
ASSESSING AN ARCHITECTURAL

APPROACH TO LARGE-SCALE SYSTEMATIC

REUSE†

Kevin J. Sullivan and John C. Knight

(sullivan | knight)@virginia.EDU

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Contact Author:

Kevin J. Sullivan
Department of Computer Science

University of Virginia
Thornton Hall

Charlottesville, VA 22903

(804)982-2216
sullivan@Virginia.EDU

Keywords: Software reuse, software architecture, software design.

†. Supported in part by Motorola, in part by the National Science Foundation under grant numbers
CCR-9213427 and CCR-9502029, and in part by NASA under grant number NAG1-1123-FDP.

ABSTRACT

Large-scale systematic reuse promises rapid development of significant systems
through straightforward composition of large-scale existing assets. The realization of this
promise would provide major benefits in many areas. For example, sophisticated soft-
ware-engineering tools could be developed rapidly and inexpensively to deliver promising
software engineering research results into practice.

To date the promise of large-scale reuse remains largely unrealized. Although some
successes have been achieved, barriers remain in a variety of areas: technical, managerial,
cultural, and legal. In this paper we address an important technical barrier: architectural
mismatch.

Architectural mismatch has been identified as an important barrier to large-scale reuse.
Recently architectural frameworks that purport to enable large-scale reuse have been
developed. Among them is Microsoft's OLE technology, comprising both an architectural
framework and a suite of reusable component applications. The manufacturer presents this
technology as a toolkit for the rapid development of applications from components.

In reviewing these component applications, we observed that they offer rich features
applicable to a number of domains—and not merely management information systems or
data processing. The components are both designed for reuse and also seem to span the
spectrum of capabilities required to build a wide variety of applications. The capabilities
include relational database management, graphical user interface construction, compound
document design and storage, constraint-based structured interactive graphics, and diverse
computational models, including spreadsheets and general-purpose imperative program-
ming in languages such as C++.

In this paper we evaluate the approach to large-scale systematic reuse represented by
OLE. We conclude that, although difficulties remain, such an approach is practical now in
many domains, that it substantially overcomes the architectural impediments that have
hindered some previous attempts at large-scale reuse, and that it represents significant
progress towards realizing the promise of rapid development of sophisticated systems.

 We report on our prototyping approach to the evaluation of this technology. Our eval-
uation focused on the ability of the technology to support the development of software-
engineering tools. We define our evaluation framework, describe our experience develop-
ing a specific tool, and present conclusions of our evaluation.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 1

INTRODUCTION

Large-scale, systematic software reuse promises rapid development of major systems
through straightforward composition of large-scale existing software assets [BP89, BS92].
The realization of this promise would provide major benefits in many areas. One benefit
of direct interest to the software engineering community would be that sophisticated soft-
ware-engineering tools could be developed rapidly and inexpensively to deliver the results
of software engineering research to practice.

To date the promise of large-scale reuse remains largely unrealized. Although some
success has been achieved, barriers remain in a variety of areas: technical, managerial,
cultural, and legal.

In this paper we address architectural mismatch, an important technical barrier to
large-scale reuse [GAO95]. Garlan et al. report a variety of difficulties in developing an
application using a collection of large-scale existing components. Their experience
enabled them to characterize the difficulties and offer a systematic analysis of causes of
the problems from an architectural stance [PW92, GS93, GHJV94].

Garlan et al. identified four main categories of architectural mismatch: namely incom-
patibilities in assumptions about the nature of components, the nature of connectors, the
global architectural structure, and the construction process. In each of these categories, the
mismatches occur because of assumptions made by developers that are reasonable in iso-
lation but lead to mismatches in a reuse situation.

Recently, architectural frameworks that purport to enable large-scale reuse have been
developed. Among them is Microsoft's OLE technology [Bro95], comprising both an
architectural framework and a suite of reusable component applications. The capabilities
of these component applications include relational database management, graphical user
interface construction, compound document design and storage, constraint-based struc-
tured interactive graphics, and diverse computational models, including spreadsheets and
general-purpose imperative programming in languages such as C++.

The advent of such frameworks raises the question of how well they support reuse and
how they deal with the various elements of architectural mismatch identified by Garlan et
al. In this paper we report an evaluation of the approach to large-scale systematic reuse
represented by OLE. Our evaluation follows an experiment in which we developed a sub-
stantial application by integrating large-scale reusable components based on OLE.

The result of our evaluation is that, although difficulties remain, the approach appears
to have made significant progress towards realizing the promise of rapid development of
sophisticated systems through reuse. In particular, the designers of OLE appear to have
avoided many of the elements of architectural mismatch identified by Garlan et al. In addi-
tion, we observe that the approach is practical now in many domains.

In the next section of this paper we review OLE. Following that, we describe the appli-
cation software system that we have built and how it was developed. Next we present the
results of the development process and finally we present our conclusions.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 2

THE OLE ARCHITECTURAL FRAMEWORK

In Inside OLE, Craig Brockschmidt defines OLE as “a unified environment of object-
based services with the capability of both customizing those services and arbitrarily
extending the architecture through custom services, with the overall purpose of
enabling rich integration between components,” where a component is “made of one or
more objects, where each object then provides its functionality through one or more inter-
faces [Bro95, p. 9].”

The components of interest in this paper are applications that export objects and oper-
ations to manipulate them. Of particular relevance are OLE Automation objects and appli-
cations. The key to Automation is that the names of operations are bound at runtime,
permitting Automation objects (called Automation servers) to be manipulated by pro-
grams (called Automation clients), which are often written in interpreted scripting lan-
guages such as Visual Basic. Our intention in the experiment we document here was to use
Automation, as supported by Visual Basic, to tightly integrate off-the-shelf applications to
produce a tool supporting a new systems engineering technology.

While a comprehensive overview of OLE is unnecessary and infeasible for this paper,
a brief enumeration of key, relevant features will help the reader understand both why this
kind of technology represents an important architectural advance, and how the Automa-
tion capabilities referenced in this paper actually work [Bro95].

• OLE is a comprehensive object-oriented architectural framework.

OLE supports a wide range of object services, not all of which we can describe in
this limited space. The services most relevant to our work on tool integration are
support for explicit and implicit invocation within and across process boundaries.
In principle, these services should enable tight integration of appropriately
designed, separate applications. This aspect of OLE suggested to us the use of the
mediator-based approach to tool integration that we describe below.

• OLE objects conform to binary not source-code standards.

OLE objects conform to a binary as opposed to source-code interface standard.
This property of OLE obviates source code incompatibilities and supports interop-
erability of separately developed components.

• OLE objects export multiple interfaces.

In contrast to the traditional object model in which an object exports a single inter-
face, OLE objects can export multiple interfaces, each defining a possibly complex
service. An object that supports implicit invocation, for example, implements the
standard IConnectionPoint interface, in addition to interfaces for the other services
it provides.

• Automation reflects a more traditional interface mode.

Automation does not support multiple interfaces. Rather, an Automation interface
has a traditional, monolithic structure. Indeed, the whole Automation interface for
an object is implemented through one standard OLE interface called IDispatch.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 3

• The key difference between standard and Automation interfaces is binding time.

Standard OLE interfaces are implemented using structures called vtables. A vtable
is a sequence of pointers to implementations of the operations in the interface. The
structure of a vtable (i.e., the ordering of pointers) is fixed at compile time. Client
references to operations must therefore have this compile time information. Con-
venient support for runtime binding of operation requires an added level of indi-
rection.

• IDispatch provide the added level of indirection.

Automation is based on the late binding of operations as effected by a standard
interface called IDispatch. This interface exports an operation called Dispatch.
The Dispatch operation depends on the assignment of integer identifiers (dispIDs)
to operations exported through other interfaces. A DispID of 1 might identify the
operation for announcing an event exported through the IConnectionPoint inter-
face, for example. The Dispatch operation maps DispIDs to invocations of the
indicated operations. A compile-time binding of the Dispatch operation thus per-
mits other bindings to be deferred until runtime. Richer implementations of Dis-
patch enable operation names to be dynamically mapped to DispIDs, and from
there to invocations.

• Automation as supported by Visual Basic encapsulates IDispatch.

The Automation capability of Visual Basic rests on and encapsulates calls to Dis-
patch operations. Calls to an Automations objects are translated by the Basic runt-
ime system into calls to Dispatch. The encapsulated, late binding of procedure
calls based on their names makes it easy to write Visual Basic programs that drive
Automation-enabled applications. This Automation capability, as supported by
Visual Basic, was the integration mechanism we were counting on for rapid com-
position of our tool from existing, reusable component applications.

EVALUATING THE REUSE ARCHITECTURE
In order to gain insight into the potential of this technology to support large-scale

reuse, we decided to develop an industrial-quality software tool to support an innovative
reliability analysis technique being developed by a colleague at the University of Virginia.
Given claims made on behalf of the OLE component approach, it seemed that it would be
plausible to use the mediator design method [SN92, Sul94] to integrate industrial-strength,
volume-priced application components, such as Shapeware’s Visio drawing tool and
Microsoft’s Access database program, into a high quality product.

One of our goals in developing this tool was to examine the potential for large-scale
reuse to help deliver promising new research results to practitioners. We believe that the
high cost of software delivery vehicles—of all of the super-structure required to make a
technique useful in an industrial setting—tends to impede the transfer of technological
innovations to market. The result of this is that potentially profitable technologies some-
times languish in the laboratory, depressing the returns on investments in research and
denying the benefits of gains to practitioners. If this situation could be mitigated, the ben-

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 4

efits could be considerable.

The Application
The application we developed as part of this research is a tool for supporting a tech-

nique called fault-tree analysis, a technique that is frequently used in systems engineering
of safety-critical applications. A fault tree is a structure that shows how events that can
occur in a system can lead to hazards. Fault trees can be analyzed in a variety of ways to
yield information such as the probability of a hazard arising given the probabilities of
occurrence of the various events. Figure 1 presents as an example a fragment of a fault tree
from a nuclear reactor application.

Recently, novel techniques for the analysis of fault trees have been developed [DD95].
These techniques promise much faster and more accurate analyses, and they add new
capabilities such as the ability to deal with circumstances in which the order of events in a
fault tree is significant. The goal of the tool development project that we undertook was to
produce a tool that would make these powerful new techniques available quickly and in a
form with features and performance characteristics that would be similar to commercial
products. We note that a number of commercial fault-tree analysis packages are available,
RISKMAN for example [PLG], but such tools lack the new analysis techniques.

Although the fault-tree analysis technology developed by Dugan is coded in under ten
thousand lines of C++, delivering the technology to users requires a vastly more complex
delivery vehicle. Industrial users will look for such features as a transactional database for
fault tree storage; graphical rendering and direct manipulation user interfaces; inclusion of
graphic renderings, database views and analysis results in reports prepared for technical
and managerial audiences; and clean integration of the tool into the organization’s overall
engineering process.

Indeed, the general functional requirements for the tool that we wanted to build were:

1 2 3 5 6

Core Damage

Thermal Damage to
the Core

Physical Damage to
the Core

Low Thermal
Dissipation Short Period

Loss of coolant
without scram

Power level
too high

4

Mechanical damage
to the Core

Explosive damage
to the Core

Fig. 1. - Simple fault tree example.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 5

• The ability to manipulate the graphic representation of a fault tree via a “point-
and-click” interface including the creation and deletion of nodes and arcs, zooming
in and out to change the view presented, and the ability to encapsulate a subtree
into a single node so as to permit hierarchic tree definitions.

• The ability to annotate the nodes of the fault tree via the graphic representation
with a variety of information types including numeric information (such as proba-
bilities) and textual information (such as event descriptions).

• The ability to apply layout algorithms to the graphic representation of a fault tree
so as to arrange the display in an aesthetic manner. Given the specialized nature of
the displays in this case, the layout algorithms might well have to be developed as
separate packages. It is important however, that the “hooks” for such processing be
available.

• The ability to store and retrieve fault trees so as to retain all structural information
and annotations.

• The ability to manipulate collections of fault trees.

• The ability to invoke simple analyses on fault trees such as the preparation of lists
of nodes with particular properties.

• The ability to invoke specialized analyses programmed as separate packages. The
ability to integrate a revised implementation of the analyses quickly so as to permit
experimentation by the developers of the analysis techniques.

• The ability to include formatted fault trees and the results of analyses in docu-
ments.

Using conventional software development methods (such as object-oriented program-
ming with reusable class libraries) to build industrially viable tools is so costly that it is
generally feasible only for the most promising technologies. Moreover, commercial devel-
opers are unlikely to incur high development costs to deliver specialized technologies to
what might be small or ephemeral markets.

We perceived the possibility to overcome these problems by crafting a sophisticated
technology delivery vehicle out of reusable application components based on OLE. Some
of the applications that have been developed with support for the OLE technology are
remarkably powerful, and taken together appear to span the spectrum of capabilities
required to build a wide variety of applications.

The capabilities include relational database management, graphical user interface con-
struction, compound document design and storage, constraint-based structured interactive
graphics, and diverse computational models, including spreadsheets and general-purpose
imperative programming in languages such as C++. In reviewing these component appli-
cations, we observed that the very rich features which they offer are applicable to a num-
ber of domains---and not merely management information systems or data processing.

Moreover, many of the applications are designed for integration and reuse. The manu-

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 6

facturer of OLE presents the technology as a toolkit for the rapid development of applica-
tions from components. Component technologies, especially those based on Visual Basic
Custom Controls, have been used extensively to build a variety of business and other
applications. We asked whether we might not take the same approach to deliver an
advanced engineering technique into practical use.

Developing the Tool
In this section, we discuss the architectural design and implementation of our tool.

First, we discuss our decision to build the tool as an environment in which the Visio and
Access tools are tightly integrated component applications. Next, we present a straightfor-
ward design for this environment using a mediator to integrate Visio and Access. Finally,
we discuss the ways in which we were compelled to diverge from the straightforward
design by certain architectural difficulties with the OLE-based components.

Behavioral Entity-Relationship Model of the Desired System

We observed that each of several applications seemed well suited to handle a particular
aspect of requirements. This view led us to adopt an “integrated environment” approach to
the design of our system. Each part of the problem is handled by a particular application.
Our task was to integrate the applications to solve the overall problem.

This integrated systems approach implies the distribution of logically related data over
multiple, largely independent components. For example, we represent an instance of the
fault-tree notion of a hazard as a record in an Access database and as a shape in a Visio
drawing. The existence of the hazard in the abstract set of a fault tree is reflected simulta-
neously in both applications.

Each component thus maintains a projection of the “phenomena of interest,” and the
conjunction of the projections comprises the full representation of the phenomena. Indeed,
there is no representation of the phenomena other than as the conjunction of the related
(possibly overlapping) partial representations in the component applications. This division
of labor creates both static (data) and dynamic (behavioral) integration requirements.

First, it is necessary to integrate the separate, partial representations into a coherent
representation of the overall phenomena. Because we have no explicit representation of
logical phenomena (such as hazards), representing associations between the views of the
phenomena requires that we link related views explicitly. Thus, for example, we will want
to associate shapes in Visio drawings with records in an Access database.

Second, it is necessary to maintain system-wide coherency of this distributed represen-
tation in the face of direct user manipulation of the partial views maintained by separate
tools. We have to ensure that data are consistent with each other and with the logical
model intended by the user. If the user indicates the addition of a new hazard by adding a
shape to a Visio drawing, then a corresponding record should be added to the database
maintained by Access; and the relationship between the two must be represented some-
where. The same sorts of considerations apply to gates, trees, collections of trees, and so

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 7

forth..

Figure 2 depicts the overall integration requirements in the form of a behavioral entity-
relationship (ER) model [SN92, Sul94]. The behavioral ER model represents the behavior
of the system as a network of visible, independent behaviors (Visio and Access) integrated
by a behavioral relationship (the arrow) that models how the applications work together.
The behavioral ER model thus defines the architecture of our tool with application as
components and behavioral relationships as connectors.

A Mediator-Based Realization the Behavioral ER Model

Since the applications were given, our task is to integrate the them by implementing
the behavioral relationship. The question is how to implement it using available mecha-
nisms. The mediator approach [SN92, Sul94] appears to be an ideal solution. The basic
idea is to implement the relationship as a component which ensures that the applications
work together without compromising their visibility or independence.

It is possible to do this by designing the mediator as a component that interacts with
the applications through a carefully engineered combination of implicit and explicit invo-
cations. The approach seemed natural because we had understood these mechanisms to be
supported by the basic OLE technology.

Figure 3 depicts the mediator-based architecture that we posited. The mediator would
register with the applications to be invoked implicitly whenever individual tool activities
might require global consistency maintenance. Once invoked, the mediator would then
use explicit invocation to perform its consistency maintenance tasks. Invocations were to
be performed using Visual Basic’s Automation capability.

As an example of the operation of this mediator, consider the processing required (a)
when a user adds a hazard shape to the graphic representation maintained by Visio and (b)
changes the label for a hazard using Access. The mediator would respond to an event from
Visio indicating the addition of a hazard shape to a drawing by adding a corresponding
record to the hazard table in Access and by storing in an internal table the association
between the shape and the record for later reference. Notification of a change in the label
of a hazard shape would prompt a mediator to look up the corresponding record in the
table and to update its name field.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Visio

Graphical Depiction

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Access

Documentation, Query,
Storage, Reports

Behavioral Relationship:
Tool Integration and Master Control

Fig. 2. - Overall integration requirements for the tool.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 8

The mediator was also intended to provide its own user interface to the user. This
interface presents a view of the system as a whole. It includes menu items to invoke the
specialized fault-tree analysis codes, to open and close collections of fault trees in a coor-
dinated fashion, to add and delete new trees and new collections of trees, and so forth.

The Actual Design Reflecting Several Architectural Compromises

When we tried to implement the mediator design, we ran into several problems that
compelled us to compromise our architecture. The good news is, first, that we succeeded
in building (almost) the system we wanted; and, second, with one major exception, the
problems we had were not with OLE itself, but in the designs of the component applica-
tions. We highlight the architectural compromises we had to make using an adaptation of
the idea of the reflexion model [MNS95]. We then discuss the underlying architectural
problems in terms of these compromises.

A reflexion model compares two structures, highlighting where the structures agree
and where they differ both by the absence of expected arcs and by the presence of unex-
pected ones. One structure might be a hypothesized, high-level relational model of a soft-
ware system (such as an architectural diagram); the other, a low-level model derived by
analysis of the actual source code. Here we use the same idea to highlight differences
between our ideal mediator architecture and the system we built.

Figure 4 presents our reflexion model. Black lines and text indicate structures in the
ideal architecture present in the actual system. Red indicates structures that are missing

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Visio

Graphical Depiction

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

Access

Annotation, Storage,
Query, Reports

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Vis. Basic

Mediator/Master Control:
Tool-Triggered,

Incremental Integration

Explicitly InvokesExplicitly Invokes

Implicitly Invoked ByImplicitly Invoked By

Fault Tree Analysis
Compiled C++ Code,
Dynamically Linked

Explicitly
Invokes

Fig. 3. - Proposed mediator-based architecture.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 9

from the actual system; blue indicates unexpected structures. Purple signifies changes.

We quickly discovered that Access 3.0 does not export operations, events, or a data
model suitable for use by an OLE Automation client.† This restriction prevents the media-
tor from invoking or being invoked by Access (explaining the red lines between the medi-
ator and Access: the expected implicit and explicit invocation connections are missing
from the architecture). We worked around this problem by using the Visual Basic lan-
guage’s built-in database functions, which happen to use the same underlying “database
engine” as Access. Our mediator communicates with Access by writing to a shared data-
base. Access reacts when the underlying shared database changes, we presume by using a
standard implicit invocation mechanism.

The red line from our mediator to Visio is more interesting. The missing implicit invo-
cation from Visio to Visual Basic reflects two serious problems, one with the basic OLE
technology, and one with the design of the Visio interface.

†. We expect that Access 4.0, to ship 8/95, will support OLE Automation. We highlight the problem
not because it is interesting in itself, but because it is one of the key classes of problems that appli-
cations architects should consider.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Visio

Graphical Depiction

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Access

Annotation, Storage,
Query, Reports

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Vis. Basic

Mediator/Master Control:
User-Triggered Batch

Integration

Explicitly Invokes

Database
Engine

Implicitly
Invoked By

(We presume)

Explicitly Invokes
Using Built-In VB Functions

Explicitly Invokes

Implicitly Invoked ByImplicitly Invoked By

Explicitly Invokes
(We presume)

Fig. 4. - Actual tool architecture.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 10

The more serious problem is that Visual Basic provides no support for the all-impor-
tant call-back structures needed to implement implicit invocation. It does not support sub-
program pointers as a programming mechanism, and does not even support explicit
invocation by other components using Automation. While it is a flexible Automation cli-
ent, able to drive other programs effectively, other programs appear to have no easy way to
way to drive components written in Visual Basic using OLE Automation.

This is a serious and unfortunate problem because it precludes the use of mediators,
which have proven to be a highly effective structuring method for building integrated sys-
tems. Moreover, we see no elegant workarounds in the current version of the language.
This deficiency essentially defeated our hopes to define a mediator that would eagerly and
incrementally maintain consistency in the face of fine-grained operations on Visio, such as
shape addition and deletion.

The second problem contributing to the missing implicit invocation from the mediator
is the insufficiently rich event interface provided by Visio. Even if there were a work-
around that would deliver Visio events to our Visual Basic mediator, it is still the case that
the events Visio announces would not be enough to support our integration requirements.
Events are announced to signal that shapes have moved, have had their names changed,
and that they have been selected by double clicking; but incrementally maintaining the
consistency of the set of records with the set of shapes in a picture would additionally
require events signalling shape deletions.

This combination of shortcomings led us to give up on the idea of tool-triggered,
eager, incremental consistency maintenance. Instead, we settled for occasional consis-
tency restoration triggered by the user’s selection of a menu item in the master control
window. When the user selects this item, a procedure uses OLE Automation to inspect the
set of shapes and connections in the active Visio picture. This set is compared with the
corresponding set of records in the database; and appropriate additions, deletions and
modifications are made to the database records.

A final interesting problem that we had was lack of unique identifiers for Visio shapes.
Visio assigns each shape an identification number, but the number is guaranteed to be
unique only on a per-page basis, and not across time. This makes the numbers unsuitable
as keys for representing associations between Visio shapes and database records. Our
solution exploited a very useful property of Visio shape objects: they provide several
empty slots in which one can store arbitrary data. We use one of these to store the key of
the database record corresponding to the shape. It is critical for integration that tools pro-
vide means by which associations between their data and data maintained in other tools
can be represented.

We conclude this section with the observation that, although we encountered some
“serious” architectural impediments, we were still able to build a system in about a person
week by integrating large-scale, reusable components. The result is a fully functional tool
at a cost that is extraordinarily low by historical standards.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 11

RESULTS

The results we obtained from this activity fall broadly into two areas. One area is the
relatively successful performance of the effort—a very useful tool was built very quickly.
The second area is architectural assessment. We uncovered a number of subtle difficulties
with both the OLE architecture and the application components. In the remainder of these
sections we discuss the specifics of these two areas.

Performance
• A very high level of productivity achieved.

With about a person week of effort, a tool that met virtually all the requirements
outlined above was developed. Essentially all of the requirements were met using
existing capabilities of the application components. A small amount of software
was written to implement the overall control mechanism, and, of course, the
sophisticated analysis components were developed from scratch. However, we
note that the entire analysis package is less than 10,000 lines yet it is available
within a framework of functionality that is implemented by probably several mil-
lion lines of code.

• Industrial-strength capability demonstrated.

The tool we have developed provides a wealth of functionality as well as the
essential analysis capability. For example, the full capabilities of Visio and Access
are at the user’s disposal thereby enabling tremendous graphic and reporting facil-
ities. Compared with commercial tools in the same domain, the tool we have built
could be enhanced to include comparable analytic capabilities in at most a few per-
son months.

• Familiar “look and feel” provided.

Because the application components that were used are in common use, the
appearance of the tool will be familiar to the user. In addition, since the underlying
computing platform is Microsoft’s WindowsTM, the entire operating environment
will be familiar. An important inference from this is that entire collections of tools
can be developed that will all maintain the same look and feel.

• Adequate performance achieved.

We have no measured performance information for the tool we have built. How-
ever, when executing on a 90 MHz Intel-Pentium-based computer, the perfor-
mance is “adequate” for normal use. This is important since performance could
easily become quite unacceptable with the techniques used. OLE demands late
binding (by definition) so quite a lot has to go on at execution time. In our experi-
ence to date, this has not been a significant issue.

• Incomplete event interfaces.

A key element to the successful integration of application components is that com-
ponent interfaces provide complete, consistent, and timely information about their
state via events. We found a significant deficiency in this area. The Visio event

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 12

interface, for example, is not sufficiently rich to support eager incremental consis-
tence maintenance. For example, there are no events to signal impending object
deletions and as a result the changes needed in other components have to be
delayed.

• Incomplete OLE support.

One of the assets that we used, Microsoft’s Access, does not support OLE automa-
tion at all in the version available to us. The result was that Access had to be inte-
grated into the tool using a completely different mechanism. It was fortunate that
we were able to work around the problem in this application but this is not going to
be possible in every case.

• Inconsistent OLE support.

The ability to integrate tools rapidly using an interpreted scripting language that
includes a reasonable programming environment is very valuable. However, we
found a serious difficulty with the instantiation of this concept that we used (Visual
Basic). The difficulty was that while Visual Basic is an excellent OLE Automation
client, it cannot be used as an OLE Automation server. Thus it cannot be used as a
mediator to respond to events being passed back from application components. It
is very hard (essentially impossible) to work around this difficulty because Visual
Basic does not support pointers to subprograms in any sense. This forced a batch
consistency model to be implemented rather than other preferred approaches (such
as incremental).

• Inconsistent object naming.

Visio makes it harder than necessary to name consistent objects because it fails to
provide light-weight object identifiers. It does assign objects integer ID’s and those
ID’s are guaranteed to be unique per page of a drawing but not across pages nor
through time. Thus we had to implement our own.

• Insufficient component adaptability.

The application components that we used are very powerful pieces of software. In
some cases, we needed to disable certain functions because they either were not
necessary or because they provided ways of circumventing essential functions
such as consistency maintenance. We found that we were not able to disable func-
tionality with the degree of flexibility that we desired.
In a similar vein, we needed to change the user interfaces integral to many of the
components so as to permit our tool to be “distinguished” from its component
parts. The provision for this form of tailoring in the application components was,
in general, far less than we needed.

• Only functioning software is produced.

Although we have developed a relatively sophisticated tool, all we have available
is the software itself. We have no documentation, no users’ guide, and so on. In
terms of the lifecycle cost of software development, it is not clear how much of an
advantage we have achieved.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 13

CONCLUSION

In the work described in this paper, we have evaluated the approach to large-scale sys-
tematic reuse represented by OLE. We conclude that it is an extremely powerful reuse-
based software development approach; although difficulties remain, such an approach is
practical now in many domains; it substantially overcomes the architectural impediments
that have hindered some previous attempts at large-scale reuse; and it represents signifi-
cant progress towards realizing the promise of rapid development of sophisticated sys-
tems.

In essence, a key reason that the OLE technology worked in this case, and that we did
not face the complex architectural mismatch difficulties reported by Garlan et al., is that
OLE defines a complete framework of design standards intended to support integration.
Although we experienced some architectural difficulties, the various assumptions that pre-
cipitated the severe architectural mismatches experienced by Garlan et al were not present
in our case. Since most of the components were designed for use with OLE, they were
built with the same architectural techniques.

The lesson here is that, if components are to be composable, they have to be designed
for it. Although our experience was largely positive, the technology will be more difficult
to exploit than it needs to be unless this lesson is heeded. In addition, reuse will be
restricted unless new application components are designed both to support the architecture
from the outset, and to export interfaces intended for integration. A good analogy is that of
the early days of the railroads when every railroad company defined its own track gauge.
The effect was to require extensive effort at the “interfaces”.

It is important to note that the experience we report is based on the development of a
modestly ambitious application. This raises the issue of whether the large-scale reuse tech-
nology that we used will scale up. We hypothesize that it will given: (a) that a wide variety
of OLE-compliant application components either exist or could be developed; (b) that
OLE supports the implicit and explicit invocation mechanisms needed for rich tool inte-
gration; and (c) that in addition OLE supports a suite of other object services, services that
we did not evaluate in this paper.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the extensive advice we received on the analysis of
fault trees from Joanne Dugan. We are also pleased to acknowledge the programming
assistance that we received from Mike Lee.

This work was funded in part by Motorola, in part by the National Science Foundation
under grant numbers CCR-9213427 and CCR-9502029, and in part by NASA under grant
number NAG1-1123-FDP.

Assessing an Architectural Approach to Large-Scale Systematic Reuse

Page 14

REFERENCES

[BP89] Biggerstaff, T.J. and A.J. Perlis, Software Reusability, ACM Press, 1989.

[Bro95]Brockschmidt, K., Inside OLE, Second Edition, Microsoft Press, Redmond WA,
1995.

[BS92] Boehm, B and W. Scherlis, “Megaprogramming”, Proceedings of Software Tech-
nology Conference, DARPA, ARPA, 1992.

[DD95] Doyle, S.A., and J.B. Dugan, “Dependability assessment using binary decision
diagrams (BDDs)”, Proceedings of FTCS-25, Twenty-Fifth International Sympo-
sium on Fault-tolerant Computing, Pasadena, CA June 1995.

[GAO95] Garlan, D., R. Allen, and J. Ockerbloom, “Architectural mismatch or why it’s
hard to build systems out of existing parts”, Proceedings of ICSE 17, Seventeenth
International Conference on Software Engineering, Seattle, WA, June 1995.

[GHJV94] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Micro-
Architectures for Reusable, Object-Oriented Design, Addison-Wesley, 1994.

[GS93] Garlan, D. and M. Shaw, “An introduction to software architecture”, in V. Ambri-
ola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, Volume 1, New Jersey, 1993, World Scientific Publishing Company.

[MNS95] Murphy, G.C., D. Notkin, and K.J. Sullivan, “Software reflexion models: Bridg-
ing the gap between source and high-level models”, Proceedings of the SIGSOFT
Conference on the Foundations of Software Engineering, Washington, DC, Octo-
ber 1995.

[PLG] RISKMAN: PRA Workstation Software, PLG Inc.

[PW92] Perry, D.E. and A.L. Wolf, “Foundations for the study of software architecture”,
ACM SIGSOFT Software Engineering Notes, 17(4), pp 40-52, October 1992.

[SN92] Sullivan, K.J., and D. Notkin, “Reconciling environment integration and software
evolution”, ACM Trans. on Software Engineering and Methodology, 1(3), July
1992.

[Sul94] Sullivan, K.J., “Mediators: Easing the design and evolution of integrated sys-
tems”, Ph.D. dissertation and technical report CSE-TR 94-08-01, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 1994.

