
1

Dispelling Seven Myths about Grid Resource
Management

Anand Natrajan, Andrew S. Grimshaw, Marty A. Humphrey, Anh Nguyen-Tuong
Department of Computer Science, University of Virginia

{anand, grimshaw, humphrey, nguyen}@cs.virginia.edu

Grid resource management is often viewed as
scheduling for large, long-running, compute-intensive,
parallel applications. This view is narrow, as we will
argue in this article. Grids today encompass diverse
resources including machines, users and applications.
Moreover, grid users make different demands from
different resources. Therefore, grid infrastructures
must adopt a greater responsibility than before for
managing resources. Grid resource management cannot
mean just scheduling jobs on the fastest machines, but
must also include scheduling special jobs on matched
machines, preserving site autonomy, determining usage
policies, respecting permissions for use and so on. In
this article, we will present seven “myths” or common
beliefs about grid resource management, and dispel
each myth by presenting counter-examples or
“observations”. These observations have been culled
from our experience as well as work done by several
experts in major grid-related projects. In order to relate these observations to concrete
implementation, we will also present grid resource management in Legion, a grid
infrastructure project initiated at the University of Virginia.

Grids are collections of interconnected resources harnessed together in order to satisfy
various needs of users. The resources may be administered by different organisations and
may be widely-distributed, heterogeneous and fault-prone. Previously, grid resource

What is grid computing?
Grid computing is the ability

to use and control network-
connected resources that are
heterogeneous, distributed,
managed independently and
potentially faulty. Grid
computing has received a lot of
press recently with vendors
such as IBM, Sun and HP each
putting forth their grid
strategies. One criticial aspect
of grid computing, particularly
for large-scale scientific
applications, is resource
management.

Dispelling Seven Myths about Grid Resource Management
2

management meant finding CPU cycles for running long, compute-intensive, parallel jobs.
However, grid resource management now means the manner in which resources are
allocated, assigned, authenticated, authorised, assured, accessed, accounted and audited.
We will contrast these two views of grid resource management in this article. In §1, we
will present the beliefs of the previous view as myths because we find no basis for their
continuance. We will also dispel these myths with counter-examples. In doing so, we will
fashion the current view of grid resource management as a collection of observations that
encompass the meaning of grid resource management and outline the tasks associated
with it. When presenting this view, we will draw on the wealth of experience present in the
grid community. Several grid projects share the observations we make here.

We implemented the current view of grid resource
management in Legion, a software infrastructure
developed originally at the University of Virginia in the
mid-1990s [GRIM97]. In 2001, a company called AVAKI
Corporation was founded to provide commercial grid
solutions to companies. The underlying architecture of
Avaki 2.x is the same as that of Legion, and our
discussion here applies to both. A key feature of Legion
is its resource management framework. Grid resource
management is a complex task, involving security and
fault-tolerance as well as scheduling. Grid scheduling
itself requires not a one-size-fits-all scheduler but an
architectural framework that can accommodate different
schedulers for different classes of problems. We will

present the broad architectural features of the Legion resource management framework in
§2. In §3, we will discuss some of the lessons we learnt in Legion regarding grid resource
management.

1. Myths about Grid Resource Management
The underlying theme in the seven myths that are the topic of this article is that,

mistakenly, grid computing is considered synonymous with high-performance computing.
This theme arose from the high-performance origins of grids in the early 1990s. At that
time, one motivation for creating grids was to share CPU cycles across multiple
organisations. The idea was to write an application and have it run on remote resources
that presumably could finish the job faster. However, since that original concept, grids
have changed. Now, the emphasis is more on sharing, be it sharing CPU cycles in the
original high-performance sense or sharing files and databases in the more recent data-
grid sense. Even applications are shareable entities; an application written by a grid user in
California should be available to a user in Japan, provided the requisite security and
licensing considerations are met. Each of the myths below disentangles one of the
misconceptions that contributes to the main theme.

For each of the myths we present, we will attempt to answer the following questions:
1. What is the myth?

Grid resource
management is the
manner in which
resources are
allocated, assigned,
authenticated,
authorised, assured,
accessed, accounted
and audited.

Dispelling Seven Myths about Grid Resource Management
3

2. What is the proof that this myth exists?
3. Why did this myth arise?
4. What are the implications of this myth?
5. Why is the myth false?
6. What is our observation?
7. What are the implications of this observation?

In §2, we will answer:
8. How did we implement the observation in Legion?

Forthwith, here are the seven myths.

Myth 1 Grid Resources = Machines (or CPUs)

This myth refers to the misconception that only machines, specifically the CPU cycles
on machines, are interesting resources on grids. Given that grids were originally meant for
sharing CPU cycles, this myth is unsurprising. Early technical literature in grid resource
management typically considers only CPU cycles for scheduling jobs. Traditional
scheduling algorithms, such as first-in-first out (FIFO), shortest job first and fair-share all
consider CPU cycles as the metric to optimise. The myth that CPU cycles are the only
resources of interest arises from the mistaken belief that grids are merely cross-domain
extensions of “big iron” systems such as multi-CPU machines or large clusters. This belief
directly implies that non-CPU resources are relatively plentiful or irrelevant for
scheduling, and a grid infrastructure need be only slightly more sophisticated than a
cluster management infrastructure. This view ignores other hardware resources such as
network bandwidth, disk, memory, swap space or specialised instruments that may be vital
for running jobs on a machine. It also ignores valid resources that may be irrelevant for
high-performance computing specifically, but relevant for grid computing in general, such
as data, as we will argue again and again in this article. As an off-centre example, consider
mobile devices. Currently, mobile devices occupy a second-class status as grid resources;
they are considered for little more than web portals or for browsing a grid. We strongly
believe that the day is not far when mobile devices will be first-class grid resources,
providing anything from short-order CPU cycles to on-site data. As a result, they and
other resources must be brought into the ambit of a “grid resource” so that full-fledged
resource management can be applied to them as well. A better restatement of the above
myth leads to our first observation:

Obs. 1 Grid Resources = CPUs + Disk + Memory + Files + Databases + Users
+ Administrators + Applications + Licences + Running Jobs + Mobile
Devices + …

A valid question is “By the definition above, what is not a grid resource?” A grid
resource is anything that may be controlled (see definition above for grid resource
management), and which has an Application Programming Interface (API) for doing so.
Conceptually, a toaster oven could be a grid resource if (i) we wish to control who toasts

Dispelling Seven Myths about Grid Resource Management
4

what when and how in it, and (ii) this control can be implemented programmatically.
Currently, we may neither wish to exert such control over toaster ovens nor avail of
standard APIs for them; therefore, toaster ovens, and many devices of the same ilk, are not
grid resources. Can people be resources? Certainly, as echoed in the observation above.
Typically, people are represented by credentials and authorisations in a grid. These
credentials and authorisations can be controlled programmatically, thus effectively
controlling a human’s actions on a grid.

Data items are key resources in a grid. A recurring use-case scenario among grid users
is the requirement to access data that may be located remotely. The emphasis here is not
on running applications fast, but on accessing hard-to-reach data. The more ecumenical
interpretation of grid resources in the observation above opens the door for resource
management strategies involving data placement, replication, tool location, licence
management, job monitoring tools, etc. On the other hand, the over-emphasis on CPU
cycles as grid resources leads to the next myth.

Myth 2 Grid Resource Management = Scheduling on a Grid

The belief that resource management is the same as scheduling is fallacious on two
grounds. First, the notion of scheduling may not make sense for large classes of non-CPU
resources (see Obs. 1). For example, we may not “schedule” users or data, but we can
“authenticate” users or “replicate” data; certainly, the latter tasks manage resources as
well. Therefore, focussing only on scheduling effectively ignores most kinds of resources.
Second, even if we consider CPU resources alone, resource management is more than
scheduling [GAN99] [LIV99]. Classical scheduling targets a bag of jobs that have to run on
resources that are essentially available all the time. In such an environment, scheduling is
a process of imposing discipline on the users so that each has a fair chance of getting
dedicated resources for her job. Queuing systems such as PBS [BAY99], LSF [ZHOU92]
[ZHOU93], LoadLeveler [IBM93], NQS [KING92], DQS, Codine and SGE are one version
of disciplined usage. However, the scheduling problem is more complex for grids. Grids
are often constructed by bringing together CPUs (and other resources) available at and
controlled by different organisations [BER99] [FOS99] [GAN99] [LIV99]. Accordingly,
before we determine when an application should run on a machine, we need to determine
whether or not it is allowed to run there at all. In turn, we must authenticate the grid user
who wishes to run the application, check her permissions to determine whether she is
authorised to run anything on that machine, check to see whether she can run the
application in question and check whether the application has a licence to run on that
machine. Even determining when she can run is a complex question. An organisation
contributing CPU (and other) resources to a grid may demarcate certain hours of the day
during which the resources are unavailable to remote users in order to satisfy the demands
of its local users. Therefore, even if a remote user’s job percolates to the top of the list of
jobs to be run, it may not be able to run if the time of the day is not suitable. Added to all
of these issues, resources may fail at any time. A grid infrastructure must continue to
function, and if possible, support the user’s job during resource failures. While jobs run on

Dispelling Seven Myths about Grid Resource Management
5

remote machines, their resource consumption must be monitored to control against over-
use and perhaps also to audit for later billing [HUM01]. In short:

Obs. 2 Grid Resource Management = Grid Scheduling + Security
+ Fault-tolerance + Site Autonomy + Licensing + Auditing

Resource management is central to grid computing, and it is a hard problem. Not only
does it include the security sub-problem, but it also includes the hard sub-problem of fault-
tolerance and the complex sub-problem of scheduling [CZAJ01] [FREY02]. All parts of this
problem must be addressed within the architecture of a grid infrastructure. Three major
models have been proposed for a grid architecture [FOS99] [FOX99] [GAN99]:

• A model based on commodity-solutions such as HTTP for transport, CGI and
JavaBeans for business and session logic, CORBA for resource discovery, and
JDBC for database connectivity [FOX99]

• A toolkit model, such as Globus, comprising components that implement basic
grid services [FOS99]

• An integrated model, such as Legion, which abstracts all of the resources in a
grid and presents the entire grid as a single virtual machine [GRIM97] [GRIM99]

Each approach has its benefits and drawbacks; we refer the reader to the cited literature
to evaluate each approach. Briefly, a commodity-based model separates concerns and
enables selecting best-of-breed solutions for every sub-problem. However, integrating
independently-developed solutions can be painstaking. The toolkit model focusses on
underlying tools and mechanisms that are of immediate benefit to users bringing grids
incrementally to users. The risk with this approach is that until higher-level tools are built,
many tasks that should be performed by the infrastructure have to be performed by users
themselves. The integrated model provides layered services ranging from low-level
transport up to job submission or data access tools, making deployment straightforward.
However, the approach requires tight co-design of components and can be slow to adapt to
changing standards.

Myth 3 Grid Scheduling = Reduction in Application Execution Time

The most persistent myth about grid scheduling itself is that its goal is to run
applications as fast as possible. Reducing the time required to run an application is an
alluring goal; therefore, grid scheduling toolkits and interfaces such as Nimrod [ABR95],
NetSolve [CASA96] and Ninf [NAK99] have been designed to meet such demands of grid
users. Certainly, running applications quickly is commendable, but it is not the be-all of
scheduling. High throughput is only one of many criteria that may be important to general
grid users when running applications [BER96]. Even if we discount security and fault-
tolerance momentarily (see Myth 2: Grid Resource Management = Scheduling on a Grid),
users may have more on their mind than just low execution times. For example, for some
jobs meeting deadlines may be more important than running fast when they eventually
run. In grids with cost models for resource consumption, running cheaply may be most

Dispelling Seven Myths about Grid Resource Management
6

important. For applications requiring special tools or licences to run, scheduling on
machines that make those tools or licences available earliest is more important than
throughput. When users are developing their applications, running immediately is more
important than running fast because of the high probability of an error in the application.
Users often getting frustrated when they have to wait for hours or days for their jobs to
bubble to the top of a queue only to have them die in the first five minutes because of an
error. Humans do make errors; a system that metes draconian punishments (such as loss of
research time) for venial errors (such as specifying incorrect parameters) can become
unpopular quickly. Therefore:

Obs. 3 Grid Scheduling = Optimisation_Function(Throughput, Latency, Cost,
Deadlines, Fairness, …)

Grids will be used for a diversity of applications. It is reasonable to expect that different
applications will make different demands on a scheduler. Even if we assume that high
performance indeed is the only criterion that interests grid users, what kinds of
applications can we expect to run on a grid?

Myth 4 Grid Applications = Parallel Applications

Parallel applications, i.e., applications whose constituent tasks communicate with each
other, are often written to solve large problems. Especially complex instances of such
applications have been venerated as “grand challenge” applications. Complex molecular
modelling and simulation applications such as Amber and CHARMM [BRO83] [MAC98]
often are written using some parallel processing toolkit, such as Parallel Virtual Machine
(PVM) [GEI98] or Message Passing Interface (MPI) [HEM99] [SNIR98]. Such applications
typically start up a large number of tasks which must communicate in order to make
progress. Certainly, grid scheduling should accommodate such applications if possible,
because these applications could benefit from running on remote resources. Systems such
as AppLeS [BER96], Prophet [WEI95] and others [KEN02] [LIU02] address critical aspects
of scheduling parallel jobs, such as partitioning, placement and perhaps load-balancing.
Much of this work is directly useful to applications intended to run on a grid. However,
focussing on such applications alone is restrictive. First, a large number of interesting
applications do not actually fall in this category. Several scientific applications are written
to be simply sequential. For example, Basic Local Alignment Search Tool (BLAST)
[ALT90], a frequently-used bioinformatics application, compares a protein or genomic
sequence against a database sequentially. Several other applications are written to be run
as pleasingly-parallel jobs i.e., these applications are run as multiple jobs that do not
communicate with one another. For example, protein database searches and wingflow
dynamics calculations are purely pleasingly-parallel applications. Second, most grid users
are sophisticated enough to realise that grids or no grids, running highly-communicating
tasks over wide-area networks results in very poor performance. Accordingly, they either
write their applications as barely-communicating tasks (much like pleasingly-parallel

Dispelling Seven Myths about Grid Resource Management
7

jobs) or require their applications to run on clusters or local-area networks [NAT01C]. Grid
schedulers may provide only limited benefit to such users.

Significant effort spent on grid scheduling is focussed on a hard problem called co-
scheduling, i.e., scheduling a parallel application across distributed resources such that its
tasks start at approximately the same time [SMI00]. Co-scheduling is a necessary process
for running a large parallel application on a grid because its tasks must start at roughly the
same time to ensure progress and, more importantly, not waste CPU cycles. Co-scheduling
becomes especially difficult when the tasks are placed across machines controlled by
different organisations, perhaps in different time-zones. Added complexity occurs when
the machines have different load and fault characteristics. However, the “last straw” for
co-scheduling is the problem of starting an application such that different tasks are started
by different queuing systems. Co-scheduling involving queuing systems is prohibitively
hard; hardly any queuing system can guarantee when a job will really start unless its
human controllers reserve specific times or days for the execution of such jobs alone. Co-
scheduling is a very hard problem; however we believe the fraction of grid applications
that require co-scheduling is small. Most users are aware of the difficulties involved in co-
scheduling and that the benefits are often small because the latencies involved in large
network distances can nullify most of the gains accrued by scheduling on powerful remote
machines. Accordingly, they restructure their applications to require as little
communication as possible (perhaps becoming pleasingly-parallel), or to require fewer
resources (thus becoming amenable to within-cluster scheduling). Therefore, while co-
scheduling research is beneficial for applications that cannot be restructured in this
fashion, immediate and greater benefits can be achieved by focussing on simpler
applications. Since the set of grid applications includes parallel as well as other
applications:

Obs. 4 Grid Applications = Parallel Applications + Sequential Applications
+ Pleasingly-Parallel Applications + Transactions
+ Soft Real-Time Applications + …

The traditional view of a typical grid application as a parallel application needs
revision. Next, we will change another related view of a grid application.

Myth 5 Grid Applications = Long-Running Compute-Intensive Jobs

The romantic view of a grid application is that of a long-running job, perhaps an
instance of a “grand challenge” application, carefully scheduled on a resource that will run
this application the fastest (see citations for Myth 4: Grid Applications = Parallel
Applications). In contrast, increasingly, grid jobs will be short. Already, several
applications, especially parameter-space studies, tend to have short individual jobs. For
example, in 2000, researchers at Celera Genomics ran roughly 70,000 jobs per day over
600 processors using Platform’s LSF queuing system for analysing genome data and
performing tasks such as gene discovery [EDW03] [SMI03]. Thus, each job averaged

Dispelling Seven Myths about Grid Resource Management
8

roughly 12 minutes. As a whole, the application ran for a long time, but in terms of the
unit of interest for a grid scheduler, each job of the application ran for a relatively short
time. Therefore, the criterion of interest for a grid user running such jobs is the ability to
execute as many of the jobs as possible at any given time. Typically, this user would not
care even if some of his jobs start on relatively slow machines. Rather, he would be more
interested in using every available cycle even if it is on a slow but scarcely-used desktop.
Sending such jobs to a queuing system is unattractive since the wait and overhead of
starting up such short jobs typically overwhelms the duration of the job itself. As grids
evolve, we expect them to move into utility computing models. Here, a grid job may be
viewed as a transaction lasting a few seconds to a few minutes. Traditional scheduling
mechanisms that view jobs as long-running processes will have limited use in such
environments. Such mechanisms will become unattractive quickly in the expected régime
of short grid jobs, mainly because the duration for scheduling the job may be longer than
the duration of the job itself [BER99]. Scheduling mechanisms that find favour will be the
ones that recognise diversity in the application mix and use different strategies for
different classes of applications. For example, an involved scheduling process for a long
job can be amortised over the duration of the job, but a “quick and dirty” process may be
sufficient for short jobs.

Obs. 5 Grid Applications = Long-Running Compute-Intensive Processes
+ Large Collections of Short Jobs + Frequent Short Transactions + …

Grid management software essentially provides an operating system for distributed
systems. A general-purpose operating system typically provides acceptable performance
for all classes of jobs instead of performing extremely well for one class of applications
but extremely poorly for all other classes. Likewise, a grid infrastructure must provide,
through its scheduler or schedulers, acceptable performance (if performance be the
criterion of interest to the grid user – see Myth 3: Grid Scheduling = Reduction in
Application Execution Time) for all kinds of applications. Focussing on only one class of
applications is unduly restrictive (see a similar argument in Myth 4: Grid Applications =
Parallel Applications). Focussing on only one kind of scheduling mechanism for that one
class of applications is myopic.

Myth 6 Scheduling Mechanism = Queuing Systems

Relying on one kind of scheduler alone to run all kinds of jobs is detrimental to users of
a grid [LIV99]. Even the most sophisticated queuing system represents only one kind of
scheduling decision, namely FIFO; added variations such as priorities, backfill, multi-
queues, etc. make the strict FIFO discipline more amenable to a larger class of users.
FIFO-based scheduling works in a restricted environment consisting of machines that are
cost-equivalent and users who do not care when their jobs start as long as they get
dedicated resources when they execute [BER99]. A general grid is not as restrictive.
Typically, a grid has heterogeneous resources, i.e., resources of varying capabilities.

Dispelling Seven Myths about Grid Resource Management
9

Almost certainly, these resources will have different costs associated with them [BUY01];
at the very least, desirability will be a direct function of performance. More likely
however, costs such as time available to run on them, mean time to failure, earliest time to
start, etc. will be interesting to users. Users may care when their applications start; too late
a start for some applications may render the results obsolete. CPU resources today are
relatively inexpensive, but appetite for them is large. Opportunistic scheduling strategies
such as those employed in Condor [LIT88], SETI@Home and Entropia, that feed that
appetite by scavenging for available and idle cycles are already popular and likely to
become more so [LIV99]. Therefore:

Obs. 6 Scheduling Mechanism > Queuing Systems

Queuing systems are very good at what they do – running jobs one after another on
finite resources that are typically cluster-based. However, the needs of all grid users who
run jobs cannot be satisfied by queuing systems alone. Queuing systems attempt to
optimise throughput at the expense of latency of jobs, and consequently, the patience of
users. Queuing systems often ignore deadlines, do not factor in CPU cycle cost, ignore
network costs, typically do not account for disk usage and often assume security
considerations are addressed by other systems. Most queuing systems also rely on the user
to ensure that input data and binaries are staged on the compute machines before the jobs
starts. Queuing systems work very well when the bulk of the users in a grid submit long-
running, possibly parallel, compute-intensive, fully-debugged, pre-staged jobs in a
production environment. No one expects grids to be restricted to such jobs. Then why
restrict grid scheduling to queuing?

Myth 7 Scheduling is a One-Sided Activity

This myth refers to the perception that scheduling is either a “user-driven” or a
“system-driven” process. “User-driven” scheduling refers to a process wherein only
actions by the user initiate activity. Typically, single-user systems such as PCs are user-
driven. Conversely, “system-driven” scheduling refers to a process wherein an activity is
initiated only as long as it meets systemic goals such as utilisation percentage. Typically,
cluster system administrators employ system-driven scheduling, e.g., queuing systems, in
order to keep CPUs employed as much as possible. In grid environments, scheduling is
unlikely to be one-sided. A user sitting at her terminal may not be aware that her CPU
cycles are being used by an application initiated by a remote user; therefore user-driven
scheduling is not applicable. Likewise, system-driven scheduling is inapplicable because
large classes of applications will require to be run in a manner that does not necessarily
align with the goals of system administrators. Therefore, grid scheduling strategies should
not be confused with local or cluster-based scheduling strategies. A more viable strategy
is:

Obs. 7 Scheduling is a Negotiation between Resource Providers and Consumers

Dispelling Seven Myths about Grid Resource Management
10
Scheduling should involve negotiation between resource providers and resource
consumers. Resource providers must be able to enforce site autonomy, i.e., they should be
able to indicate when they will allow what applications to run and under what conditions.
Of course, resource consumers are free to select whatever resources best meet their needs.
Two challenges have to be resolved in order to implement resource negotiation. First, we
need a resource specification language rich enough to express descriptions of available
resources and expressions for procuring them. Second, we need a framework that can
incorporate different schedulers that can match resource specifications with resources.
Resource specification languages such as ClassAds [RAM98] show promise in describing
resources for matchmaking, i.e., the process of matching the requirements of a resource
consumer with the characteristics and policies of resource providers.

An important challenge facing grid infrastructure experts is not finding the one
scheduler that solves all scheduling problems, but finding a framework that enables
incorporating a diversity of schedulers [ARN01] [BER96] [CZAJ01] [KARP96]. The
framework must accommodate various scheduling algorithms, each taking into account
different grid and application information. A default scheduler that provides decent
performance for most of the applications must be present so that novice users can still
benefit from the grid. However, experienced users must be able to select the kind and level
of scheduling service they desire and must be able to procure the cost of that service.

————— ~ —————

The scheduling problem in grids is sufficiently complex that we do not expect a fully-
automated solution to appear shortly. In other words, pessimistic as it may sound, we do
not believe that a grid will be able to select the correct scheduling algorithm for an
application without any hint, suggestion or help from the user. Therefore, we must enlist a
developer’s help in running applications, which in turn means that the developer must be
exposed to some of the complexity in the decision-making process. Too often, we fear that
users must be protected from complex decision-making. Certainly, users must be protected
from the drudgery of mundane complexity, such as remembering which password to use at
which site, understanding labyrinthine directory structures at each site, staging files and
binaries, knowing which tool to use where and so on. However, we feel users may accept
beneficial complexity, e.g., complexity in decision-making. We feel that when the benefits
of a process become apparent to users, they will participate in resolving complexity

Myths of Grid Resource Management
1. Grid Resources = Machines (or CPUs)
2. Grid Resource Management = Scheduling on a Grid
3. Grid Scheduling = Reduction in Application Execution Time
4. Grid Applications = Parallel Applications
5. Grid Applications = Long-Running Compute-Intensive Jobs
6. Scheduling Mechanism = Queuing Systems
7. Scheduling is a One-Sided Activity

Dispelling Seven Myths about Grid Resource Management
11
inherent in scheduling decisions. Today, the willingness of users to embrace complexity is
expended on chores such as file and account management. However, a grid infrastructure
that can liberate users from these chores will find users expending energy on making
scheduling decisions, which benefit them more profoundly. Virtually every grid user has a
bag of tricks to take advantage of existing scheduling mechanisms at local and remote
sites. Some of the tricks are:

• running yet-to-be-debugged compute jobs on machines marked for interactive
use

• stealing idle cycles on desktops, machines in other time-zones, etc.
• requesting larger-than-necessary time-slices for a job so that a queuing system

promotes the small job to a high-performance queue
• requesting more CPUs than necessary for a job, so that a queuing system

promotes the small job to a high-performance queue
• requesting fewer CPUs than necessary for a job, so that a queuing system allows

the job to be started on an “interactive” queue, and later starting multiple
processes on each CPU

• “shotgunning” the application, i.e., requesting it to be run on every machine,
waiting for one instance to complete and cancelling the others

• forking off jobs at the back-end so that even if the main process is terminated by
the scheduler, the child processes continue to run

Several of these tricks are clever and complex; it is naïve to believe that users who
devise such tricks are unwilling to embrace complexity. A grid infrastructure that meets
the expectations of users may find them willing to redirect their attention to choosing
proper schedulers instead of trying to beat the system.

2. The Legion Approach

2.1. History
The Legion Project began in late 1993

with dramatic increases in wide-area network
bandwidth looming on the horizon. Other
changes such as faster processors, more
available memory, more disk space, etc. were
expected to follow in the usual way as
predicted by Moore’s Law. Given the
expected changes in the physical
infrastructure, we asked what sorts of
applications would people want, and what
system software infrastructure would be
needed to support those applications. The
Legion project was born with the determination to build, test, deploy and ultimately
transfer to industry, a robust, scalable, grid computing software infrastructure. We worked

The basic architecture of
Legion is reflective, object-
based and extensible, and is
in essence, an operating
system for grids. A common,
accepted, underlying
architecture and a set of
necessary services built over
it is critical for success in
grids.

Dispelling Seven Myths about Grid Resource Management
12
on a prototype system from 1994 through 1996, obtained first funding in early 1996, and
wrote the first line of Legion code in June 1996.

The basic architecture is driven by a core set of principles and requirements we have
presented often [GRIM94] [GRIM97] [GRIM98B] [GAN99] [NAT01B] [LEW03]. The
resulting architecture is reflective, object-based to facilitate encapsulation, extensible, and
is in essence an operating system for grids. We feel strongly that having a common,
accepted, underlying architecture and a set of necessary services built over it is critical for
success in grids. In this sense, the Legion architecture anticipates the drive to web services
and Open Grid Systems Infrastructure (OGSI).

We deployed Legion at the University of Virginia, the San Diego Supercomputing
Centre, the National Centre for Supercomputing Applications and the University of
California at Berkeley for our first large-scale test and demonstration at SuperComputing
in November 1997. In those days, keeping a grid running for a day was challenging.
Embarrassing crashes and unusual failures drove home the lesson that the world is not
“fail-safe”. In a year’s time, i.e., by SuperComputing in November 1998, we could keep
grids up for a month to three months easily. We demonstrated Legion on NPACI-net
(NPACI: National Partnership for Advanced Computing Infrastructure), consisting of
machines at the University of Virginia, the California Institute of Technology, the
University of California at Berkeley, Indiana University, the University of Michigan, the
Georgia Institute of Technology, the Tokyo Institute of Technology and the Vrije
Universiteit at Amsterdam. By this time, we had ported or helped to port* dozens of
applications from diverse areas: materials science, molecular modelling, sequence
comparison, ocean modelling and astronomy. NPACI-net continues today with additional
sites such as the University of Minnesota, the State University of New York at
Binghamton, the Pittsburgh Supercomputing Centre and the San Diego Supercomputing
Centre. Supported platforms include Windows 2000, the Cray T3E and T90, AIX, Solaris,
Irix, HPUX, Linux, Tru64 and others.

From the beginning of the project, we envisioned a technology transfer phase in which
the technology would be transferred from academia to industry. We felt strongly that grid
software would move into mainstream business computing only with commercially-
supported software, help lines, customer support, services and deployment teams. In 1999,
Applied MetaComputing was founded to carry out the technology transition. In 2001, the
company raised $20M in venture capital and changed its name to AVAKI. The company
acquired legal rights to Legion from the University of Virginia and renamed Legion to
Avaki. Avaki was released commercially in September 2001. Avaki is a version of Legion
that is hardened, trimmed down and focussed on commercial requirements. Despite the
change in name, the core architecture and the operating principles remain the same.

* “Porting” an application to a Legion grid is a simple task; Legion supports running legacy applications on a
grid unchanged. Legion does not require re-writing or even re-compiling applications to run on a grid.

Dispelling Seven Myths about Grid Resource Management
13
2.2. Technology
Legion is an architecture for building a grid infrastructure. This infrastructure consists

of cooperating services that present the users with the illusion of a single virtual machine
[GRIM97]. Legion has been called “an operating system for grids”, and rightly so. Within
an integrated environment, as opposed to a commodity-based [FOX99] or toolkit [FOS99]
approach, Legion provides standard operating system services – process creation and
control, interprocess communication, persistent storage, security and resource
management – on a grid. By doing so, Legion abstracts the heterogeneity inherent in
distributed resources and makes them look like part of one virtual machine [GRIM98B]. In
order to achieve this goal, Legion manages complexity in a number of dimensions. For
example, it masks the complexity involved in running on machines with different
operating systems and architectures, managed by different software systems, owned by
different organisations and located at multiple sites. In addition, Legion provides a user
with high-level services in the form of tools for specifying what an application requires
and accessing available resources.

As part of the virtual machine abstraction, Legion provides mechanisms to couple
diverse applications and resources, vastly simplifying the task of running applications on
heterogeneous distributed systems. The virtual machine provides secure shared objects
and shared namespaces. Each system and application component in Legion is a named
object. The object-based architecture enables modularity, data and fault encapsulation, and
replaceability – the ability to change implementations of any component. Legion supports
PVM, MPI, C, Fortran (with an object-based parallel dialect) [FERR98], a parallel C++
[GRIM96], Java and the CORBA IDL [SEIG96]. Also, Legion addresses critical issues such
as flexibility and extensibility [GRIM98A], site autonomy, binary management and limited
forms of fault detection/recovery. From inception, Legion was designed to manage
millions of hosts and billions of objects – scales to be expected in a grid [GRIM99].

Security, a key component of grid resource management, was integrated into Legion
from the design through implementation [FERR99]. Every Legion object, whether it be a
machine, a user, a file, an application or a running job, has a security mechanism
associated with it. The mechanisms provided by Legion are general enough to
accommodate different kinds of security policies within a single grid. Typically, the
security provided is in the form of access control lists. An access control list indicates
which objects can call which methods of an object. This fine-grained control mechanism
enables users and grid administrators to set sophisticated policies for different objects. The
authentication mechanism currently employed by Legion is a public key infrastructure
based on key pairs. The keys are used to sign certificates as well as encrypt and decrypt
messages securely.

Fault-tolerance, another important resource management component, is implemented in
a number of ways in Legion [NGU00]. Basic Legion objects are fault-tolerant because they
can be revived consistently and safely after deactivation. When a Legion object is
deactivated, it saves its state to persistent storage and frees memory and process state.
Subsequently, it may be reactivated from its persistent state. If it is reactivated on a
different machine, Legion transfers its state to the new machine whenever possible. In

Dispelling Seven Myths about Grid Resource Management
14
addition, some objects can be replicated for performance or availability. Legion’s MPI
implementation provides mechanisms for checkpointing, stopping and restarting
individual tasks. Finally, Legion provides tools for retrieving intermediate files generated
by legacy applications. Users can restart their instances using these intermediate files.
Individual jobs of a parameter-space study are monitored and restarted if they fail
[NAT02].

Legion is both an infrastructure for grids as well a collection of integrated tools
constructed on top of this infrastructure. The basic infrastructure enables secure, dataflow-
based, fault-tolerant communication between objects. Communicating objects could be
diverse resources, such as applications, jobs, files, directories, schedulers, managers,
authentication objects (representations of users in a grid), databases, tools, etc. A typical
chain of events in a grid could involve a user initiating a tool to start an instance of an
application on a machine. This chain results in a tool object contacting an application
object (to create an instance of this application), which in turn contacts a scheduler (to
generate schedules for running this application on a machine), which contacts a collection
(to procure information about machines), an enactor (to reserve time on the target
machine) and a host object (to start the job on the machine) [CHAP99] [KARP96]. After the
scheduler selects a host object, it contacts the application object with enough information
to start a job instance on the machine. We depict this sequence of events with the timeline
in Figure 1.

The figure intentionally abstracts a few important design decisions. First, the figure
shows only the high-level interaction of objects that participate in a sequence of events
related to scheduling. In other words, it does not show the security and fault-tolerance
features that are part of every event in that and any chain of events in Legion. The Legion
grid resource management framework is not restricted to scheduling alone. Every
communication between any pair of objects must go through the Legion protocol stack,
which involves constructing program graphs, making method invocations, checking
authorisation, assembling or disassembling messages, encrypting messages, retransmitting
messages, and so on. We show an example stack in Figure 2. Since every communication
goes through such a stack, Legion provides security and fault-tolerance as well as
scheduling as part of an integrated resource management framework.

Second, scheduling in Legion is a process of negotiation. Most schedulers view CPU
cycles as passive resources waiting to be utilised by the next available job. However, in a
multi-organisational framework, a CPU is not necessarily available simply because it is
idle. The owner of the CPU – the organisation that controls the machine – may impose
restrictions on its usage. Therefore, when matching a job to an available CPU, Legion
initiates a negotiation protocol which respects the requirements of the job as well as the
restrictions imposed by the CPU owner. In other words, we consider site autonomy an
important part of the scheduling, or more correctly, the resource management process. In
Figure 1, even if a scheduler selects a particular host for running a job, the host may reject
the job based on its current policies. Depending on the implementation, the scheduler may
investigate variant schedules or may inform the user of the failure to run the job.

Dispelling Seven Myths about Grid Resource Management
15
Third, the scheduler can be replaced. Each and every component of a Legion grid is
replaceable. Thus the scheduler in the picture can be replaced by a new one that employs
any algorithm of choice. Not just the scheduler, but the toolset that uses the scheduler can
be changed as well. For example, we wrote a queue object that uses a similar chain of
events to mimic the operation of a queuing system. Also, we wrote a parameter-space tool
that can run jobs instantaneously or send them to our queue. A Legion grid can have
multiple schedulers or even multiple instances of a particular scheduler. Applications can
be configured to use a specific scheduler. Thus, the Legion grid resource management
framework explicitly allows for different schedulers for different classes of applications.
Of course, users can bypass the entire scheduling mechanism, by specifying machines
directly or using some non-Legion tool for constructing a schedule for their applications.
Bypassing the scheduling mechanism does not mean bypassing security and fault-
tolerance, because those functions are at lower levels in the stack. Naturally, if desired,
lower levels can be replaced or eliminated as well with the attendant implications.

Fourth, the scheduling infrastructure can be used as a meta-scheduling infrastructure as
well. The host object shown in Figure 1 could be running on the front-end of a queuing
system or the master node of an MPI cluster. Thus, Legion could be used to select such a
host, but subsequent scheduling on the queue or the cluster could be delegated to the
queuing system or the MPI system.

Figure 1. Scheduling Process in Legion

Run Tool Application Scheduler Collection Enactor ImplementationHost Proxy Job

run schedule ask host info

give host info

update records

enact schedule reserve

give host info

grant

inform

start job ask binary

give binary

start proxy start binary

reportreport

monitor

Ti
m

e
Manager

Dispelling Seven Myths about Grid Resource Management
16
Fifth and perhaps most importantly, Figure 1 and Figure 2 are not restricted to
scheduling alone. This comment touches on the core of the Legion philosophy. Since the
definition of a resource is not restricted to CPUs alone, but can include applications, files,
databases, users, etc. a similar figure can be constructed for any chain of events in Legion,
representing various actions on a grid. For example, even if we consider non-scheduling
tasks, such as replicating data, notifying administrators of failures or novel methods for
collaboration on a grid [NAT01A], the same protocol stack applies, with the attendant
benefits of security, fault-tolerance, etc. Thus in Legion, general resource management is
conducted using a common framework.

When designing the Legion grid resource management framework, we had a wider
definition of resource management than most other distributed systems. We tried to
construct a framework within which other parties could write schedulers for different
classes of applications. We consciously did not design for only the “classic” applications –
long-running, compute-intensive, parallel applications, requiring high performance.
Naturally, we did provide a single reference implementation of a scheduler in order to
perform resource management on a Legion grid immediately upon installation. However,
we intended this scheduler to be a default – a “catch-all” scheduler for users who wished
to use a Legion grid as-is. We always intended permitting other schedulers to be part of
any Legion grid. The resource management framework in Legion reflects several of the
design principles that guided Legion:

• no change to underlying systems or network
• trade-offs between level and cost of service
• negotiation between job requirements and site autonomy

Figure 2. Protocol Stack in Legion

Graph Layer

Remote

Access

Message

Encryption

Transport

Network

Method Invoke

Control

Assembly

Layer

Transmit

Graph Layer

Remote

Access

Message

Encryption

Transport

Network

Method Invoke

Control

Assembly

Layer

Transmit

Integrity, Privacy

Authentication, Authorisation

Retransmission, Fault-Tolerance

Resource Discovery

Interface Discovery

Dataflow

Dispelling Seven Myths about Grid Resource Management
17
• legacy application support
• support for diversity

and so on. As we discuss in the next section, we did make a few mistakes in the
implementation; however, we continue to believe that the original design is the right
approach for grids. Since the lessons learnt from our experience in Legion can be
generalised to the design of any grid resource management framework, analysing them
can be instructive for future work.

3. Lessons Learnt from Legion
This article is about the lessons we learnt and observations we made about grid resource

management. We did make some poor choices in the design of our grid infrastructure;
some of them in the scheduling framework. The limitations of some of these choices were
technical, whereas others were psychological. If we were to re-design Legion, here are
some more lessons we would keep in mind.

Obs. 8 People are reluctant to write schedulers for new frameworks.

In hindsight, this lesson is unsurprising. We cannot and should not expect people to
construct support for new software. A software infrastructure must gestate and mature for
a while before enthusiastic and talented outsiders can contribute to it. What the computer
science community has seen of Linux, Perl, GNU, etc. will be true of grids as well –
initially, a small group of dedicated and talented persons create the software, and much
later the pool of contributors widens drastically. Initially, we expected grid scheduling
experts to write schedulers for Legion; we still hope they will write. However, we cannot
rely on them to write us a scheduler. In turn, we must provide at least a default scheduler
and perhaps an interesting suite of schedulers for some classes of applications. Once we
learnt this lesson, we wrote two new schedulers to complement the default scheduler that
already came with every Legion installation. One was a round-robin scheduler for creating
instances of files, directories and other objects on the grid. The round-robin scheduler
made quick decisions based on a machine file that was part of its state, thus avoiding
expensive scheduling decisions for simple object creation (see Obs. 10). The second
scheduler was a performance-based scheduler for parameter-space studies. This scheduler
took CPU speeds, number of CPUs and loads into account for choosing machines on
which to run parameter-space jobs.

Obs. 9 Writing schedulers deep into a framework is hard.

While we did provide a framework for writing schedulers, a mistake we made was
requiring scheduler writers to know too much about Legion internals. Typically, in
addition to the scheduling algorithm of interest, a scheduler writer would have to know
about schedulers, enactors, hosts, classes and collections; their internal data structures; the
data they packed on the wire for several method calls; and Legion program graphs. The
effort required to write such a “deep scheduler” was too much to encourage rapid

Dispelling Seven Myths about Grid Resource Management
18
development. In essence, we had violated one of our own principles: ease-of-use. Our
mistake lay in making Legion easy-to-use for end-users, but not necessarily so for
developers. Once we recognised our error, we wrote a “shallow scheduler”, i.e., a
scheduler that was about as complex as the default scheduler but did not require knowing
too much about Legion internals. The performance-based scheduler for parameter-space
studies mentioned earlier in Obs. 8 is an example of a shallow scheduler. This scheduler is
a self-contained Perl script that requires knowing about one database of attributes (called
the collection object) and the one command to access it. Not having to know Legion
details was a significant advantage for this scheduler: where the deep scheduler required
understanding 6600 lines of C code spread over 9 source code and header files, the
shallow scheduler required understanding 800 lines of Perl code contained in one file. In
addition, the deep scheduler came with no documentation other than in-source comments,
whereas the shallow scheduler contained usage and help as well.

The lesson we learnt from this experience was that a high cost of constructing new
schedulers is a deterrent to development. Another lesson we learnt was that a high cost of
running a scheduler can hurt a grid as well. Put differently, we learnt that a quick and
acceptable scheduler is much better than a slow but thorough scheduler.

Obs. 10 High scheduler costs can undermine the benefits of scheduling.

In Legion, a scheduler is invoked every time an object must be placed on some machine
on a grid. Typical object placements involve placing jobs, or instances of applications, on
compute resources. However, given the Legion view of scheduling as a task for placing
any object not just a compute object, creating files and directories, implementations and
queue services, consoles and classes, all require an intermediate scheduling step. For long,
the scheduler that would be invoked for any creation was the default scheduler. While we
fully understood the need for different schedulers for different kinds of objects, an artifact
of our implementation was that we created only one scheduler – the default one.

The default scheduler’s algorithm was complex in two respects. One, the actual
processing time took long, especially as the number of machines in a grid grew. Moreover,
the scheduler constructed alternative or variant schedules for every request just in case the
first schedule created did not meet with success. Two, the process invoked methods on too
many remote objects. Each method call (or outcall) was a relatively expensive operation.
Therefore, even a simple schedule would take too long to generate. For applications such
as parameter-space studies, we often needed to create 50-100 instances of an application
quickly. Further, when each instance finished, it would write result files back to the grid,
which required scheduling operations again. The slow scheduler was undermining our
benefits. Accordingly, we built faster schedulers which perhaps did not find near-optimal
and variant schedules, but were far quicker than the default. The round-robin scheduler
(see Obs. 8) made fewer outcalls and had a terribly simple algorithm for choosing hosts –
it merely picked the next in its list. However, this simple scheduler was adequately-suited
for scheduling files and directories. Likewise, the shallow scheduler we wrote for
performance-based scheduling (see Obs. 8 and Obs. 9) scheduled parameter-space jobs

Dispelling Seven Myths about Grid Resource Management
19
quickly [NAT02]. It initially spent a few seconds building a schedule, but after that re-used
the schedule for the duration of the application.

Obs. 11 Over-complex schedulers are unnecessary.

While we were correct in recognising the need for a framework for schedulers, we erred
in making the framework too complex. The distinction is fine: all through this article we
have argued and continue to argue for increased complexity in the functionality of
resource management system (use different metrics and algorithms for scheduling
different classes of applications; incorporate security, fault-tolerance, auditing, etc.;
perform non-scheduling management for other classes of resources), but here we argue for
reduced complexity in the implementation of such a scheduler. In blunt words, a scheduler
should be sophisticated enough to do different things for different applications, but simple
enough in implementation that it does not become a bottleneck, a critical resource or a
development nightmare itself.

In Legion, we created a sophisticated scheduling framework (bolstering our theme
throughout this article), but we also implemented this framework in a complicated manner
(resulting in our learning the lesson here). In particular, splitting the scheduling process
from the reservation process (the scheduler and enactor objects respectively), was
overkill. The added flexibility this split gave us was never used, and we believe that it will
not be used for a while because complex scheduling techniques, such as co-scheduling,
that require reservations are useful for a small subset of applications only (see Obs. 7).
Too many objects were involved in the scheduling process, making it feel like the process
had too many “moving parts”. The failure of any one object could derail the scheduling
process, making it hard to create new objects – files, directories, implementations, jobs,
etc. – on a grid. For all this complexity, we did not envisage a way to compose schedulers.
For some applications, it may be necessary to go through two or more scheduling
algorithms to find a set of machines on which the application can be run. In effect, the first
scheduler “filters” the set of available machines according to its own algorithm and passes
the filtered set to the next scheduler. The next scheduler also filters the set of machines it
receives according to its algorithm and passes a new filtered set to the next scheduler in
line and so on. The filtered set output by the last scheduler is the schedule used for the
application. Composing schedulers in this manner can enable performing complex
scheduling as a series of filtering operations. Such scheduling may be required for
applications that have minimum CPU requirements plus minimum disk requirements plus
tool requirements plus licence requirements and so on. The requirement for such a
framework is likely to arise in the future.

Obs. 12 Clear, timely, obvious error propagation is essential.

The lesson of clear error propagation in times of failure is obvious in principle, but
ignored often in practice. Often error indicators are buried too deep in software to be
useful to an end-user. In distributed systems, the problem is amplified because failures

Dispelling Seven Myths about Grid Resource Management
20
may occur on machines remote to the user. Leslie Lamport has complained that “a
distributed system is one on which I can do no work because a processor I’ve never heard
of has crashed.”* A grid, like any distributed system, can be notoriously hard to debug.
Clear, timely and obvious error propagation is essential in order to make a grid palatable
to an end-user. In our scheduling framework, we neglected to be rigorous in our error
propagation. As a result, users’ jobs sometimes would fail to schedule without giving clear
reasons why. We have improved error propagation significantly and continue to be
diligent about eliminating this drawback.

4. Summary
We shared some of the lessons we learnt from our experiences with grid resource

management in Legion. Several of these lessons dispel long-held myths about what grid
resource management means. In particular, we would like to remind readers that grid
resource management is more than just co-scheduling long-running parallel jobs on
queuing systems. As grids mature, diverse resources will be included in grids and grid
resource management will be central to the working of a grid. We hope that the lessons
presented here will serve to focus attention on important classes of applications that
require resource management as well as serve to guide the design of resource managers. In
particular, we believe that the pressing challenges that face the grid community are the

* The quote in the text seems to be the most popular variant. A variant with citation information is “A
distributed system is one in which the failure of a computer you didn't even know existed can render your own
computer unusable.”, Leslie Lamport, as quoted in CACM, June 1992.

Observations on Grid Resource Management
1. Grid Resources = CPUs + Disk + Memory + Files + Databases + Users +

Administrators + Applications + Licences + Running Jobs + Mobile Devices + …
2. Grid Resource Management = Grid Scheduling + Security + Fault-tolerance + Site

Autonomy + Licensing + Auditing
3. Grid Scheduling = Optimisation_Function(Throughput, Latency, Cost, Deadlines,

Fairness, …)
4. Grid Applications = Parallel Applications + Sequential Applications + Pleasingly-

Parallel Applications + Transactions + Soft Real-Time Applications + …
5. Grid Applications = Long-Running Compute-Intensive Processes + Large

Collections of Short Jobs + Frequent Short Transactions + …
6. Scheduling Mechanism > Queuing Systems
7. Scheduling is a Negotiation between Resource Providers and Consumers
8. People are reluctant to write schedulers for new frameworks.
9. Writing schedulers deep into a framework is hard.
10. High scheduler costs can undermine the benefits of scheduling.
11. Over-complex schedulers are unnecessary.
12. Clear, timely, obvious error propagation is essential.

Dispelling Seven Myths about Grid Resource Management
21
design of rich and flexible resource specification languages in order to match resources
with requests, and the design of a framework that can incorporate different solutions for
different aspects of grid resource management.

ACKNOWLEDGEMENTS

We thank John Karpovich for reading earlier versions of this article and recommending
several changes that improved the content and tone of this article. We thank the members
of the Legion Team at the University of Virginia for their hard work over the years.

This work was supported in part by the National Science Foundation grant EIA-
9974968, DoD/Logicon contract 979103 (DAHC94-96-C-0008), the NASA Information
Power Grid program, and NPACI, National Science Foundation grant ANI-0222571 and
National Science Foundation grant ACI-0203960.

5. References

ABR95 Abramson, D., Sosic, R., Giddy, J., Hall, B., Nimrod: A Tool for Performing
Parametised Simulations using Distributed Workstations, 4th IEEE Intl. Symp. on
High-Perf. Dist. Computing (HPDC), Aug. 1995.

ALT90 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., Basic local
alignment search tool, Jour. Mol. Biol., 215(3):403-410, Oct. 1990.

ARN01 Arnold, D. C., Vadhiyar, S., Dongarra, J., On the Convergence of Computational and
Data Grids, Par. Proc. Let., 11(2-3):187-202, Sep. 2001.

BAY99 Bayucan, A., Henderson, R. L., Lesiak, C., Mann, N., Proett, T., Tweten, D.,
Portable Batch System: External Reference Specification, Tech. Rep., MRJ
Technology Solutions, Nov. 1999.

BER96 Berman, F., Wolski, R., Scheduling from the perspective of the application, 5th IEEE
Intl. Symp. on High-Perf. Dist. Computing (HPDC), Aug. 1996.

BER99 Berman, F., High-Performance Schedulers, Chapter 12, The GRID: Blueprint for a
New Computing Infrastructure, :279-309, Morgan Kaufmann, ISBN 1-55860-475-8,
1999.

BRO83 Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S.,
Karplus, M., CHARMM: A Program for Macromolecular Energy, Minimization, and
Dynamics Calculations, J. Comp. Chem., 4, 1983.

BUY01 Buyya, R., Abramson, D., Giddy, J., A Case for Economy Grid Architecture for
Service-Oriented Grid Computing, Intl. Par. and Dist. Processing Symp. (IPDPS),
2001.

CASA88 Casavant, T. L., Kuhl, J. G., A taxonomy of scheduling in general-purpose distributed
computing systems, IEEE Trans. on Soft. Engg., 14(2):141-154, 1988.

CASA96 Casanova, H., Dongarra, J., NetSolve: A Network Server for Solving Computational
Science Problems, The Intl. Jour. of Supercomputer App. and High Perf. Computing,
1997.

Dispelling Seven Myths about Grid Resource Management
22
CHAP99 Chapin, S. J., Katramatos, D., Karpovich, J. F., Grimshaw, A. S., Resource
Management in Legion, Future Generation Computing Syst., 15:583-594, Oct. 1999.

CZAJ01 Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C., Grid Information Services
for Distributed Resource Sharing, 10th IEEE Intl. Symp. on High-Perf. Dist.
Computing (HPDC), Aug. 2001.

EDW03 Edwards, G., —, Personal Commn., Celera Genomics, Feb. 2003.

FERR98 Ferrari, A. J., Grimshaw, A. S., Basic Fortran Support in Legion, Tech. Rep. CS-98-
11, Univ. of Virginia, Mar. 1998.

FERR99 Ferrari, A. J., Knabe, F., Humphrey, M. A., Chapin, S. J., Grimshaw, A. S., A
Flexible Security System for Metacomputing Environments, High Perf. Computing
and Networking Europe (HPCN), Apr. 1999.

FOS99 Foster, I., Kesselman, C., The Globus Toolkit, Chapter 11, The GRID: Blueprint for a
New Computing Infrastructure, :259-278, Morgan Kaufmann, ISBN 1-55860-475-8,
1999.

FOX99 Fox, G. C., Furmanski, W., High-Performance Commodity Computing, Chapter 10,
The GRID: Blueprint for a New Computing Infrastructure, :237-255, Morgan
Kaufmann, ISBN 1-55860-475-8, 1999.

FREY02 Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S., Condor-G: A
Computation Management Agent for Multi-Institutional Grids, Cluster Computing,
5(3):237-246, 2002.

GAN99 Gannon, D., Grimshaw, A. S., Object-Based Approaches, Chapter 9, The GRID:
Blueprint for a New Computing Infrastructure, :205-236, Morgan Kaufmann, ISBN
1-55860-475-8, 1999.

GEI98 Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., PVM:
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing, MIT Press, 1998.

GRIM94 Grimshaw, A. S., Wulf, W. A., French, J. C., Weaver, A. C., Reynolds, P. F. Jr.,
Legion: The Next Logical Step Toward a Nationwide Virtual Computer, Tech. Rep.
CS-94-21, Univ. of Virginia, Jun. 1994.

GRIM96 Grimshaw, A. S., Ferrari, A. J., West, E., Mentat, Parallel Programming Using C++,
MIT Press, 1996.

GRIM97 Grimshaw, A. S., Wulf, W. A., The Legion Vision of a Worldwide Virtual Computer,
Comm. of the ACM, 40(1), Jan. 1997.

GRIM98A Grimshaw, A. S., Lewis, M. J., Ferrari, A. J., Karpovich, J. F., Architectural Support
for Extensibility and Autonomy in Wide-Area Distributed Object Systems, Tech. Rep.
CS-98-12, Univ. of Virginia, Jun. 1998.

GRIM98B Grimshaw, A. S., Ferrari, A. J., Lindahl, G., Holcomb, K., Metasystems, Comm. of
the ACM, 41(11), Nov. 1998.

GRIM99 Grimshaw, A. S., Ferrari, A. J., Knabe, F., Humphrey, M. A., Wide-Area Computing:
Resource Sharing on a Large Scale, IEEE Computer, 32(5), May 1999.

Dispelling Seven Myths about Grid Resource Management
23
GRO96 Gropp, W., Lusk, E., Doss, N., Skjellum, A., A High-Performance, Portable
Implementation of the Message Passing Interface Standard, Par. Computing, 22(6),
Sep. 1996.

HEM99 Hempel, R., Walker, D. W., The Emergence of the MPI Message Passing Standard
for Parallel Computing, Comp. Stds. and Interfaces, 7, 1999.

HUM01 Humphrey, M. A., Thompson, M. R., Security Implications of Typical Grid
Computing Usage Scenarios, 10th IEEE Intl. Symp. on High-Perf. Dist. Computing
(HPDC), Aug. 2001.

IBM93 International Business Machines Corporation, IBM LoadLeveler: User’s Guide, Sep.
1993.

KARP96 Karpovich, J. F., Support for Object Placement in Wide Area Distributed Systems,
Tech. Rep. CS-96-03, Univ. of Virginia, Jan. 1996.

KEN02 Kennedy, K., Mazina, M., Mellor-Crummey, J., Cooper, K., Torczon, L., Berman, F.,
Chien, A., Dail, H., Sievert, O., Angulo, D., Foster, I., Aydt, R., Reed, D., Gannon,
D., Dongarra, J., Vadhiyar, S., Johnsson, L., Kesselman, C., Wolski, R., Toward a
Framework for Preparing and Executing Adaptive Grid Programs, Intl. Par. and
Dist. Processing Symp. (IPDPS), Apr. 2002.

KING92 Kingsbury, B. A., The Network Queueing System (NQS), Tech. Rep., Sterling
Software, 1992.

LEW03 Lewis, M. J., Ferrari, A. J., Humphrey, M. A., Karpovich, J. F., Morgan, M. M.,
Natrajan, A., Nguyen-Tuong, A., Wasson, G. S., Grimshaw, A. S., Support for
Extensibility and Site Autonomy in the Legion Grid System Object Model, Journal of
Par. and Dist. Computing, ?(?):?-?, ? 2003.

LIT88 Litzkow, M. J., Livny, M., Mutka, M. W., Condor – A Hunter of Idle Workstations,
8th Intl. Conf. of Dist. Computing Syst., :104-111, Jun. 1988.

LIU02 Liu, C., Yang, L., Foster, I., Angulo, D., Design and Evaluation of a Resource
Selection Framework for Grid Applications, 11th IEEE Intl. Symp. on High-Perf.
Dist. Computing (HPDC), Jul. 2002.

LIV99 Livny, M., Raman, R., High-Throughput Resource Management, Chapter 13, The
GRID: Blueprint for a New Computing Infrastructure, :311-337, Morgan Kaufmann,
ISBN 1-55860-475-8, 1999.

MAC98 MacKerell, A. D.. Jr., Brooks, B. R., Brooks, C. L. III, Nilsson, L., Roux, B., Won,
Y., Karplus, M., CHARMM: The Energy Function and Its Parameterization with an
Overview of the Program, The Encycl. of Comp. Chem., 1, 1998.

NAK99 Nakada, H., Sato, M., Sekiguchi, S., Design and Implementations of Ninf: towards a
Global Computing Infrastructure, Future Generation Computer Syst.,
Metacomputing Issue, 15(5-6):649-658, Elsevier Science, 1999.

NAT01A Natrajan, A., Humphrey, M. A., Grimshaw, A. S., Capacity and Capability
Computing in Legion, The 2001 Intl. Conf. on Computational Sc. (ICCS), :273-283,
May 2001.

Dispelling Seven Myths about Grid Resource Management
24
NAT01B Natrajan, A., Humphrey, M. A., Grimshaw, A. S., Grids: Harnessing
Geographically-Separated Resources in a Multi-Organisational Context, High Perf.
Computing Syst. (HPCS), Jun. 2001.

NAT01C Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M. A., Fox, A. D.,
Grimshaw, A. S., Brooks, C. L. III, Studying Protein Folding on the Grid:
Experiences using CHARMM on NPACI Resources under Legion, 10th IEEE Intl.
Symp. on High-Perf. Dist. Computing (HPDC), Aug. 2001.

NAT02 Natrajan, A., Humphrey, M. A., Grimshaw, A. S., The Legion Support for Advanced
Parameter-Space Studies on a Grid, Future Generation Computer Syst., 18(8):1033-
1052, Elsevier Science, Oct. 2002.

NGU00 Nguyen-Tuong, A., Integrating Fault-tolerance Techniques in Grid Applications,
Ph.D. Diss. CS-2000-05, Univ. of Virginia, Aug. 2000.

RAM98 Raman, R., Livny, M., Solomon, M. H., Matchmaking: Distributed Resource
Management for High Throughput Computing, 7th IEEE Intl. Symp. on High-Perf.
Dist. Computing (HPDC), Jul. 1998.

SEIG96 Seigel, J., CORBA Fundamentals and Programming, Wiley, ISBN: 0471-12148-7,
1996.

SMI00 Smith, W., Foster, I., Taylor, V., Scheduling with Advanced Reservations, Intl. Par.
and Dist. Processing Symp. (IPDPS), May 2000.

SMI03 Smith, C., —, Personal Commn., Platform Computing, Feb. 2003.

SNIR98 Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J., MPI: The Complete
Reference, MIT Press, 1998.

WEI95 Weissman, J., Scheduling Parallel Computations in a Heterogeneous Environment,
Ph.D. Diss. CS-1995-06, Univ. of Virginia, Aug. 1995.

ZHOU92 Zhou, S., LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems,
Work. on Cluster Computing, Dec. 1992.

ZHOU93 Zhou, S., Wang, J., Zheng, X., Delisle, P., Utopia: A Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems, Soft. Prac. and Exp., 23(2),
1993.

	Dispelling Seven Myths about Grid Resource Management
	1. Myths about Grid Resource Management
	Myth 1 Grid Resources = Machines (or CPUs)
	Obs. 1 Grid Resources = CPUs + Disk + Memory + Files + Databases + Users + Administrators + Appli...
	Myth 2 Grid Resource Management = Scheduling on a Grid
	Obs. 2 Grid Resource Management = Grid Scheduling + Security + Fault-tolerance + Site Autonomy + ...
	Myth 3 Grid Scheduling = Reduction in Application Execution Time
	Obs. 3 Grid Scheduling = Optimisation_Function(Throughput, Latency, Cost, Deadlines, Fairness, …)
	Myth 4 Grid Applications = Parallel Applications
	Obs. 4 Grid Applications = Parallel Applications + Sequential Applications + Pleasingly-Parallel ...
	Myth 5 Grid Applications = Long-Running Compute-Intensive Jobs
	Obs. 5 Grid Applications = Long-Running Compute-Intensive Processes + Large Collections of Short ...
	Myth 6 Scheduling Mechanism = Queuing Systems
	Obs. 6 Scheduling Mechanism > Queuing Systems
	Myth 7 Scheduling is a One-Sided Activity
	Obs. 7 Scheduling is a Negotiation between Resource Providers and Consumers

	2. The Legion Approach
	2.1. History
	2.2. Technology
	Figure 1. Scheduling Process in Legion
	Figure 2. Protocol Stack in Legion

	3. Lessons Learnt from Legion
	Obs. 8 People are reluctant to write schedulers for new frameworks.
	Obs. 9 Writing schedulers deep into a framework is hard.
	Obs. 10 High scheduler costs can undermine the benefits of scheduling.
	Obs. 11 Over-complex schedulers are unnecessary.
	Obs. 12 Clear, timely, obvious error propagation is essential.

	4. Summary
	Acknowledgements
	5. References
	Abr95
	Alt90
	Arn01
	Bay99
	Ber96
	Ber99
	Bro83
	Buy01
	Casa88
	Casa96
	Chap99
	Czaj01
	Edw03
	Ferr98
	Ferr99
	Fos99
	Fox99
	Frey02
	Gan99
	Gei98
	Grim94
	Grim96
	Grim97
	Grim98a
	Grim98b
	Grim99
	Gro96
	Hem99
	Hum01
	IBM93
	Karp96
	Ken02
	King92
	Lew03
	Lit88
	Liu02
	Liv99
	Mac98
	Nak99
	Nat01a
	Nat01b
	Nat01c
	Nat02
	Ngu00
	Ram98
	Seig96
	Smi00
	Smi03
	Snir98
	Wei95
	Zhou92
	Zhou93

