
Memory Reference Reuse Latency:
Accelerated Sampled Microarchitecture Simulation

John W. Haskins, Jr. Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22904�

predator,skadron � @cs.virginia.edu

UVA Computer Science Technical Report CS-2002-19
Copyright c

�
2002

Abstract

This paper explores techniques for speeding up sampled micropro-
cessor simulations by exploiting the observation that of the mem-
ory references that precede a sample, references that occur nearest
to the sample are more likely to be germane during the sample it-
self. This means that accurately warming up simulated cache and
branch predictor state only requires that a subset of the memory
references and control-flow instructions immediately preceding a
simulation sample need to be modeled. Our technique takes mea-
surements of the memory reference reuse latencies (MRRLs) and
uses these data to choose a point prior to each sample to engage
cache hierarchy and branch predictor modeling.

By starting cache and branch predictor modeling late in the
pre-sample instruction stream, rather than modeling cache and
branch predictor interactions for all pre-sample instructions we
are able to save the time cost of modeling them. This savings
reduces overall simulation running times by an average of ����� ,
while generating an average error in IPC of less than �	�
�� .

1 Introduction
This paper explores techniques for accelerating sampled
microarchitecture simulations by reducing the amount of
cache and branch predictor warm-up time prior to cycle-
accurate samples where simulation data are gathered. By
warm-up we refer to the practice of modeling cache and
branch predictor interactions for a specified interval prior
to actual data gathering, in an effort to establish the sim-
ulated cache and branch predictor state precisely as they
would have appeared had the entire simulation been con-
ducted with cycle-accurate detail.

Unfortunately, highly detailed software simulation of a
microprocessor is prohibitively slow. Even on the fastest
hardware, slowdowns of several orders of magnitude (less

than native execution) are common. For example, Lilja
et al. [6] show that cycle-accurate modeling of many
SPEC2000 [8] benchmarks on reference inputs can take
over a year. Still, software simulation is fundamental to all
computer architecture research. To make simulation-driven
research tractable, many studies employ sampling: taking
measurements of a small, representative subset of the in-
structions that are executed over the lifetime of the bench-
mark. Only the samples’ instructions are simulated in cycle-
accurate detail, modeling the cycle-by-cycle matriculation
of individual instructions through the simulated pipeline.

To preserve the integrity of the sampled measurements,
simulated processor state must be accurately established
prior to full-detail simulation. In other words, accuracy is
predicated upon successfully defeating the so-called cold-
start bias; because cache and branch predictor performance
are critical to microprocessor performance, if the state of
the cache (at all levels of the hierarchy) and branch predic-
tor do not appear at least approximately as they would have
had the entire simulation been performed in cycle-accurate
detail at the leading edge of a sample, the simulation results
may be inaccurate.

One straight-forward technique to guarantee the ac-
curacy of pre-sample cache and branch predictor state
is to model the interaction of each memory reference—
instruction and data—with the cache hierarchy and every
control-flow instruction with the branch predictor while the
simulator is executing pre-sample instructions. (Each cache
interaction and branch predictor interaction is already mod-
eled during the cycle-accurate samples.) In this way, the
cache and branch predictor will always contain exactly the
same state as if cycle-accurate simulation had been em-
ployed throughout the simulation. Though its accuracy is
unimpeachable in terms of cache and branch predictor state,

1

this “full warm-up” method is heavy-handed. While not as
expensive (in terms of running time) as cycle-accurate sim-
ulation, modeling all cache and branch predictor interac-
tions is still costly.

One viable method for further accelerating sampled sim-
ulations is to avoid full warm-up by only modeling those
interactions that occur within a given number of instruc-
tions prior to the sample [2, 3, 5]. Our technique makes
the determination of when to engage cache and branch pre-
dictor warm-up by exploiting memory reference reuse la-
tencies (MRRL)—a measurement of the number of instruc-
tions that elapse between successive references to the same
address. We have developed software that facilitates MRRL
measurements and determines the pre-sample warm-up in-
terval independently for the instruction stream, data stream,
and control-flow instruction stream.

The rest of this paper is organized as follows. We discuss
related work in Section 2. Section 3 explains Memory Ref-
erence Reuse Latency, its measurement and its significance.
Section 4 applies MRRL to sampled simulation. Finally,
we explain our experimental methodology and present our
results in Section 5 and conclude in Section 6.

2 Related Work
Several studies examine ways to reduce overall simulation
running times by executing only a small subset of the bench-
mark in cycle-accurate detail. Skadron et al. [11] identify
short, representative simulation windows of 50 million in-
structions for the SPECInt95 benchmarks. The key insight
which guides their approach is to exclude the benchmarks’
unrepresentative start-up behavior (e.g., data structure setup
and initialization).

Conte et al. [2] take a different approach and instead
simulate multiple short samples. Their work focuses on
the branch prediction structures (assuming a perfect cache)
and shows that using stale predictor state from the previous
sample plus a short warm-up interval [7] of at least 7,000
instructions prior to the next sample is sufficient to mini-
mize cold-start bias and achieve very small errors of a few
percent in the mean observed IPC. In the experiments con-
ducted for this research, we use a similar multiple-sample
simulation regime, prefixing each sample with a warm-up
interval and preserving stale cache state between samples.

Other heuristics for reducing cold-start bias are studied
by Kessler et al. [5]. They consider using half of a sam-
ple’s references for warm-up purposes; tracking only entries
that are known to contain good state; using stale state from
the previous sample; and flushing state but estimating how
much error this introduces.

The warm-up acceleration methods proposed by [2, 5],
however, may compromise the accuracy of the pre-sample
state initialization. Haskins et al. [3] propose a warm-up
acceleration technique called Minimal Subset Evaluation
(MSE) which exploits the observation that only the most

recent memory references prior to a sample are germane to
memory references that occur during the sample itself. The
MSE technique uses formulas derived from combinatorics
and probability principles to calculate for some user-chosen
probability � , the number of memory references prior to
each sample that must be modeled in order to achieve accu-
rate pre-sample cache state; thus with probability � , cache
state will appear exactly as it would had full warm-up been
used. MSE’s mathematical underpinnings improve upon
prior efforts by maintaining accuracy while reducing warm-
up times. The work in [3], however, only treats warm-up
acceleration of pre-sample memory reference interactions
with the first-level data- and instruction-cache and it is not
obvious that MSE extends to secondary caches or branch
predictors.

Sherwood et al. [9] propose Basic Block Distribution
Analysis (BBDA). Their technique profiles frequency char-
acteristics of a benchmark’s basic blocks in order to isolate a
continuous subset of the dynamic instruction stream whose
execution characteristics closely mimic the complete, end-
to-end execution of the benchmark. BBDA’s key insight
is that periodic basic block frequency behavior reflects the
periodicity of various architectural metrics such as IPC,
cache miss rate, and branch predictor accuracy in cycle-
accurate simulation. In [10], Sherwood et al. build upon the
BBDA concept to create a technique that automatically iso-
lates multiple contigous subsets of the dynamic instruction
stream since some benchmarks’ behavior is too complex to
be charactarized by a single instruction stream slice. In both
cases, their aim is to reduce simulation running times by
only executing in cycle-accurate detail, a small representa-
tive slice of the dynamic instruction stream.

Wood et al. [12] establish the concept of cache gener-
ations. Each cache generation begins immediately after a
new line is brought into the cache and ends when the line
is evicted and replaced. Their notion of cache generations
establishes a framework for analytically estimating the un-
known or cold-start reference miss ratio, � . They further
establish that � is substantially higher than the miss ratio
of references chosen at random. Armed with reliable �� —
estimated unknown reference miss ratio—they were able
to accurately measure cache miss ratios in sampled trace-
driven simulations.

In their Decay Cache research, Kaxiras et al. [4] propose
a technique of cutting power to (heuristically presumed)
dead cache lines, thereby reducing leakage power. Their
measurements show that for a 32KB L1 data-cache, the pro-
portion of the cache lines’ dead time ranges from ����� to as
much as �	��� for the SPEC2000 benchmarks. Their work
shows that most cache lines’ active lifetime is significantly
longer than their useful lifetime.

By measuring the reuse latency of individual memory
addresses, we were able to forge an alternative warm-up ac-

2

celeration technique that preserves accuracy by determining
which references are likely to be germane to each cycle-
accurate sample.

3 Memory Reference Reuse Latency
Memory reference reuse latency (MRRL) refers to the
elapsed time between a reference to some memory address
M[�] and the next reference to M[�]. For our purposes
“time” is measured in the number of completed instructions.
To facilitate a rigorous discussion of MRRL, in a mathemat-
ical framework, we must establish a relationship between
the � instructions in a single pre-sample–sample pair and the
elements of the discrete interval � ������� ; let instruction 	�
�� ,
for �������������� � � ����� , as pictured in Figure 1. Imagine fur-
ther, that � ������� is partitioned into ����� mutually-exclusive
buckets whose union is exactly � ������� .

We measured MRRLs for each benchmark using
custom-made MRRL profiling software. As the profiler
simulates each pre-sample–sample pair, the profiling soft-
ware maintains several associative arrays of memory ref-
erence addresses, M[�]—one for the instruction stream,
one for the data stream, and one for the stream of branch
instructions. Each element of the array is timestamped
with the number of instructions executed as of the currently
simulating memory or branch instruction; if a previously-
encountered address is reaccessed, the difference of the pre-
vious timestamp and the current number of executed in-
structions is temporarily stored as ����! �� . These ����! ��
are used to concurrently build a reuse latency histogram by
incrementing the count of the bucket that contains ����! �� .
When each pre-sample–sample section concludes, the pro-
filer outputs the ����! �� histogram. These histograms con-
tain the complete memory reference reuse latency profile
for each pre-sample–sample pair.

Each histogram gives the count of references for which
the number of elapsed instructions between successive ac-
cesses lies within the interval subset "�#%$�&('�)�* , where +,������������ � � �-�.� for all � buckets. Not surprisingly, the his-
tograms invariably tell the same story when plotted: A far
greater number of references are revisited a small num-
ber of instructions after their most recent access (i.e., the
histogram bucket with the largest population was always"�#%$�&('�)0/). Thus, the more instructions that elapse after an
access to M[�], the less likely M[�] is to be accessed again
during the current pre-sample–sample pair.

From the histograms we were able to calculate the pop-
ulation of an arbitrary percentile of reuse latencies, i.e., the"�#%$�&('�)1* for which at least 2 � of references are contained
in 3 * 4�5 / "�#%$�&('�) 4 . Let 6879
�:"�#%$�&('�)1* mean that the + th
bucket of the � ������� interval is upper-bounded at �<;=6>7 in-
structions into the pre-sample–sample pair. In other words,
of all the references in the current pre-sample–sample pair,2 � have reuse latencies of less than 6>7 instructions.

By engaging warm-up 6?7 instructions prior to the cur-
rent pre-sample–sample boundary for large enough 2 / , we
have reasonable certainty that the overwhelming majority
of addresses that will be accessed during the sample will
have been initialized. Essentially, we argue that if 2 � of
references require only 6?7 instructions between successive
accesses, then it is pointless to model the few (@A�CBDBE;F2HG �)
pre-sample cache and branch predictor interactions that oc-
cur more than 6?7 instructions before the sample since these
references will probably not be accessed during the sample.
This strategy of delaying pre-sample cache and branch pre-
dictor interaction modeling will be explained in more detail
in the next section.

4 Accelerating Warm-up
The steps of the MRRL warm-up acceleration technique are
enumerated below:

1. First, the user selects the locations of the cycle-
accurate sample regions within the benchmark; by
corollary non-sample regions are selected simultane-
ously. Each sample is paired with its own preceding
non-sample (hence referred to as pre-sample) region.

2. The user next profiles the benchmark to characterize,
for each pre-sample–sample pair, the reuse latency of
all references that occur. As this profile data is valid for
any cache and branch predictor configuration, this is a
one-time cost for each choice of benchmark samples.

3. Simulations can then be run in an aggressive fast-
forward mode, updating only architected state. At687 instructions prior to the cycle-accurate simulation
sample, the simulator shifts into warm-up mode where
memory references’ interactions with the cache hier-
archy and branch predictor interactions are modeled.
Once the sample is reached, the cache(s) and branch
predictor will contain accurate state, and full-detail
cycle-accurate, simulation begins. This last step re-
peats for each pre-sample–sample pair.

Notice the last step. Efficient execution is achieved by
breaking the simulation into three separate phases. The
first, aggressive fast-forward phase can be considered the
“cold” phase; this is followed by the “warm” phase, where
cache and branch predictor interactions are modeled; and
concluded by the “hot” phase where cycle-accurate simula-
tion of the processor pipeline takes place. Hence, each of
the first two phases models a proper subset of the activity
modeled in the subsequent phase.

Contrast this approach to the more conservative tech-
nique of modeling all pre-sample cache and branch predic-
tor interactions. Throughout the paper we shall refer to theI

A discussion of “large enough” J appears in Section 5.

3

n−21 2 3 n−1 n

pre−sample sample

1 lw
N

s

phasephase
cold warm

phase
hot

s − w
N

... ...

Figure 1. Pre-sample–sample pair as the discrete interval � ������� partitioned into � mutually-exclusive
buckets to form the ����! �� histogram; 6>7�
� "�#%$�&('�) � , therefore warm-up begins 6>7 instructions prior
to instruction which borders the eminent sample.

latter as fullwarmup. Obviously, modeling all pre-sample
cache and branch predictor interactions will maintain per-
fect state throughout all levels of the cache hierarchy and in
the branch predictor, rendering the simulation data imper-
vious to inaccuracies that arise from cold-start bias. In our
discussion of MRRL’s accuracy, therefore, we refer to the
data yielded by simulations that—using the technique enu-
merated above—model only a subset of pre-sample cache
and branch predictor interactions and calculate the relative
error thus: �CBDB����

�����
	�������������������� � �����������
����������� � ����������� .

Hence, for each pre-sample–sample pair, the aim of our
research is to preserve accuracy as we increase the dura-
tion of the cold phase while reducing the duration of the
warm phase, leaving the hot phase unchanged. While full-
warmup is safe, this strategy is too conservative because
not all memory references that occur during the pre-sample
period will impact the sample itself. Rather, as discussed
in [3], we show that only the most recent references prior
to a sample are relevant. Reciprocally, nowarmup—as its
name implies—makes no effort to establish accurate state
prior to each sample. Experiments that use the nowarmup
technique do not model any pre-sample cache or branch
predictor interactions. This makes nowarmup very suscep-
tible to cold-start bias, as will be shown in the next Sec-
tion. Other, ad-hoc warm-up methods that guess a warm-up
amount (e.g., 50% of all pre-sample instructions) may still
yield inaccurate results (if warming up only 50% of pre-
sample instructions is too few) or fall short of the potential
speed-up (if warming up fewer than 50% of pre-sample in-
structions would have still yielded accurate results).

5 Results
The data discussed in this section were gathered using the
steps enumerated in Section 4. For each pre-sample–sample
pair, the warm-up phase was engaged 6>7 instructions prior
to the sample for 2 � � B(� ����B(��B(� �	�DB(��B(� �	������B�� �	� ��� . The
benchmarks come from the SPEC2000 suite [8]; all binaries
were compiled into the Alpha instruction set. The MRRL
profiler and the multiple sample simulator were adapted
from sim-safe and sim-outorder, respectively, from the Sim-
pleScalar toolset version 3.0b [1].

To measure running time data as accurately as possible,
sim-outorder was further modified to use the UNIX system
call ('�)�!�# #"$ ('�@ G to monitor the CPU time of each bench-
mark run. We also modified sim-outorder (and several sup-
porting files) to incorporate enhanced statistics gathering
capabilities that allowed us to engage and disengage statis-
tics gathering at arbitrary points and for an arbitrary col-
lection of statistics (e.g., cache dl1 � misses and pred �
addr hits) throughout the simulation. Since the warm phase
varies in size from one MRRL percentile to the next, the
amount of cache and branch predictor activity also varies,
but effective comparisons required comparable statistics.
Since the size and locations of the full-detail samples re-
main fixed for a given benchmark, we decided to engage
statistics gathering for the cache and branch predictor solely
during the hot phases.

The two metrics we use to measure the MRRL’s merit
are IPC accuracy relative to fullwarmup and running time as
a percentage of fullwarmup. These two metrics are tightly
coupled; clearly, the latter is worthless without the former.

4

In other words, reducing simulation run times is only useful
if we can do so while simultaneously preserving accuracy.

Our first step was to profile each of the benchmarks so
that we could gather MRRL data. A simple Perl script was
then used to extract 6?7 for each pre-sample–sample pair.
These data, when fed to the multiple sample simulator were
used to demarcate the cold phase from the warm phase. The
previously chosen hot phase samples remained fixed just as
they were during the profile.

Table 1 shows the percent error in IPC relative to
fullwarmup using the MRRL warm-up technique and
nowarmup. As stated in the previous Section, nowarmup
is very susceptable to cold-start bias as is readily seen
from the benchmarks facerec, gcc and especially vpr, and
parser. Even though most benchmarks’ nowarmup IPC
diverges less than � � from fullwarmup, the four bench-
marks aforementioned effectively demonstrate that simula-
tion data gathered using nowarmup cannot be trusted.

Among the benchmarks, MRRL 7 shows an increasing
trend toward enhanced accuracy (i.e., smaller relative error)
as 2 increases. This result becomes even more compelling
when one observes the trend on the four chronically inaccu-
rate nowarmup experiments (facerec, gcc, parser, and vpr)
highlighted previously. The only exception to the mono-
tone increasing trend among the benchmarks is mesa. We
speculate that this is the result of destructive interference in
the branch predictor which causes mesa to enter its sample
phases with suboptimal branch predictor state. Neverthe-
less, in all cases, MRRL ��� ����� achieves an error of less thanB(� � � ; lower values of 2 were less reliable, but in general,
still much more accurate than nowarmup.

Before our discussion of MRRL’s ability to accelerate
simulation running times, it is important to fully understand
the optimality of nowarmup’s runtime acceleration. Since
nowarmup does not model any cache or branch predictor
interactions prior to the full-detail samples, the nowarmup
simulations have no warm phase, only cold and hot. Be-
cause the cold phase models a proper subset of the activity
modeled in the warm phase, eliminating the warm phase al-
together minimizes execution time to its absolute minimum
under the three-phase cold–warm–hot simulation strategy
described in Section 3.

Since nowarmup running time is the minimum possible
running time

�
it also represents the per-benchmark maxi-

mum potential speed-up. Table 2 shows that these poten-
tial speed-ups ranged from � �(� ��� � for art to 	�
(� �	��� for
fma3d, where these are the percentage of each benchmark’s
fullwarmup running time (

���� ������������ ����� � �����������). All MRRL 7 run-
ning time percentages shown in Table 2 give the percent-
age of potential nowarmup that each execution achieved
(�CBDB�� � @A� ; � 	������ � ���� �����������

���� ����������� G). In other words, Table 2
�
The choice of sampling strategy is beyond the scope of this work; refer

to [2, 9].

shows how close to the maximum possible reduction each
percentile was able to achieve (the higher the percentage the
better).

Observe that for higher percentiles, the amount of
achieved potential decreases. This, of course, is due to the
fact that higher 2 increase the size of the warm phase rel-
ative to the cold phase, causing an ever larger number of
pre-sample cache and branch predictor interactions to be
modeled. In spite of this, achieved potential is still re-
spectable, ranging from

� ��� � � � for vpr to ��	 � B�		� for lucas
at 2�� �	�(� ��� . These translate into running times of only� � � � � � and
 � � ����� , respectively for each of these bench-
marks relative to their fullwarmup running times

�
. Thus,

for all benchmarks and all percentiles 2 , total running time
was reduced by a minimum of � ��� . 2�� B(� �	��� performs
well, achieving an average error in IPC of B(� � ��� and an
average total running time reduction of � ��� ; this is our rec-
ommended MRRL percentile.

6 Conclusions and Future Work
Memory reference reuse latency analysis is a useful tech-
nique that can be used to reduce the running times of sam-
pled simulations by reducing the amount of time spent
warming up simulated cache and branch predictor state dur-
ing the simulation phase preceding each sample. By mea-
suring the latency (in number of instructions) between con-
secutive accesses to each memory address, we can discover
the memory reference reuse latency that corresponds to an
arbitrary percentile, MRRL 7 . This MRRL 7 then is used to
mark the threshold between a simulation’s cold and warm
modes. To make simulation as rapid as possible, cold mode
uses aggressive low-detail simulation, updating only archi-
tected state; in warm mode, memory reference interactions
within the cache hierarchy and branch instruction interac-
tions with the branch predictor are also modeled. At the
conclusion of the warm mode, cache and branch predictor
state will be accurately established, allowing the subsequent
hot mode to simulate in cycle-accurate detail without com-
plications arising from cold-start bias, which can compro-
mise accuracy.

Our results show that all benchmarks’ running times
were reduced by an average of �	��� while generating an
average error in IPC of less than B(� 		� . Future research ini-
tiatives include the application of our MRRL technique to
different sampling regimes. The MRRL profiler software
and modified version of sim-outorder will soon be posted to
the Laboratory for Computer Architecture at Virginia Web
site at http://lava.cs.virginia.edu/.

Acknowledgments
This material is based upon work supported in part by
the National Science Foundation under grant no. CCR-
0082671.
�
Percentage of fullwarmup �������������! #"%$�$�& �(')'�* (+�,.-�/103254�6 .

5

benchmark IPC � 4�� � -�/103254�6 IPC +�,.-�/103254�6 IPC "%$�$�&���� �	�	� IPC "%$�$�&���� �	�	� IPC "%$�$�&���� �	�	� IPC "%$�$�&���� �	�	�
art 2.0708 -0.7920% -0.1062% -0.0338% -0.0048% 0.0000%
crafty 2.3966 -0.0209% -0.0250% -0.0250% -0.0250% -0.0125%
facerec 1.6675 -2.4048% -0.1979% -0.1379% -0.0960% -0.0240%
fma3d 1.4186 -0.8248% -0.4582% -0.4018% 0.0141% 0.0000%
gcc 1.9937 -2.6433% -1.2991% -0.7323% -0.4414% 0.0752%
gzip 2.1777 -0.1056% -0.0413% -0.0276% -0.0138% -0.0092%
lucas 0.9627 0.0831% 0.0312% 0.0208% 0.0208% 0.0208%
mesa 2.4695 0.3442% 0.3766% 0.4049% 0.3968% 0.3887%
parser 1.5248 -9.3061% -6.4861% -2.4200% -1.2133% -0.2689%
perlbmk 1.6350 1.2966% 1.3089% 1.3394% -0.0979% -0.0061%
twolf 1.5647 0.0000% -0.0192% -0.0128% -0.0128% -0.0128%
vortex 2.2447 -0.6593% -0.4990% -0.4767% -0.3742% -0.1114%
vpr 1.1182 -4.5698% -2.2447% -0.5187% -0.2236% -0.0179%
wupwise 1.8261 0.4600% 0.0000% -0.0000% 0.0055% 0.0000%
MEAN -1.4330% -0.6900% -0.2158% -0.1475% 0.0016%

Table 1. IPC accuracy as %-error relative to fullwarmup (
�����
	�������������������� � �����������

����������� � �����������).

benchmark
�� 4�� � -�/103254�6 % +�,.-�/103254�6 % "%$�$�&���� �	�	� % "%$�$�&���� �	�	� % "%$�$�&���� �	�	� % "%$�$�&���� �	�	�
art 2761 59.83% 97.46% 95.58% 95.16% 92.62%
crafty 109873 68.76% 98.35% 98.35% 98.28% 96.21%
facerec 114071 67.06% 95.23% 93.39% 91.17% 84.70%
fma3d 171281 76.25% 99.14% 98.04% 96.89% 96.24%
gcc 66856 69.80% 99.46% 98.55% 97.07% 91.23%
gzip 48673 62.37% 98.59% 96.29% 94.05% 90.86%
lucas 80891 66.54% 99.36% 98.68% 98.09% 97.07%
mesa 79019 67.37% 99.52% 98.92% 98.85% 90.00%
parser 327684 69.39% 99.77% 96.34% 92.96% 84.75%
perlbmk 16636 68.57% 99.07% 98.95% 90.72% 88.15%
twolf 213200 62.91% 97.84% 95.65% 94.20% 90.76%
vortex 77808 66.64% 99.06% 98.78% 98.16% 91.91%
vpr 57293 71.68% 99.99% 95.71% 91.77% 81.54%
wupwise 192069 69.55% 99.21% 98.91% 93.92% 87.60%
MEAN 98.72% 97.32% 95.09% 90.26%

Table 2. Maximum potential (%nowarmup) acceleration (
���� ������������ ����� � �����������) and acheived percentage of po-

tential (%MRRL 7) running time speed-up (�CBDB���� @A� ; � 	������ � ���� �����������
���� ����������� G)

References
[1] T. M. Austin. SimpleScalar home page.

http://www.simplescalar.org.

[2] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing
State Loss for Effective Trace Sampling of Superscalar Pro-
cessors. In Proceedings of the International Conference on
Computer Deisgn, Oct. 1996.

[3] J. W. Haskins, Jr. and K. Skadron. Minimal Subset Eval-
uation: Rapid Warm-up for Simulated Hardware State. In
Proceedings of the International Conference on Computer
Design, Sept. 2001.

[4] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploit-
ing generational behavior to reduce cache leakage power. In
Proceedings of the 28th International Symposium on Com-
puter Architecture, June 2001.

[5] R. E. Kessler, M. D. Hill, and D. A. Wood. A Comparison
of Trace-Sampling Techniques for Multi-Megabyte Caches.
Technical Report 1048, Univ. of Wisconsin-Madison Com-
puter Sciences Dept., September 1991.

[6] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja.
Adapting the SPEC 2000 Benchmark Suite for Simulation-
Based Computer Architecture Research. In Proceedings of

6

the Third IEEE Annual Workshop on Workload Characteri-
zation, pages 73–82, Sep. 2000.

[7] S. Laha, J. H. Patel, and R. K. Iyer. Accurate Low-Cost
Methods for Performance Evaluation of Cache Memory Sys-
tems. IEEE Trans. Computers, 37(11):1325–1336, Novem-
ber 1988.

[8] Standard Performance Evaluation Corporation. SPEC
CPU2000 Benchmarks. WWW site:
http://www.specbench.org/osg/cpu2000, Dec. 1999.

[9] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In Proceedings of the International
Conference on Parallel Architecture and Compilation Tech-
niques, Sept. 2001.

[10] T. Sherwood, E. Perelman, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings
of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Oct. 2002.

[11] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Branch prediction, instruction-window size, and cache size:
Performance tradeoffs and simulation techniques. IEEE
Trans. Computers, 48(11):1260–81, Nov. 1999.

[12] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for
estimating trace-sample miss ratios. In Proc. ACM SIGMET-
RICS Conf. on Measurement and Modeling of Computer Sys-
tems, pages 79–89, June 1991.

7

