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ABSTRACT

Real-time systems must maintain consistency while minimizing the number of tasks that miss the
deadline, To satisfy both the consistency and real-time constraints, there is the need to integrate synchron-
ization protocols with real-time priority scheduling protocols. One of the reasons for the difficulty in
developing and evaluating database synchronization techniques is that it takes a long time to develop a
system, and evaluation is complicated because it involves a large number of system parameters that may
change dynamically. This paper describes a prototyping environment for investigating distributed real-
time database systems, and its use for performance evaluation of priority-based locking protocols for

real-time database systems.
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1. Introduction

As computers are becoming essential part of real-time systems, real-time computing is emerging as
an important discipline in computer science and engineering [Shin87]. The growing importance of real-
time computing in a large number of applications, such as aerospace and defense systems, industrial auto-
mation, and nuclear reactor control, has resulted in an increased research effort in this area. Distributed
systems greatly exacerbate the difficulty of developing real-time systems as delays associated with inter-
process communications and remote database accesses must be taken into account, Most existing real-
time architectures are, in fact, stripped down and optimized time sharing architectures [Wat88]. There is
no support for the explicit management of time and, in most cases, there are features in the architecture

which actually hinder the implementation of scientific real-time scheduling algorithms.

Researchers working on developing real-time systems based on distributed system architecture have
found out that database managers are assuming much greater importance in real-time systems. In the
recent workshops sponsored by the Office of Naval Research [ONRSES8, IBM88], developers of "real”
real-time systems pointed to the need for basic research in database systems that satisfy timing constraint
requirements in collecting, updating, and retrieving shared data. Further evidence of its importance is the
recent growth of research in this field and the announcements by some vendors of database products that

include features achieving high availability and predictability [Son88b].

In addition to providing relational access capabilities, distributed real-time database systems offer a
means of loosely coupling software processes; therefore, making it easier to rapidly update software, at
least from a functional perspective. However, with respect to time-driven scheduling and system timing
predictabﬂity, they present new problems. One of the characteristics of current database managers is that
they do not schedule their transactions to meet response requirements and they commonly lock data tables
indiscriminately to assure database consistency. Locks and time-driven scheduling are basically incompa-
tible. Low priority transactions can and will block higher priority transactions leading to response require-

ment failures. New techniques are required to manage database consistency which are compatible with
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time-driven scheduling and the essential system response predictability/analyzability it brings. One of the
primary reasons for the difficulty in successfully developing and evaluating new database techniques is
that it takes a long time to develop a system, and evaluation is complicated because it involves a large

number of system parameters that may change dynamically.

A prototyping technigue can be applied effectively to the evaluation of database techniques for dis-
tributed real-time systems. A database prototyping environment is a software package that supports the
investigation of the properties of database techniques in an environment other than that of the target data-
base system. The advantages of an environment that provides prototyping capability are obvious, First, it
is cost effective. If experiments for a twenty-node distributed database system can be executed in a
software environment, it is not necessary to purchase a twenty-node distributed system, reducing the cost
of evaluating design alternatives. Second, design alternatives can be evaluated in a uniform environment
with the same system parameters, making a fair comparison. Finally, as technology changes, the environ-

ment need only be updated to provide researchers with the ability to perform new experiments.

A prototyping environment can reduce the time of evaluating new technologies and design alterna-
tives. From our past experience, we assume that a relatively small portion of a typical database system’s
code is affected by changes in specific control mechanisms, while the majority of code deals with intrin-
sic problems, such as file management. Thus, by properly isolating technology-dependent portions of a
database system using modular programming techniques, we can implement and evaluate design alterna-
tives very rapidly. Although there exist tools for system development and analysis, few prototyping tools

exist for distributed database experimentation, especially for distributed real-time database systems.

Anofher important use of a prototyping environment is to analyze the reliability of database control
mechanisms and techniques. Since distributed systems are expected to work correctly under various
failure situations, the behavior of distributed database systems in degraded circumstances needs to be well
understood. Although new approaches for synchronization and database recovery have been developed

recently [Son87, Son88, Son8%], experimentation to verify their properties and to evaluate their perfor-



mance has not been performed due to the lack of appropriate test tools.

This paper describes a message-based approach to prototyping study of distributed real-time data-
base systems, and presents a prototyping software implemented for a series of experimentation to evalu-

ate priority-based real-time locking protocols.

When prototyping distributed database systems, there are two possible approaches: sequential pro-
gramming and distributed programming based on message-passing. Message-based simulations, in which
evenis are message-communications, do not provide additional expressive power over standard simula-
tion languages; message-passing can be simulated in many discrete-event simulation languages including
SIMSCRIPT [Kiv69] and GPSS [Sch74]. However, a message-based simulation can be used as an effec-
tive tool for developing a distributed system because the simulation “looks" like a distributed program,
while a simulation program written in a traditional simulation language is inherently a sequential pro-
gram. Furthermore, if a simulation program is developed in a systematic way such that the principles of
modularity and information hiding are observed, most of the simulation code can be used in the actual

system, resulting in a reduced cost for sysiem development and evaluation.

The rest of the paper is organized as follows. Section 2 describes the design principles and the
current implementation of the prototyping environment. Section 3 presents an experimentation of
priority-based real-time locking protocols using the prototyping environment. Section 4 discusses real-

time locking protocols in distributed environments. Section 5 is the conclusion.

2. Structure of the Prototyping Environment

For a prototyping tool for distributed database systems to be effective, appropriate operating system
support is mandatory. Database control mechanisms need to be integrated with the operating system,
because the correct functioning of control algorithms depends on the services of the underlying operating
system; therefore, an integrated design reduces the significant overhead of a layered approach during exe-

cution.
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Although an integrated approach is desirable, the system needs to support flexibility which may not
be possible in an integrated approach. In this regard, the concept of developing a library of modules with
different performance and reliability characteristics for an operating system as well as database control
functions seems promising. Our prototyping environment follows this approach [Cook87, Son88c¢]. It is
designed as a modular, message-passing system 1o support easy extensions and modifications. Server
processes can be created, relocated, and new implementations of server processes can be dynamically
substituted. It efficiently supports a spectrum of distributed database functions at the operating system
level, and facilitates the construction of multiple "views" with different characteristics. For experimenta-
tion, system functionality can be adjusted according to application-dependent requirements without much

overhead for new system setup,

The prototyping environment provides suppott for transaction processing, including transparency to
concurrent access, data distribution, and atomicity. An instance of the prototyping environment can
manage any number of virtual sites specified by the user. Modules that implement transaction processing
are decomposed into several server processes, and they communicate among themselves through ports.
The clean interface between server processes simplifies incorporating new algorithms and facilities into
the prototyping environment, or testing alternate implementations of algorithms. To permit concurrent
transactions on a single site, there is a separate process for each transaction that coordinates with other

SErver processes.

Figure 1 illustrates the structure of the prototyping environment. The prototyping environment is
based on a concurrent programming kemel, called the StarLite kernel, written in Modula-2. The StarLite
kernel supports process control to create, ready, block, and terminate processes. Scheduler in the kernel

maintains the simulation clock and provides the hold primitive to simulate the passage of time.

User Interface (U1) is a front-end invoked when the prototyping environment begins. UI is menu-
driven, and designed to be flexible in allowing users to experiment various configurations with different

system parameters. A user can specify the following:



User Interface

Configuration Manager Performance Monitor
Transaction Generator
Servers Transaction Manager
Resource Manager DB

Message Server

StarLite Kernel

Fig. 1. Structure of the prototyping efivironment

e system configuration: number of sites and the number of server processes at each site.

e database configuration: database at each site with user defined structure, size, granularity, and levels of
replication.

» load characteristics: number of transactions to be executed, size of their read—sets and write-sets, tran-
saction types (read-only or update) and their priorities, and the mean interarrival time of transactions.

e concurrency control: locking, timestamp ordering, and priority-based.

Ul initiates the Configuration Manager (CM) which initializes necessary data structures for transac-
tion processing based on user specification. CM invokes the Transaction Generator at an appropriate time
interval to generate the next transaction to form a Poisson process of transaction arrival. When a transac-

tion is generated, it is assigned an identifier that is unique among all transactions in the system.



Transaction execution consists of read and write operations, Each read or write operation is pre-
ceded by an access request sent 1o the Resource Manager, which maintains the Iocal database at each site.
Each transaction is assigned to the Transaction Manager (TM). TM issues service requests on behalf of
the transaction and reacts appropriately to the request replies. For instance, if a transaction requests
access to a file and that file is locked, T™ executes either blocking operation to wait until the data object
can be accessed, or aborting procedure, depending on the situation. If granting access to a resource will
produce deadlock, TM receives an abort response and aborts the transaction. Transactions commit in two
phases. The first commit phase consists of at least one round of messages to determine if the transaction
can be globally committed. Additional rounds may be used to handle potential failures. The second com-
mit phase causes the data objects to be written to the database for successful transactions. TM executes

the two commit phases 10 ensure that a transaction commits or aborts globalty.

The Message Server (MS) is a process listening on a well-known port for messages from remote
sites. When a message is sent to a remote site, it is placed on the message queue of the destination site
and the sender blocks itself on a private semaphore until the message is retrieved by MS. If the receiving
site is not operational, a time-out mechanism will unblock the sender process. When MS retrieves a mes-
sage, it wakes the sender process and forwards the message to the proper servers or TM. The prdtotyping
environment implements Ada-style rendezvous (synchronous) as well as asynchronous message passing.
Inter-process communication within a site does not go through the Message Server; processes send and

receive messages directly through their associated ports.

The Performance Monitor interacts with the transaction managers to record, priority/timestamp and
Tead/write data set for each transaction, time when each event occurred, statistics for each transaction and
cpu hold interval in each node. The statistics for a transaction includes arrival time, start time, total pro-

cessing time, blocked interval, whether deadline was missed or not, and number of aborts.

Since each TM is a separate process, each has its own data area in which to keep track of the time

when a service request is sent out and the time the response arrives, as well as the time when a transaction



begins blocking, waiting for a resource, and the time the resource is granted. When a transaction com-
mits, it calls a procedure that records the above measures; when the simulation clock has expired, these

measures are printed out for all transactions.

3. Prototyping Real-Time Database Systems

The previous section described the structure of the prototyping environment. In this section, we
present a real-time database system implemented using the prototyping environment. Two goals of our
prototyping work are 1) evaluation of the prototyping environment itself in terms of correctness, func-
tionality, and modularity, by using it in implementing distributed database systems, and 2) performance
evaluation of _reéi-time locking and priority-based synchronization protocols through the sensitivity study

of key parameters that affect performance.

Real-time databases are often used by applications such as tracking. Tasks in such applications con-
sist of both computing (signal processing) and database accessing (transactions). A task can have multiple
embedded transactions, which consists of a sequence of read and write operations operating on the data-
base. Each embedded transaction will follow the two-phase locking protocol {Esw76], which requires a
transaction to acquire all the locks before it releases any lock. Once a transaction releases a lock, it cannot
acquire any new lock. A high priority task will preempt the execution of lower priority tasks unless it is
blocked by the locking protocol at the database. In this section we consider them in a single site environ-

ment. Real-time locking protocols in distributed environment is discussed in the next section.

3.1. Priority-Based Synchronization

In a real-time database system, synchronization protocols must not only maintain the consistency
constraints of the database but also satisfy the timing requirements of the transactions accessing the data-
base. To satisfy both the consistency and real-time constraints, it i$ necessary to integrate synchronization
protocols with real-time priority scheduling protocols. A major source of problems in integrating the two

protocols is the lack of coordination in the development of synchronization protocols and real-time prior-



ity scheduling protocols. Due to the effect of blocking in lock-based synchronization protocols, a direct
application of a real-time scheduling algorithm to transactions may result in a condition known as priority
inversion. Priority inversion is said to occur when é higher priority process is forced to wait for the execu-
tion of a lower priority process for an indefinite period of time. When the transactions of two processes
attempt to access the same data object, the access must be serialized to maintain consistency. If the tran-
saction of the higher priority process gains access first, then the proper priority order is maintained; how-
ever, if the transaction of the lower priority gains access first and then the higher priority transaction
requests access to the data object, this higher priority process will be blocked until the lower priority tran-
saction completes its access to the data object. Priority inversion is inevitable in transaction systems.
However, to achieve a high degree of schedulability in real-time applications, priority inversion must be

minimized. This is illustrated by the following example.

Example: Suppose Ty, T,, and Ty are three transactions arranged in descending order of priority
with T; having the highest priority. Assume that T; and T4 access the same data object O;. Suppose that
at time t; transaction T5 obtains a lock on O;. During the execution of T3, the high priority transaction T}
arrives, preempts T3 and later attempts to access the object O;. Transaction T will be blocked, since Oj is
already locked. We would expect that T,, being the highest priority transaction, will be blocked no longer
than the time for trénsaction T3 to complete and unlock O;. However, the duration of blocking may, in
fact, be unpredictable. This is because transaction T4 can be blocked by the intermediate priority transac-
tion Ty that does not need to access O;. The blocking of T;, and hence that of Ty, will continue until T,

and any other pending intermediate priority level transactions are completed.

The blocking duration in the example above can be arbitrarily long. This situation can be partially
remedied if transactions are not allowed to be preempted; however, this solution is only appropriate for
very short transactions, because it creates unnecessary blocking. For instance, once a long low priority
transaction starts execution, a high priority transaction not requiring access to the same set of data objects

may be needlessly blocked.



An approach to this problem, based on the notion of priority inheritance, has been proposed
[Sha87]. The basic idea of priority inheritance is that when a transaction T of a process blocks higher
priority processes, it executes at the highest priority of all the transactions blocked by T. This simple idea
of priority inheritance reduces the blocking time of a higher priority transaction. However, this is inade-
quate because the blocking duration for a transaction, though bounded, can still be substantial due to the
potential chain of blocking. For instance, suppose that transaction T, needs to sequentially access objects
0O, and O;. Also suppose that T, preempts T; which has already locked O,. Then, T locks O,. Transac-
tion T, arrives at this instant and finds that the objects Oy and O, have been respectively locked by the
lower priority transactions T, and Ts. As a result, T, would be blocked for the duration of two transac-
tions, once to wait for T4 to release Oy and again to wait for Ty to release O,. Thus a chain of blocking

can be formed.

One idea for dealing with this inadequacy is to use a total priority ordering of active transactions
[Sha&8]. A transaction is said to be active if it has started but not yet completed its execution. A transac-
tion can be active in one of two states: executing or heing preempted in the middle of its execution. The
idea of total priority ordering is that the real-time locking protocol ensures that each active transaction is
executed at some higher priority level, taking priority inheritance and read/write semantics into con-

sideration.

3.2, Total Ordering by Priority Ceiling

To ensure the total priority ordering of active transactions, three priority ceilings are defined for
each data object in the database: the write-priority ceiling, the absolute-priority ceiling, and the rw-
priority ceiling. The write-priority ceiling of a data object is defined as the priority of the highest priority
transaction that may write into this object, and absolute-priority ceiling is déﬁned as the priority of the
highest priority transaction that may read or write the data object. The rw-priority ceiling is set dynami-
cally. When a data object is write-locked, the rw-priority ceiling of this data object is defined to be equal

to the absolute priority ceiling. When it is read-locked, the rw-priority ceiling of this data object is



defined to be equal to the write-priority ceiling.

The priority ceiling protocol is premised on systems with a fixed priority scheme. The protocol
consists of two mechanisms: priority inheritance and priority ceiling. With the combination of these two
mechanisms, we get the properties of freedom from deadlock and a worst case blocking of at most a sin-

gle lower priority transaction.

When a transaction attempts to lock a data object, the transaction’s priority is compared with the
highest rw-priority ceiling of all data objects currently locked by other transactions. If the priority of the
transaction is not higher than the rw-priority ceiling, it will be denied. Otherwise, it is granted the lock.
In the denied case, the priority inheritance is performed in order to overcome the problem of uncontrolled
priority inversion.

Under this protocol, it is not necessary to check for the possibility of read-write conflicts. For
instance, when a data object is write-locked by a transaction, the rw-priority ceiling is equal to the highest
priority transaction that can access ii. Hence, the protocol will block a higher priority transaction that may
write or read it. On the other hand, when the data object is read-locked, the rw-priority ceiling is equal to
the highest priority transaction that may write it. Hence, a transaction that attempts to write it will have a
priority no higher than the rw-priority ceiling and will be blocked. Only the transaction that read it and
have priority higher than the rw-priority ceiling will be allowed to read-lock it, since read-locks are com-
patible. For a more formal discussion on the protocol, readers are referred to [Sha88]. The next example

shows how transactions are scheduled under the priority ceiling protocol.

Example: Consider the same situation as in the previous example. According to the protocol, the
priority ceiling of O; is the priority of Ty. When T, tries to access a data object, it is blocked because its
priority is not higher than the priority ceiling of O;. Therefore T, will be blocked only once by T; to

access Oy, regardless of the number of data chjects it may access.

The total priority ordering of active transactions leads to some interesting behavior. As shown in the

example above, the priority ceiling protocol may forbid a transaction from locking an unlocked data
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object. At first sight, this seems to introduce unnecessary blocking. However, this can be considered as

the "insurance premium” for preventing deadlock and achieving block-at-most-once property.

Using the prototyping environment, we have been investigating technical issues associated with this
idea of total ordering in priority-based scheduling protocols. One of the critical issues related to the total
ordering approach is its performance compared with other design alternatives. In other words, it is impor-
tant to figure out what is the actual cost for the "insurance premium” of the total priority ordering
approach. We discuss this performance issue of the real-time locking protocols in the next section. In ocur
experiments, all transactions are assumed to be hard in the sense that there will be no value in completing
a transaction after its deadline. Transactions that miss the deadline are aborted, and disappear from the

system immediately with some abort cost.

3.3. Performance Evaluation

Various statistics have been collected during the experiments for comparing the performance of the
priority-ceiling protocol with other synchronization control algorithms. Transaction throughput and the
number of deadline-missing transactions are the most important performance measures in real-time data-
base systems. This experiment investigates these performance characteristics in a single site database sys-

tem. Performance in distributed environments will be discussed in the next section.

Transaction are generated with exponentially distributed interarrival times, and the data objects
updated by a transaction are chosen uniformly from the database. A transaction has an execution profile
which altemates data access requests with equal computation requests, and sotne processing requirement
for termination (either commit or abort). Thus the total processing time of a transaction is directly related
to the number of data objects accessed. Due to space considerations, we cannot present all our results but
have selected the graphs which best illustrate the difference and performance of the algorithms. For
example, we have omitted the results of an experiment that varied the size of the database, and thus the
number of conflicts, because they only confirm and not increase the knowledge yielded by other experi-

menis.,

-11-



For each experiment and for each algorithm tested, we collected performance statistics and averaged
over the 10 runs. The percentage of deadline-missing transactions is calculated with the following equa-
tior_lz %omissed = 100 * (number of deadline-missing transactions / number of transactions processed). A
transaction is processed if either it executes completely or it is aborted. We assume that all transactions
are hard in the sense that there will be no value in completing a transaction after its deadline. Transac-
tions that miss the deadline are aborted, and disappeér from the system immediately with some abort cost.
We have used transaction size (the number of data objects a transaction needs to access) as one of the key
variables in the experiments. It varies from a small fraction up to a relatively large portion (10%) of the
database so that conflicts would occur frequently. The high conflict rate allows synchronization protocols
to play a significant role in determining system performance. We chose the arrival rate so that protocols
are tested in a heavily loaded rather than lightly loaded system. For designing real-time systems, one must
consider high load situations. Even though they may not arise frequently, one would like to have a system
that misses as few deadlines as possible when such peaks occur. In other words, when a crisis occurs and
the database system is under pressure is precisely when making a few extra deadlines could be most

important [Abb88].

We normalize the transaction throughput in records accessed per second for successful transactions,
not in transactions per second, in order to account for the fact that bigger transactions need more database
processing. The normalization rate is obtained by muliiplying the transaction completion rate
(transactionsfsecond) by the transaction size (database records accessed/transaction). In Figure 2, the
throughput of the priority-ceiling protocol (C), the two-phase locking protocol with priority mode (P),
and the two-phase locking protocol without priority mode (L), is shown for transactions of of different

sizes with balanced workload (a), I/O bound workload (b), and CPU bound workload (c), respectively.

As the transaction size increases, there is little impact on the throughput of the priority-ceiling pro-
tocol over a range of transaction sizes and over the workload type shown in Figure 2. This is because in
the priority-ceiling protocol, the conflict rate is determined by ceiling blocking rather than direct block-

ing, and the frequency of ceiling blocking is not sensitive to the transaction size.
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However, the performance of the two-phase locking protocol with or without priority degrades very
rapidly. This phenomenon is more pronounced as the transaction workload becomes more 1/O bound,
since there are few conflicts for the small transactions in the two-phase locking protocol, and the con-
currency is fully achieved with an assumption of parallel I/O processing. Poor performance of the two-

phase locking protocol for bigger transactions is due to the high conflict rate.

Another important performance statistic is the percentage of deadline-missing transactions, since
the synchronization protocol in real-time database systems must satisfy the timing constraints of indivi-
dual transaction. In our experiments, each transaction’s deadline is set in proportion to its size and sys-
tem workload (number of transactions), and the transaction with the earliest deadline is assigned the
highest priority. As shown in Figure 3, the percentage of deadline-missing transactions increases sharply
for the two-phase locking protocol as the transaction size increases. A sharp rise was expected, since the
probability of deadlocks would go up with the fourth power of the transaction size [Gray81]. However,
the percentage of deadline-missing transactions increases more slowly as the transaction size increases in
the priority-ceiling protocol. Since there is no deadlock in priority-ceiling protocol, the response time is

proportional to the transaction size and the priority ranking.

4. Priority Ceiling in Distributed Environments

In this section, we discuss the use of the priority ceiling approach as a basis for real-time locking
protocol in a distributed environment. The priority ceiling protocol might be implemented in a distributed
environment by using the global ceiling manager at a specific site. In this approach, all decisions for ceil-
ing blocking is performed by the global ceiling manager. Therefore all the information for ceiling proto-

col is stored at the site of the global ceiling manager.

The advantage of this approach is that the temporal consistency of the database is guaranteed, since
every data object maintains most up-to-date value, While this approach ensures consistency, holding

locks across the network is not very attractive. Owing to communication delay, locking across the net-
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work will only enforce the processing of a transaction using local data objects to be delayed until the
access requests to the remote data objects are granted. This delay for synchronization, combined with the
low degree of concurrency due to the strong restrictions of the priority ceiling protocol, is counter-

productive in real-time database systems.

An glternative to the global ceiling manager appmach is to have replicated copies of data objects.
An up-to-date local copy is used as the primary copy, and remote copies are used as the secondary read-
only copies. In this approach, we assume a single writer and multiple readers model for distributed data
objects. This is a simple model that effectively models applications such as distributed tracking in which
each radar station maintains its view and makes it available to other sites in the network. For this

approach to work, the following restrictions are necessary:

(D Every data object is fully replicated at cach site.
(2)  Dataobjects to be updated must be a primary copy at the same site with the updating transaction.
3 Every transaction must be committed before updating remote secondary copies.

Under these restrictions, the local ceiling manager at each site can enforce the priority ceiling protoc_ol for .
the synchronization of not only the local data objects (primary or replicated copies), but also remote pri-
mary copies and local replicated copies. The first restriction is necessary because in a distributed database
environment, holding locks across the network will occur if all the data objects requested by a transaction
do not reside at the local site. If we allow each transaction to update its local copy without synchronizing
with other transactions, transaction roll back and subsequent abort may result as in optimistic concurrency
control. This situation is not acceptable in real-time applications. The second restriction prevents it by
providing only a single primary copy.

If we insist that copies of a data objects must be identical with respect to all references, a transaction
updating the primary copy cannot commit until all the remote copies are also updated. However, this

solution requires locking data objects across the network, which can lead to long durations of blocking.
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The third restriction solves this problem by allowing remote copies to be historical copies of the primary
copy; the primary and remote copies can be updated asynchronously. The third restriction, however, may
cause a temporal inconsistency, owing to the delays in the network. That is, some of the views can be out
of date. Even with this potential problem of reading out of date values, the third restriction is very critical
in improving the system responsiveness in distributed environments. This also solves the problem of dis-
tributed deadlock. Since we do not have deadlocks at each site, and locks are not allowed to be held

across the network, we cannot have distributed deadlocks.

We have investigated the performance characteristics of the global ceiling approach and the local
ceiling approach with replication in a distributed environment. The real-time database system we have
implemented for the experiment, using the prototyping environment, consists of three sites with fully
interconnected communication network. To focus on the impact of the transaction mix and the communi-
cation cost on the number of deadline-missing transactions, we simulated a memory resident database
system. As in the single-site experiments, transactions enter the system with the exponentially distributed
interarrival times and they are ready 10 execute when they appear 'in the system. Update transactions are
assigned to a site based on their write-set, and read-only transactions ar¢ distributed randomly, The
objects updated by a transaction are chosen uniformly from the database. For reasons of space, we do not
present all our results but have selected the graphs which best illustrate the performance difference

between the two approaches.

Figure 4 shows the ratio between the throughput of the global ceiling approach and that of the local
ceiling approach, based on different transaction mix and communication delays. Even without consider-
ing the communication delay (i.e., communication delay = 0), the local ceiling approach achieves the
throughput between 1.5 and 3 times higher than that of the global ceiling approach, over the wide range
of transaction mix. The reason for this difference is that the degree of concurrency among the transactions
at each site can be greatly improved due to the decoupling effect of data replication. If we consider com-
munication delays, this performance ratio will increase according to the communication delay as shown

in Figure 4.
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Figure 5 illustrates the ratio of the percentage of deadline missing transactions between the global
and the local ceiling approach, based on different communication delays for a specific transaction mix
(50% read~on1y and 50% update transactions). There is a significant difference between the two
approaches in the number of deadline missing transactions, although the increase rate of this performance
ratio varies with the communication delay. In the range of small communication delays (up to 2 time
units), this ratio increases rapidly, and then rather slowly after that. As the communication delay
increases, the performance ratio increases beyond 16. This implies that the global ceiling approach is
more than 16 times likely to miss the real-time constraints than the local ceiling approach, for a given set
of real-time transactions. Performance improvement of the local ceiling approach is more substantial
with smaﬂ. communication delays than with large delays. This is because as communication delay
increases, the concurrency achieved by the local ceiling approach is limited by thelthe communication
cost due to data replication. Figure 6 shows the percentage of deadline-missing transactions for two
specific communication delays. As shown in Figure 5, the performance difference in terms of deadline-
missing transactions between two approaches increases as the communication delay increases over a wide
range of transaction mix. As the proportion of read-only transactions increases, the number of deadline-

missing transactions decreases since the conflict rate will decrease.

Our performance results have illustrated the superiority of the local ceiling approach over the global
ceiling approach, at least under one representative distributed real-time database and transaction model.
Hence, from this experimentation, we believe that, even with the potential problem of temporal incon-
sistency (i.e., reading out of date values), the local ceiling approach is a very powerful technique for real-

time concurrency control in distributed database systems.

There are applications where a temporally consistent view is more important than just the latest
information that can be obtained at each site. For example, in an application like tracking, a local track
would be updated periodically in conjunction with repetitive scanning. In order to provide a temporally
consistent view in a distributed environment, we can utilize the periodicity of the update transaction as a

timestamp mechanism. If the system provide multiple versions of data objects, ensuring a temporally
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consistent view becomes a real-time scheduling problem in which the time lags in the distributed versions
need to be controlled. Once the time lags can be controlled by the timestamps of data objects, transactions
can read the proper versions of distributed data objects, and ensure that decisions are based on temporally

consistent data.

5. Conclusions

Prototyping large software systems is not a new approach. However, methodologies for developing
a prototyping environment for distributed database systems have not been investigated in depth in spite of
its potential benefits. In this paper, we have presented a prototyping environment that has been developed
based on the StarLite concurrent programming kemnel and message-based approach with modular building
blocks. Although the complexity of a distributed database system makes prototyping difficult, the imple-
me_;ntation has proven satisfactory for ex;jerimentation of design choices, different database techniques
and protocols, and even an integrated evaluation of database systems. It supports a very flexible user
interface to allow a wide range of system configurations and workload characteristics. Since our prototyp-
ing environment is designed to provide a spectrum of database functions and operating system modules, it
facilitates the construction of multiple system instances with different characteristics without much over-
head. Expressive power and performance evaluation capability of our prototyping environment has been
demonstrated by implementing a distributed real-time database system and investigating its performance

characteristics.

Compared with traditional databases, real-time database systemé have a distinct feature: they must
satisfy not only the database consistency constraints but also the timing constraints associated with tran-
sactions. In other words, "time" is one of the key factors to be considered in real-time database systems,
Transactions must be scheduled in such a way that they can be completed before their corresponding
deadlines expire. Priority ceiling protocol is one approach to achieve a high degree of schedulability.and
system predictability. In this paper, we have investigated this approach and compared its performance

with other techniques and design choices. It is shown that this technique might be appropriate for real-
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time transaction scheduling, since it is very stable over the wide range of transaction sizes and reduce the

number of deadline-missing transactions.

There are many technical issues associated with priority-based scheduling protocols that need
further investigation. For example, the analytic study of the priority ceiling protocol provides an interest-
ing observation that the use of read and write semantics of a lock may lead to worse performance in terms
of schedulability than the use of exclusive semantics of a lock. This means that the read semantics of a
lock cannot be used to allow several readers to hold the lock on the data object, and the ownership of
locks must be mutually exclusive. Is it necessarily true? We are investigating this and other related issues

using the prototyping environment.

Transaction scheduling options for real-time database systems also need further investigation. In
priority ceiling protocol and many other database scheduling algorithms, preemption is usually not
allowed. To reduce the number of deadline-missing transactions, however, preemption may need to be
considered. The preemption decision in a real-time database system must be made very carefully, and as
pointed out in [Stan88], it should not necessarily based only on relative deadlines. Since preemption
implies not only that the work done by the preempted transaction must be undone, but also that later on, if
restarted, must redo the work. The resultant delay and the wasted execution may cause one or both of
these transactions, as well as other transaction to miss the deadlines. Several approaches to designing
scheduling algorithms for real-time transactions have been proposed [Liu87, Stan88, Abb88], but their
performance in distributed environments is not studied. The prototyping environment described in this
paper is an appropriate research vehicle for investigating such new techniques and scheduling algorithms

for distributed real-time database systems.
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