key which allows predictability for at least one arc in all circumstances. The other

digits of the priority are created from other logical timestamp information: the first digit represents

the logical time unit, the second represents destination, and the fourth represents rank. Assume for

simplicity that at most nine messages may be ranked by a given source in any given ltu. For exam-

ple, the source which feeds line c in figure 2 sends messages which always have a 1 in the third

digit of their timestamp. This is the only source in the system which uses this key.
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[1133, E]
[1132, E]
[1131, E] [2321, D]
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[1311, D]

[1341, D]
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We will now consider the operation of the network. Let intermediate nodes be defined as

non-source, non-sink nodes in the network. Initially, each intermediate node (A, B, C) will send a

message [1000, NULL] on each of its outputs. Processing will then continue as follows:

1. A and B now have [1000, NULL] as their priority input. Having sent the same
message already, they block. Node C has simulated up to priority1000, and the
next possible priorities are 1111-1119, which can only arrive on input c, so, since
the input on c is greater than 1119, node C can send [1119, NULL] on its outputs.

2. Node B now has [1119, NULL] as its priority input. Since the next possible prior-
ity is 1121-1129, which can only arrive on input b, and the actual input on b is
greater, node B can send [1129,NULL] on its outputs.

3. Node C receives [1129,NULL], but cannot forward any message because it can
make no prediction about the next priority to arrive. Node A receives [1129,
NULL]. Since the next possible priority is 1131, which is on input a, node A can
send [1131,E] on output d, and [1131,NULL] on output i.

4. Node A may continue to process [1132, E] and [1133, E], which progress across
the network to node E. Node A then sends [1139, NULL], which is the best pre-
diction it can make.

5. When Node C receives [1139, NULL], it is able to make a prediction, but it must
limit itself to sending [1211, NULL], rather than [1311, D], which is the next
message to be processed. This procedure continues as nodes B and A make their
predictions which finally result in [1239, NULL] reaching node C, which allows
it to finally send [1131, D].

While this process does execute correctly and in a deadlock-free way, it is counter to the

philosophy and goals of local synchrony in two ways. First and foremost, the reader will note that

in the directed loop (C, B, A, B, C), all nodes must communicate to make one message transfer

decision. In many current parallel architectures, such as a hypercube or mesh, the node intercon-

nection scheme is such that this type of procedure amounts to global communication. The philoso-

phy of local synchrony calls for local decision making only, without global synchronization.

Another flaw is that the system spends much extra processing and time raising the pre-

dicted priority or logical time of each node. In general, the priority may only be raised by a mini-

mum amount at each node, even if that node holds the next message to be processed (see step 5

above). We would like a local synchrony implementation to allow a node to perform useful work if

it has useful work to do at any time. For these reasons, we deem this type of implementation sub-

optimal for local synchrony.
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4.2.2  The Time Increment Approach

The time increment approach overcomes the flaws in the time propagate approach by

introducing a distance component into the processing of messages. The time increment approach

implements an isotach system by adding a constant to the priority of a message each time the mes-

sage takes a step in the network. By using a positive, uniform, constant service-time, we enforce

the velocity invariant for isotach systems described in chapter 2.

Note that messages from a given source (PE) are still consumed in priority order at any

given MM, although the order of consumption for messages to the same sink (MM) from different

sources is altered depending on the distance from source to sink. Because the sources assign prior-

ities to messages, it is possible to modify the assignment scheme for priorities in such a way that

messages will reach network outputs in the same order generated by the time propagate approach.

This is accomplished by subtracting the distance a message must travel from the ltu in which it is

to be executed. The service time which is added to the priority each step is equivalent to one ltu.

The problem that arises when using this approach is that, much like our earlier example,

deadlock is now possible unless large buffers are employed. While the size of these queues is finite

and calculable, we will later show that a better solution exists.

Let us consider the example presented in section 4.2.1 (Figure 21). Rather than a service

time of 0, nodes now have a service time of 1000, which is added to the priority of an incoming

message when the message is sent. Message processing is much more efficiently implemented, as

we see below. Initially, each node sends the initialization message [1000, NULL] on each of its

outputs (this message will arrive at the front of the input streams as well). Processing continues as

follows:

1. Each of nodes A, B, and C now has [1000, NULL] on each input, so [2000,
NULL] can be sent on each output.

2. Node B has [2000, NULL] as its priority input, and sends [3000,NULL] on each
output. Node A chooses [1131, E] and sends [2131, E] on output d and [2131,
NULL] on i. Node C chooses [1311, D] and sends [2311, D] on output g and
[2311, NULL] on j.
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3. Node B has received [2131, E] and [2311, D], and can choose [2131, E] and send
[3131, E] on output e, and [3131, NULL] on f (each of these messages will over-
write the ghost message [3000, NULL] at the inputs to nodes A and C).

4. Node A now sends [2132, E] on output d. Node C is blocked waiting to send
[2312, D] on g.

5. Deadlock now occurs. Nodes B and C are each waiting for the other to proceed.
The state of the inputs for each node is shown below.

Node A — a = [1133, E], f = [3131, NULL] — A cannot pass input [1133, E] because it is
blocked by traffic ahead.

Node B — d = [2132, E], b = [2321, D], g = [2311, D] — B cannot pass [2132, E] because it is
blocked by traffic ahead, and cannot pass [2311, D] because it cannot conserva-
tively guarantee that [2311, D] will be the next to be passed on output f. Even if it
could make this guarantee (A could guarantee that it will not pass messages des-
tined for node D through node B), once passed, A could not pass [3311, D] further
along output i, as one can see that [2331, D] will appear on input a at a later time,
and should be sent before [3311, D].

Node C — e = [3131, E], c = [1312, D], h = [1341, D] — C cannot pass [1312, D], because it is
blocked by traffic ahead, and cannot pass [1341, D] for the same reason and because
it should only be emitted after [1312, D]. C cannot pass [3131, E] because a mes-
sage could arrive on either other input that should precede it ([2111, E], which will
arrive later on input c, is an example of such a message).

Deadlock occurs because the service time for nodes in a directed loop is greater than the

difference in timestamp values for messages entering the loop on multiple inputs. This creates a

situation where two (or more) nodes may be waiting on each other, but cannot communicate to

break the deadlock because of the conservative processing constraints in the system. This situation

was overlooked in the Chandy/Misra logical simulation system [ChM79].

While this system can deadlock, it exhibits many traits which make it attractive as a possi-

ble implementation of local synchrony. Switching elements are able to operate independently,

making decisions based only on local communication. No global communication is required to

make progress at any time. Finally, there is no extra work required in advancing the logical clocks

of switches up to the point where useful work can occur. Because processing decisions are local,

switches can immediately jump to their next ‘useful’ clock value to continue processing.

The deadlock situation only occurs when switching elements arbitrate between messages

without reference to the distance those messages have to travel. It cannot arise in equidistant

implementations (see chapter 3), because any two messages being compared always have the same
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distance to travel. In the general (non-equidistant) implementation, however, messages must travel

differing distances to reach their destinations.

There are two solutions to this problem. Using the Chandy/Misra approach would involve

reserving enough buffer space to handle all messages that might arrive on a given input during a

given ltu, and rewriting the algorithms to allow continual acceptance of inputs even while a switch

is blocked waiting to output. This approach is wasteful of buffer space. Our approach solves this

problem by eliminating the possibility of comparing dissimilar priorities (the priorities of mes-

sages with differing distances to travel in the network), without making messages travel any fur-

ther than necessary (Ranade [Ran87] achieves a similar result by requiring all message to travel

the same distance, compromising locality).

Our approach also provides better space efficiency and more opportunities for parallelism.

Several processing ‘threads’ can occur in parallel, so greater efficiency is possible and more oppor-

tunities for parallelism exist. Our approach re-maps the architecture of figure 21 as shown in figure

22.

FIGURE 22.  Recasting of the network in figure 21.

Nodes A and C (and inputs a and c) are separated into two sub-nodes (and two sub-inputs):

A1 and C1 (a1 and c1) to handle messages with one step yet to travel in the network, and A2 and

C2 (a2 and c2) to handle messages with three steps yet to travel. Processing occurs as before. Ini-
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tially, each node sends the initialization message [1000, NULL] on each of its outputs (this mes-

sage will arrive at the front of the input streams as well). Processing continues as follows:

1. Each node now has [1000, NULL] on each input, so [2000, NULL] can be sent
on each output.

2. Nodes B, A1, and C1 has [2000, NULL] as its priority input, and sends
[3000,NULL] on each output. Node A2 chooses [1131, E] and sends [2131, E]
on output d. Node C2 chooses [1311, D] and sends [2311, D] on output g.

3. Node B has received [2131, E] and [2311, D], and can choose [2131, E] and send
[3131, E] on output g, and [3131, NULL] on f (each of these messages will over-
write the ghost message [3000, NULL] at the inputs to nodes A1 and C1). Node
A1 has [2331, D] as priority and sends [3331, D] to sink D. Node C1 sends
[3111, E] to sink E in the same manner.

4. Node A2 now sends [2132, E] on output d. Node C2 is blocked waiting to send
[2312, D] on g.

5. Node B can choose [2132, E] and pass on [2132, E] to node C1. Processing con-
tinues.

Note that deadlock does not occur in this architecture, and that messages are received by

sinks D and E which would not be received in earlier examples until B had processed several more

messages. If D and E were subnetworks, instead of sinks, this would mean an earlier opportunity

for processing in those networks, and thus greater parallelism. In fact, if the example network were

not symmetrical around node B, even more possibilities for parallelism would be apparent.

The next section describes a class of graphs which have the general structure of the archi-

tecture in figure 22. These graphs are distinguished by the fact that, if considered as shared-mem-

ory architectures, they allow efficient and correct implementation of local synchrony. We will later

show how to generate such a graph which can be mapped onto any candidate shared-memory

architecture.

4.3  LS Graphs

We describe a class of directed graphs called local synchrony (LS) graphs. In section 4.6,

we present an algorithm which generates an LS graph from the interconnection topology of a gen-

eral connected shared memory architecture. A generated LS graph can then be mapped back onto

the candidate architecture using virtual channels [Dal87]. LS graphs can be used to implement

local synchrony correctly on architectures having directed cycles without compromising locality.
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We present LS graphs because they are consistent with the goals of local synchrony and they rep-

resent the most space efficient implementation we have found. We do not claim that our implemen-

tation is optimal with respect to space efficiency, only that it is better than other known

approaches.

An LS graph is a directed graph {V, E}, where V is a set of vertices and E is a set of

directed edges among the vertices in V. For simplicity, we consider only connected graphs. V is

further subdivided into {VS, VR, VI}. Vertex subset VS (source or sending vertices) consists of

vertices from which directed edges only originate. Vertex subset VR (sink or receiving vertices)

consists of vertices at which directed edges only terminate. Vertex subset VI (intermediate verti-

ces) consists of vertices at which directed edges both originate and terminate. By definition, sub-

sets VS, VR, and VI are disjoint (this requirement may be somewhat relaxed under certain

circumstances).

It may be seen from the definition of LS graphs that set E for any LS graph is restricted

such that edges may only originate at vertices in VS and VI, and may only terminate at vertices in

VR and VI. In this discussion we will concern ourselves with directed paths from vertices in VS to

vertices in VR. The path from a vertex in VS to a vertex in VR may consist of any number of edges

and includes only vertices in VI between the two end vertices. In other words, a path originates at a

vertex in VS, passes through zero or more vertices in VI, and terminates at a vertex in VR.

We further restrict E such that sub-paths from a given vertex, q, in VI may not pass again

through q before terminating. This restriction eliminates infinite-length paths in finite-sized

graphs. It also eliminates directed loops in the graph, which is vital to our discussion of deadlock

freedom in our general implementation technique for local synchrony (see section 4.4). We make

no restrictions on the number of distinct paths from a given vertex in VS to a given vertex in VR,

nor on the lengths of such paths, other than the non-looping constraint given above.

A vertex in VI may be included in any number of paths from vertices in VS to vertices in

VR. Let A be the set of sub-paths which connect vertex q ∈ VI to all vertices in VR to which q is
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connected. We restrict our definition of LS graphs such that the lengths (i.e., the number of edges)

of all sub-paths in set A for any q ∈ VI are equal. We will call this length the distance value of the

node q. This restriction aids in proving deadlock freedom for resulting architectures while preserv-

ing locality constraints when candidate architectures are transformed using LS graph mapping.

Note this restriction applies only to vertices in VI and not to vertices in VS (the set A for a vertex

in VR has no elements).

FIGURE 23.  LS graphs

Figure 23 shows several examples of LS graphs. Consider graph c. The vertex set for this

graph includes subsets VS = {A, B, D, M}, VI = {C, E, F, H, J}, and VR = {G, I, K, L}.

We make the following observations about LS graphs:

1. Consider two paths, a and b, which are chosen from the A sets of two vertices in
set VI of an LS graph, and share some number of vertices. Any difference in the
lengths of the two paths must occur in sub-paths a’ and b’ which begin at the first
vertex in each path and end at the first vertex the paths have in common.

Let x be the first shared vertex. By definition of LS graphs, all sub-paths originating at x

have the same length, l. Thus the length(a) = length(a’) + l and length(b) = length(b’) + l, and

length(a) - length(b) = (length(a‘) + l) - (length(b’) + l) = length(a’) - length(b’).

This is a simple observation, but it emphasizes an important point about LS graphs as

defined here. When any two paths meet in the graph, their termination vertices are, at the meeting

point, the same distance (i.e., number of edges) away. Paths may be of different lengths, but the

difference must come before they share vertices. Note also that paths may diverge after sharing

vertices, but the divergent sub-paths are of the same length.
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2. Let A’ be the set of lengths of all paths in set A for a vertex q ∈ VS. The number
of edges originating at q must be equal to or greater than the cardinality of set A’.

By the definition of LS graphs, the first vertex in any path from q is in set VI or VR, and all

sub-paths originating at that vertex have equal length. Thus, for each length, l ∈ A’, there must be

at least one vertex connected to q from which all sub-paths have length l-1.

Observation 2 shows that, in LS graphs as defined above, paths of different length from a

vertex q ∈ VS to vertices in VR must leave q by different edges.

In order to limit our discussion to currently ‘interesting’ cases, we define as a subset of the

LS graphs the regular LS graphs. The LS graphs that we will generate and discuss as examples of

our general implementation technique for local synchrony will come from this group. We define an

LS graph to be regular if and only if:

1. Sets VS and VR are non-empty.

2. The number of edges originating at vertex q ∈ VS is equal to the cardinality of
set A’ for q.

3. Each vertex q ∈ VS is connected by at least one path to each vertex p ∈ VR.

4. Each vertex p ∈ VR has one and only one input edge.

Note that a regular LS graph can be asymmetric with respect to the number of connections

to each source or sink vertex. Sources have multiple outputs because the distance from a source to

any two sinks may be different. All paths to a given sink have a one-step (from the last intermedi-

ate vertex to the sink) sub-path, however, so sinks need only one input, since all these sub-paths

may be merged.

Consider an LS graph G = {V, E}. Let the vertices in V represent physical processing ele-

ments (PEs, MMs, switches) that communicate along directed physical communication channels

(the edges in E) by passing messages or packets. The system is asynchronous, but a processing ele-

ment cannot discard an output packet until its reception has been acknowledged by the receiving

processing element.

We divide the processing elements into three groups: PEs are bound to the vertices in set

VS; MMs are bound to the vertices in set VR; and switching elements are bound to the vertices in

set VI.
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Note that if the original LS graph was regular, as defined, we have created a true shared

memory architecture (we consider here only PE to MM message traffic—response traffic may be

handled by a separate network). A group of PEs is connected to a group of MMs (representing glo-

bal shared memory) by a network of switching elements. Each PE is connected to each MM by

some path, made up of switching elements. We call an architecture of this type an LS architecture.

The next section presents an implementation plan for local synchrony on LS architectures.

4.4  Local Synchrony Implementation on LS Architectures

We now discuss the implementation of local synchrony on architectures based on LS

graph communication topologies, as presented in section 4.3. As in [ChM79], we assume a simple

communication protocol for messages: a message is sent from node i to node j if and only if node i

is ready to send the message and node j is ready to receive the message. We assume that a protocol,

e.g. Hoare [Hoa78], is in place that guarantees that messages are transmitted correctly between

nodes. All messages generated by nodes are 2-tuples, <p, m>, where p is a priority measure unique

to the message and m is a global memory access or the value NULL (a ghost message).

The operation of the architecture is a relatively straightforward implementation of local

synchrony. PEs execute a process that makes demands (accesses) on global shared memory. Using

a logical timestamping system, PEs provide each global memory access with a unique priority (p)

for execution, and release accesses in timestamp order.

The timestamping system that gives messages their unique priority is as follows: p con-

sists of a four-tuple, {ltu, dest, pid, rank}; and the isotach velocity invariant is enforced by the use

of token messages, generated by PEs, which delineate between ltus. Note that a message does not

carry any information about the ltu in which it was released or will be executed. This information

is inherent in the position of the message in the access stream.

dest is the destination global memory location. pid is the PE id (we assume for simplicity

that each PE executes only a single process), and rank is the rank of the access among those
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released by the same PE in the same logical time unit. Timestamps are compared lexicographi-

cally, with a lower timestamp translating to a higher priority for execution.

Switches conservatively pass global memory accesses from inputs to outputs by logical

timestamp (rather than by arrival time, as might be the case in a normal system). A switch must

wait until it has ‘latest timestamp’ information on each input before it can make an output deci-

sion.

Because they have only one input, MMs execute global memory accesses in timestamp

order, which, for LS architectures generated from regular LS graphs, is the order of their arrival.

A switch or PE with more than one output also sends ghost messages, which carry times-

tamp information (but not an actual access) on unused outputs. When a true access is sent on an

output, each other output may benefit from the transmission of a ghost message. Ghost messages

arriving on a given line are overwritten by ghosts or true accesses arriving on that line at a later

time (the conservative nature of local synchrony ensures that a message has equal or greater times-

tamp than the preceding message), which limits the proliferation of ghost messages within the sys-

tem.

Because we are concerned here only with the communication of messages within the sys-

tem and not the internal processes of PEs, which are general parallel programs, we may abstract

the operation of the PE in our implementation. The pertinent algorithm of the PEs in a local syn-

chrony implementation is as follows:

1. Execute internal process until it is necessary to generate a global memory access
or token.

For a global memory access:

2. Generate a message tuple <pk, mk> with non-NULL mk and pk > pk-1.

3. Select the output channel on which the message will be sent.

4. Generate a message tuple <pk, mk’>, where mk’ = NULL, for each other output
channel.

5. Send each message on its respective output channel.

For a token:

2. Generate a message tuple <pk, mk>, where mk = NULL and pk = T, a special
value reserved for tokens, for each output channel.
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3. Send each message on its respective output channel.

Switching elements and MMs, in essence, do not initiate actions (excepting on start-up, as

discussed below). Their process is driven completely by their inputs from PEs and other switches.

The algorithm for a switching element is as follows:

1. Initially, send a token on each output.

2. Wait until a message (true or ghost) has been received on each input channel.

3. Create LOW, the set of all inputs with minimum p-value.

4. In the event that LOW has more than one element, choose the message <pk, mk>
with non-NULL m-value or, if all have NULL m-value, choose at random (since
each is a copy of the others).

5. Select the output channel on which the message will be sent. If the destination of
the message is not reachable from this switching element (the message is a ghost
or token), choose an output at random.

6. Generate a message tuple <pk, NULL> for each other output channel.

7. Consume (remove from the system) all input messages in LOW.

8. Send each message on its respective output channel.

We note here that step 1 is only necessary for the implementation to be an isotach network

[Wil93]. This approach is equivalent to the time increment approach, and PEs generate and send

isochrons according to the description in Chapter 2. Since there are no cycles in the LS graph, it

may be efficient to implement the time propagate approach. In this case step 1 would not occur,

and PEs would queue isochrons differently. Throughout this dissertation, we assume isotach

implementation.

MMs simply consume accesses as they arrive. For this implementation, we assume that

ghosts are sent to MMs, but adjacent switches may also consume ghosts targeted to MMs. This

algorithm assumes implementation on a general LS architecture, where MMs might have more

than one input. The specific cases we will discuss later in this chapter come from the set of regular

LS architectures, in which each MM has only one input. An MM’s algorithm is as follows:

1. Wait until a message has been received on each input channel.

2. Create LOW, the set of all messages on inputs with lowest p-value.

3. Consume (remove from the system) all messages in LOW. The internal process
of the MM would execute the global memory access for any true access and
would merely discard any ghost or token (If a locally synchronous response net-
work is in place, ghosts would pass directly into that network).
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In the next section we will demonstrate that the LS architecture implementation described

above meets our definition of correctness for such a system. We will go on in later sections to show

that any shared memory architecture can emulate an LS architecture, allowing correct and dead-

lock-free implementation of local synchrony.

4.5  Correctness of LS Architecture Implementations

As discussed in section 4.1, the three elements which constitute correctness for a local

synchrony implementation, then, are deadlock freedom, the correct order of consumption of mes-

sages by the MMs, and a guarantee of progress to the termination state. In this section we prove

that the implementation presented in section 4.4 for the architectures of section 4.3 meets these cri-

teria.

4.5.1  Correctness of Order of Consumption

The logical timestamps of messages directed to a given sink node (MM) define the correct

consumption order. Messages must be consumed by the MM in timestamp order. We assume that

the stream of messages output by source nodes (PEs) on each of their outputs is in timestamp

order.

Lemma 4.1: The consumption order of messages at any sink (MM) is correct.

Proof. Assume the converse, that some MM does not consume messages in timestamp order. If

this is the case, then the sequence of messages arriving on one of the MM’s inputs is not in order,

because the MM is constrained to choose conservatively the earliest timestamp on any input for

consumption, and to block if messages have not arrived on all inputs. Consider the node connected

to the input with incorrectly ordered messages. This node cannot be a source, because we assume

that all outputs of sources are correct. It must therefore be an intermediate node. Because the node

is also constrained to choose conservatively, one of its inputs must be out of order as well. We thus

have a chain {S, I1, I2,...} of nodes, each of which has a faulty input. Because there are no directed

loops in the network, and the network is finite, this chain must end at a source node. Contradiction.

■
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4.5.2  Deadlock Freedom

We derive this argument in part from the deadlock freedom arguments in [ChM79].

Chandy and Misra define a communication line (i, j) to be a WN line if node i is waiting to output

to node j, but j is not waiting for input from node i. NW, NN, and WW lines are defined similarly.

Let S be the service time of all nodes in the network. Let Ti be defined as the timestamp of the last

message accepted for output by node i (note that when output, this message’s timestamp will be

increased by S). Ti is then the ‘current’ logical time, or the logical time up to which node i has pro-

gressed.

Lemma 4.2: At any point in the computation,

1. if (i, j) is a WN line then Ti > T j - S, and

2. if (i, j) is an NW line then Ti = Tj - S

Proof. Observation 1: If (i, j) is a WN line, then node i has Ti = t and is waiting to send a message

with timestamp t+S to node j, while j has not yet processed the previous message from i, which has

timestamp t’ < t+S. By the conservative nature of the system, Tj < t’, and thus the result. Observa-

tion 2: If (i, j) is an NW line, then node j has processed the last message sent from i and no more

(by the conservative nature of the system), and waits for more input from node i. Tj, is therefore

equal to the timestamp of the last message sent from node i, which is by definition Ti+S. ■

We define the system to be deadlocked if:

1. all nodes are either in the termination state or in wait state (either waiting for
input or waiting to output), and at least one node is in a wait state, and

2. there are no two nodes waiting for each other; i. e., a waiting to output to b and b
waiting for input from a. If this is the case then node a can send a message to
node b and condition 1 is not met.

Lemma 4.3: If an LS architecture is deadlocked, then a deadlock circularity exists, and
this circularity includes both NW and WN lines.

Proof. Assume the system is deadlocked. Choose any node i which is in a non-termination state.

Node i is waiting either for input or to output. Let j be the node i waits upon. Node j cannot be a

source or sink node. If node j were a source or a sink, then by assumption, j would continue at

some point and no deadlock would exist. Node j cannot be in the termination state, because one of

its incident lines has not transmitted an EOC message. J cannot be waiting on i, because i is wait-

ing on it and by the definition of LS architectures there is only one communication line between i

and j, so j must wait on another node. Construct a sequence of intermediate nodes {N0, N1, N2,...}
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where Ni is a node in a wait state and each successive Ni waits on Ni+1. Since the number of nodes

is finite, there exist k and l such that node k and node l are the same. Let k and l be chosen such that

Nk+1,...,Nl are distinct. The sequence Nk->...->Nk must include both NW and WN lines, as there

are no directed cycles in the network, the sequence is circular, and a WN dependence represents a

step from stage i to stage i-1, while a NW dependence represents a step from stage i to stage i+1.

Note that WW and NN lines are not possible within the circularity, as the nodes connected by a

WW line can progress, and neither node waits on a NN line. ■

Corollary to Lemma 4.3: In any deadlock circularity in an LS architecture, the number of
NW lines is equal to the number of WN lines.

Proof. Choose any node in the circularity. Starting from this node, the circularity makes a number

of ‘down’ steps (WN lines - from stage i to stage i-1) and a number of ‘up’ steps (NW lines - from

stage i to stage i+1). Since these are the only two possibilities, and the path is circular, it is appar-

ent that the circularity includes the same number of ‘up’ steps as ‘down’ steps. ■

Theorem 4.1: The system is never deadlocked.

Proof. Assume the converse. By lemma 4.3 a deadlock circularity must exist, and may be defined

Nk->Nk as above. Without loss of generality, assume that Nk+1->Nk+2 is a WN line, and that the

distance value d of node Nk+1 (defined earlier as the length of all sub-paths from the node to the

sink nodes) is equal to the greatest distance value in the sequence. Both Nk+2 and Nk then have dis-

tance value d-1, and Nk->Nk+1 is a NW line. Construct the sequence of nodes {NA=Nk+1, NB,...,

NN} which includes, ordered according to their position in the circularity, all nodes within the cir-

cularity with both an incident NW and an incident WN line. Note that by selecting this set, the

lines in the deadlock circularity that connect any two nodes in the set are all NW or all WN. By

lemma 4.2,

TA > TB - bS
TB = TC + cS
TC > TD - dS
...
TN-1 > TN - nS
TN = TA + aS

where b is the number of NW lines between nodes A and B, and c is the number of WN lines

between nodes B and C, and so on. By back substitution, we reduce this set of equations to:

TA > TA + (a - b + c - d +...- n) * S

However, by corollary 4.3.1:

a - b + c - d +... - n = 0,

This contradicts our assumption, and so proves the theorem. ■
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We have shown that local synchrony timestamp ordering is deadlock-free on architectures

represented by LS graphs. Some of the arguments made (specifically in the proof of the corollary

to lemma 4.3) make reference to properties specific to LS graphs. While it is our opinion that this

proof can be extended to the class of general directed acyclic graphs, such discussion is beyond the

scope of this dissertation.

4.5.3  Termination

Showing deadlock freedom for this implementation demonstrates that the system will not

halt prematurely. By definition, information flow is one-way within the system, with no directed

loops. Each source generates a finite number of messages, which may generate at most a finite

number of other messages (a message may cause the generation of at most g ghost messages,

where g is the total number of communication lines in the system). Thus only a finite number of

messages need pass through the system in order to complete a computation. Progress follows from

deadlock freedom, and the system is guaranteed to reach the termination state in a finite number of

steps.

In the next section we present an algorithm which generates an LS graph from the archi-

tecture graph of a candidate architecture. The LS architecture which this graph represents can be

mapped onto the candidate architecture, allowing correct and deadlock-free implementation of

local synchrony on the candidate architecture.

4.6  Mapping LS Architectures onto Candidate Architectures

Consider the NYU Ultracomputer architecture. The interconnection topology of this archi-

tecture fits the requirements of the definition of LS graphs. Each node includes only one element: a

PE, an MM, or a switching element (a PE or MM might have an associated network interface unit–

for our purposes such a configuration represents a single element). PE nodes have only outputs and

MM nodes have only inputs. The sub-paths to MMs originating in each switching element all have

the same finite length (which also means that there are no directed loops in the network). Thus the



107

Ultracomputer architecture enables the implementation of local synchrony in a correct and dead-

lock-free way. This is true for any equivalent equidistant architecture.

This is not the case with non-equidistant architectures like a hypercube or mesh, however.

These architectures exhibit locality, meaning that the paths from any point to differing destinations

may be of differing lengths. Non-equidistant architectures are also generally composed of complex

nodes including PEs and MMs, as well as switching hardware.

We now prove that local synchrony can be implemented on any connected shared memory

architecture (as discussed below) by presenting an algorithm for creating an LS graph which can

be mapped onto the interconnection topology of the candidate connected shared-memory architec-

ture. Local synchrony can then be implemented on the candidate architecture by using virtual

channels [Dal92] to simulate the LS architecture represented by the LS graph, without loss of the

locality of the candidate architecture. We have already shown in previous sections that the class of

LS graphs represents interconnection topologies for architectures on which local synchrony can be

implemented in a correct and deadlock-free way.

We make the following assumptions about connected shared memory architectures:

1. A shared memory architecture consists of a network of interconnected nodes.
Each node may have zero or more PEs, MMs, and switches, although a node
must have at least one of the three, and a node with more than one input or output
must have a switch to handle node I/O (we assume without loss of generality that
PEs and MMs perform no switching functions). We further assume, without loss
of generality, that all elements within a switch are connected, and that a PE and
an MM in the same node are connected through a switch. Note that traditional
distributed memory architectures may emulate shared memory.

2. We assume for simplicity that the network is fault-free and that an I/O system is
in place to handle communication between nodes.

3. We assume, again for simplicity, that communication channels are one way. A
channel allowing two-way communication is considered to be a pair of one-way
channels.

4. Each input channel is able to buffer at least one message. Local synchrony
requires this (that the network be non-discarding) for implementation.

5. Switches perform operations sequentially, but we abstract the acceptance of input
into a buffer cell from the operation of a switch. In other words, a switch may
accept input into an empty input buffer cell while waiting to output a message to
another switch.
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6. Again, for simplicity, we will consider message traffic only from PEs to MMs.
We assume that a separate network handles the responses generated by the MMs.

7. We assume that the routing scheme in place does not route messages in such a
way that they pass through the same node more than once. This assumption elim-
inates looping and infinite length paths. This assumption may be relaxed to allow
longer finite paths for fault tolerance and load balancing purposes.

We now present the algorithm for generating an LS graph which may be mapped onto the

interconnection topology graph for any given shared memory architecture. The candidate architec-

ture may then emulate an LS architecture, in which the physical nodes of the candidate architec-

ture may consist of several virtual nodes, and the physical channels may consist of several virtual

channels. By this mapping a correct and deadlock-free implementation of local synchrony is possi-

ble on any shared-memory architecture:

1. Begin with the interconnection topology graph, C, of any shared memory archi-
tecture.

The goal is to generate an LS graph which can be mapped onto the physical architecture of

the candidate, preserving any locality present.

2. Separate all nodes in graph C with > 1 element (MM, PE, or switch) into separate
nodes, each with one and only one element. Keep any node interconnections.

There are now three sets of nodes: PE nodes, MM nodes, and SWITCH nodes. Note that a

node in the original architecture is now a set of nodes related by their physical proximity in the

candidate architecture, and that PE and MM nodes may only be connected to SWITCH nodes.

3. Translate SWITCH nodes to sets of switching nodes. Compute the set A of all
possible paths from PE nodes to MM nodes in the graph. Compute further the set
A* of all distinct lengths of paths from PE nodes to MM nodes in the graph. Let
C be the greatest length in A*. Separate each SWITCH node N’ into a set of (vir-
tual) switch nodes, {N1, N2,..., NC}, one for each possible sub-path distance.

In step three, the routing scheme employed in the candidate architecture becomes an issue.

Obviously, the routing scheme defines the possible paths which might link a PE to an MM. In this

discussion we generally consider only static, shortest path schemes, which are guaranteed to

decrease the distance to the MM with each step. However, dynamic systems with fault tolerant or

load balancing capabilities are completely compatible with this implementation technique, given
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that there is a maximum limit on the distance an access will travel before reaching global memory.

The cost in buffers of such systems is considered in section 5.1.7 and chapter 6.

4. For each switching node Ni, Ni has a connection from a PE node p if p was con-
nected to N’, and p had a path to any MM of length i.

Step 4 provides a separate output from each PE for each of the different distances mes-

sages emitted from that PE may travel. All connections made in step 4 are intra-node connections

in the candidate architecture.

5. For each switching node N1, a communication connection from N1 to an MM
node q exists if N’ was connected to q.

Step 5 connects MMs to the switch network. Since messages may only arrive at the MM

from one step away, the MM generally has only one connection.

6. For each switching node Ni, a communication connection to Ni from Mi+1 exists
if there is a connection between N’ and M’ in the candidate architecture; and for
some sub-path of length i in the candidate architecture, s = {N,...,q}, where q is
an MM node, there is a sub-path t = M’ ∪ s in the candidate architecture also.

Step 6 covers the internode connections in the candidate architecture. A connection is gen-

erated for each physical communication channel for each possible distance a message might travel

after passing through that channel.

7. Remove any switching nodes which have no communication connections from
the graph.

Step 7 removes unnecessary virtual switches created in step 3. Step 7 is unnecessary for

most interesting architectures. In section 4.8.3 we present an example of a candidate architecture

that makes use of step 7 to simplify the generated LS graph. Let us here restate the requirements

which make up the definition of LS graphs.

1. An LS graph is a directed graph {V, E}, where V consists of three distinct subsets
of nodes {VS, VI, VR), and E is a set of directed edges.

2. Nodes in VS originate directed edges only.

3. Nodes in VR terminate directed edges only.

4. Nodes in VI both originate and terminate directed edges.

5. There is no directed path from any node to itself.

6. For any node q ∈ VI, all directed paths originating at q which terminate at any
node r ∈ VR have the same length.

We now show that the translation algorithm produces an LS graph.
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Lemma 4.4: The translation algorithm creates an LS graph from the candidate architec-
ture’s interconnection topology graph.

Proof. Requirement 1 is met by steps 2 and 3 of the algorithm. Let VS be the PE nodes, VI be the

SWITCH nodes, and VR be the MM nodes in graph C after step 2. Step 3 merely subdivides the

nodes in VI. Nodes in VS are given edges only in step 4, and all edges assigned meet requirement

2. Nodes in VR are given edges in step 5, and all edges assigned meet requirement 3. Nodes in VI

are given edges in step 6. If a node in VI is assigned an input edge in step 6, it is required by the

conditions of step 6 to have at least one output edge. If a node in VI has no input or output edges, it

is eliminated by step 7. Nodes with only output edges are not possible, because the path connecting

such a node with a node in VR is by definition a sub-path of some path from a node in VS to the

node in VR, and thus a node in VI with one or more output edges must have one or more input

edges.There is no directed path from any node to itself. Nodes in VS and VR have only output and

input edges, respectively. Input edges to nodes in VI come only from nodes in VS or nodes in VI

with higher distance indexes, and output edges go only to nodes in VR and nodes in VI with lower

distance indexes. Information flow is thus only ‘one-way’. This meets requirement 5. Finally, we

prove that requirement 6 is met by induction on the number of subsets of nodes in VI. All nodes N1

∈ VI are output connected only to MMs by step 5 (and the fact that no nodes N0 ∈ VI exist), and

thus all sub-paths to nodes in VR from nodes N1 ∈ VI are of length 1. All nodes N2 ∈ VI are out-

put connected only to nodes N1 ∈ VI by step 6, and thus all sub-paths to nodes in VR from nodes

N2 ∈ VI are of length 2. Assume all sub-paths to nodes in VR from nodes Ni ∈ VI are of length i.

By step 6, all nodes Ni+1 ∈ VI are output connected only to nodes Ni ∈ VI, and thus all sub-paths

to nodes in VR from nodes Ni+1 ∈ VI are of length i+1. By induction, requirement 6 is met. ■

An LS graph which is mappable onto the candidate architecture results from performing

this algorithm. The LS graph represents an equivalent architecture on which local synchrony can

be implemented in a correct and deadlock-free way. However, via mapping the locality of the can-

didate architecture is preserved. Each node in the candidate architecture becomes a set of virtual

nodes. Emulating the resultant LS architecture on the candidate architecture requires only the use

of virtual channels [Dal92] to create virtual switching nodes within the switching elements of the

candidate architecture.

The next section presents several examples of the process of generating an LS architecture

from a candidate architecture.



111

4.7  Examples of Local Synchrony Implementations

This section includes several examples of specific implementations of local synchrony on

non-trivial candidate architectures. Implementation is made possible by using the algorithm of sec-

tion 4.7 to generate an LS architecture which can be mapped onto the candidate architecture.

4.7.1  Implementation on a Torus

We first perform the transformation algorithm on a 3x3 torus (wrapped mesh or 3-ary 2-

cube) architecture. Figure 24 presents the candidate architecture and the node architecture for the

candidate. We assume a simple routing scheme for accesses. An access first moves along its source

‘row’ until it reaches its destination column, then continues to its destination. This scheme is

equivalent to high-order E-routing in binary n-cube architectures.

FIGURE 24.  3x3 torus and torus node architecture.

Figure 25 shows the architecture after step 2 of the transformation algorithm. The layout

has been modified for readability. Note that all inter- and intra-node connections are intact at this

point.

FIGURE 25.  3x3 torus after step 2 of transformation algorithm.
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In calculating the set of all paths from switching nodes to MMs, we find the maximum

length of any path to be three (note that this maximum length includes the step from a local switch

to it’s local MM). Each switching node is divided into three separate switching elements, to handle

accesses with varying distances to travel to their destination MM. The state of the transformation

after step 3 is depicted in figure 26.

FIGURE 26.  3x3 torus after step 3 of transformation algorithm.

Figure 27 shows the transformation after step 4 of the algorithm. Step 4 connects PEs to

switching elements. Note that in the case of the torus, each PE is connected to each of its ‘local’

switching elements. PEs can only be connected to ‘local’ switching elements, but need not neces-

sarily be connected to each.

FIGURE 27.  3x3 torus after step 4 of transformation algorithm.
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the switches (a PE or MM cannot have a direct ‘outside’ connection, but must communicate

through a switch). Figure 28 shows the transformation after step 5 of the algorithm.

FIGURE 28.  3x3 torus after step 5 of transformation algorithms.

Step 6 of the transformation process forms the switching element interconnections, and is

shown in figure 29. Note that switches on a given level are connected only to switches on the level

above and the level below, and that the direction of flow is always downward on the graph. This

shows the absence of directed loops in the graph.

FIGURE 29.  3x3 torus after complete transformation algorithm.

Step 7 has no effect on this transformation, as all switching elements are connected, so fig-

ure 28 depicts the torus after complete transformation into an LS architecture.
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4.7.2  Implementation on a Binary 3-Cube

The binary n-cube architecture has proven to be a popular parallel computing architecture.

We present here a brief example of an LS graph transformation of a binary 3-cube architecture,

depicted in figure 30.

FIGURE 30.  Binary 3-cube architecture.

For simplicity, we assume a static, low-order e-routing scheme for global memory

accesses. Low-order e-routing sends messages along paths which cross the lowest dimension (as

represented by the node ID) which must be crossed in order to reach the destination node. The

transformation algorithm will generate an LS graph (which represents an LS architecture, which

guarantees correct, deadlock-free implementation of local synchrony) for any routing scheme,

given that routing paths have a finite maximum length.

FIGURE 31.  Final LS graph transformation for binary 3-cube.

Nodes in the cube are assumed to include a PE, an MM, and a switch. Figure 31 shows the

LS graph translation of the binary 3-cube architecture, assuming the low-order e-routing scheme.
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and 4 sub-switches (the longest path allowable by the routing scheme in the candidate architecture

is of length 4, including the step from local switch to MM). Note again that in the LS graph trans-

lation, there is no connection between any two nodes which cannot be simulated by a true physical

connection in the candidate architecture.

4.7.3  Implementation on a Crossbar

FIGURE 32.  3x3 crossbar.

A crossbar network is an indirect network as shown in figure 32. A square network of

switches connects a row of MMs to a column of PEs. This example illustrates how the general

implementation technique works for non-equidistant, indirect networks. We will assume for this

example that the routing scheme transfers global memory accesses along the origin row to the des-

tination column and then to the destination.

FIGURE 33.  Intermediate state of S31 and S12 in transformation.

In the transformation algorithm, step 2 does not change the graph. All nodes already have

only one element. In step 3, we compute that the longest path from any switching element to any

MM is of length five, so each switching node is divided into five switching elements. Figure 33
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ments have no inputs or outputs and will be discarded in step 7. Note that no PE or MM in the

crossbar architecture has any ‘local’ switching elements.

FIGURE 34.  Final transformation for 3x3 crossbar.

The result of the transformation algorithm is presented in figure 34. In the case of the

crossbar, switch nodes in the candidate architecture are divided into different numbers of switch-

ing elements. In each of the previous examples, all switching nodes were redesigned in the same

fashion. This is a function of the underlying topology of the candidate architecture.
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For example, in figure 31 above, switch S31 is separated into three virtual switching elements.

Both 31-4 and 31-5 use the physical channel connecting S31 to S32. 31-4 would normally be given

priority over 31-5 for use of the channel, as it opens buffer cells closer to global memory. 31-5

would get access to the channel if 31-4 was empty or blocked. This is the simplest algorithm for

physical channel allocation to virtual switching elements. Other algorithms might achieve a more

fair distribution of access without the possibility of deadlock, given that a blocked virtual switch-

ing element cannot continually hold the physical channel while other virtual switching elements

that might proceed are locked out.

4.9  Memory Requirements for Implementation

In order to implement the virtual switching elements required for a non-trivial local syn-

chrony implementation, the minimum buffer requirements of the systems must be enlarged.

Instead of a minimum of one buffer cell per physical channel, such an implementation would

require a minimum of one buffer cell per virtual channel.

The number of extra buffer cells required varies depending on the topology of the candi-

date architecture. This implementation of local synchrony may also be compared to the modified

Chandy/Misra approach, which eliminates the LS graph translation technique but requires that

each input queue in the system be long enough to buffer all the messages it might receive within a

given ltu.

In general, our implementation requires O(d) extra buffer cells per physical channel,

where d is the depth, or longest distance an access might travel within the network. In order to

avoid deadlock, the time increment approach with directed cycles (applying the approach to non-

LS architectures–we will refer to this as the modified Chandy/Misra, or MCM, approach) requires

O(nk) extra buffer cells per physical channel, where n is the number of sources (PEs) and k is the

number of accesses a source can emit during an ltu. While it is possible for the depth d to be O(n),

this is a worst case situation, and most interesting architectures have d of smaller magnitude.
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Consider the three examples we presented in section 4.7. The torus has O(n) physical

channels total. Since the depth of the torus topology is n1/2, implementing local synchrony requires

O(n3/2) buffer cells total. The memory cost of MCM would be O(kn2) total buffer cells over all

nodes, where k is the maximum number of accesses that might be released by a PE in a given ltu.

The binary n-cube has O(n log n) physical channels total. Since the depth of the hypercube

is log n, local synchrony implementation requires O(n [log n]2) buffer cells total. This result con-

trasts with MCM, which requires O(kn2 [log n]) buffer cells total.

The requirements for the crossbar are more difficult to calculate because of the varying

buffer cell requirements for different nodes. The crossbar has O(n2) physical channels total.Since

the depth of the crossbar is O(n), a local synchrony implementation requiresO(n3) buffer cells

total. Again, this result contrasts with MCM, which requires O(kn3) buffer cells total.

Our examples have only considered shortest-path routing schemes. A designer may wish

to incorporate fault-tolerance or load-balancing into an implementation by providing non-shortest-

path capability, including looping in access paths. This is possible within the confines of a local

synchrony implementation, as long as a maximum path length is enforced. The maximum path

length determines the depth of the LS graph that will be mapped onto the candidate architecture,

and thus must be finite and defined by the routing scheme. Note that any finite routing scheme will

be deadlock-free in this implementation, by virtue of the LS graph mapping. Because of buffer

costs, we would expect the maximum path length to best be limited to a small number of steps

more than the physical maximum enforced by the candidate architecture.

For example, a local synchrony implementation on a binary 10-cube has an architectural

maximum path length of 10 steps. The designer might wish to increase this limit artificially to 16,

to allow for load balancing or fault tolerance. Instead of 10 virtual switching elements, each switch

is divided into 16 elements. Note that, although accesses may be passed back to nodes they have

previously passed, this does not affect the non-looping requirement of the LS graph, and thus the

deadlock-freedom for the implementation.
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4.10  Summary

In this chapter, we presented a general technique that allows local synchrony to be imple-

mented on any shared memory architecture. Our implementation scheme preserves any locality

present in the physical architecture, and provides greater opportunities for parallelism and less

overhead than other approaches.

First we defined correctness criteria for local synchrony implementations. Then we dis-

cussed two different approaches to the implementation of local synchrony, based on the logical

service time of a switching element. We showed that each approach has different problems in

implementation. Our choice of approach was the time increment approach, which is more efficient

and uses less resources than the time propagate approach.

We defined LS graphs, and presented a local synchrony implementation for architectures

represented by LS graphs. We proved that this implementation is correct and deadlock-free. The

we presented an algorithm which generates an LS graph which is mappable onto any candidate

shared-memory architecture, and proved the algorithm correct.

Finally, we gave several examples of LS graph transformations for interesting architec-

tures. Also we discussed the operation of virtual switching elements, which are used in LS graph

mapping, memory requirements for implementation, and compatibility with different routing

schemes.

In the next chapter, we discuss some of the fault-tolerance aspects of local synchrony

implementations.
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5.0  Fault-Tolerance Issues
This chapter discusses some issues regarding fault-tolerance in the general local syn-

chrony implementation presented in chapter 4. Because logical synchronization is built into local

synchrony, some traditionally difficult fault-tolerance problems are easily implemented in locally

synchronous systems. This is in contrast to traditional implementations, where synchronization

must be considered in the problem solution.

A local synchrony implementation is able to tolerate certain types of temporary faults

without compromising its state. Permanent faults may also be tolerated using redundant path tech-

niques in hardware, which have been proposed in the literature.

We present a local synchrony rollback (LSR) procedure for checkpointing and rollback of

computations in the general local synchrony implementation presented in Chapter 4. We define a

checkpointing procedure which is guaranteed to save a consistent system state. Then we present a

rollback procedure that is simple to implement and does not require processes to suspend execu-

tion. We show that the rollback procedure is correct, and that under certain circumstances it is pos-

sible to limit the number of saved checkpoints through validation, which guarantees that no

rollback will occur beyond a given checkpoint.

5.1  The Preservation of System State in the Presence of Faults

We discuss the operation of local synchrony in the presence of a single, simple fault. The

fault in this case will be the failure of a single physical communication channel. The operation of a

fail-stop [Sch83] system requires that failures be detected before the system may enter any state

resulting from the fault. The importance of fail-stop operation is that no information in the system

is changed or lost due to a fault. For example, a fail-stop channel fault would not cause the loss of

any access from the system. An access being transmitted when the fault occurred would either be

fully transmitted or not transmitted at all.
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We argue that the normal operation of a locally synchronous system is guaranteed to be

tolerant of fail-stop faults, due to its conservative nature. Throughout this chapter, we make the

following assumptions about the architecture on which our implementation is operating:

1. The architecture is composed of a packet-switching network, singly buffered on
input channels only.

2. The routing scheme for accesses is static. In other words, accesses bound for a
given MM will always follow the same path.

3. The communication channels of the network are fail/safe. In other words, the
failure of a channel does not cause accesses to be lost or partially transmitted.
Incorrectly transmitted accesses are assumed to be detectable.

4. The cessation of computational progress is detectable. The system is able to
detect a channel fault, given that the progress of the computation has been halted.

5. Channels or nodes which have failed can be repaired or replaced.

Also we make the following statements concerning an implementation of local synchrony:

A local synchrony implementation is a conservative (timestamp) ordering system.
Thus, an element (PE, switch, or MM) operating in a locally synchronous manner
must perform actions (pass or execute accesses) on a given resource (channel,
memory location) in a manner which preserves a serializable schedule of global
memory access. An element operating in a conservative manner is constrained not
to perform any action until it has, with certainty, performed all previous actions,
by the ordering constraint.

Consider the failure of a communication channel that handles accesses being transmitted

from node A to node B. Channel AB acts as a resource necessary for some of the actions to be per-

formed by node A. Since the fault has made this resource unavailable, node A must hold any

actions requiring it. Node A can continue operation only by performing actions that do not utilize

channel AB. When node A has nothing but actions requiring channel AB, it will block.

Node B will block within a finite amount of time after it finds the input buffer for channel

AB empty. This condition is due to the conservative nature of the operation of a locally synchro-

nous switch. Note that both A and B are ‘blind’ to the failure of channel AB. Both nodes are oper-

ating normally under the conservative principle that, being unable to choose (node B) or perform

(node A) its next action, an element must block.
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Assuming the faulty channel can be replaced/repaired, processing will continue normally.

A and B (and their neighbors) might have fallen behind during the interim, but the conservative

nature of local synchrony has guaranteed that no action has been performed out of order.

The computation may also be allowed to continue until progress has halted. The other

neighbors of nodes A and B will block next, awaiting information from a node which is currently

blocked. Again, these nodes will continue operation only to the point at which they cannot conser-

vatively choose or perform their next action. At some later juncture, the blocked condition will

have spread to every node, and computational progress will cease. Each switch, MM, and PE will

be blocked, either waiting to receive information or waiting to send information to a currently full

buffer (a PE might be idle, having finished its program). Once again, note that since conservative

operation occurs at each element in the system, no action has been performed contrary to the

ordering requirements of local synchrony.

At this point, the state of the computation may be saved to some stable storage or trans-

ferred to a non-faulty machine. This includes the states of global memory; all access queues in the

network; and the local memory, program, and process state of each PE. When the faulty channel

has been fixed, the computation may be reloaded and restarted at the exact point where it blocked,

with no compromise of local synchrony.

Of course, the same guarantee can be made for fail-stop node faults within the network. As

long as the current state of the node (buffers, MM, PE) is not lost, it can be restored when the node

is repaired and the computation restarted without error. Given that information is not lost in the

face of component failures, the state in which the network (or part thereof) blocks, even in the face

of numerous faults, will not compromise the constructible serial schedule of global memory

accesses guaranteed by local synchrony.

We can relax the assumption of fail/safe communication channels so that a simple hand-

shaking protocol is in place on each channel. Such a protocol requires the receiver to send an

acknowledgment to the sender when the access in transit has been received. This acknowledgment
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is not sent unless the entire, correct access has been received (remember we assume that incor-

rectly transmitted accesses are detectable), and the sending node does not discard its copy of an

access until the acknowledgment is received.

If the fault occurs before a given access is fully transmitted, the receiving node operates as

if the access was never received. A node’s action in this case is no different than it would be in the

fail/safe system described above. If the fault occurs between transmission of an access and trans-

mission of the acknowledgment, then the receiving node will continue to operate (including trans-

mission of the access in question) until it is forced to block, due to the faulty channel. When the

channel is restored, the sender, not having received the acknowledgment from the receiver, will

send the same access again. The receiving node need only keep a record of the last access it has

received on this line. If the newly received access is the same as the last, or if it breaks the sorted

transmission rule, then it is discarded, having already been processed.

5.2  A Single-Level Fault-Tolerance System

Locally synchronous implementations can be designed to tolerate the permanent failure of

a communication channel. Consider the system described above, without assuming that failed

channels can be repaired. For a given computation to complete in the face of a permanent channel

failure, without compromising local synchrony, those accesses normally transmitted through the

faulty channel must be rerouted so that they still reach the ‘other side’ of the channel in the correct

sequence. We will assume that a node is capable of detecting a faulty communication channel.

Again, this is possible because local synchrony guarantees the preservation of system state

in the presence of a fault. The receiving node will block until input from the given (faulty) channel

is received. We need only describe a system for passing those accesses along another path, effec-

tively bypassing the faulty channel. We do this by providing an ‘escape-hatch’ in the buffers and

hardware of switches in the network.

We assume that the hardware implementation provides alternate hardware communication

paths from a given source to a given destination. For example, if line 00-01 in a binary 3-cube is
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faulty, then a suitable alternate communication path would be lines 00-10, 10-11, and 11-01. Much

of the literature is devoted to redundant path designs for various architectural topologies

[TYZ85][BaB87][IIS82][VaR86].

When a node detects a faulty output channel, it simply redirects accesses that would nor-

mally be output on the faulty channel along another transmission path, toward the neighboring

node along the faulty channel. These accesses are tagged with a temporary destination (the receiv-

ing node at the other end of the faulty channel) and are designated as special accesses. Special

accesses are not bound by the normal conventions of local synchrony. They have transmission pri-

ority over ‘normal’ accesses: a node having a choice between a normal and a special access will

route the special access first. Special accesses are segregated from the stream of normal accesses

by the allocation of separate buffers in the switching hardware. In this way, special accesses can

find their way around the alternate route even if all the normal access buffers along that route are

currently full and progress has been halted. A diagram of a switch design is presented in figure 35.

FIGURE 35.  Design of a single-level fault tolerant switch input.

Upon receiving a special access, a node first checks its temporary destination. If the tem-

porary destination is not the node itself, the access is sent on unchanged. If the temporary destina-

tion names the node itself (the node has a faulty input channel on which the special access was

supposed to be transmitted), then the node processes the access in order, changing it back to a nor-

mal access when it is transmitted.
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The special access is guaranteed to arrive before any later accesses are processed at the

temporary destination because the temporary destination requires information on all inputs in

order to conservatively choose its next action. As long as a special access has not arrived at its

temporary destination, the temporary destination can make conservative processing decisions

upon only the information it last received on the now-faulty channel. This information has an ear-

lier timestamp than the special access, so any processing decision made by the temporary destina-

tion will also have an earlier timestamp. The special access is then guaranteed to arrive before any

processing decision with equal or greater timestamp is made at the temporary destination, and will

thus be processed in order there.

The deadlock freedom of the implementation is not affected, because alternate paths do

not use resources normally allocated to regular communication paths, and special accesses thus

cannot block normal accesses within the network. While the transmission of special accesses may

delay the transmission of normal accesses, it cannot do so indefinitely.

In this way, the system can tolerate a minimum of one permanent faulty channel in the net-

work. Such a system could tolerate any number of non-conflicting faults. Two faults conflict if

their alternate routes share channels. This requirement generally limits the tolerance of faults in

input (output) channels that are connected to a given node to half the total number of input (output)

channels connected to that node.

As long as faults are non-conflicting, blocking and deadlock cannot occur, as the special

accesses using any given path were all generated by a single node. If faults conflict, then the con-

servatism of the implementation may be compromised (out of order message processing) or dead-

lock can occur, and a rollback (with fault removal) or restart of the calculation must occur.

5.3  A Rollback Algorithm for Local Synchrony

The domino effect [Ran75] is the main obstacle to implementing rollback recovery in a

distributed system. An element’s rollback to a checkpoint can cause other entities to roll back in a

potentially unlimited chain. Randell pointed out that the domino effect can be eliminated if it is
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possible to synchronize state saving checkpoints. Local synchrony allows absolute synchroniza-

tion of checkpoints to be implemented without checkpoint communication and with no more syn-

chronization overhead than is already present in the system.

In [TKT92], the authors define a consistent system state as a set of recovery points, one for

each node within the system, such that restoring all recovery points will not cause any orphan

(lost) messages. Our approach is to define a set of recovery points, or checkpoint, for all nodes

within the system in which no outstanding messages exist, and thus no orphans are possible.

In this section, we present a procedure for checkpointing and rollback for computations

taking place in a locally synchronous environment as described in Chapter 4. Such a procedure can

be shown to be correct if it meets these conditions:

1. Checkpointed states are consistent system states.
2. Each system element rolls back to the checkpoint in such a way that local syn-

chrony is maintained (the rollback is synchronized).

We will show that the procedure described below meets each of these conditions. Because

each element (other than PEs) within a locally synchronous isotach system increments the logical

time of a message by a single ltu when processing the message, we make the following distinction:

Definition: The current logical time of a message is its current timestamp.The current
logical time of an element is the current logical timestamp of the last message processed
by that element.

Definition: The execute logical time of a message is the current logical time of the mes-
sage when it is executed at its target MM. The execute logical time of an element is the
execute logical time of the last message processed by the element; e.g., if a message with
current timestamp l is processed by element A and will be processed by an MM at time
l+i, the execute logical time of element A is l+i.

We measure i as positive if the element processes messages on their way to the MMs, and

negative if the element processes messages returning to PEs from the MMs.

We make this distinction in order to simplify later arguments concerning the correctness of

our checkpointing and rollback procedure. While current logical time differences between ele-

ments or messages are a function of the distance between them, execute logical time differences

measure the true logical time differences between elements or messages, based on the serial sched-

ule of global memory accesses guaranteed by the local synchrony implementation. Each ltu mea-
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sured in execute logical time (e.g., as processed at the MMs) is a barrier consistent with the

sequential consistency and atomicity constraints of local synchrony (see Chapter 2).

Consider a real-time synchronous shared memory processor in which all memory request

processing takes place during a certain period of each network cycle, and the response to any

access sent during a cycle is guaranteed to return during the same cycle. Such a system reaches a

consistent state at the end of each network cycle, because no accesses are outstanding and, there-

fore, none can be orphaned by saving state at each node. Note that switching elements are all

empty at the end of a network cycle.

We define a checkpoint for the general local synchrony implementation (Chapter 4) and

show that it describes a consistent system state. Because local synchrony is an asynchronous sys-

tem (it is only logically synchronous), there is no guaranteed physical time when the state of the

entire system is consistent. We can generate a consistent state, however, by synchronizing state

saving at checkpoints in execute logical time. The checkpoint is reached at an element when the

element processes a pre-specified token, called the checkpoint token. The global state saved at the

checkpoint consists of:

1. The process state of each process when its PE has queued the checkpoint token
(and before any accesses to be executed after the checkpoint have been gener-
ated); and

2. The state of each local memory and of global memory after all accesses queued
before the checkpoint have been executed and responses returned.

The checkpoint includes the states of processes and local and global memory. Since no

processes or memory reside at switches, the switches have no state and no action in the checkpoint

procedure. We describe the state saving process at each element:

1. Switching elements - There is no state to save. There are no outstanding accesses
or responses in the entire system at the logical checkpoint, and thus all switches
appear to be empty.

2. MMs - Each saves its current state when the checkpoint token arrives on its input.

3. PEs - A PE begins a checkpoint by saving its process state (for simplicity, we
assume that PE multiprocessing is not in effect) when the checkpoint token is
queued at each PE output. The checkpoint is fully saved by saving the responses
to all accesses made prior to the checkpoint (before the execute logical time
specified by the checkpoint token). At each PE input, responses are saved until
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the checkpoint token returns on that input (when the PE input has reached the
checkpoint). In other words, the state includes the execution point of the PE and
the responses to all accesses made before the execution point was saved.

We now show our checkpointing procedure meets the Correctness Condition 1 as stated

above:

Lemma 5.1: The checkpointed state is logically consistent at all elements within the sys-
tem.

Proof: By contradiction. Assume the checkpointed state is not consistent. Then one or more of the

following is true: 1) some saved process state is inconsistent; 2) some access response that should

have been saved in a local memory state was not saved; 3) some access response that should not

have been saved in a local memory state was saved; or 4) some saved MM global memory state is

inconsistent. We take each case separately. Case 1 is impossible because the processes initiate the

checkpoint by queueing the checkpoint token. By assumption, each process saves its state after this

action and before any other action. The atomicity and sequential consistency constraints described

in Chapter 2 guarantee that a PE will not generate accesses to be executed after the checkpoint

until it has, with certainty, generated all accesses to be performed prior to the checkpoint, and sent

the checkpoint token. For case 2 to be true, the response to an access that should be saved must

return after the checkpoint token. This is not possible because all accesses sent prior to the check-

point token have execute timestamps less than the checkpoint token, and, by the conservative

nature of local synchrony, their responses will arrive back at the PEs before the checkpoint token

and thus be part of the saved state. The same argument may be applied to case 3, as any access sent

after the checkpoint token has higher execute timestamp, and thus its response will arrive at the PE

after the checkpoint token and not be part of the saved state. Case 4 is also not possible. By the

conservative nature of local synchrony, the MMs will not accept the checkpoint token and save

their state until they have processed all accesses with execute timestamp less than the checkpoint

token, and before any access with execute timestamp greater than the checkpoint token. Each case

is not possible. Contradiction. ■

The total saved state then includes the process states at the checkpoint and the state of

local and shared memory after all accesses made before the checkpoint have been performed and

responses received. Of course, because the checkpoint is logical instead of physical, there is gener-

ally no physical time when the system is actually in this state. Instead, the effect of the implied

serial schedule of shared memory accesses is that a process within the system could observe such a

state.
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Checkpoints are set to occur at regular intervals of execute logical time rather than physi-

cal time, eliminating possible clock synchronization problems. The disadvantages of the tradi-

tional synchronized approach are the costs of checkpoint communication and synchronization

delays during normal operation [BLL90] [Kim88]. Local synchrony requires no checkpoint com-

munication and has already built synchronization overhead into the system in order to facilitate

concurrent access to global memory.

In section 5.2, we showed that local synchrony was compatible with standard link and

node failure hardware protocols for redirecting messages around a fault. It is beyond the scope of

this work to consider hardware fault detection strategies or the faults that might generate the need

for rollback. We assume that such fault detection systems are in place, and that process and mem-

ory states described below are saved to non-volatile, recoverable storage, which may be directly

accessed by the PE or MM when rollback is necessary. We present here the LSR procedure used to

roll back a computation to a previously checkpointed system state when a fault has occurred:

1. A fault is detected.

We assume that the detection strategy provides enough information to determine the latest

checkpoint which is uncontaminated by the fault. We will call this the rollback checkpoint. We

assume that the rollback checkpoint has been completely saved; i.e., all elements have execute log-

ical time later than the checkpoint. For simplicity, we further assume that the recovery phase in the

system is fault-free. If a fault is detected during the recovery phase, the fault detection system may

regenerate the rollback request after the current rollback has concluded.

2. Each PE is informed of the rollback request and rollback checkpoint.

We assume that the fault detection system executes this step in one of two ways: (1) either

it is able to inform PEs directly of a rollback request, or (2) it is able to place the request in a loca-

tion in global memory (we assume for simplicity that it is possible to do this at the beginning of

any given ltu, before any PE has accessed the location) that is accessed regularly (and regularly

accessible) at predetermined logical times by each PE.

3. Each PE queues rollback tokens on each output.
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After being notified of the rollback request, each PE immediately flushes its output queues

of any messages and queues a rollback token on each output. Rollback tokens are special tokens

which are distinguishable from normal tokens. Any element receiving a rollback token discards all

other messages (including normal tokens) until rollback tokens appear on each input. The element

then passes rollback tokens on each output, performs its initialization actions, and continues pro-

cessing normally.

MMs may be apprised of the rollback checkpoint by the recovery system, in which case

they immediately restore their state to the checkpoint and ignore all input until the receipt of roll-

back tokens on each input, at which time they pass rollback tokens on each output and continue

processing normally. Alternatively, MMs may receive checkpoint information from the rollback

tokens.

4. Migration occurs, if necessary.

We note here that an interval of logical time may be set aside for any migration activity

necessary. This is only a general discussion of simple migration, and not an in-depth study of pos-

sible migration actions. If processes or memory must migrate, the original rollback request would

include the requirement for a migration period. For a simple migration, this period would last at

most 2 ltus (in execute logical time—for process migration between PEs, a WRITE followed by a

READ; we assume memory migration occurs off line and PEs would need only to read a new

memory map, which can be performed in a single ltu). During this period, process execution may

be suspended, if necessary.

5. Processes resume execution from the checkpointed state. Other elements resume
normal operation upon receipt of the rollback tokens.

The rollback tokens move across the network to the MMs and back to the PEs, acting as a

barrier. Pre-barrier actions are ignored, and processing resumes in the checkpointed state after the

barrier has passed. We now show our checkpointing procedure meets the Correctness Condition 2

as stated above:
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Lemma 5.2: The LSR rollback algorithm guarantees that each system element rolls back
to the checkpoint in such a way that local synchrony is maintained (the rollback is syn-
chronized).

Proof: The rollback is synchronized by the rollback tokens. Rollback tokens have, in effect, a

greater execute timestamp than any message in the system prior to the rollback request, but earlier

execute timestamp than any message sent after rollback has occurred. Thus, all pre-rollback

actions occur prior to the rollback, and all post-rollback actions occur after the rollback. Because

rollback tokens are treated like tokens (when a rollback token is at the head of each input, all are

consumed and rollback tokens are sent on each output), they constitute a barrier which synchro-

nizes the rollback of each element in the system. The rollback meets Correctness Condition 2. ■

Finally:

Theorem 5.1: The LSR rollback algorithm guarantees correct rollbacks of parallel com-
putations.

Proof: We have stated that the checkpointing and rollback procedure is correct if it meets the cor-

rectness conditions as stated above. Lemma 5.1 shows that the procedure meets Correctness Con-

dition 1, and lemma 5.2 shows that the procedure meets Correctness Condition 2. ■

5.4  Checkpoint Validation

We now show that under certain constraints a local synchrony implementation using the

LSR checkpointing and rollback procedure can limit the number of checkpoints which must be

retained by a process. We note that throughout this section, we refer to logical times and time peri-

ods in the execute sense, as described in the previous section. For example, when we discuss the

PE inputs as having all passed logical time i, we mean that each has execute logical time greater

than i.

It is possible for a local synchrony implementation to checkpoint at the beginning of each

ltu. Because of the loose synchronization inherent in local synchrony implementations, it is possi-

ble to bound the number of checkpoints which must be retained by a process. A checkpoint is val-

idated when no rollback will occur to an earlier checkpoint. Once a checkpoint is validated, there

is no need to save earlier checkpoints.

In order to discuss checkpoint validation, it is important to understand the notion of time

lags within a local synchrony computation. Any element within the system may at any time have
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progressed to a different logical time than any other element. If this is the case, a logical time lag

exists between the two elements. Because of the conservatism and loose synchronization of local

synchrony implementations, there are limits on the amount of lag possible between elements. For

example, the limit of the time lag (either current or execute) between any two consecutive cells in

an input queue is a single ltu. If each cell holds a token, then by conservatism the tokens must

mark consecutive ltus. If each cell holds an access, the accesses are guaranteed to be in the same

ltu.

A PE input covers an MM if responses from the MM arrive on the input . Before present-

ing our checkpoint validation arguments, we define the following:

In the general local synchrony implementation, the difference between the execute logi-
cal times of any two PE inputs both of which cover a given MM is called the execute
input lag between those PEs.

We make the following observation about execute lags within a local synchrony imple-

mentation:

The execute input lag, Linput, between inputs covering an MM of any two PEs at a given
physical time cannot exceed ds, where d is the depth of the network and s is the number
of cells per input queue and the number of cells per output queue in a switch (presumed
equal at all switches).

Consider two PE inputs (into separate PEs) which cover the same MM. There exists a

switch between the PEs and the MMs where the streams of responses bound for the two PEs split.

At this switch, the execute logical time of the message in the front of each input stream at the

switch cannot differ by more than one ltu (one input holds a token beginbning ltu i+1 while the

other holds a message to be processed during ltu i). By the conservative nature of local synchrony,

it is impossible for either PE input to have later execute logical time than the current execute logi-

cal time of the switch. Since each message inbound to a PE input can change that input’s logical

time by at most one ltu (the reception of a token), the PE input’s execute logical time cannot be

less than the execute logical time of the switch by more ltus than the number of message slots

along the shortest direct path between the input and the switch, which is limited by d. The maxi-
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mum lag between two PE inputs will be smaller if their ‘split switch’ is fewer than d steps away.

The argument for the PE outputs is similar.

We assume that a fault during ltu i will be discovered by the fault detection system within

k ltus of the time all PEs have received responses to all accesses made up to and including ltu i, and

that checkpoints occur every m ltus. We further assume that the recovery system can directly

inform PEs of rollback requests. A checkpoint, c, is thus validated (guaranteed correct) at the vali-

dation ltu, V(c), when all PE inputs have progressed k+1 ltus beyond the checkpoint.

A PE finishes a checkpoint c when it receives the checkpoint token on all of its inputs. A

rollback request may be generated at any execute logical time up to ltu c+k. Since the PE inputs of

any two PEs cannot have a execute lag of more than max(Linput), a PE knows that checkpoint c is

validated after the PE’s inputs have passed the validation ltu:

 V(c) = c+k+max(Linput)+1 (EQ 19)

Ltu V(c)-1 is the last possible ltu at which a PE could be notified of a rollback request for a

checkpoint prior to checkpoint c. When a PE reaches V(c) on its inputs, it is assured that all system

entities have passed ltu c+k+1, which validates the checkpoint. If m is the checkpoint interval,

then at any time, up to (k+max(Linput)+1)/m checkpoints will not yet have been validated. Once a

checkpoint is validated, all previous checkpoints may be discarded. In this way, the system can

guarantee the ability to roll back while keeping no more than two checkpoints in memory at any

time, by making the checkpoint interval m equal to or greater than max(Linput)+k+1.At least two

checkpoints must be saved because an error may occur between the beginning and end of the

checkpoint procedure. The number of stored checkpoints required for a given checkpoint interval

m is max(2, (k+max(Linput)+1)/m).

Note that PEs can validate checkpoints without any global synchronization. Once a check-

point is validated, either the PEs or the recovery system can cause the MMs to discard older check-

pointed states.
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5.5  Summary

In this chapter, we discussed some issues regarding fault tolerance in the general local syn-

chrony implementation presented in chapter 4. Because logical synchronization is built into the

local synchrony implementation, some traditionally difficult fault-tolerance problems are easily

implemented in locally synchronous systems.

A local synchrony implementation is able to tolerate certain types of temporary faults

without compromising its state. Permanent faults may also be tolerated using redundant path tech-

niques in hardware, which have been proposed in the literature.

We presented the LSR procedure for checkpointing and rollback of a computation in the

general local synchrony implementation, and proved it correct. Finally, we showed that under cer-

tain circumstances it is possible to limit the number of saved checkpoints through checkpoint vali-

dation.

In the next chapter, we present analytical models and simulation studies which predict the

performance of locally synchronous systems in comparison with conventional systems.
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6.0  Performance
In this chapter, we present the results of simulation and analytical studies of local syn-

chrony implementations. We use mean value analysis in modeling local synchrony. Our analytical

models predict the theoretical raw power performance of the implementations and agree closely

with the raw power results of our simulation studies.

The simulation studies, performed jointly with Craig Williams [RWW92], compare the

performance of local synchrony implementations with conventional implementations for different

types of workloads, based on various levels of concurrency control requirements.

Section 6.1 presents an overview of the architectures modeled and the internal communi-

cation algorithms performed by each. Section 6.2 describes the analytical models we have devel-

oped and uses these models to generate performance predictions. Section 6.3 presents the results of

our simulation studies. In section 6.4, we compare local synchrony to another approach to logical

timestamp ordering for concurrency control, and present simulation data comparing the two

approaches.

6.1  Architectures Modeled

The architectural model assumed in this study is a MIMD shared memory parallel proces-

sor based on a multi-stage switching network. We simulate two types of local synchrony architec-

tures in the analytical study and simulate these and two similar conventional implementations in

the simulation study. Each network is composed of 2x2 switches interconnected in the same base-

line network topology. A diagram of a multistage interconnection network with this topology is

shown in figure 36. The message transmission protocol is store-and-forward using a send-

acknowledge protocol [REF87]. To allow the use of time-stepped simulation, we assume the net-

works are clocked; i. e., switches begin each cycle simultaneously. We believe the results are also

applicable to self-timed networks.
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FIGURE 36.  A 4 stage interconnection network.

The networks differ only in the design of the individual switches and in the algorithms the

switches execute. Networks C1 and I1 are both composed of 2x2 crossbar switches with input and

output buffer queues. Networks C2 and I2 use more sophisticated switches, called z-switches, that

yield higher throughput at some cost in latency. We developed the z-switch [RWW92] to improve

the throughput of the local synchrony network. When it proved successful, we translated it into a

conventional switch design to enable us to compare the z-switch version of the local synchrony

network(I2) to a conventional network with comparable routing advantages (C2). In the context of

a conventional network, the z-switch is similar to switch designs with output buffers [KHM87] or

internal buffers [KuJ84].

We assume switches in C1 and I1 have the same cycle time; i. e., we assume that the

amount of time required in the absence of conflicts for a message to travel through a switch in C1

is the same as in I1. All performance data is measured in units of this cycle time. The switches in

networks C2 and I2 are assumed to have twice the latency of those in C1 and I1.

6.1.1  Conventional network C1

The switches in network C1 consist of two input queues, two output buffers, and a routing

unit that can route a message from either of the two inputs to either of the two outputs. Each buffer

can hold a single message and each queue consists of one or more buffers. A diagram of the switch

architecture appears in figure 37..

PEs

MMs

Network
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FIGURE 37.  Simple switch design (C1 and I1)

The switching cycle of switches in network C1 consists of two steps: an internal commu-

nication phase, in which each switch attempts to route messages on its inputs to its outputs; and an

external communication phase, in which each switch attempts to send the messages on its outputs

to the inputs of switches at the next stage, using a send-acknowledge protocol. The internal com-

munication and external communication phases at each switch are as follows:

Internal Communication Phase:

1. Choose an input randomly (whether its buffer is full or empty) such that each
input is chosen with equal probability.

2. If the input holds a message, determine the output on which the message should
be routed.

3. If the output is available, route the message; i.e., move it to the correct output.

4. Repeat steps 2 and 3 with the other input. (Note that a switch is capable of rout-
ing two messages in a single internal communication phase if each messages is
bound for a different output.)

External Communication Phase:

1. For each non-empty output, send a copy of the message on the output to the next
stage switch connected to the output.

2. For each input on which a new message arrives, if room in the input queue is
available, add the message to the queue and send an ACK to the sender.

3. For each output for which an ACK is received, mark the output empty.

6.1.2  Conventional network C2

Network C2 is a high-throughput conventional network based on the z-switch. In network

C2, switch outputs are decoupled from switch inputs to provide better throughput at some cost in

network latency. Decoupling inputs from outputs prevents a blocked message from blocking

another message merely because it arrives on the same input. In a z-switch, a message whose out-

Router
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put buffer is available can make progress even though a message arriving previously on the same

input is blocked due to a full output buffer.

FIGURE 38.  Z-switch high-throughput design.

Each switch element consists of four components: a “splitter” for each switch input and a

“merger” for each switch output. Each splitter has one input queue and two output buffers, one for

each merger. Each merger has two input queues, one for each splitter, and one output buffer. A dia-

gram of the switch design appears in Figure 38.

As in C1, each switch cycle in C2 consists of an internal communication phase and an

external communication phase. Each splitter and merger participates in both steps of the cycle:

Internal Communication Phase - Splitter:

1. If the input is empty, skip the internal communication phase.

2. Determine the output on which the incoming message should be routed.

3. If that output is available, route the message.

Internal Communication Phase - Merger:

1. If the output is full, skip the internal communication phase.

2. Randomly choose an input.

3. If the input holds a message, route it.

4. Otherwise, route the message, if any, on the other input.

External Communication Phase - Splitter:

1. For each non-empty output, send a copy of the message on the output to the
merger connected to the output.

Splitter Splitter

Merger Merger
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2. If a new message arrives on the input and room in the input queue is available,
add the message to the queue and send an ACK to the sender.

3. For each output for which an ACK is received, mark the output empty.

External Communication Phase - Merger:

1. If the output holds a message, send a copy of the message to the next stage switch
connected to the output.

2. For each input on which a new message arrives, if room in the input queue is
available, add the message to the queue and send an ACK to the sender.

3. If an ACK is received for the output, mark the output empty.

The latency time for C2 is assumed to be two cycles because the splitter and merger each

have one cycle latency time.

The two local synchrony networks simulated, I1 and I2, correspond to C1 and C2, respec-

tively. In each local synchrony network the structure of the switches is similar to that of the

switches in the corresponding conventional net, but the switch algorithm is different. The local

synchrony switches apply the local synchrony algorithm described in chapter 3. The local syn-

chrony algorithm requires that the switch route messages arriving in the same ltu in a given order.

In local synchrony networks I1 and I2, each switch routes operations in non-decreasing order by

“route-tag”. The “route-tag” of an operation is the ordered pair “(dest, source)”, where “dest” is

the variable accessed by the operation and “source” is the pId of the source PE. Route-tags are lex-

icographically ordered.

Local synchrony networks carry two types of messages in addition to operations: tokens

and ghosts. As described in chapter 2 and elsewhere, tokens are control signals that divide ltus. A

ghost [Ran87] is a copy of an operation with a bit set to indicate it is not a real operation. In other

respects, ghosts look like operations. In particular, ghosts have route-tags. When a switch sends an

operation on one output it sends a ghost with the same route-tag as the operation on the other. A

switch receiving a ghost knows that all further operations it receives on the same input in the same

ltu will have a larger route-tag than the ghost. This knowledge may enable the switch to route an

operation on its other input. Ghosts improve network performance and are necessary in some net-

works for deadlock freedom [ReW91].
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6.1.3  Local synchrony network I1

In network I1 the switches have the same structure as the switches in C1; i.e., each switch

has two input queues, two output buffers, and a router.

Each switch in I1 records the route-tag of the last message it routed as “last_tag”. The

value of “last_tag” represents the best conservative guarantee the switch can make about the route-

tag of the next message it will route. Initially, and at the beginning of each ltu, the value of “last_-

tag” is reset to (-1,-1).

Each switch in I1 always chooses the minimum message for routing, i.e., the message with

the minimum route-tag. Identifying the minimum message requires that both inputs hold a mes-

sage. In identifying the minimum message, tokens are treated as having a route-tag greater than

that of any other type of message and operations and ghosts are treated identically. If both inputs

hold tokens, the minimum message is chosen arbitrarily. If only one input holds a token, the mes-

sage on the other input is the minimum message. If neither holds a token, the minimum message is

the message with the lowest route-tag.

Whenever a switch has no operation or token to route on an output, it routes a ghost.

Ghosts take up only unused bandwidth and unused buffers. A ghost can always be overwritten by

a newer message. Therefore an output buffer is “available” if it is empty or contains a ghost, and

room in an input queue is “available” if the queue is not full or if the message at the tail is a ghost.

The internal communication and external communication phases in I1 are as follows:

Internal Communication Phase:

1. Determine the input holding the minimum message.

2. If the minimum message is a token and both outputs are available, remove the
tokens from both inputs, place tokens on both outputs, and reset last_tag. (Note
that if the minimum message is a token then the other input also holds a token.)

3. Otherwise, set last_tag equal to the route-tag of the minimum message. If the
minimum message is an operation, determine the output on which it should be
routed. If the output is available, route the operation.

4. Emit a ghost with route-tag = last_tag on each available output.

External Communication Phase:
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1. Same as the external communication phase in C1.

Network I1 has low throughput in relation to C1 because the switches in I1 can route only

one message per cycle. A switch in a local synchrony network that can see only the operations at

the head of each of its inputs has insufficient information to route more than one operation per

cycle given the requirement that a switch must route operations in sorted order. The z-switch used

in network I2 was designed to overcome this throughput limitation.

6.1.4  Local synchrony network I2

The switches in network I2 have the same structure as those in C2. However, the units

called splitters in C2 are called multiplexors in I2, to better represent their actual function. The

function of a multiplexor is to copy each operation received on its input onto both outputs. The

function of a merger is to route the message streams received from both multiplexors in order by

route-tag. Each multiplexor and merger records the last_tag as in I1. The internal communication

and external communication phases in I2 are as follows:

Internal Communication Phase - Multiplexor:

1. If the input holds a token and both outputs are available, consume the token, put
tokens on both outputs, and reset last_tag.

2. Otherwise, set last_tag equal to the route-tag of the message on the input. If the
input holds an operation, determine the output on which it should be routed, and
move the message to that output if it is available.

3. Emit a ghost with route-tag = last_tag on each available output.

Internal Communication Phase - Merger:

1. If the output is not available, skip the internal communication phase.

2. Determine the input holding the minimum message.

3. If the minimum message is a token, remove the tokens from both inputs, place a
token on the output, and reset last_tag.

4. Otherwise, set last_tag equal to the route-tag of the minimum message and, if the
minimum message is an operation, move it to the output.

5. If the output is available, emit a ghost with route-tag = last_tag.

External Communication Phase - Multiplexor:

1. Same as the external communication phase for the splitter in C2.

External Communication Phase - Merger:
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1. Same as the external communication phase for the merger in C2.

Local synchrony networks, as simulated, are simple variations of the networks described

here, modified to allow piggybacking of tokens. Piggybacking of tokens occurs when a switch

knows that a token follows the current message, and sends the message with a ‘token bit’ set,

instead of sending the message followed by a token. Piggybacking thus reduces traffic in the net-

work.

Section 6.2 presents analytical models for networks I1 and I2. Section 6.3 presents simula-

tion studies comparing all four networks.

6.2  Analytical Models

We present several analytical models of the performance of local synchrony implementa-

tions on both the I1 and I2 networks. Our specific target is the Banyan communication network

which connects n processors to n memory modules with a network consisting of log2n stages of n/

2 2-input, 2-output switches.

A locally synchronous switch differs from more conventional switches by the way it

chooses packets for transmission through the switch. Each packet carries a unique timestamp,

which is used to determine the order of transmission through the switch. The input streams of

packets into the network are guaranteed to be ordered by increasing (not necessarily monotoni-

cally) timestamp, and the switches must guarantee the same ordering for their outputs.

This transmission procedure requires that a switch receive timestamp information on each

of its inputs before making an output decision. Such a protocol has no direct analog in queueing

theory, as arrival rates have no effect on the order in which packets are serviced. We have chosen

to design our models based on a simpler probabilistic approach.This allows us to accurately define

the interactions between packets and buffers, although the memoryless nature of the approach and

its assumption of independence among buffers within a switch may adversely affect the models’

predictions.
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Our work also differs from traditional performance modelling for communication net-

works because it employs several different types of packets in the operation of local synchrony.

Ghost messages carry only timestamp information, which serves to enhance network efficiency;

tokens delineate the boundaries between logical time ltus; and combined packet-tokens contain

both a packet and a ‘piggybacked’ token.

In order to make our work tractable we assume that the network operates synchronously,

with timing measured in switch cycles which consist of an internal communication phase, during

which packets are actually routed, and an external communication phase, during which packets are

transferred between switches (or, in the case of the I2 design, between switch sub-components).

We also limit our approach to measuring the raw power of the networks. Raw power measure-

ments consist of a load of singleton accesses applied on each input. No sequential consistency or

atomicity constraints are applied other than those guaranteed by the modeled networks.

We present the equations governing only the simplest model of performance and our final

models, which take into account all discussed extensions. This is done for brevity and because

each extension is represented in the final models.

6.2.1  A Probabilistic Model for Switch I1

We first present a performance model for a switch with both input and output buffers (in

our simulation study, the conventional and local synchrony versions of this switch are denoted C1

and I1, respectively). The switch consists of two inputs with packet buffers for at least one packet,

a switch router, and two outputs with packet buffers. Figure 39 shows the switch topology.

FIGURE 39.  Switch I1 architecture.

Router
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We can apply Jenq’s probabilistic approach [Jen83] to this type of architecture. This is the

simplest model for performance of this type of switch, and it does not consider either the packet

transfer protocol inherent in locally synchronous operation or the different types of local syn-

chrony packets.

The packet transfer protocol is first-come, first-served (FCFS), with non-deterministic

choice in the case of packet collision. A packet will be chosen for forwarding if the other input

buffer is empty. If both inputs are full, either packet will be chosen first with equal probability.

Once the first packet has been routed, the router attempts to route the second packet. In this way it

is possible for the router to route two packets in a single cycle. Jenq presents a probabilistic

approach to analytical modeling of equidistant, synchronous, single-buffered packet switching net-

works. We extend this approach to the C1 architecture. Jenq’s initial assumptions are:

1. The packet load on the inputs to the network is uniform.

2. The packets arriving at each input are destined uniformly.

With these simplifying assumptions, the state of a given switch is statistically identical to

that of any other switch in the same stage of the network. While the states of input (or output) buff-

ers in the same switch are not generally independent, Jenq found that making this assumption sim-

plified the model with only minimal adverse effects on the ability of the models to predict

performance.

The following notation applies to our extension of Jenq’s approach to the I1 architecture

(note that only ‘normal’ packets are represented in the model):

n - The number of stages in the communication network.

i - Denotes the state at the beginning of the switch cycle; i.e., prior to the internal commu-
nication phase.

f - Denotes the state at the end of the switch cycle; i.e., after the internal communication
phase, but before the external communication phase

ini
j[k,t] - The probability that a given input buffer at stage k has j packets at the beginning

of cycle t.

outij[k,t] - The probability that a given output buffer at stage k has j packets at the begin-
ning of cycle t.
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inf
j[k,t] - The probability that a given input buffer at stage k has j packets after the internal

communication phase during cycle t.

outfj[k,t] - The probability that a given output buffer at stage k has j packets after the inter-
nal communication phase during cycle t.

Q[k,t] - The probability that a packet is ready to come to an input buffer at stage k at time
t. In other words, the load on an input buffer in stage k at cycle t.

R[k,t] - The probability that a packet in an output buffer at stage k will advance at cycle t,
given that the buffer is full.

We assume single buffers for this model, j = {0,1}. Qin is the input load applied to each

input of the network. In order to measure the power of the network itself, we do not take into

account the effects of message queueing prior to network acceptance. We apply Qin=1.0 in this

work. Our interest in analytical modelling is twofold: to compare the theoretical performance of

the conventional and local synchrony systems, and to validate the simulation data presented later.

With these goals in mind, we use Qin=1.0 to measure maximum predicted throughput and delay.

We present equations used to predict the performance of the networks we consider. We present

equations first, followed by English descriptions of what the equations mean. The following equa-

tions describe the state of the switches in each stage of the network.

Q[k,t] = Qin (k=1)

outf1[k-1,t-1] (k>1) (EQ 20)

The load applied at an input to the first stage is the input load, Qin. At any other stage, the

load applied is the probability that the output buffer (at the previous stage) which is connected to

the input held a packet prior to the external communication phase of the previous cycle.

ini
1[k,t] = inf

1[k,t-1] +

inf
0[k,t-1]*Q[k,t] (EQ 21)

ini
0[k,t] = 1 - ini

1[k,t] (EQ 22)

A given input buffer contains a packet at the beginning of the internal communication

phase if the buffer contained a packet at the end of the previous internal communication phase

(packets cannot move from inputs during the external communication phase), or if the buffer was

empty but a new packet was transferred to it during the external communication phase. The buffer

is empty if it is not full.
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outi0[k,t] = outf0[k,t-1] +

outf1[k,t-1]*R[k,t] (EQ 23)

outi1[k,t] = 1 - outi0[k,t] (EQ 24)

A given output buffer is empty at the beginning of a cycle if it was empty before the previ-

ous external communication phase, or if it contained a packet that was able to move forward dur-

ing the previous external communication phase. The buffer contains a packet if it is not empty.

inf
0[k,t] = ini

0[k,t] +

ini
1[k,t]2*outi0[k,t]*0.75 +

ini
1[k,t]*ini

0[k,t]*outi0[k,t] (EQ 25)

inf
1[k,t] = 1 - inf

0[k,t] (EQ 26)

An input buffer is empty at the end of the internal communication phase (before the exter-

nal communication phase) if it was empty at the beginning of the internal communication phase

(line 1), or if it contained a packet that was able to be routed during the internal communication

phase (lines 2 and 3). The chance of a packet advancing if both inputs are full (line 2) is 0.75

because the packet may be chosen first (0.5 chance); or if it is not chosen first, the packets may

each be destined for different outputs (0.25 chance), in which case both can advance (if output

buffers are free). Since switches in this model exhibit conventional operation, a packet will auto-

matically advance if the other input buffer is empty (and the packet’s destined output buffer is

free—line 3). The buffer contains a packet at the end of the internal communication phase if it is

not empty.

outf1[k,t] = outi1[k,t] +

outi0[k,t]*(0.75*ini
1[k,t]2+2*0.5*ini

1[k,t]*ini
0[k,t]) (EQ 27)

outf0[k,t] = 1 - outf1[k,t] (EQ 28)

An output buffer contains a packet at the end of the internal communication phase (before

the external communication phase) if it contained a packet before the internal communication

phase, or if the buffer was empty and a packet was sent to it. A packet is sent if both inputs have

packets (there is only a 0.25 chance that both packets will be destined for the other output) or if

only one input holds a packet (there are two possible states in which this is true) that is destined for

the output buffer in question (a 0.5 chance). The buffer is empty if it is not full.
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R[k,t] = inf
0[k+1,t] (k < n)

1 (k=n) (EQ 29)

The probability that a packet in an output buffer at the end of the internal communication

phase will move forward during the external communication phase of the current cycle is the prob-

ability that the input buffer (at the next stage) that is connected to the output is empty at the same

time. The probability is 1 for the last stage, because we assume that network outputs will always

accept.

We expect this system of equations (20-29) has a steady state. Given that, values on the

left-hand side of the equations will converge upon iteration to time independent values that may be

used to generate predictions for the network’s throughput and delay for the given network input

load. Each of the models we present converges to a steady state. In general, we find that conver-

gence occurs within a small number (<100) iterations of the calculations.

The throughput, s (equation 30), is the probability that a packet remains in a switch output

buffer after the internal communication phase and that this packet will advance during the external

communication phase. This probability will be the same for each stage of the network at steady

state.

s = outf1[k]*R[k] (EQ 30)

Delay (equation 31) is measured as the average number of cycles a packet or combined

packet-token will spend in both input and output buffers at each stage of the network. At steady

state, for example, R[k] gives the probability that a packet or packet-token will advance from an

output buffer at stage k in one cycle. The inverse of R[k] is the average time a packet or packet-

token will spend in an output buffer at stage k in cycles.

The second term (within the brackets in equation 31) is the time spent in the input buffer

of the switch. The denominator is the probability that a packet will advance from the input buffer

to the output in a given cycle, given that the input buffer holds such input. The output buffer to

which the packet is bound must be free. We compensate for the fact that the last cycle spent in an
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input buffer is also the first cycle spent in the output buffer by subtracting one cycle from the delay

at each stage.

(EQ 31)

In graphs 6.2.1, we show the predicted performance of this model against the indicated

performance (from simulation studies presented later in this chapter) of switch I1 in both conven-

tional and local synchrony operation. As expected, the model is a better predictor of conventional

performance, although it does not predict even the performance of network C1 with great accu-

racy. Compared to the simulation of C1, the model overestimates throughput by approximately

40% and delay by approximately 13% for a network of ten stages.

GRAPHS  6.2.1 - Non-LS model vs. normal and local synchrony simulations.

6.2.2  Extending the Model to Local Synchrony

In order to extend the model presented in section 6.2.1 so that it can better predict the per-

formance of locally synchronous operation, we must make several extensions. The first and most

obvious of these is to rewrite the model so that it considers local synchrony timestamp comparison

for packet choice as in architecture I1, instead of FCFS with non-deterministic choice in the case

of packet collision (architecture C1). Section 6.2.3 discusses the necessary changes, and presents

data gained by applying these changes to the model.
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Later extensions include representing tokens and combined packet-tokens in the model

and introducing the idea of information flow, which limits the model to a more realistic interpreta-

tion of how ghost message information enhances performance in the model.

6.2.3  Locally Synchronous Timestamp Comparison

The model presented in section 6.2.1 demonstrates the conventional operation of a switch

in network C1. During each cycle, the switch randomly chooses one of its inputs. If the input con-

tains a packet, the switch transfers this packet to the relevant output buffer if that buffer is empty,

then tries the same operation on the unchosen input. It is therefore possible for the switch to move

two packets from input to output buffers in the same cycle, and a switch may transfer a packet if

the other input is empty.

Local synchrony (network I1) requires the switch to order by logical timestamp the stream

of packets exiting on each output. This means that the switch cannot pass a packet unless that

packet’s timestamp is less than the latest timestamp to arrive on the switch’s other input. When two

packets collide at a switch, therefore, only one can move forward during the current cycle. In the

general local synchrony implementation, a packet cannot be forwarded if it is in an input buffer at

a switch whose other input buffer is empty. The use of ghost messages to disseminate latest times-

tamp information, however, allows packets a 50% chance of advancing even if the other input to

the switch is empty.

Modelling locally synchronous operation in this way requires a second assumption about

the timestamps of packets: in any timestamp comparison, there is an equal chance that either

timestamp will win the comparison. This assumption is not generally true, because there is depen-

dence among the timestamps arriving on any given input. Once a packet loses a comparison, for

example, it has a higher chance of winning the next comparison based on the difference between

the winning and losing timestamps. Our assumption greatly simplifies the model by making it

memoryless. We shall demonstrate that we can generate good predictive results even with this

assumption.
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Ghost message information plays an important role in the LS model. Switches are

designed to send ghost messages, which propagate the latest timestamp information, on unused

outputs during each cycle. Thus, an ‘empty’ buffer in the LS model actually contains timestamp

information that can be compared to the timestamp of a packet in the opposite input buffer. In this

way, packets may be transferred through a switch even when no other packet has come to the

switch’s other input. Because the ghost message information might win the comparison, however,

there is only a 50 percent chance that a packet will advance in this situation, given that the output

buffer to which it is destined is empty (the same situation in the conventional network guarantees

that the packet will advance).

GRAPHS  6.2.2 - LS-P model vs. local synchrony simulation

The LS-P model takes these differences into account. The equations are modified to reflect

the local synchrony algorithm. Since each switch must send ghost message information to any

unused output buffer during each cycle, a normally empty input buffer can be assumed to contain

ghost message information. This allows a comparison and possible transfer of a packet in the other

input buffer. Graphs 6.2.2 show the performance of the LS-P model compared to simulation data

for locally synchronous operation of switch I1.The model seems to be a good predictor of delay for

larger numbers of stages, but predicts significantly greater throughput for the same delay (greater

than a 50 percent difference for a network of fourteen stages).
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6.2.4  Information Flow

We would expect the LS model to produce higher throughput and higher delay than the

simulation: higher throughput because the LS model does not take into account tokens, which con-

sume buffer space without adding to throughput; and higher delay because a given packet in the

analytical model may indefinitely lose the comparison at a given switch. In the raw power simula-

tion of switch I1, a token is inserted into the input stream after every packet. This limits the num-

ber of times a given packet can lose the comparison to k-1 at a given switch, where k is the number

of processors that can send packets through the switch.

The actual chances of a packet losing more than one or two times at a given switch are

small in the simulation. Since each input stream consists of packets with destinations uniformly

distributed, we would expect that a uniform distribution would hold over all inputs to some degree.

In that case, any given switch would only process a few packets in an ltu, so the chance of losing

more than a few times would be small. Of course, at later stages in larger networks, this artificial

uniformity of the distribution would be less and less apparent, as accesses which may be uniformly

distributed but are still bound for the same MMs converge. This convergence can cause long lines

of accesses with which another access might lose the timestamp comparison.

The LS model generally meets these expectations in its predictions, but indicates much

higher throughput with almost equal delay for larger networks. The model is, in fact, too optimistic

regarding comparisons between packets and ghost message information. Ghost message informa-

tion that won a previous comparison but was blocked by full output buffers, or that is identical to

previous information on the same input, generally will not help a packet advance, but will instead

win the comparison itself. Thus, the model will be a better predictor of performance if we can

approximate whether an empty input buffer contains ‘new’ or ‘old’ ghost message information.

One way to make this approximation without adding memory to the model is to use infor-

mation flow. The information flow to a stage in the communication network may be defined as the

amount of ‘new’ timestamp information the stage receives in a given cycle. New information is
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propagated by packets which are routed to output buffers and then forwarded to the next stage dur-

ing the same cycle. Any ghost messages generated by these packets are guaranteed to contain new

timestamp information. Ghost messages generated by switches in which accesses are blocked

awaiting transfer or routing are generally ‘old’ information, because they are merely copies of

ghost messages sent earlier.

We can approximate the information flow from stage i to stage i+1 in the network by con-

sidering the information flow into stage i and its maximum output of new information, given the

input flow. The information flow into stage 1 of the network is the input load. Average maximum

information flow for stage i can be measured by applying the information flow into stage i-1 to a

single-stage network. The steady-state throughput of this network is the average maximum infor-

mation flow into stage i. Since each packet that leaves a stage also can generate a ghost message on

another output, information flow measures both ‘new’ packets and ‘new’ ghost messages. The

actual throughput of an n-stage network may be greater than the information flow from any given

stage. This is because some of the throughput consists of packets that have been blocked, and thus

do not generate any new information.

Information flow modifies the LS model by allowing normal comparison between ghost

messages and packets only until ghost message concentration equals the information flow for that

stage. If the ghost message concentration (as measured by the probability that an input buffer is

empty) is higher than the information flow, then the difference between the two is ‘old’ ghost

information. We assume for simplicity that ‘old’ ghost information always wins the comparison

with a packet, and thus our information flow factors effectively reduce throughput and increase

delay. The use of information flow in this way is effective for high input loads, where the concen-

tration of packets in the network is large. As the probability that a ghost message will be compared

to another ghost message increases, the effectiveness of our approach decreases, because the com-

parison of two ghost messages could generate new information which is not taken into account in
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our model. For full loads, which best represent the raw power of the network, we find that the use

of information flow increases the precision of the model’s predictions.

Graphs 6.2.3 show performance predictions for the LS-IP model (the packet model with

information flow factors) against the simulation data for switch I1. Predictions for throughput are

slightly reduced, and delay is consistently higher than the simulation. Model LS-IP acts as an

upper bound on both throughput and delay for larger networks. Its prediction of throughput is still

almost 50 percent too optimistic for a fourteen-stage network, its predicted delay also overesti-

mates by over 30 percent, which is more in line with expected results for the model.

GRAPHS  6.2.3 - LS-IP model vs. local synchrony simulation

6.2.5  Representation of Tokens

In order to generate better prediction of performance, we must further refine our model.

The predictions of model LS-IP give upper bounds for throughput and delay. We next generate a

model that gives lower bounds (for larger networks) on throughput and delay by explicitly repre-

senting the tokens that delineate ltus. These tokens require buffer space in the network that would

otherwise be allocated to packets, but they do not contribute to the throughput of the network. As a

result we would expect a model with tokens to exhibit throughput that is less than in the simula-

tion. A packet will always be chosen over a token, however, so a lower concentration of packets

coupled with the existence of tokens should also significantly reduce delay, because the presence
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of tokens in the network virtually eliminates the possibility that a packet will be blocked indefi-

nitely.

In order to represent tokens, we add a third state to the state space for a buffer within the

network. In this new model, LS-IPT, a buffer may be empty (ghost information only), contain a

packet, or contain a token. The input load is modified to include both the probability that a token

will arrive and the probability that a packet will arrive (the sum of these probabilities cannot be

more than 1 and both must be between 0 and 1; for this discussion we use QT = QP = 0.5 for a full

load, which emulates the simulation load). A packet always wins a collision with a token, and a

token cannot advance until both input buffers hold tokens and both output buffers are free, in

which case both tokens are removed from the inputs and a token is transferred to each output

buffer.

GRAPHS  6.2.4 - Model LS-IPT vs. local synchrony simulation

In graphs 6.2.4, performance data for model LS-IPT is presented with data for the local

synchrony simulation of switch I1. This model, in fact, gives a lower bound on throughput and

delay for this implementation of local synchrony. Model LS-IPT seems to be a good predictor of

lower bound performance of the I1 design for larger networks. The delay predictions are off by at

most 14 percent, while throughput is underpredicted by approximately 28 percent for a fourteen-

stage network. We expect the delay prediction to always be lower than the simulation data, since a
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computation of predicted delay for twenty stages yields a lower delay (nearly identical to the mod-

el’s prediction for fourteen stages) than the simulation shows at fourteen stages.

6.2.6  A Representative Model

Finally, we present a representative analytical model for the I1 implementation of local

synchrony. In order to do this, we must add the existence of combined packet-tokens to the LS-IPT

model to form the LS-IPTC model. This model is the closest approximation of the I1 implementa-

tion of local synchrony that we have explored using this modelling technique.

A combined packet-token consists of a packet with a ‘piggybacked’ token. This configura-

tion has a specific ordering: packet then token. The input load applied now consists of combined

packet-tokens only (as is the case in the simulation of network I1, which we are modeling here).

A given switch can separate the packet from the token if necessary, or combine a token

with a packet in an output buffer to form a combined packet-token. Model LS-IPTC would be

expected to closely approximate the performance of an actual implementation of local synchrony

on a network of I1-type switches. Note that the use of combined packet tokens can, in some cases,

allow the switch to make two transfers during the same cycle. For example, when a packet and a

combined packet-token collide, if the timestamp of the combined packet-token (the timestamp of

the packet in the combination—the token marks the end of the ltu in which the packet will be exe-

cuted) wins the comparison, then the switch will split the combined packet-token and transfer the

packet. At this point, the switch can also transfer the singular packet, if it is bound for the other

output buffer and that buffer is empty.

We now present model LS-IPTC, a representative model for the performance of a local

synchrony implementation using switch I1. A buffer may be in any of four states: in state 0 a

buffer is empty (only ghost message information is present); in state P a buffer holds a packet; in

state T a buffer holds a token; and in state C a buffer holds a message with a piggyback token. We

use the following notation:

n - The number of stages in the communication network.
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i - Denotes the state at the beginning of the switch cycle; i.e., prior to the internal commu-
nication phase.

f - Denotes the state at the end of the switch cycle; i.e., after the internal communication
phase, but before the external communication phase

ini
j[k,t] - The probability that a given input buffer at stage k is in state j at the beginning of

cycle t.

outij[k,t] - The probability that a given output buffer at stage k is in state j at the beginning
of cycle t.

inf
j[k,t] - The probability that a given input buffer at stage k is in state j at the end of cycle

t (before the external communication phase).

outfj[k,t] - The probability that a given output buffer at stage k is in state j at the end of
cycle t.

NG[k,t] - The probability that an input buffer contains ‘new’ ghost information at the
beginning of cycle t. This probability is generated using ini

0[k,t] and information
flow data (IF[k]) for this model as discussed in section 7.2.2.

Qj[k,t] - The probability that j, a packet, token, or combined packet and piggyback token is
ready to come to an input buffer at stage k at time t. In other words, the load (of
the specified packet type) on an input buffer in stage k at cycle t.

R[k,t] - The probability that a packet or combined packet and piggyback token in a merger
output buffer at stage k will advance to the next stage during cycle t, given that the
buffer has a packet or combined packet and piggyback token.

The following equations describe the relationships between the buffers in the system:

ini
P[k,t] = inf

P[k,t-1]*(1-QT[k,t-1]) +

inf
0[k,t-1]*QP[k,t-1] (EQ 32)

An input buffer contains a packet at the beginning of the cycle (before the internal com-

munication phase) if it contained a packet before the previous external communication phase and

the buffer was not sent a token (which would create a combined packet-token), or if the buffer was

empty before the previous external communication phase and was sent a packet during that phase.

ini
T[k,t] = inf

T[k,t-1] +

inf
0[k,t-1]*QT[k,t-1] (EQ 33)

An input buffer contains a token at the beginning of the cycle if it contained a token before

the previous external communication phase, or if it was empty and was sent a token.

ini
C[k,t] = inf

C[k,t-1] +

inf
0[k,t-1]*QC[k,t-1] +

inf
P[k,t-1]*QT[k,t-1] (EQ 34)
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An input buffer contains a combined packet-token at the beginning of the cycle if it con-

tained one before the previous external communication phase, or if it was empty and a combined

packet-token was sent, or if it contained a packet and a token was sent to form a combined packet-

token.

 ini
0[k,t] = 1 - ini

P[k,t] - ini
T[k,t] - ini

C[k,t] (EQ 35)

An input buffer is in the empty (or ghost message) state at the beginning of the cycle if it is

not in any other state.

NG[k,t] = MIN(ini
0[k,t], IF[k]) (EQ 36)

We approximate the concentration of ‘new’ ghost message information in empty buffers

by comparing the concentration of empty buffers with the information flow to that stage. We

assume that if the concentration of empty buffers is higher than the information flow, then the dif-

ference between the two represents ‘old’ ghost message data, which will win any comparison and

thus does not help the movement of packets (although the movement of the ghost message infor-

mation could help packets at later stages in the network). ‘New’ ghost message information has an

equal chance of winning comparisons with packets.

outi0[k,t] = 1 (k=n)

outf0[k,t-1] +

(outfP[k,t-1]+outfC[k,t-1])*R[k,t-1] +

outfT[k,t-1]*(inf
0[k+1,t-1]+inf

P[k+1,t-1]) (k<n) (EQ 37)

An output buffer is empty at the beginning of the cycle (before the internal communication

phase) if it is in the last stage of the network (the network outputs always accept). Otherwise, the

buffer is empty if it was empty before the previous external communication phase, or if it con-

tained a packet or combined packet-token that was able to move forward, or if it contained a token

that was able to move forward. A token can be sent to an empty buffer or to a buffer containing a

packet to form a combined packet-token.

outiT[k,t] = 0 (k=n)

outfT[k,t-1]*(inf
T[k+1,t-1]+inf

C[k+1,t-1]) (k<n) (EQ 38)
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An output buffer contains a token at the beginning of the cycle if it is not in the last stage

of the network (we assume that network outputs can always accept any output) and if it contained

a token prior to the previous external communication phase that was not able to move forward dur-

ing that phase (a token may only move forward if the buffer to which it is to be sent is empty or

contains a packet).

outiC[k,t] = outfC[k,t-1]*(1 - R[k,t-1]) (EQ 39)

An output buffer contains a combined packet-token at the beginning of the cycle if it con-

tained one prior to the previous external communication phase and if the combined packet-token

was not able to move forward during that phase.

outiP[k,t] = 1 - outiT[k,t] - outiC[k,t] - outi0[k,t] (EQ 40)

An output buffer contains a packet at the beginning of the cycle if it is not in any other

state.

inf
0[k,t] = ini

0[k,t] +

ini
P[k,t]*outi0[k,t]*(0.5*(ini

P[k,t]+NG[k,t]+ini
C[k,t])+ini

T[k,t]) +

ini
P[k,t]*outi0[k,t]*0.5*ini

C[k,t]*0.5 +

ini
T[k,t]*(ini

T[k,t]*(outi0[k,t]+outiP[k,t])2+

ini
C[k,t]*outi0[k,t]*(outi0[k,t]+outiP[k,t])) +

ini
C[k,t]*ini

T[k,t]*outi0[k,t]*(outi0[k,t]+outiP[k,t]) +

ini
C[k,t]2*outi0[k,t]2*0.5 (EQ 41)

An input buffer is empty after the route phase of the cycle (before the external communi-

cation phase) if it was empty before the internal communication phase or if it contained a packet,

token, or combined packet-token that was able to be routed during the internal communication

phase. A packet is routable if it is chosen over another input and the output where it is going is

empty (line 2 of equation 41), or if the packet of a combined packet-token is chosen instead but the

packet is bound for the output not taken by the chosen packet (line 3). In such a case, the packet

may be routed even if the packet-token is blocked and cannot split. A token is routable if the other

input is a token and both outputs are empty or contain packets, or if the other input is a combined

packet-token, the destination output of the packet is empty, and the other output is empty or con-

tains a packet (line 4). A combined packet-token is fully routable (splitting the combined packet-
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token will not leave the input empty) if the other input is a token, the destination output of the

packet is empty, and the other output is empty or contains a packet (line 5), or if the other input is

a combined packet-token, both outputs are empty, and each packet is bound for a different output

(line 6).

inf
T[k,t] = ini

T[k,t]*(ini
P[k,t]+ini

0[k,t]+

ini
T[k,t]*(1-(outiP[k,t]+outi0[k,t])2)) +

ini
C[k,t]*(1 - outi0[k,t]) +

ini
C[k,t]*outi0[k,t]*(outiT[k,t] + outiC[k,t])) +

ini
C[k,t]*outi0[k,t]*(ini

T[k,t]*(outiT[k,t]+outiC[k,t]) +

0.5*ini
C[k,t]* 0.5 +

ini
C[k,t]*0.5*(1-outi0[k,t]) +

0.5*(ini
P[k,t]+NG[k,t])) (EQ 42)

An input buffer contains a token after the internal communication phase of the cycle if it

contained a token before the internal communication phase that was not able to move forward, or

if it contained a combined packet-token before the internal communication phase and only the

packet was able to move forward. A token will not move forward unless either the other input

holds a token and both outputs can accept tokens (lines 1,2), or the other input holds a combined

packet token, the packet can advance, and the other output is able to accept a token (lines 3,4). A

combined packet-token will be split if the packet can move forward but the token cannot. This will

be the case if: the other input is a token but the other output (the one to which the packet is not

directed, since that must be empty for the combined packet-token to split) contains a token or

packet-token (line 5); or the other input contains a combined packet-token and either both packets

are bound for the same output (line 6), or the output to which the other packet is destined is not

empty (line 7); or if the other input contains a packet or a new ghost (the packet from the combined

packet-token can only win a comparison with a new ghost, as opposed to any ghost—line 8).

inf
C[k,t] = ini

C[k,t]*(0.5*(ini
P[k,t]+NG[k,t])+

(ini
0[k,t]-NG[k,t])+

(0.5*(ini
P[k,t])+NG[k,t])*(1 - outi0[k,t]) +

0.5*ini
C[k,t]* 0.5 +

0.5*ini
C[k,t]*0.5*(1-outi0[k,t]) +

0.5*ini
C[k,t]*(1-outi0[k,t]) +

ini
T[k,t]*(1-outi0[k,t])) (EQ 43)
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An input buffer contains a combined packet-token after the route phase of the cycle if it

contained one before the internal communication phase and no part could be forwarded. The

packet-token might lose the comparison to a packet, combined packet-token (both packets are

bound for the same output), or ghost message (it automatically loses to an old ghost–line 2) or win

the comparison against any type of input, but be blocked by a full output buffer (lines 3,5,6,7).

inf
P[k,t] = 1 - inf

C[k,t] - inf
T[k,t] - inf

0[k,t] (EQ 44)

An input buffer contains a packet after the internal communication phase of the cycle if it

is not in any other possible state.

outfC[k,t] = outiC[k,t] +

outi0[k,t]*(0.5*2*ini
C[k,t]*ini

T[k,t]*(outi0[k,t]+outiP[k,t]) +

0.5*ini
C[k,t]2*outi0[k,t]) +

outiP[k,t]*(ini
T[k,t]2*(outiP[k,t]+outi0[k,t])+

0.5*2*ini
T[k,t]*ini

C[k,t]*outi0[k,t]) (EQ 45)

An output buffer contains a combined packet-token after the internal communication

phase of the cycle if it contained one prior to the internal communication phase, or if it was empty

prior to the internal communication phase and a combined-packet-token was sent to it (lines 2,3),

or if it contained a packet prior to the internal communication phase and a token was sent to it

(Lines 4,5).

outfT[k,t] = outiT[k,t] +

outi0[k,t]*(outi0[k,t]+outiP[k,t])*ini
T[k,t]2 +

outi0[k,t]2*2*0.5*ini
T[k,t]*ini

C[k,t] (EQ 46)

An output buffer contains a token after the internal communication phase of the cycle if it

contained one prior to the internal communication phase, or if it was empty prior to the internal

communication phase and a token was sent to it. A token will be sent if both inputs are tokens and

the other output is empty or a contains a packet (line 2) or if both outputs are empty and the inputs

are a token and a combined packet-token (2 possibilities) and the packet is bound for the other out-

put (0.5 chance–line 3).

outfP[k,t] = outiP[k,t]*((1-ini
T[k,t])2+

2*ini
T[k,t]*(ini

P[k,t]+ini
0[k,t])+

2*ini
T[k,t]*ini

C[k,t]*0.5+
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2*ini
T[k,t]*ini

C[k,t]*0.5*(1-outi0[k,t])+

ini
T[k,t]2*(outiT[k,t]+outiC[k,t])) +

outi0[k,t]*(ini
P[k,t]2*0.5+

2*0.5*0.5*ini
P[k,t]*NG[k,t]+

2*0.5*ini
P[k,t]*ini

T[k,t]+

ini
C[k,t]2*0.5*0.5*(1-outi0[k,t]) +

ini
C[k,t]2*0.5*0.5 +

ini
C[k,t]2*0.5*(1-outi0[k,t])*0.5 +

2*0.5*0.5*ini
C[k,t]*NG[k,t] +

2*0.5*ini
C[k,t]*ini

T[k,t]*(outiT[k,t]+outiC[k,t]) +

2*0.5*ini
C[k,t]*ini

P[k,t] +

2*0.5*ini
C[k,t]*ini

P[k,t]*0.5*0.5) (EQ 47)

An output buffer contains a packet at the end of the route phase of the cycle if it contained

a packet prior to the internal communication phase and no token was sent to it during that phase, or

if it was empty prior to the internal communication phase and a packet was sent to it during that

phase. The buffer cannot receive a token unless both inputs contain tokens or combined packet-

tokens (lines 1,2). Nothing will be sent if the inputs contain a token and a combined packet-token

and the packet is bound for this output (line 3), or if the packet is bound for the other output but is

blocked there also (line 4). If both inputs contain tokens, a token will be sent unless the other out-

put contains a token or combined packet-token (line 5). The buffer will receive a packet if both

inputs contain packets and the chosen packet is bound for this output buffer (line 6), or if a packet

bound for this buffer wins the comparison against a ghost (line 7) or a token (line 8). If both inputs

contain combined packet-tokens, then a packet will be sent if: the winning packet is bound for this

output and the loser is bound for the other output but is blocked (line 9); or if both packets are

bound for this output (line 10); or if the losing packet is bound for this output and the winning

packet is bound for the other output and is blocked (line 11). A packet component of a combined

packet-token bound for this output will be sent if it wins a comparison with a new ghost (line 12),

or if the other input is a token but the other output already contains a token or combined packet-

token (line 13). If the inputs contain a combined packet-token and a packet, a packet will be sent to

this buffer if both packets are bound for this buffer (line 14), or if the packet component wins and

is bound for the other output and the packet is bound for this output (line 15).
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out0[k,t] = 1 - outfP[k,t] - outfT[k,t] - outfC[k,t] (EQ 48)

An output buffer has only ghost message information at the end of the internal communi-

cation phase of a cycle if it is not in any other state.

QC[k,t] = QC1 (k=1)

outfC[k-1,t] (k>1) (EQ 49)

QP[k,t] = QP1 (k=1)

outfP[k-1,t] (k>1) (EQ 50)

QT[k,t] = 1-QC1-QP1 (k=1)

outfT[k-1,t] (k>1) (EQ 51)

The load of combined packet-tokens, packets, and tokens on an input buffer is generated

by the presence of each type of token in the output buffer that feeds the input. The input load distri-

bution describes the load on the first stage of the network.

R[k,t] = inf
0[k+1,t] (k<n)

1 (k=n) (EQ 52)

The probability that a packet or combined packet-token held in an output buffer will be

able to advance is based on the ability of the next stage or network output to accept. The network

outputs are assumed always to be able to accept.

Upon iteration, the steady-state throughput, s, and delay, d, of the system can be calculated

using the following equations. The throughput, s (equation 53), is determined by the concentration

of packets and combined packet-tokens in output buffers and whether the outputs will be able to

advance. The throughput must be the same for each stage of the network at steady state for the

model to be correct.

s = (outfP[k]+outfC[k])*R[k] (EQ 53)

Note that tokens do not contribute to the performance measures of the system. Only pack-

ets and combined packet-tokens contribute to throughput. The same is true for the delay measure.

Delay (equation 54) is measured as the average number of cycles a packet or combined

packet-token will spend in both input and output buffers at each stage of the network. At steady

state, for example, R[k] gives the probability that a packet or packet-token will advance from an
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output buffer at stage k in one cycle. The inverse of R[k] is the average time a packet or packet-

token will spend in an output buffer at stage k in cycles.

The second term (in the brackets in equation 54) is the time spent in the input buffer of the

switch. The denominator is the probability that a packet or a packet component of a combined

packet-token will advance from the input buffer to the output in a given cycle, given that the input

buffer holds such input. The output buffer to which the packet is bound must be free, and the

packet must win a comparison with a ghost, packet, or combined packet-token, lose a comparison

with a combined packet-token but be able to be passed anyway (the packet component is bound for

the other output), or be compared with a token (a packet always wins such a comparison). We

compensate for the fact that the last cycle spent in an input buffer is also the first cycle spent in the

output buffer by subtracting one cycle from the delay at each stage.

(EQ 54)

Graphs 6.2.5 plot performance of the LS-IPTC model against the simulation data for

locally synchronous operation of switch I1. Model LS-IPTC predicts the performance of the simu-

lation within 23 percent in all cases for throughput and within 9 percent in all cases for delay

(within 4 percent at 14 stages).

The differences in throughput and delay for larger networks can be attributed to limita-

tions in the distribution of destinations of input packets in the simulations. Slightly non-uniform

distributions will have little effect in smaller networks, because long strings of packets cannot

occur (due to the small numbers of processors) and because any given switch at an early stage only

has a small number of processors feeding it, limiting the number of packets a switch receives in

any given ltu and the number of processors it can affect with a slowdown. In a larger network, non-

uniform distributions can cause much longer strings of packets that, at later network stages, are

capable of backing up larger numbers of processors.
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GRAPHS  6.2.5 - Model LS-IPTC vs. local synchrony simulation for switch I1.

Graphs 6.2.6 again show the predictions of models LS-IP and LS-IPT, which give upper

and lower bounds on the throughput and delay of simulation I1. Model LS-IP does not bound the

simulation for small networks, because the action of combined packet-tokens allows switches to

make more than one decision per cycle. The effect of combined packet-tokens is reduced in larger

networks because the number of times combined packet-tokens meet in comparison with the total

number of meetings falls significantly at later stages, and the higher concentration of packets in

model LS-IP does provide a true upper bound.

GRAPHS  6.2.6 - Local synchrony simulation vs. models LS-IPT and LS-IP to show envelope.
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6.2.7  Models for Switch I2

Switch I2 is a high-throughput architecture that utilizes a two-stage design. The multi-

plexor stage uses two elements to route each input to its correct output (and to send a ghost mes-

sage to the other output, if necessary). The two elements in the merger stage then merge their two

inputs (one from each multiplexor) onto the switch’s outputs. The I2 switch design is shown in fig-

ure 40.

FIGURE 40.  Architecture for switch I2.

This design eliminates situations in which a packet that is blocked from moving to its out-

put buffer can hold up several packets (waiting in the other input buffer and at earlier stage

switches feeding that buffer) that might otherwise be transferred, and thus considerably boosts

throughput. This design, however, necessitates a minimum of two cycles for a packet to be trans-

ferred from input to output.

We apply the same approach to modelling the I2 switch networks that we applied to the I1

networks. Because this design uses four levels of buffers (multiplexor inputs and outputs and

merger inputs and outputs), we must double the complexity of the model. We expect that the two-

stage switch design with four sets of buffers may cause the analytical model’s predictions to be

less accurate than the I1 models. This is because the probabilistic approach neglects the effects of

dependence among buffers. Jenq found that the effects of dependence were small in conventional

systems using only input buffers and simple switches. Our contention is that multilevel buffers

Splitter Splitter

Merger Merger
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increase the effects of dependence, but that our modelling technique still produces reasonable

results without the added complexity of considering dependence among buffers.

The I2 switch is a high throughput design. Because information flow is directly related to

throughput, the information flow in I2 networks is also high. At full loads, the concentration of

empty buffers (holding only ghost message information) in the I2 networks is small, and thus

information flow has little or no effect when applied to the I2 analytical models. For this reason,

we simplify the I2 analytical models by omitting information flow from them.

We present model LS2-PTC, a representative model for the performance of the I2 switch

design networks. A buffer may be in any of four states: in state 0 a buffer is empty (only ghost

message information is present); in state P a buffer holds a packet; in state T a buffer holds a token;

and finally, in state C a buffer holds a message with a piggyback token.

n - The number of stages in the communication network.

i - Denotes the state at the beginning of the switch cycle; i.e., prior to the internal commu-
nication phase.

f - Denotes the state at the end of the switch cycle; i.e., after the internal communication
phase, but before the external communication phase.

S_ini
j[k,t] - The probability that a given multiplexor input buffer at stage k is in state j at

the beginning of cycle t.

S_outij[k,t] - The probability that a given multiplexor output buffer at stage k is in state j at
the beginning of cycle t.

S_inf
j[k,t] - The probability that a given multiplexor input buffer at stage k is in state j at

the end of cycle t (before the external communication phase).

S_outfj[k,t] - The probability that a given multiplexor output buffer at stage k is in state j at
the end of cycle t.

M_ini
j[k,t] - The probability that a given merger input buffer at stage k is in state j at the

beginning of cycle t.

M_outij[k,t] - The probability that a given merger output buffer at stage k is in state j at the
beginning of cycle t.

M_inf
j[k,t] - The probability that a given merger input buffer at stage k is in state j at the

end of cycle t.

M_outfj[k,t] - The probability that a given merger output buffer at stage k is in state j at the
beginning of cycle t.
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Qn[k,t] - The probability that a packet, token, or combined packet and piggyback token is
ready to come to an input buffer at stage k at time t. In other words, the load on an
input buffer in stage k at cycle t.

R[k,t] - The probability that a packet or combined packet and piggyback token in a merger
output buffer at stage k will advance to the next stage during cycle t, given that the
buffer has a packet or combined packet and piggyback token.

Note that the state of the multiplexor inputs at the beginning of a cycle is similar to the

state of the inputs in the LS-IPTC model.There is no difference between the operation of the differ-

ent networks during the external communication phase, other than the internal communication

between multiplexor outputs and merger inputs, which takes place during the external communica-

tion phase and is unique to the I2 design, but is similar to the communication between output and

input buffers in earlier models.

S_ini
P[k,t] = S_inf

P[k,t-1]*(1-QT[k,t-1]) +

S_inf
0[k,t-1]*QP[k,t-1] (EQ 55)

A multiplexor input buffer contains a packet at the beginning of a cycle (before the route

phase) if it contained a packet prior to the previous external communication phase and did not

receive a token (to form a combined packet-token) from the merger output at the previous stage

that feeds the input, or if the buffer was empty and a packet was sent.

S_ini
T[k,t] = S_inf

T[k,t-1] +

S_inf
0[k,t-1]*QT[k,t-1] (EQ 56)

A multiplexor input buffer contains a token at the beginning of a cycle if it contained a

token prior to the previous external communication phase, or if the buffer was empty and a token

was sent by the merger output buffer at the previous stage that feeds the input.

S_ini
C[k,t] = S_inf

C[k,t-1] +

S_inf
P[k,t-1]*QT[k,t-1] +

S_inf
0[k,t-1]*QC[k,t-1] (EQ 57)

A multiplexor input buffer contains a combined packet-token at the beginning of a cycle if

it contained a combined packet-token prior to the previous external communication phase, or if it

contained a packet and was sent a token, or if it was empty and was sent a combined packet-token.

S_ini
0[k,t] = 1 - S_ini

P[k,t] - S_ini
T[k,t] - S_ini

C[k,t] (EQ 58)

A multiplexor input buffer is empty at the beginning of a cycle if it is not in another state.



168

The state of the multiplexor output buffers at the beginning of a cycle is similar to the state

of the output buffers in the I1 models or the merger output buffers in this model. While communi-

cation between multiplexor outputs and merger inputs, which occurs during the external communi-

cation phase, is unique to the I2 models, it is similar to communication between outputs and inputs

in the I1 models.

S_outi0[k,t] = S_outf0[k,t-1] +

(1-S_outf0[k,t-1])*M_inf
0[k,t-1] +

S_outfT[k,t-1]*M_inf
P[k,t-1] (EQ 59)

A multiplexor output buffer is empty at the beginning of a cycle (before the route phase) if

it was empty prior to the previous external communication phase, or if it held a packet, token, or

combined packet-token prior to the previous external communication phase and was able to send it

to the merger input to which the buffer is connected. Note that a token can be sent to a merger

input that holds a packet to form a combined packet-token.

S_outiT[k,t] = S_outfT[k,t-1]*(1-M_inf
0[k,t-1]-M_inf

P[k,t-1]) (EQ 60)

A multiplexor output buffer contains a token at the beginning of a cycle if it held a token

before the previous external communication phase and was unable to forward it during that phase.

S_outiC[k,t] = S_outfC[k,t-1]*(1-M_inf
0[k,t-1]) (EQ 61)

A multiplexor output buffer contains a combined packet-token at the beginning of a cycle

if it held a combined packet-token prior to the previous external communication phase and was

unable to forward it during that phase.

S_outiP[k,t] = 1 - S_outi0[k,t] - S_outiT[k,t] - S_outiC[k,t] (EQ 62)

A multiplexor output buffer contains a packet at the beginning of a cycle if it is not in any

other state.

The next sets of equations govern the actions of the multiplexor component of the switch,

which occur during the route phase.

S_inf
0[k,t] = S_ini

0[k,t] +

S_ini
P[k,t]*S_outi0[k,t] +

S_ini
C[k,t]*S_outi0[k,t]*(S_outi0[k,t]+S_outiP[k,t]) +

S_ini
T[k,t]*(S_outi0[k,t]+S_outiP[k,t])2 (EQ 63)
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A multiplexor input buffer is empty after the internal communication phase (before the

external communication phase) of a cycle if it was empty prior to the internal communication

phase, if it held a packet that could be forwarded (the output for the packet was empty–line 2), if it

held a combined packet-token that could be forwarded (the output for the packet was empty and

the other output was empty or held a packet–line 3), or if it held a token that could be forwarded to

both outputs (line 4).

S_inf
P[k,t] = S_ini

P[k,t]*(1-S_outi0[k,t]) (EQ 64)

A multiplexor input buffer contains a packet after the route phase of a cycle if it held a

packet prior to the internal communication phase and was unable to forward it (a packet or com-

bined packet-token can be forwarded only to an empty output buffer).

S_inf
C[k,t] = S_ini

C[k,t]*(1-S_outi0[k,t]) (EQ 65)

A multiplexor input buffer contains a combined packet-token after the internal communi-

cation phase of a cycle if it held one prior to the internal communication phase and was unable to

forward it.

S_inf
T[k,t] = 1 - S_inf

0[k,t] - S_inf
P[k,t] - S_inf

C[k,t] (EQ 66)

A multiplexor input buffer contains a token after the internal communication phase of a

cycle if it is not in any other state.

S_outfP[k,t] = S_outiP[k,t]*(S_ini
P[k,t]+S_ini

0[k,t]) +

S_outiP[k,t]*S_ini
T[k,t]*(S_outiT[k,t]+S_outiC[k,t]) +

S_outiP[k,t]*0.5*S_ini
C[k,t]*(1-S_outi0[k,t]) +

S_outiP[k,t]*0.5*S_ini
C[k,t] +

S_outi0[k,t]*0.5*S_ini
P[k,t] +

S_outi0[k,t]*0.5*S_ini
C[k,t]*(S_outiT[k,t]+S_outiC[k,t]) (EQ 67)

A multiplexor output buffer contains a packet at the end of the internal communication

phase of a cycle (prior to the external communication phase) if it contained a packet prior to the

internal communication phase and it did not receive a token (to create a combined packet-token–

lines 1, 2, 3, 4—various possible buffer states which create this situation), or if it was empty prior

to the internal communication phase and it received a packet (lines 5, 6). Note that tokens (and the
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token component of a combined packet-token) can only be forwarded through the multiplexor if

both outputs can accept a token.

S_outf0[k,t] = S_outi0[k,t] * (S_ini
0[k,t]+

S_ini
P[k,t]*0.5+

S_ini
T[k,t]*(S_outiT[k,t]+S_outiC[k,t])+

S_ini
C[k,t]*0.5*(1-S_outi0[k,t])) (EQ 68)

A multiplexor output buffer is empty after the internal communication phase of a cycle if

it was empty prior to the internal communication phase and no packet, token, or combined packet-

token was sent to it. A packet or combined packet-token in the input buffer might be sent to the

other multiplexor output, while a token might be blocked from advancing by the existence of a

token or packet-token in the other multiplexor output.

S_outfC[k,t] = S_outiC[k,t] +

S_outi0[k,t]*0.5*S_ini
C[k,t]*(S_outi0[k,t]+S_outiP[k,t]) +

S_outiP[k,t]*S_ini
T[k,t]*(S_outiP[k,t]+S_outi0[k,t])

S_outiP[k,t]*0.5*S_ini
C[k,t]*S_outi0[k,t] (EQ 69)

A multiplexor output buffer contains a combined packet-token after the internal communi-

cation phase of a cycle if it contained one prior to that phase, or if it was empty and it received a

combined packet token (line 2), or if it contained a packet and it received a token (lines 3, 4).

S_outfT[k,t] = 1 - S_outfP[k,t] - S_outf0[k,t] - S_outfC[k,t] (EQ 70)

A multiplexor output buffer contains a token at the end of the route phase of a cycle if it is

not in any other state at that time.

The next two sets of equations govern the states of merger input and output buffers at the

beginning of the cycle. Their state definitions are similar to those of the multiplexor buffers for the

same part of the cycle, because the external communication phase of the cycle has not changed its

definition.

M_ini
0[k,t] = M_inf

0[k,t-1]*S_outf0[k,t-1] (EQ 71)

A merger input buffer is empty at the beginning of a cycle (before the internal communi-

cation phase) if it was empty prior to the previous external communication phase and nothing was

send to it during that phase.
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M_ini
T[k,t] = M_inf

T[k,t-1] +

M_inf
0[k,t-1]*S_outfT[k,t-1] (EQ 72)

A merger input buffer contains a token at the beginning of a cycle if it contained one prior

to the previous external communication phase or if it was empty and a token was sent to it during

that phase.

M_ini
C[k,t] = M_inf

C[k,t-1] +

M_inf
P[k,t-1]*S_outfT[k,t-1] +

M_inf
0[k,t-1]*S_outfC[k,t-1] (EQ 73)

A merger input buffer contains a combined packet-token at the beginning of a cycle if it

contained one prior to the previous external communication phase, or if it contained a packet and

was sent a token, or if it was empty and was sent a combined packet-token.

M_ini
P[k,t] = 1 - M_ini

0[k,t] - M_ini
T[k,t] - M_ini

C[k,t] (EQ 74)

A merger input buffer contains a packet at the beginning of a cycle if it is not in any other

state at that time.

M_outiP[k,t] = M_outfP[k,t-1]*(1-R[k,t-1]) (EQ 75)

A merger output buffer contains a packet at the beginning of a cycle (before the internal

communication phase) if it contained one prior to the previous external communication phase and

was unable to send it forward during that phase.

M_outiT[k,t] = M_outfT[k,t-1]*(S_inf
T[k+1,t-1]+S_inf

C[k+1,t-1]) (k<n)
0 (k=n) (EQ 76)

A merger output buffer contains a token at the beginning of a cycle if it contained one

prior to the previous external communication phase and was unable to send it forward during that

phase, because the input to which it is connected already contained a token or combined packet-

token. Note that a token may be sent forward and combined with a packet to form a combined

packet-token.

M_outiC[k,t] = M_outfC[k,t-1]*(1-R[k,t-1]) (EQ 77)

A merger output buffer contains a combined packet-token at the beginning of a cycle (if it

contained one prior to the previous external communication phase and was unable to send it for-
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ward during that phase. Although a combined packet-token can be split, the circumstances which

make that possible are indistinguishable in this context.

M_outi0[k,t] = 1 - M_outiP[k,t] - M_outiT[k,t] - M_outiC[k,t] (EQ 78)

A merger output buffer is empty at the beginning of a cycle if it is not in any other state at

that time.

The following two sets of equations govern the operation of the merger sub-components,

which perform their actions during the route phase of the cycle. The merger performs the local

synchrony timestamp comparison between its two inputs in order to merge a sorted stream onto its

single output.

M_inf
0[k,t] = M_ini

0[k,t] +

M_ini
P[k,t]*(0.5*(1-M_ini

T[k,t])+M_ini
T[k,t])*M_outi0[k,t] +

M_ini
C[k,t]*M_ini

T[k,t]*M_outi0[k,t] +

M_ini
T[k,t]*M_ini

T[k,t]*(M_outi0[k,t]+M_outiP[k,t]) +

M_ini
T[k,t]*M_ini

C[k,t]*M_outi0[k,t] (EQ 79)

A merger input buffer is empty after the internal communication phase (before the exter-

nal communication phase) of the cycle if it was empty prior to the internal communication phase,

or if it contained a packet, token, or combined packet-token and was able to forward it during the

internal communication phase. Note that tokens must appear on both inputs before a token can be

transferred to the output (lines 3, 4, 5).

M_inf
P[k,t] = M_ini

P[k,t]*0.5*(1-M_ini
T[k,t]) +

M_ini
P[k,t]*(0.5*(1-M_ini

T[k,t])+M_ini
T[k,t])*(1-

M_outi0[k,t]) (EQ 80)

A merger input buffer contains a packet after the internal communication phase of a cycle

if it contained one prior to the internal communication phase and the packet lost the timestamp

comparison and was thus unable to move forward (line 1), or if the packet won the timestamp

comparison, but was blocked by traffic already in the output buffer (line 2).

M_inf
C[k,t] = M_ini

C[k,t]*0.5*(1-M_ini
T[k,t]) +

M_ini
C[k,t]*(0.5*(1-M_ini

T[k,t])+

M_ini
T[k,t])*(1-M_outi0[k,t]) (EQ 81)
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A merger input buffer contains a combined packet-token after the internal communication

phase of a cycle if it contained one prior to the internal communication phase and the packet com-

ponent lost the timestamp comparison and was thus unable to move forward (line 1), or if the

packet component won the timestamp comparison, but was blocked by traffic already in the output

buffer (line 2).

M_inf
T[k,t] = 1 - M_inf

0[k,t] - M_inf
P[k,t] - M_inf

C[k,t] (EQ 82)

A merger input buffer contains a token after the route phase of a cycle if it is not in any

other state at that time.

M_outfP[k,t] = M_outiP[k,t]*(1-M_ini
T[k,t]2) +

M_outi0[k,t]*(M_ini
P[k,t]2 +

2*0.5*M_ini
0[k,t]*M_ini

P[k,t] +

2*M_ini
P[k,t]*M_ini

T[k,t] +

M_ini
C[k,t]2 +

2*0.5*M_ini
0[k,t]*M_ini

C[k,t] +

2*M_ini
C[k,t]*M_ini

P[k,t]) (EQ 83)

A merger output buffer contains a packet after the internal communication phase (before

the external communication phase) of a cycle if it contained one prior to the internal communica-

tion phase and the merger inputs did not both contain tokens (a token could then be sent to form a

combined packet-token–line 1), or if the output was empty before the internal communication

phase and a packet could be transferred to it. A packet will be transferred if both inputs hold pack-

ets (line 2, or if the inputs are a ghost and a packet and the packet wins the comparison (line 3), or

if the inputs are a packet and a token (line 4), or if both inputs are combined packet-tokens (line 5),

or if a combined packet token wins the comparison with a ghost (line 6), or if the inputs contain a

combined packet-token and a packet (line 7). Note that the merger is able to either split up a com-

bined packet-token to transfer only the packet, or transfer a token to an output buffer containing a

packet, in order to form a combined packet-token.

M_outfT[k,t] = M_outiT[k,t] +

M_outi0[k,t]*M_ini
T[k,t]2 (EQ 84)

A merger output buffer contains a token after the internal communication phase of a cycle

if it contained one prior to the internal communication phase, or if the buffer was empty and a
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token was sent to it during that phase. The merger sends a token only when both inputs hold a

token.

M_outfC[k,t] = M_outiC[k,t] +

M_outiP[k,t]*M_ini
T[k,t]2 +

M_outi0[k,t]*2*M_ini
C[k,t]*M_ini

T[k,t] (EQ 85)

A merger output buffer contains a combined packet-token after the internal communica-

tion phase of a cycle if it contained one prior to the internal communication phase (line 1), or if it

contained a packet and a token was sent to it during that phase (line 2), or if it was empty and a

combined packet-token was sent to it (line 3).

M_outf0[k,t] = 1 - M_outfP[k,t] - M_outfT[k,t] - M_outfC[k,t] (EQ 86)

A merger output buffer is empty after the internal communication phase of a cycle if it is

not in any other state at that time.

As with previous models, the loads on multiplexor input buffers are defined by the input

loads (for stage 1) or the probability that the merger output buffer connected to the input contained

a given type of message prior to the previous external communication phase.

QC[k,t] = QC1 (k=1)

M_outfC[k-1,t] (k>1) (EQ 87)

QP[k,t] = QP1 (k=1)

M_outfP[k-1,t] (k>1) (EQ 88)

QT[k,t] = 1-QC1-QP1 (k=1)

M_outfT[k-1,t] (k>1) (EQ 89)

The ability of a packet or combined packet-token to advance to the next stage from a

merger output buffer depends on the state of the multiplexor input buffer to which output is con-

nected (that buffer must be empty). The network outputs are assumed to always accept outputs

from the nth stage.

R[k,t] = S_inf
0[k+1,t] (k<n)

1 (k=n) (EQ 90)

After iteration, these quantities reduce to time independent quantities. We predict the

steady state throughput, s (equation 91), and delay, d (equation 92), using the following equations.

s = (M_outfC[k] + M_outfP[k])*R[k] (EQ 91)
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The delay (equation 92) must be calculated using the probable delay for a packet or com-

bined packet-token in each of the four buffer stages in a switch: the first component (within the

brackets) is the delay for the merger output buffer, the second is the delay for the multiplexor input

buffer, the third is the delay for the multiplexor output buffer, and the fourth is the delay for the

merger input buffer. Note that a comparison is made only between inputs in the merger, so the

delay is complex only in the fourth component. We compensate for the fact that the last cycles

spent in the multiplexor and merger input buffers are also the first cycles in the multiplexor and

merger output buffers, respectively, by subtracting two cycles from the delay encountered at each

stage.

(EQ 92)

Graphs 6.2.7 plot the performance of simulation I2 against the predictions of model LS-

IPT2. The model predicts reasonably well for larger networks, as it is more optimistic about the

performance properties of the design. Like the I1 models, this is to be expected: the simulations are

prone to slight variations in the distribution of packet addresses, which can cause increasingly

large backups in later stages in the network as network size grows. The model predicts throughput

to within 12 percent for a network of ten stages, and within 5 percent for delay. Both throughput

and delay predictions would be expected to worsen slightly for larger networks, as the simulation

data becomes slightly worse (lower throughput and higher delay) for numbers of stages greater

than 10.

Graphs 6.2.8 chart the predictions of the simpler LS-P and LS-PT models, which again

give upper and lower bounds for the performance of the I2 design for larger numbers (>4) of

stages.
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GRAPHS  6.2.7 - I2 network simulation vs. Model LS2-PTC.

Graphs 6.2.8 chart the predictions of the simpler LS-P and LS-PT models, which again

give upper and lower bounds for the performance of the I2 design for larger numbers (>4) of

stages.

GRAPHS  6.2.8 - Network I2 vs. LS-P and LS-PT models for switch I2 to show envelope.

6.3  Simulation Data

This section presents results from simulation studies performed jointly with Craig Will-

iams [RWW92].We present simulation data for each of the four networks described in section 6.1.
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Our assumption is that networks C1 and I1 have the same switch cycle time, and that C2 and I2

have latency double that of C1 and I1.

Our simulation environment allows us to present data for each network and to vary a num-

ber of operational parameters and workload models. The simulation parameters include the fol-

lowing:

Network Size - The number of PE/MMs.

Variables/MM - The number of shared variables per MM.

Network Switch Queue Size - The maximum number of messages that a switch input
queue can hold. In C2 and I2, the queue size applies to the input queues of both the split-
ter/multiplexer and the mergers.

READ probability - The probability that any given access is a READ, as opposed to a
WRITE.

Atomic Action Mean - In workload models that include atomic actions, the average num-
ber of operations in an atomic action. The sizes of atomic actions are from an exponential
distribution with a mean equal to the mean supplied as a parameter and a range from 1 to
(10 * (mean-1)) + 1.

Forced Singleton Probability - A user defined probability p. The probability that an
atomic action is a singleton, i.e., that it is of size 1, is p + q(1-p), where q is the probability
of choosing 1 from the distribution of atomic action sizes described above.

Atomic Action Cap - In workload models that include atomic actions, the cap on the
number of atomic actions that any PE may have started and not completed at any given
time.

Traffic Model - A set of parameters that describe the distribution of operations on vari-
ables. The simulation uses three different types of traffic models: a uniform model, in
which all variables are accessed with equal probability; a hot-spot model, in which one
variable is accessed with greater probability; and a warm-spot model, in which several
variables are accessed with greater probability.

Workload Model - A set of rules governing the production and execution of operations.
The simulation uses many different workload models, ranging from a “raw power” work-
load, in which PEs produce a saturation or probabilistic load of generic operations with no
constraints on the order in which operations are executed, to a workload with atomicity,
sequencing, and data-dependency constraints among operations.

The study is divided into six series of simulations, each focusing on a different workload

model, or, in one case, traffic model. For each series, a ‘base case’ is defined giving the default

parameter settings. The base case for each parameter and the range of values tested is presented in

figure 41. In the remainder of this section, we describe each series and its results.
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FIGURE 41.  Value Ranges for Simulation Parameters

All data points represent results from at least 10 independent runs. For data points at

which runs give results with a high variance, we report 99% confidence intervals based on 16 runs.

The following legend applies to all graphs presented. The parenthetical descriptions of the

differences between data lines apply only to series 3 and 6.1. In other series, only the first legend

for each network will appear.

Parameter Base Case Value Other Values Tested

Network
Size

5 stages (32 PE/MMs) 4, 6, 8, 10

Variables/MM 32 -

Network Switch Queue
Size

1 2, 3, 4, 5, 6

READ
Probability

.75 0, .25, .50, .90, 1.0

Atomic Action
Mean

3 1-10, 16

Atomic Action
Cap

- 1, 3, 6, 12, 16, 20, 24,
unlimited

Forced Singleton
Probability

0 0, .1, .25, .5, .75

Traffic
Model

Uniform Hotspot, Warmspot

Network C1
Network I1 (No AA Cap)
Network I2 (No AA Cap)
Network I1 (AA Cap = 3)
Network I2 (AA Cap=3)
Network C2
99% Confidence Interval
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6.3.1  Raw Power Data

The first series measures the “raw power” of each of the networks. We use the term “raw

power” to mean network throughput and delay under a workload of operations with no atomicity

or sequencing constraints. The workload model consists of generic, independent operations --

reads and writes are not distinguished and operations may arrive at memory in any order. In the

base case the load on the network is a saturation load. A PE generates a new operation whenever

its output buffer is empty. Only the forward, i.e., PE->MM, network is simulated in this series.

Each MM is a sink for operations. We assume the memory cycle time is the same as the switch

cycle time -- each MM can consume one operation per cycle.

In I1 and I2 enforcement of atomicity is relaxed by specifying an isochron size of one. No

comparable way exists in I1 or I2 to relax enforcement of sequential consistency. Thus series 1

actually compares isotach networks that enforce sequential consistency with conventional net-

works that do not.

Unless otherwise stated, the delay reported in series 1 is the network delay per stage. The

delay does not include source queueing or other non-network delay such as delay at the network

interface. More specifically, the delay is the average number of cycles between the time an opera-

tion is sent from the PE-SIU to the first-stage switch until the time it is sent from the last stage

switch to the MM-SIU for the destination MM, divided by the number of network stages. In this

series the throughput reported, unless otherwise stated, is the average number of operations arriv-

ing at memory per cycle, divided by the number of MMs.

Base Case - Base case performance of the networks is shown in several of the series 1

graphs, e.g. in Graphs 6.3.1-scalability at stages = 5. Each isotach network has lower throughput

and higher delay in the base case than the corresponding conventional network. I2’s throughput is

two-thirds that of C2, and its delay is one-fourth longer than C2’s. I1’s throughput is slightly over

half C1’s and its delay is two-thirds longer than C1’s. Although the difference in the raw power of

each pair of corresponding networks is significant, the faster of the isotach networks has delay in
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the base case comparable to that of the slower of the conventional networks and the high through-

put isotach network has throughput comparable to that of the low throughput conventional net-

work.

In each part of the series, one parameter is varied while each of the other parameters

remains at its base case setting.

GRAPHS  6.3.1-Scalability - Data for series 1, variation of network size.

Scalability - Graphs 6.3.1-scalability show the effect of increases in the number of net-

work stages on network throughput and delay. The throughput of each network decreases slowly at

about the same rate for each network. The delay per stage increases slowly for I1 and I2 and stays

roughly constant for C1 and C2.

GRAPHS  6.3.1-prob_load - Series 1 data for variation in offered load.
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Probabilistic Load - Graphs 6.3.1-prob_load show throughput and delay data for speci-

fied offered loads. Instead of generating a new operation whenever its output buffer is empty, a PE

generates a new operation each cycle with probability r. As r increases, throughput for each net-

work increases up to the network’s saturation point. Delay for each network increases sharply near

the saturation point.When load is generated independently of the state of a PE’s output buffer,

source queueing can account for a significant portion of total delay. Therefore, in this part of series

1 source queueing is included in delay. Delay is measured from the time the operation is generated

until it leaves the MM-SIU. Each of the conventional networks can handle a higher load with less

delay than the corresponding isotach network. The request rate at which C2 saturates is the high-

est, 0.65; and I1 the lowest, 0.25. C1 and I2 saturate at about the same request rate, 0.45 and 0.43,

respectively.

Switch Input Queue Size - Graphs 6.3.1-switch_queues show the effect of increases in

the size of the switch input queues. As the number of buffers in each switch input queue increases,

throughput improves for all networks, but delay worsens. The graphs indicate that performance is

best when the switch input queues are small, able to queue only 1 or 2 operations at most. The

result applies only to saturation loads in which source queueing is not a factor.

GRAPHS  6.3.1-switch_queues - Series 1 data for variation of the number of buffers per switch queue.

Hot-Spot Traffic - Graphs 6.3.1-hot_spot give performance results for the hot-spot traffic

model. The hot-spot traffic model [PhN85] is a simple variation on the uniform traffic model in
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which one variable, the hot-spot, is accessed more often than the other variables. The hot-spot is

chosen randomly such that for each trial, each global variable may be the hot-spot with equal prob-

ability. The probability that a given operation accesses the hot-spot is the hotspot probability r plus

(1-r) divided by the total number of variables. As the probability of generating operations access-

ing the hot-spot increases, throughput decreases and the differences in throughput among the net-

works narrows. The delay of the z-switch networks, C2 and I2, increases at a significantly faster

rate than the low-throughput networks. Again, the result applies only to saturation loads in which

source queueing is not a factor.

GRAPHS  6.3.1-hot_spot - Series 1 data for various hotspot loads.

Warm-spot Traffic - Table 5 gives results from a warm-spot traffic model. A warm-spot

traffic model has several “warm” variables instead of a single hot variable. We defined the warm-

spot traffic model in an attempt to identify a model that captures contention for shared variables

more realistically than either the uniform or the hot-spot traffic models. The warm-spot traffic

model is based on the 80/20 rule (see e.g. [Knu73]), a rule of thumb widely used in describing the

pattern of accesses to a pool of shared objects. The 80/20 rule says that 80% of the accesses are to

20% of the variables. The rule is applied recursively, i.e., 80% of the initial 80% of accesses are to

20% of the initial 20% of the accesses, and so on until the number of objects in the set of most
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and it assumes that the probability of assessing the most frequently accessed variables at level i is

the probability of accessing the most frequently accessed variables at level i-1 cubed. The effect of

this modification is to lessen the contention for the most frequently accessed variables. Table 2

shows performance under three different warm-spot traffic models: light contention (60/30 rule);

medium contention (70/20); and heavy contention (80/10). The table indicates that increased con-

tention affects the relative performance of the networks in the warm-traffic model in the same way

as in the hot-spot model: the differences in throughput narrow and delay in the z-switch networks

C2 and I2 grows faster than delay in C1 and I1.

TABLE 5. Series 1 Warm-spot data.

The results from Series 1 show that each conventional network outperforms the corre-

sponding isotach networks for workloads with no atomicity, data dependence, or other sequencing

constraints. Each of the remaining series compares the performance of the networks under a work-

load that includes some combination of atomicity and sequencing constraints. In addition to

including constraints on execution order, series 2-6 differ from series 1 in other ways:

1. Processes - Each process is independent, executing its own program on its own
PE, and each process’s program consists of a sequence of atomic actions, each
containing one or more operations on shared variables.

Access
Throughput

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 0.442 0.396 0.156

C2 0.585 0.487 0.163

I1 0.247 0.233 0.124

I2 0.413 0.362 0.147

Normalized
Access Delay

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 1.805 1.964 3.952

C2 3.305 3.970 8.957

I1 3.001 3.164 5.396

I2 4.135 4.546 9.529
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2. Reverse network - Each network simulation includes traffic in both the forward
(PE->MM) and reverse (MM->PE) directions. All of the reverse networks are
conventional networks. I2 uses C2 as the reverse net and the other networks use
C1. In each cycle each MM (PE) can both receive one operation (response) from
the network and issue one response (operation).

3. Throughput - The throughput reported is the atomic action throughput instead of
the access throughput. Unless otherwise stated, the throughput reported is the
average number of atomic actions completed per cycle divided by the number of
MMs.

4. Delay - The delay reported is the atomic action delay. Unless otherwise stated,
delay is the average number of cycles from the time an atomic action is generated
until it is completed. Note that delay is not normalized for the number of network
stages as it is in series 1.

5. Networks - Results are shown only for C1, I1, and I2. We simulated all four net-
works, including C2. Although C2 outperforms all the other networks in series 1,
it performs more poorly than C1 in the remaining series. The results show that at
every data point, C1 provides more throughput with less delay than C2. The rea-
son for C2’s poor performance relative to C1 is that in the later series C2 retains
its high latency but can’t take advantage of its high throughput. Both conven-
tional networks are under-utilized in series 2-6 because higher level synchroniza-
tion constraints prevent processes from issuing operations fast enough to saturate
the network. For simplicity, we omit further discussion of C2.

6.3.2  Sequential Consistency Only Data

Series 2 compares the networks under a workload model requiring sequential consistency.

In this series, all atomic actions are singletons (size 1) and no data dependencies constrain the issu-

ing of operations, but each process’s operations must appear to be executed in order. In I1 and I2,

operations can be pipelined without risk of violating sequential consistency, whereas C1 must

enforce sequential consistency by limiting each PE to one outstanding operation at a time. In C1,

each PE repeatedly issues an operation, waits for a response from memory, and then issues its next

operation (i. e., the parameter “aa_cap” = 1). In I1 and I2, each PE issues a new operation when-

ever its output buffer is empty (aa_cap = unlimited). Note that the isotach network simulations in

series 1 and 2 are the same except for the inclusion of the reverse networks and the difference in

the way results are reported. Delay in series 2 is the number of cycles between the time an opera-

tion is placed in the PE’s output buffer until the time the PE receives the response to the operation.

Base Case - Throughput for C1 in the base case is only about 15% of its series 1 through-

put, reflecting the high cost of enforcing sequential consistency in a conventional network. For the
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isotach networks the throughput in series 1 and 2 is the same. Because they can pipeline opera-

tions, the isotach networks outperform C1 in terms of throughput but the delay per operation is

longer than C1’s delay. In the base case I1 can execute 3.6 times as many operations as C1, but

each operation takes 2.3 times as long. I2 can execute 6 times as many operations, but each takes

2.7 times as long. Delay for all networks is higher than in series 1 because delay in series 2

includes delay due to the reverse network and non-network delay.

In each part of the series, one parameter is varied while each of the remaining parameters

remains at its base case setting.

GRAPHS  6.3.2-scalability - Series 2 data for variation of network size. ο - C1; ❏ - I1; ◊ - I2;

Scalability - Graphs 6.3.2-scalability show the effect of varying the network size from its

base case setting of 5. As network size increases from 4 to 10 stages, throughput slowly decreases

and delay per stage remains roughly constant. Delay per stage in I1 and I2 is relatively constant as

the number of network stages increases because the delay due to the forward network is only one

component of the delay reported in series 2. The other components, the reverse network and non-

network delay either remain constant on a per stage basis or decrease. Delay per stage due to the

reverse network is roughly constant since the reverse networks are conventional networks. Non-

network delay declines on a per stage basis as the delay is amortized over more stages. Throughput

decreases for each network at about the same rate but for different reasons. Throughput per MM

decreases in the isotach networks because in isotach networks throughput per MM decreases as the
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number of stages increases. Throughput per MM decreases in the conventional networks because a

PE can have only one outstanding operation at a time and delay for each operation increases as the

number of stages increases.

GRAPHS  6.3.2-hot_spot - Series 2 data for various hotspot loads. ο - C1; ❏ - I1; ◊ - I2;

Hot-spot and Warm-spot Traffic - Graphs 6.3.2-hot_spot and Table 6 show network per-

formance for the hot-spot and warm-spot traffic models, respectively. As in series 1, networks I1

and I2 show significant decreases in throughput and increases in delay as contention increases.

Network C1 has low throughput and low delay. Over the range of traffic model parameters tested,

C1 is unaffected by increases in the probability of hot-spot and warm-spot traffic. Throughput and

delay are unaffected in C1 because the network is operating at only about 28% capacity due to the

restriction on pipelining.

TABLE 6. Series 2 warm-spot data.

Access
 Throughput

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 0.071 0.071 0.071

I1 0.249 0.229 0.128

I2 0.408 0.367 0.254

Access
 Delay

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 15.000 15.000 15.002

I1 34.032 36.038 56.861

I2 40.344 42.887 76.587
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Data Dependencies - Graphs 6.3.2-aa_cap show the effect of changes in the data depen-

dence distance on system performance. Data dependencies diminish throughput of isotach net-

works by an amount that depends on the distance between data dependent operations. Until now,

we have assumed data dependencies either do not exist or are between operations that are so far

apart that the data dependencies do not effect pipelining. In this part of series 2 we relax this

assumption. With a data dependence distance of 1 (modeled by imposing an aa_cap of 1), the

throughput of the isotach networks is lower and the delay higher than that of C1, as can be pre-

dicted from the results of series 1. Beginning at a data dependence distance of 2 (aa_cap of 2), the

throughput of the isotach systems is higher than C1’s although the delay also continues to be

higher. C1 requires an aa_cap of 1 in order to maintain sequential consistency and so is unaffected

by the data dependence distance. I2 requires a dependence distance of about 16 to take full advan-

tage of its throughput. For I1, a dependence distance of about 5 is sufficient. I2 performs less well

than I1 at small dependence distances because I2 cannot take advantage of its higher throughput

but is hurt by the higher response turnaround time due to its higher latency.

GRAPHS  6.3.2-aa_cap - Series 2 data for variation of data-dependence distance. ❏ - I1; ◊ - I2;

6.3.3  Atomicity Only Data

Series 3 compares the performance of isotach and conventional systems under a workload
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i.e., no data dependencies exist among operations from the same atomic action, and independent,

i.e., no data dependencies among different atomic actions inhibit pipelining. The atomic actions

must appear to be executed as an indivisible step, but may appear to be executed in any order, i.e.,

the workload does not require enforcement of sequential consistency. Although sequential consis-

tency is not required, the isotach networks guarantee sequential consistency by their design.

Techniques for enforcing atomicity in isotach systems were described in Chapter 2. Iso-

tach networks enforce atomicity by issuing all the operations in an atomic action in the same isoch-

ron. The conventional systems we simulate enforce atomicity using 2PL. A process does not

release any lock acquired in an atomic action until it acquires all locks for the atomic action. To

avoid deadlock, each process acquires the locks it needs for each atomic action in a predetermined

linear order. Since execution need not be sequentially consistent, a process may execute more than

one atomic action concurrently.

The algorithm for lock acquisition and release simulated is more efficient than that used in

most systems. Instead of spinning on a lock, processes queue lock requests at memory. The algo-

rithm distinguishes read locks from write locks and only the latter are exclusive. Several processes

can concurrently hold a read lock on the same variable. Instead of sending a lock request for an

operation, a process sends the operation itself. Each operation implicitly carries a request for a lock

of the type indicated by the operation. When it receives an operation, the MM enqueues it. If no

conflicting operation is enqueued ahead of it, the operation is executed and a response returned to

the source PE. A PE knows it has acquired a lock when it receives the response. Eliminating

explicit lock requesting and granting messages reduces traffic and eliminates the round-trip delay

from memory to the process and back when a lock is granted. When the PE has acquired all the

locks for the atomic action, it sends a lock release for each lock it holds.

Since execution need not be sequentially consistent, locks are not obtained for operations

from singleton (size 1) atomic actions. The MMs execute operations from singleton atomic actions

as soon as they are received even if another process holds an exclusive lock on the variable
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accessed. In the base case, with an atomic action mean size of 3, about 22% of atomic actions are

of size 1.

Delay in series 3 is the number of cycles from the time the atomic action is generated until

the last response is received. Note that for conventional networks, the time required to release

locks is not included in delay. A process generates a new atomic action whenever its output buffer

is empty and the number of atomic actions it has started but not completed is fewer than a given

number, aa_cap, supplied as a parameter. Initially we set aa_cap = unlimited for both isotach and

conventional systems to allow unrestricted pipelining. We found however that allowing unlimited

production of atomic actions in the conventional networks is counterproductive due to contention

for locks. Latency rises steeply with no gain in throughput. This effect does not occur in the iso-

tach systems, where locking is not necessary. We present data for C1 with aa_cap = 3. For I1 and

I2, we show results for aa_cap = 3 and for aa_cap = unlimited.

Base Case - When each network is subject to an aa_cap of 3, throughput in the isotach

networks is slightly higher in the base case and delay slightly lower than in C1. The performance

of the uncapped isotach networks is better than the capped networks. When I2 is uncapped, its

throughput is almost 3 times that of C1 and its delay remains lower than C1’s.

GRAPHS  6.3.3-scalability - Series 3 data for variation of network size.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);
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Scalability - Graphs 6.3.3-scalability show the effect of varying the number of network

stages. With aa_cap = 3 for all networks, the graphs indicate that the performance of I1 and I2

becomes worse than that of C1 for large systems (stages > 9), but that the uncapped isotach net-

works continue to outperform C1. The graphs show that as the number of stages increases,

throughput and delay gradually decrease. The delay reported in this part of series 3 is the delay

normalized for the number of stages. The decrease in throughput and delay is attributable to the

factors discussed under the scalability part of series 2. The graphs show an anomalous result for

delay in large isotach networks: delay becomes worse when a cap is placed on the number of

active atomic actions.

GRAPHS  6.3.3-AA_cap - Series 3 data for variation of network size. ο - C1; ❏ - I1; ◊ - I2;

Atomic Action Cap - Graphs 6.3.3-AA_cap show the effect of varying the cap on the

number of atomic actions a PE can have active at any one time. The graphs show C1 performs very

poorly with a large aa_cap. C1 does not benefit from increasing the aa_cap because increasing the

aa_cap also increases contention for locks. This contention is reflected in the delay for C1, which

rises steeply as the aa_cap increases. Throughput for C1 levels off at about 6. For I1 and I2,

throughput and delay rise as the aa_cap increases until the network is saturated (at about 6 for I1

and about 12 for I2) and thereafter remain constant.
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GRAPHS  6.3.3-hot_spot - Series 3 data for variation of hotspot load.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

Hot-spot and Warm-spot Traffic - Graphs 6.3.3-hot_spot and Table 7 show network per-

formance for the hot-spot and warm-spot traffic models, respectively. The results show that C1

performs increasingly poorly relative to I1 and I2 as the percentage of traffic going to hot and

warm variables increases. C1 is more adversely affected by nonuniform access patterns because

the use of locking as the means for enforcing atomicity magnifies the effect of contention. The

throughput graph shows that until the percentage of hotspot traffic is about 15%, throughput for I1

and I2 is lower when aa_cap = 3 than when aa_cap = unlimited, indicating that the cap itself is the

limiting factor. Thereafter the capped and uncapped networks have similar throughput, indicating

that the hotspot traffic has become the limiting factor. We attribute the large confidence intervals

exhibited by C1 to the fact that placement of the hot-spot variable changes with each trial, while

the order in which locks are acquired remains the same.
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TABLE 7. Series 3 warm-spot data. 99% confidence intervals are shown in parentheses.

Atomic Action Size - Graphs 6.3.3-AA_size show the effect of varying the average size,

aa_mean, of atomic actions. Throughput as reported in this part of series 3 is normalized for

atomic action size, i.e., reported throughput is atomic action throughput times the average number

of operations per atomic action. Thus reported throughput is the average number of operations

arriving at each MM. Delay is also normalized. Delay is the atomic action delay divided by the

average number of operations per atomic action. The results show C1 performs poorly for large

atomic actions. As the atomic action mean size increases, C1’s throughput drops and its delay rises

steeply. The isotach networks, both capped and uncapped, outperform C1. The drop in throughput

is more gradual and, instead of increasing, normalized delay actually decreases. The decrease is

Atomic Action
Throughput

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 (AA Cap=3) 0.0269
(.0267 - .0271)

0.0127
(.0125 - .0129)

0.0035
(.0034 - .0036)

I1 (AA Cap=3) 0.0611
(.0606 - .0616)

0.0599
(.0595 - .0603)

0.0415
(.0405 - .0427)

I2 (AA Cap=3) 0.0625
(.0615 - .0635)

0.0622
(.0615 - .0629)

0.0561
(.0539 - .0583)

I1 (No AA Cap) 0.0693
(.0682 - .0705)

0.0661
(.0649 - .0673)

0.0390
(.0371 - .0409)

I2 (No AA Cap) 0.1359
(.1341 - .1376)

0.1238
(.1214 - .1263)

0.0565
(.0527 - .0602)

Atomic Action
Delay

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 (AA Cap=3) 108.393
(107.537 - 109.250)

232.193
(228.971 - 235.414)

849.973
(817.718 - 882.228)

I1 (AA Cap=3) 45.751
(45.460 - 46.042)

46.711
(46.252 - 47.170)

67.186
(65.508 - 68.864)

I2 (AA Cap=3) 46.312
(45.635 - 46.989)

46.558
(46.004 - 47.111)

52.123
(49.918 - 54.328)

I1 (No AA Cap) 52.291
(51.664 - 52.918)

54.602
(51.664 - 52.918)

86.775
(82.979 - 90.570)

I2 (No AA Cap) 55.702
(55.156 - 56.249)

60.092
(59.208 - 60.976)

112.505
(105.842 - 119.168)
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attributable to the fact that operations in the same atomic action are delivered and executed concur-

rently in an isotach system, so delay per operation declines as the number of operations per atomic

action increases. For large atomic actions, the isotach systems perform markedly better than the

conventional systems. When the average atomic action size is 16, the delay in the conventional

systems is greater than the delay in the isotach systems by a factor of about 22 and the throughput

is less than the throughput in the isotach systems by a factor of about 12 (I1) to 16 (I2). The steep

rise in delay in the conventional systems is attributable to the locking protocol. A process waiting

to acquire a lock retains the locks it has already acquired for operations in the same atomic action.

As atomic actions grow larger, not only does the number of operations contending for access grow,

but also the length of time each lock is held.

GRAPHS  6.3.3-AA_size - Series 3 data for variation of atomic action size.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

The capped versions of I1 and I2 have lower throughput than the uncapped versions when

the atomic actions are too small to saturate the network.

Forced Singletons - Graphs 6.3.3-force_sing show the effect of varying the probability of

forced singletons. Recall that the actual percentage of singleton atomic actions, i.e., atomic actions

of size 1, is larger than the forced-singleton probability because some singleton atomic actions

may be drawn from the exponential distribution of atomic action sizes. With an atomic action

mean of 3, a forced singleton probability of 50% corresponds to a total probability of singleton
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atomic actions of about 61%. The results show that network C1 performs well when the percent-

age of singletons is high. Since C1 does not enforce sequential consistency in series 3, or acquire

any locks for singleton atomic actions, as the percentage of singletons increases, its performance

becomes increasingly similar to its performance in series 1. The isotach networks are less sensitive

to the percentage of singleton atomic actions. As the singleton percentage increases, their perfor-

mance improves, but the rate of improvement in delay is less than that of C1 and, except for the

uncapped version of I2, the rate of throughput is about the same as C1’s. As a result, the isotach

networks, with the exception of the uncapped version of I2, perform less well than C1 when the

percentage of singletons is high.

GRAPHS  6.3.3-force_sing - Series 3 data for variation of singleton probability.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

Read/Write Probability - Graphs 6.3.3-read_prob show the effect of varying the percent-

age of accesses that are READ operations from the base case setting of 75%. The conventional

networks perform better as the percentage of read accesses increases because the read-locks

required for READ’s can be shared, whereas WRITE’s require exclusive locks. The isotach net-

works are unaffected by the percentage of reads.

Series 3 shows that for a workload model that requires atomicity but not sequential consis-

tency, the isotach networks outperform the conventional networks. Even with the handicap of also
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insuring sequential consistency, the isotach networks are able to perform better than the conven-

tional networks.

GRAPHS  6.3.3-read_prob - Series 3 data for variation of READ probability.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

6.3.4  Flat Atomic Action Data

Series 4 compares the performance of the networks under a workload which requires both

atomicity and sequential consistency. As in series 3, the atomic actions are assumed to be indepen-

dent and flat, but in this series, the atomic actions must not only be executed atomically but also

must appear to be executed in order.

The conventional networks ensure atomicity through the locking protocol discussed

above. Sequential consistency is enforced by limiting the number of outstanding atomic actions

per PE to one (aa_cap = 1) and by requiring processes to obtain locks for singleton atomic actions.

In the isotach systems, by contrast, a PE may have any number of active atomic actions and it need

not obtain locks.

This series is very similar to series 3. Throughput and delay are measured and reported in

the same way as in series 3. In terms of the simulation parameters, the only difference is in the set-

ting of the aa_cap. For the conventional networks, aa_cap is reduced from 3 to 1. For the isotach

networks, only the uncapped versions are relevant in this series. The results reported for I1 and I2

are identical to those reported in series 3 as the results for the uncapped versions of I1 and I2. Our

report for series 4 is limited to the differences between series 3 and series 4.
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Base Case - C1 has lower throughput and lower delay in series 4 than in series 3 because

the cap on the number of atomic actions is lower. The lower cap reduces delay by reducing the

load on the network and by reducing contention for locks. As a result, C1’s delay is better in rela-

tion to I1 and I2 in this series than in series 3 and its throughput is worse. C1’s per stage delay in

the base case is slightly better than that for I1 and I2 (9.2 for C1 as opposed to 10.3 for I1 and 10.9

for I2), but its throughput is much worse: in the case of I1, by a factor of 3.5 and in the case of I2

by a factor of 7.

GRAPHS  6.3.4-scalability - Series 4 data for variation of network size. ο - C1; ❏ - I1; ◊ - I2;

Scalability (Graphs 6.3.4-scalability) - As in series 3, throughput and delay ease gradu-

ally in both the isotach and conventional systems as the number of stages increases from 4 to 10.

GRAPHS  6.3.4-hot_spot - Series 4 data for variation of hotspot load. ο - C1; ❏ - I1; ◊ - I2;
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Hot-spot and Warm-spot Traffic (Graphs 6.3.4-hot_spot and Table 8) - As in series 3,

the results show that the advantage of isotach networks over conventional networks grows as the

probability of hot spot and warm spot traffic increases.

TABLE 8. Series 4 warm-spot data. 99% confidence intervals are shown in parentheses.

Atomic Action Size (Graphs 6.3.4-AA_size) - The delay in C1 is lower than is series 3,

so the difference in delay between the conventional and isotach systems is less in this series. The

delay in C1 is higher than that of I1 and I2 by a factor of about 7.5 instead of 22 for aa_size = 16.

GRAPHS  6.3.4-AA_size - Series 4 data for variation of atomic action size. ο - C1; ❏ - I1; ◊ - I2;

Atomic Action
Throughput

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 0.0175
(.0175 - .0176)

0.0115
(.0115 - .0116)

0.0032
(.0031 - .0033)

I1 0.0693
(.0682 - .0705)

0.0661
(.0649 - .0673)

0.0390
(.0371 - .0409)

I2 0.1359
(.1341 - .1376)

0.1238
(.1214 - .1263)

0.0565
(.0527 - .0602)

Atomic Action
Delay

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 54.086
(53.907 - 54.264)

83.755
(83.185 - 84.325)

308.015
(296.555 - 319.475)

I1 52.291
(59.208 - 60.976)

54.602
(53.784 - 55.421)

86.775
(82.979 - 90.570)

I2 55.702
(55.156 - 56.249)

60.092
(59.208 - 60.976)

112.505
(59.208 - 60.976
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Forced Singletons. (Graphs 6.3.4-force_sing) - C1 does not show as great an improve-

ment as the percentage of singletons increases in this series as in series 3. The reason C1 derives

less benefit from singletons in series 4 is that singletons are subject to more restrictions. In series 4,

singletons cannot be pipelined by C1 and must respect locks in the same way as ordinary accesses.

GRAPHS  6.3.4-force_sing - Series 4 data for variation of singleton probability. ο - C1; ❏ - I1; ◊ - I2;

Read/Write Probability (Graphs 6.3.4-read_prob) - C1 is less sensitive to the propor-

tion of reads and writes than in series 3. Reducing the aa_cap from 3 to 1 means fewer operations

are contending for access to the same variable. In the base case of series 4 (25% WRITES) the per-

centage of lock requests that are granted immediately is 97 as opposed to 91% in series 3. Concur-

rently active operations access the same variable so infrequently in this series that increasing the

percentage of writes has little effect on performance.

GRAPHS  6.3.4-read_prob - Series 4 data for variation of READ probability. ο - C1; ❏ - I1; ◊ - I2;
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This series shows that the isotach systems perform very well and the conventional systems

very poorly when each process’s workload consists of a sequence of flat, independent atomic

actions. The conventional systems cannot take full advantage of the greater raw power of their net-

works because the rate at which operations can be issued is severely limited by the locking proto-

col and the restriction on pipelining. The performance of the isotach systems, by contrast, is

limited only by the performance of the raw power of the networks. Though the raw power of the

networks is somewhat lower than that of the conventional networks, the synchronization support

the isotach networks provide allows the isotach systems to outperform the conventional systems

by a wide margin.

6.3.5  Data Dependency Data

This series compares the performance of conventional and isotach systems for a workload

model in which data dependencies exist both within and among atomic actions. The existence of

data dependencies among atomic actions means that a process cannot issue an atomic action until

the proceeding atomic action is complete. To simulate this type of data dependence, we set aa_cap

=1 for all networks.

The data dependencies within atomic actions are assumed to be of a simple type: each

WRITE depends on all the READ’s in the same atomic action. As a consequence, a process cannot

issue a WRITE until it has received responses to all the reads in the same atomic action. The intro-

duction of data dependencies within atomic actions should make C1 very slightly less efficient

than in series 4, but we assume for simplicity that C1’s performance remains the same. The data

for C1 in this series is copied from the data from series 4. For an isotach system the impact of data

dependencies is much more significant since they prevent the isotach system from taking advan-

tage of its ability to pipeline while maintaining sequential consistency. In the case of I1 and I2, the

data dependencies within atomic actions are modelled by using the scheduling isochron technique

in section 2 (access sequences and split operations) for every atomic action containing a WRITE.
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Base Case - Both the throughput and delay are lower for the isotach systems than in series

4. Delay is lower because the networks are more lightly loaded. As noted above, the data for C1 is

copied from series 4. I1 and I2 perform only slightly better than C1 in the base case. Throughput

for C1 is lower (.020 for C1 instead of about .030 and .027 for I1 and I2) and delay per stage is

higher (9.2 for C1 instead of 6.6 and 7.5 for I1 and I2).

GRAPHS  6.3.5-scalability - Series 5 data for variation of network size. ο - C1; ❏ - I1; ◊ - I2;

Scalability (Graphs 6.3.5-scalability) - The throughput of C1 and I2 diminish gradually

and at about the same rate. I1 scales slightly less well than I2 under this series’s workload. The

throughput of I1 drops faster than I2’s and, instead of diminishing, the delay per stage for I1

increases very slightly.

GRAPHS  6.3.5-hot_spot - Series 5 data for variation of hotspot load. ο - C1; ❏ - I1; ◊ - I2;

4 6 8 10
# Stages

0.00

0.01

0.02

0.03

0.04

0.05

T
hr

ou
gh

pu
t

4 6 8 10
# Stages

0.0

2.0

4.0

6.0

8.0

10.0

12.0

D
el

ay

0 5 10 15 20 25
Hotspot Traffic Percentage

0.00

0.01

0.02

0.03

0.04

0.05

T
hr

ou
gh

pu
t

0 5 10 15 20 25
Hotspot Traffic Percentage

0.0

100.0

200.0

300.0

400.0

D
el

ay



201

Hot-spot and Warm-spot Traffic (Graphs 6.3.5-hot_spot and Table 9) - Although the

throughput for the isotach networks is much lower than in series 4, it remains higher than the

throughput of C1. Delay for the isotach networks improves significantly over the delay in series 4

and is much lower than the delay for C1. When the probability of accessing the hot-spot is 10%,

the throughput for I1 and I2 is about 3.5 times higher than C1’s and delay is about 3.5 times lower.

When the probability of hot spot access is high (0.25), throughput for I1 and I2 is higher than C1

by a factor of about 7.8 and 5.25 respectively and delay is lower by a factor of about 8.5 and 6. The

warm-traffic data show the same pattern.

TABLE 9. Series 5 warm-spot data. 99% confidence intervals are shown in parentheses)

Atomic Action Size (Graphs 6.3.5-aa_size) - As in series 3 and 4, throughput and delay

for this part are normalized for the atomic action size. As the atomic action mean size increases,

the data show that throughput for the isotach networks initially increases, and then decreases,

whereas normalized delay initially decreases and then increases. Throughput increases initially

because increasing the atomic action size increases the number of operations presented to a net-

work that is underutilized because of the cap of 1 on the number of active atomic actions. The sub-

sequent decrease in throughput can be attributed to several factors:

Atomic Action
Throughput

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 0.0175
(.0175 - .0176)

0.0115
(.0115 - .0116)

0.0032
(.0031 - .0033)

I1 0.0301
(.0297 - .0304)

0.0288
(.0287 - .0289)

0.0207
(.0202 - .0212)

I2 0.0260
(.0258 - .0262)

0.0245
(.0243 - .0247)

0.0163
(.0159 - .1067)

Atomic Action
Delay

Low
Sharing

Medium
Sharing

Heavy
Sharing

C1 54.086
(53.907 - 54.264)

83.755
(83.185 - 84.325)

308.015
(296.555 - 319.475)

I1 32.869
(32.259 - 33.479)

34.356
(33.844 - 34.868)

47.973
(47.331 - 48.615)

I2 38.246
(38.011 - 38.482)

40.642
(40.260 - 41.024)

61.089
(59.694 - 62.48
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1. the network becomes less efficient as the size of the atomic actions increases;

2. the percentage of atomic actions that include a WRITE increases with the result
that a greater percentage of atomic actions must be executed in 2 stages; and

3. more operations are accessing the same number of variables with the result that
the probability a READ waits on an unsubstantiated SCHED increases.

GRAPHS  6.3.5-AA_size - Series 5 data for variation of atomic action size. ο - C1; ❏ - I1; ◊ - I2;

Delay increases for the reasons throughput decreases. The initial very small decrease in

delay occurs because operations in the same atomic action are issued and executed concurrently so

delay per operation tends to decrease as the number of operations per atomic action increases.

Although the efficiency of I1 and I2 is much lower than in series 3 and 4, the isotach networks still

outperform the conventional networks by a margin that increases as the atomic action size

increases. When the atomic action mean size is 16, throughput is about 3.5 to 4.5 times higher for

I1 and I2 than for C1 and delay about 4 to 5 times lower.

Read Probability (Graph 5-read_prob) - The efficiency of each of the systems increases

gradually as the probability of a read access increases. None of the systems is very sensitive to the

percentage of reads because the probability that operations concurrently access the same variable

is low, given the cap of 1 on the number of active atomic actions per PE and the uniform distribu-

tion of accesses.
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GRAPHS  6.3.5-read_prob - Series 5 data for variation of READ probability. ο - C1; ❏ - I1; ◊ - I2;

Forced Singletons. (Graphs 6.3.5-force_sing) - This data shows that isotach networks

continue to outperform conventional networks even under the performance limiting effects of this

series until the forced-singleton probability reaches about .5 (meaning the percentage of singleton

accesses is about 60%).

GRAPHS  6.3.5-force_sing - Series 5 data for variation of singleton probability. ο - C1; ❏ - I1; ◊ - I2;

Series 5 shows that isotach systems can outperform conventional systems even for work-

loads in which the existence of data dependencies negates one of the principal advantages of iso-

tach systems, the ability to pipeline operations while maintaining sequential consistency. The

series indicates that the scheduling isochron technique is more efficient than 2PL for structured
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atomic actions of the type simulated, especially for large atomic actions or nonuniform access pat-

terns.

6.3.6  Warm Traffic Data

Series 6 compares the performance of the networks when accesses are not uniformly dis-

tributed. This series repeats parts of earlier series using an 80/20 rule warm traffic model in place

of the uniform traffic model. We include this series to explore the effect of contention for shared

variables in conventional and isotach systems.

This series also differs from earlier series in that it uses a switch buffer size of 2 for the

isotach networks. C1 is slightly more efficient with a switch buffer size set at 1 instead of 2 and the

isotach networks are slightly more efficient at 2 instead of 1. In all previous series, the switch

buffer sizes are all set at 1. In this series we compare the conventional and isotach systems when

each has its optimal switch buffer size: 1 for C1 and 2 for I1 and I2.

In the first part of series 6 (series 6.1), the workload model is the atomicity only model

from series 3. In the second part (series 6.2), the workload model is the flat atomic actionmodel

from series 4.

Base Case - In the base case for series 6.1 (atomicity only), the throughput of the capped

version of I2 is higher than C1’s by a factor of about 9 and delay is about 8 times lower. In the base

case of series 6.2 (flat atomic actions) throughput of I2 is 18 times higher than C1’s and delay

about half that of C1. When accesses are not uniformly distributed the margin by which isotach

networks outperform conventional networks increases. The performance of the isotach networks

in series 6.1 and 6.2 is similar to their performance in series 3 and 4. The throughput is essentially

the same and the delay only slightly higher. The increase in the buffer size helps offset the decrease

in throughput caused by the non-uniform distribution of accesses. The performance of C1, by con-

trast, is considerably worse in series 6. When the probability of conflicting operations is low, locks

have less impact on performance than when it is high. The use of locks to enforce atomicity means

C1’s performance suffers when accesses are not uniformly distributed.
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GRAPHS  6.3.6.1-AA-size - Series 6.1 data for variation of the atomic action size.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

Atomic Action Size - Graphs 6.3.6.1-AA_size and 6.2-AA_size show the effect of

varying the atomic action size under a warm-traffic model. These graphs correspond to

Graphs 6.3.3-AA_size and 4-AA_size, respectively. When atomic actions are large and

traffic is non-uniform, C1’s performance is very poor relative to the isotach networks. For

large atomic actions (aa_size = 16), the throughput in series 6.1 of the capped version of I2

is about 43 times higher than C1’s and delay about 57 times lower. In series 6.2, I2’s

throughput for large atomic actions is about 78 times higher than C1’s and its delay about

24 times lower.

GRAPHS  6.3.6.2-read_prob - Series 6.2 data for READ probability variation. ο - C1; ❏ - I1; ◊ - I2;
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GRAPHS  6.3.6.1-read_prob - Series 6.1 data for variation of the READ probability.
ο - C1; ❏ - I1; ◊ - I2; ■ - I1 (AA Cap = 3); ◆ - I2 (AA Cap = 3);

Read Probability - Graphs 6.3.6.1-read_prob and 6.2-read_prob show the effect of vary-

ing the probability that an access is a READ. The isotach networks are not sensitive to the READ

probability, but C1 is, and to a much greater extent than under the uniform traffic model. The effect

on C1 is much greater under a warm traffic model because the probability that two operations con-

flict is significantly higher than when accesses are uniformly distributed. In the base case (read_-

prob = 75%), the percentage of locks granted immediately declines from 91% in series 3 to 81% in

series 6.1 and from 97% in series 3 to 83% in 6.2. When the READ probability is low (25%), the

throughput in series 6.1 of the capped version of I2 is higher than that of C1 by a factor of about 15

and its delay is lower by a factor of about 13. The comparable figures for series 6.2 are 29 for

throughput and 2.7 for delay.

GRAPHS  6.3.6.2-read_prob - Series 6.2 data READ probability variation. ο - C1; ❏ - I1; ◊ - I2;
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Series 6 indicates that isotach systems outperform conventional systems by a wider mar-

gin when accesses are not uniformly distributed.

6.3.7  Conclusions from the Simulation Study

We have presented results from a simulation study, performed jointly with Craig Williams

[RWW92], comparing the performance of locally synchronous isotach and conventional networks.

The study shows conventional networks have higher raw power than isotach networks, but that

under a workload of operations with atomicity and sequencing constraints, isotach networks out-

perform conventional networks. Isotach networks perform best in relation to conventional net-

works under workloads with the following characteristics:

1. Execution is required to be sequentially consistent;

2. The distance between data dependent operations within the same process’s pro-
gram is large enough to allow operations to be pipelined;

3. Atomic actions are large; and

4. Contention for shared variables is high.

When the workload has two or more of these characteristics, isotach networks perform

markedly better than their conventional counterparts. In some cases, the improvement in both

throughput and delay is more than ten-fold.

The locally synchronous systems outperform the conventional systems in spite of the

lower raw power of the isotach networks. A conventional system cannot take advantage of the

higher throughput and lower delay of its network when the synchronization techniques it uses

work by restricting throughput and imposing delays. In conventional systems, the limiting factor

on execution speed is not the network, but restrictions and delays imposed by the synchronization

techniques. In isotach systems, the limiting factor is the network itself. Atomicity and sequencing

constraints have markedly less effect on execution speed in isotach than in conventional systems.

The simulation results indicate that network throughput is of more importance relative to

network latency in its effect on system performance in isotach systems than in conventional sys-

tems. Isotach systems are better able to take advantage of high throughput and are better able to

use pipelining to mask latency. The high-throughput z-switch isotach network (I2) in most cases
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outperforms the lower throughput isotach switch (I1) in spite of the assumption that I2’s cycle time

is twice that of I1. In designing conventional networks, however, the simulation indicates that

accepting worse delay for better throughput is a poor decision. The high-throughput z-switch C2

outperforms all other networks in raw power, but consistently performs worse than the simpler

conventional switch C1 under a workload with synchronization requirements.

The most important assumptions made by the study are as follows: 1) the cycle time for

each isotach network switch is the same as that of the corresponding conventional switch and the

cycle time for a z-switch is twice that of a single-cycle switch -- in particular, that the latency of

the isotach network which performs best (I2) is twice that of the conventional network that per-

forms best (C1); 2) the workload models simulated are relevant to actual parallel computations;

and 3) the conventional system simulated is a good basis for a fair comparison of conventional

with isotach systems. We believe that these assumptions are realistic.

6.4  Alternate Implementations - Sorting at the MM

In a local synchrony implementation, an access is executed only when there can exist no

unexecuted accesses to the same memory location with earlier timestamps. Accesses bound for the

same memory location in the same ltu must be executed in pid and tock order to meet this imple-

mentation requirement. The pid ordering guarantees atomicity for isochronic accesses, while the

tock ordering guarantees sequential consistency for accesses to the same memory location, from

the same PE. We assume here a system using explicit tokens, and thus accesses are already sorted

by the ltu component of their timestamps.

The pid and tock ordering can generally be accomplished in one of two ways. The first is

for the MMs to buffer all accesses in a given ltu, and then sort them before execution. This method

requires that only the PEs and MMs act in a locally synchronous manner. The second is for the PEs

to sort the accesses of a given ltu by pid and tock before emission. In this case, the switches would

then merge sorted streams of accesses from each PE. We consider the second alternative to be sim-

pler and more efficient, for reasons discussed below. Note that local synchrony requires that



209

accesses may not be aborted once they have been emitted from a given PE. Therefore, any archi-

tecture implementing local synchrony must include at least single access buffering on the input

channels of each switch and MM.

Sorting at memory nodes requires that MMs be able to buffer the maximum number of

accesses that might be received in any given ltu. If PEs and switches do not keep accesses sorted

within ltus, an access to a given memory location might arrive during the processing of other

accesses in its ltu. Since accesses from different PEs to the same memory location arriving during

the same ltu must be ordered, the MM must have all the accesses which arrive during a given ltu

buffered in order to perform its sort. Meeting this buffering requirement would involve setting a

limit on the number of accesses allowable in a given isochron, or on the number of accesses per

isochron. For example, if one limited the number of accesses emitted per isochron per PE to k then

each memory node would require k*a*n bytes of buffer space, where a is the size of an access in

bytes, and n is the number of processing nodes. While the architecture can only generate kn

accesses per ltu, all of those accesses might be bound for the same MM, generating the buffer

requirement stated above. This does not include considerations for multiple processes operating on

a single processing node.

Note that scalability of a system is compromised in this case. To keep the same ability to

process isochrons requires that buffer sizes be increased at each MM when adding PEs to the sys-

tem. Since each PE can generate up to k accesses bound for a given MM in any ltu, ka bytes addi-

tional buffer space would be needed at each MM for each PE added to the system.

In the case of sorted order transmission, each processing node would have to be able to

buffer only the accesses that the node itself was generating in a given logical time unit. Compile-

time processing could be used to generate most accesses in order. Memory units would perform a

sorted merge among input channels, needing to buffer only one access from each input at a time.

The unsorted transmission system discussed above used kan bytes of buffer space per MM (a total

of k*a*n*m across all MMs, m representing the number of MMs) to allow PEs to generate k
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accesses per ltu. The sorted transmission scheme would allow the same k accesses per PE per ltu

while requiring at most ka bytes of buffer space per PE (a total of k*a*n across all PEs). In the

event that isochronic accesses can be issued in order, a PE would require only a single cell output

buffer.

In other words, situating the same amount of buffer space at the PEs would result in signif-

icantly better utilization of buffer space. If accesses could be generated in order, the number of

accesses per logical time unit, and thus per isochron, would be theoretically unlimited. Scalability

is maintained, as adding PEs requires only that each new PE be supplied with the same amount of

buffer space (O(k)) as each other PE already in the system. Single cell input buffers are required at

each switch node in either case.

A second point in favor of sorted transmission of accesses relates directly to the first.

While the complexity of the sorting operation is unchanged, a larger number of computational ele-

ments may be applied to the problem by using the communications network and the sorted trans-

mission scheme. As might be expected, the use of a larger number of computational elements

means more opportunities for parallelism.

The third point in favor of sorted transmission is that combining of operations can be made

much more efficient. If the combining component is added to the timestamp, as discussed in sec-

tion 2.8, combinable accesses are guaranteed to meet at the heads of their respective input queues

during the sorted merge operation at the switch nodes and MMs. This enhancement would come

without compromising the goal of local synchrony: to provide sequentially consistent, atomic

serial schedules for the global memory accesses of parallel programs. Combining would be

enhanced by eliminating the need for queue search in order to find combinable operations, and

ensuring that combinable accesses in a given logical time unit would be combined.

These arguments, especially those relating to scalability, indicate that sorted transmission

would be the best solution for a local synchrony implementation, assuming that either approach

could be implemented with relatively comparable time efficiency. Clearly, if the objective is to
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maximize k, the number of accesses emitable per ltu per PE, without scalability limitations, per-

forming a sorting operation at the PEs and a sorted merge at the switch nodes would be the better

approach. While we do not intend to abandon research into systems which sort accesses at mem-

ory, we believe that our buffer space and scalability arguments make true local synchrony a better

alternative.

6.4.1  Simulation Results for MM Sorting

Atomicity and sequential consistency are guaranteed in current systems and architectures

by using locking protocols and limiting access pipelining by processes. The implementation of

local synchrony presented here is an alternative to these solutions which provides better perfor-

mance when the need for atomicity and sequential consistency is significant relative to the number

of shared memory accesses performed.

Using the paradigm of logical timestamps to enforce atomicity and sequential consistency,

there are several ways to implement an access ordering system which will provide a serial sched-

ule of accesses to global memory in the same way as local synchrony. In this discussion we com-

pare local synchrony to a somewhat different access ordering approach, which might be thought to

be able to achieve better performance.

Better network performance can be achieved by doing some or all of the access ordering at

the memory modules themselves. Although this would not be a scalable or efficient solution with

respect to memory, it would result in faster transfer of accesses through the communications net-

work. However, the time costs of buffering and sorting accesses at the MMs outweigh the network

speedups as isochron size increases. We make the following assumptions in order to simplify the

discussion:

1. MMs are capable of performing one global memory access per network switch
cycle.

2. MMs are capable of doing an insert (of an access into the sorted list of accesses
currently held) in one switch cycle. Note that an MM cannot generally receive
more than a single access per switch cycle, so faster sorting has no benefit.

3. MMs are capable of performing accesses for a given ltu while receiving the
accesses for the next ltu.
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We feel that assumption 2 above is highly optimistic. It provides an implementation which

utilizes MM sorting with a significant advantage.

Consider an implementation in which accesses are sorted by ltu only as they cross the net-

work. In such an implementation, a switch would pass accesses without regard to timestamps, sub-

ject only to the caveat that the switch cannot pass a token until it holds tokens on each of its inputs,

at which time it would pass a token on each of its outputs and flush all tokens on inputs. Accesses

arriving at a given MM would be inserted into a sorted list as they arrived (1 per switch cycle). The

MM could begin processing accesses for a given ltu only when all accesses due to be performed

during that ltu were received (the last received access might still be the first to be executed). We

will call this implementation Ltu Ordering.

Graphs 6.4.1 show simulation results for a five stage network architecture using ltu order-

ing in I1-like switches, in comparison with the data for our I1 implementation, which we call Full

Ordering. Note that figure 35 presents only network performance data, without regard to actual

delays due to accesses being held by the MM.

Ltu ordering shows a throughput improvement of about 15% for small sized isochrons,

which decreases somewhat as isochron size increases. Isochron delay grows at a slower rate for ltu

ordering, which shows approximately a 30% advantage at isochron size 16.

Graphs 6.4.1 show a marked improvement in network performance for ltu ordering over

full ordering. However, if we take into account the waiting times necessary for accesses to be exe-

cuted in ltu ordering, we see different results. Because each access within a given ltu must be held

until all the accesses to be executed during that ltu have arrived, an extra delay is imposed on each

access, on average equal to the number of accesses that the MM will process during the current ltu.

In the simulations, which use a random distribution of global memory locations for accesses, this

number averages out to the average number of accesses released by each PE during each ltu, or the

average isochron size.



213

GRAPHS  6.4A - Network performance comparison between ltu ordering and full ordering.

Graphs 6.4.2 factor this additional delay into the performance data presented in graphs

6.4A. In graphs 6.4.2, the data is presented relative to each access, rather than each isochron

(throughput is multiplied and delay is divided by the average number of accesses per isochron).

The extra delay associated with ltu ordering is divided across all the network stages.

GRAPHS  6.4B Performance data with adjusted delay.
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much more steeply than full ordering as the isochron size increases, showing approximately a 28%

increase for an average isochron size of 16.

This data does not take into account the benefits of FIFO combining, which is implement-

able in the sorted transmission approach but not in the memory sorting approach. We expect that in

high concurrency situations, where hotspots are likely, FIFO combining will further benefit the

performance of the sorted transmission model.

6.5  Summary

In this chapter, we presented the results of simulation and analytical studies of local syn-

chrony implementations. We first described the network and switch architectures which would be

used in the studies.

For analytical models, we used mean value analysis to model the raw power of local syn-

chrony implementations. Our analytical models extend the probabilistic method to more complex

systems involving multiple message types. Our analytical models agree closely with the raw

power results of our simulation studies.

The simulation studies, performed jointly with Craig Williams [RWW92], compare the

performance of local synchrony implementations with conventional implementations for different

types of workloads, based on various levels of concurrency control requirements. The study shows

conventional networks have higher raw power than locally synchronous isotach networks, but that

under a workload of operations with atomicity and sequencing constraints, isotach networks out-

perform conventional networks.

Also we discussed local synchrony in comparison with MM sorting, another approach to

concurrency control through logical timestamp ordering. We presented resource requirements, effi-

ciency concerns, and simulation data which show that local synchrony is more efficient than MM

sorting when atomic actions are large.
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7.0  Conclusions

7.1  Research Review

We have studied the implementation of a low-level concurrency control mechanism, local

synchrony, on general-purpose multi-processing architectures. We have further investigated per-

formance characteristics of specific implementations, as well as some fault-tolerance aspects of the

general implementation.

Our research goals in this work were threefold. Our first goal was to develop a correct,

deadlock-free method for implementing local synchrony on a variety of interesting, asynchronous

multi-processing systems. We first presented a low-level implementation plan for the NYU Ultra-

computer architecture. Our plan included implementation details and algorithms for operation, as

well as a proof of correctness of deadlock freedom. Second, we presented a low-level switch

design for such an architecture that is realizable with current technology, and an alternate proof of

deadlock freedom using inherent knowledge rather than ghost messages.

Finally, we developed a general implementation plan, which allows local synchrony to be

implemented on any connected architecture (as defined in chapter 4). Our approach was to define a

class of directed graphs, LS graphs, which represent architectures on which local synchrony can be

correctly implemented, and then to present an algorithm which creates an LS graph from any

shared memory architecture. The target architecture then uses virtual channels [DaS87] to emulate

the LS graph topology. Our general implementation uses less memory and provides greater oppor-

tunities for parallelism than other approaches, and is proven correct and deadlock-free. The proof

of correctness of the general implementation of local synchrony is a significant addition to the the-

ory of parallel processing.

Our second goal was to assess some of the fault-tolerance capabilities of the general local

synchrony implementation. We discussed the preservation of coherent system state within a local

synchrony implementation in the presence of faults, and presented a simple system by which such

an implementation could tolerate faults by using redundant hardware communication paths. We
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presented and proved correct the local synchrony checkpointing and rollback procedure, which

can be used to perform logically synchronized rollbacks of the general local synchrony implemen-

tation. Finally, we showed that under certain conditions it is possible to limit the number of saved

checkpoints.

Our third goal was a simulation and analytical study of performance of local synchrony

implementations. Extending the probabilistic method of Jenq [Jen83], we developed several ana-

lytical models of local synchrony implementations that predict the raw power of the locally syn-

chronous communication networks studied (switch architectures I1 and I2—section 6.1). These

predictions enable us to validate the performance predictions of our simulations. The analytical

models also extend the probabilistic method to more complex types of systems than previously

investigated.

Our simulation study (performed jointly with Craig Williams [RWW92]) compares the

performance of locally synchronous isotach [WiR91] networks to similarly constructed conven-

tional networks. We present data for a conventional single-stage switch architecture (switches C1

and I1—section 6.1), and for a two-stage, high-throughput architecture (switches C2 and I2). The

study considers in detail the performance of the various implementations under sequencing and

atomicity constraints. We contend that our assumptions about cycle times and workload models

are valid, and that the conventional systems simulated constitute a good basis for fair comparison

between conventional and locally synchronous isotach systems.

As expected, the raw power of the isotach networks is less than that of conventional net-

works. However, under a workload of operations with atomicity and sequencing constraints, the

locally synchronous networks outperform the conventional networks by significant factors. Isotach

networks perform best in relation to conventional networks under workloads with the following

characteristics:

1. Execution of global memory accesses is required to be sequentially consistent;

2. The distance between data dependent operations within the same process’s pro-
gram is large enough to allow pipelining of operations;
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3. Atomic actions are large; and

4. Contention for shared variables is high.

When the workload has two or more of these characteristics, the locally synchronous

implementations perform markedly better than the conventional implementations. In some cases,

the improvement in both throughput and delay is more than ten-fold.

The locally synchronous systems outperform the conventional systems in spite of their

lower raw power. A conventional system cannot take advantage of the higher throughput and

lower delay of its network when the synchronization techniques it employs work by restricting

throughput and imposing delays. In conventional systems, the limiting factor on execution speed is

not the network, but restrictions and delays imposed by synchronization techniques. In locally syn-

chronous isotach systems, the limiting factor is the network itself. Atomicity and sequencing con-

straints have markedly less effect on execution speed in locally synchronous implementations.

The simulation results indicate that, relative to network latency, network throughput is

more important in its effect on system performance in locally synchronous isotach systems than in

conventional systems. Isotach systems are better able to take advantage of high throughput and are

better able to use pipelining to mask latency. The high-throughput z-switch isotach network (I2) in

most cases outperforms the lower throughput isotach switch (I1) in spite of the assumption that

I2’s cycle time is twice that of I1. In designing conventional networks, however, the simulation

indicates that accepting worse delay for better throughput is a poor decision. The high-throughput

z-switch C2 outperforms all other networks in raw power, but consistently performs worse than the

simpler conventional switch C1 under a workload with synchronization requirements.

The final conclusions we draw from this work are as follows:

1. Local synchrony is implementable on a wide range of parallel architectures with-
out unreasonable hardware costs.

2. Local synchrony is compatible with current trends in hardware fault-tolerance
techniques. Local synchrony allows the implementation of simple algorithms for
fault-tolerance and computation rollbacks.

3. Local synchrony presents a viable alternative to conventional methods of syn-
chronization for parallel processors. Although the unit cost of a global memory
access under local synchrony is greater, local synchrony offers significant advan-
tages over conventional techniques under more realistic workloads.
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7.2  Future Work

Local synchrony represents a new approach to concurrency control in parallel architec-

tures. Although timestamping systems have been popular in the database literature, the use of log-

ical time and access timestamps in parallel processing architectures has not been thoroughly

explored. The requirements of a database and those of an operating environment are significantly

different. The approach to timestamping systems for parallel architectures must, therefore, be dif-

ferent as well.

We believe this field has many opportunities for further study. For example, Williams’

delta-cache protocols [Wil93] show that isotach systems can be used to develop an entirely new

method of cache coherency techniques. A significant area of future research would be to explore

other applications for local synchrony implementations. For example: from the area of synchroni-

zation, more complex dependence requirements (e.g., dependence between the accesses of differ-

ent processes) and broadcast/multicast operations; from fault-tolerance, load-balancing and traffic

control.

We look forward to further development of several areas that we have begun to explore in

this work. One major emphasis will be on further refinements to implementation techniques for

local synchrony. Actual implementation of the local synchrony switch presented in Chapter 3

would allow us to measure true switch performance and develop experimental architectures that

implement local synchrony. Further research will aim to refine the implementation and explore

alternative methods to improve efficiency and performance.

Another goal of future research would be the low-level design of a high-throughput z-

switch for local synchrony. Our assumptions about the cycle time of the high-throughput switches

are pessimistic; further research should allow us to develop lower latency versions of the z-switch

architecture. Further enhancements to our designs would include providing for multi-input

switches (as opposed to the two-input design presented here).
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Another implementation goal would be to assess whether other routing techniques would

enhance the performance of local synchrony. Virtual Cut-Through [KeK79] and Wormhole Rout-

ing [DaS87] are both compatible with local synchrony implementations, and it may be possible to

use these approaches to increase the efficiency of the local synchrony implementation, perhaps

through timestamp look-ahead at the switch level.

One drawback to local synchrony implementations is that sequencing constraints are not

always necessary for every access in a general computation. When concurrency control require-

ments are low, conventional networks outperform local synchrony. We intend to explore hybrid

implementations of local synchrony in which accesses that need not be subject to concurrency con-

trol requirements are able to pass more quickly through the network. This approach is similar to

that proposed for the IBM RP3 [Pfi85]. For example, a singleton READ access sent by a PE may

not have sequential consistency restraints (as a singleton, there are no atomicity restraints). Such

an access might have higher priority than normal accesses in the hybrid approach.

Another area where we intend further research is the analytical models presented in Chap-

ter 6. Our main goal is to extend the analytical modeling technique to cover general implementa-

tions of local synchrony. The general implementation is a multi-stage architecture, but the numbers

of inputs and outputs at each stage can vary significantly within and among architectures. We

intend to develop general techniques that allow analytical modeling for general implementations

of local synchrony using our implementation technique.

A second goal in this area would be to consider different types of access traffic. The mod-

els presented in Chapter 6 consider only uniform traffic distributions, and thus are only able to

model the raw power of the networks. We intend to develop models based on more realistic traffic

models that include sequencing constraints. Non-uniform distributions of access destinations

would also be a goal, so that hot-spot performance could be predicted analytically.

Further goals in this area include covering multi-buffering architectures and combining

systems. Each of these enhancements presents significant problems in implementation, in large
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part due to the large number of possible buffer states. We intend to explore ways to make such

enhancements to our models while keeping the models tractable. We also intend to refine our

notion of information flow as presented in Chapter 6 and to explore other modeling techniques.

In the area of simulation, we intend to expand our simulation data by considering more

complex sequencing constraints (e.g., pointer following, data dependence between the accesses of

different PEs). Another goal is to generate simulation data using access streams based on execu-

tion traces of real parallel programs, which would provide evidence of the actual performance of

real local synchrony implementations.

In both simulation and analysis, we intend to pursue significant comparative analysis in

the future. This type of analysis has three distinct areas:

 The first area is the comparison of various enhancements to local synchrony implementa-

tions to the basic implementation and to each other. An example of work in this area would be ana-

lyzing the effect of combining in local synchrony implementations and collecting data on the

performance of enhanced switch designs for local synchrony architectures.

The second area includes comparison of the various approaches to logical timestamp

ordering. We intend to compare local synchrony implementations to the Chandy/Misra [ChM79]

timestamp ordering system, and to make a thorough comparison of pulse ordering implementa-

tions as presented in Chapter 6. We intend further to investigate possible optimistic implementa-

tions of logical timestamp ordering systems for concurrency control.

The final area for comparative analysis is between local synchrony and other concurrency

control approaches. In Chapter 6 we performed this type of analysis with locking implementations.

This dissertation and [Wil93] have presented strong evidence that logical timestamping

systems and local synchrony are a viable alternative to conventional methods of concurrency con-

trol. That the study of logical timestamping methods for concurrency control is a field rich with

opportunities. This dissertation has taken a significant step in the direction of establishing that fact.
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