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Abstract

Many applications today are highly data intensive and
have stringent performance requirements. In order to meet
the performance demands of these applications, we need
to optimize both the processing and I/O subsystems. One
promising approach to optimize performance is to use “Ac-
tive Storage” systems, where we use disk drive controllers
and storage array controllers as offload processors for the
data intensive parts of an application and exploit Data-
Level Parallelism (DLP) across the ensemble of processing
components. From the architecture viewpoint, the design
space of such active storage systems is large. There are a
number of choices for the microarchitecture of the proces-
sors at the disk, storage array controller, and host, the or-
ganization of the electro-mechanical parts of the disk drive,
and the characteristics of the interconnection network be-
tween these components. Since these design choices can
have a significant impact on performance, we need a sim-
ulator that can give us detailed insights into the behavior
of these systems. This paper presents the Modeling Infras-
tructure for Dynamic Active Storage (MIDAS). MIDAS is
an accurate execution-driven simulator that captures both
the processing and I/O behavior of active storage systems.
We describe the design of MIDAS, providing details about
the various simulation models and how they interact. We
then present three case studies that illustrate how MIDAS
can be used to study architectural design tradeoffs in active
storage systems.

1 Introduction

Computing today is highly data-driven. Many appli-
cations process large volumes of data for which a low
turnaround time is required. These applications span several
fields, such as, business analytics, bioinformatics, scien-
tific data processing, unstructured data processing, and ge-
ographical information systems. However, efficiently pro-

cessing such large volumes of data is a challenging prob-
lem [24]. For example, a business analyst often needs to
interactively query a large database whose contents might
be continuously changing due to round-the-clock customer
transactions over the Internet. Such a query can take several
hours to complete, even if the database is run on a high-
performance cluster [19].

Due to the data intensive nature of many of applications,
the “I/O Path” plays an important role in determining their
overall performance. The I/O path is a hierarchy of compo-
nents consisting of disk drives, array controllers, and inter-
connection networks. Due their impact on performance, a
considerable amount of effort has been put into optimizing
the I/O path, by using faster and higher bandwidth intercon-
nects, faster disks, etc. However, power consumption poses
a significant problem for these traditional performance scal-
ing techniques [7, 12]. On the other hand, many of the I/O
path components have processing capabilities that can be
utilized for general-purpose computation. By tapping into
this processing power, the multiple disks, each with their
local processor and data, can now be viewed as Processing
Elements (PEs) of a multiprocessor. These PEs can then be
collectively used to exploit Data-Level Parallelism (DLP)
in applications. This computing paradigm, referred to as
“Active Disks” or “Active Storage”, has been proposed at
different points over the past three decades [3, 1, 16, 11].

Despite this research, the end result has been rather dis-
appointing: active disks, due to their limited processing
power, are capable of handling only very simple operations
(e.g., data scans and counting [16, 1]). Anything more com-
plex has been relegated to high-end storage clusters and ap-
pliances [8, 23], whose hardware, power, and cooling costs
are significantly higher than disk drives. Indeed, commer-
cial systems that perform some processing on the storage-
side are built using such appliances [5, 23]. Although the
prior work has motivated what active storage could do, en-
abling this technology requirescomputer architecture sup-
port.

The architecture space of active storage is large. For ex-
ample, we can have disk drives of different RPMs, and disk,
storage, and host processors with varying microarchitec-
tural characteristics. Exploration of this rich design space
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requires simulation tools that can provide detailed insights
into the behavior of the system when running data intensive
applications. In this paper, we introduce theModeling In-
frastructure for Dynamic Active Storage (MIDAS). MIDAS
provides execution-drivensimulation of both the processing
and I/O behavior of an active storage system. MIDAS also
provides an API to facilitate the parallelization of applica-
tions to be simulated.

The organization of the rest of this paper is as follows.
The next section presents an overview of the related work.
Section 3 presents the design of MIDAS. The workloads
used in this paper are described in Section 4 and Section 5
provides details about the validation. Section 6 gives the
experimental setup. In Section 7, we show how MIDAS
can be used for design space exploration of active storage
systems. Section 8 concludes this paper.

2 Related Work

Active storage systems were first proposed as “database
machines” to accelerate query processing [3]. Although this
idea did not initially gain much traction, primarily due to
cost reasons, there has been a resurgence of active storage
research starting from the late nineties [1, 16, 11]. Acharya
et al. [1] and Riedel et al. [16] investigated using the pro-
cessor inside vanilla disk drives to exploit DLP. Keeton et
al. [11], on the other hand, proposed replacing a traditional
disk array with a storage server. The closest that these prior
work came to investigating architecture alternatives is to
evaluate the impact of different disk processor speeds on
performance [1, 25, 13].

Another approach to storage-side computation is to use
“Semantically Smart” disk drives [18], where the disk
processor runs code that is application-aware and proac-
tively optimizes the storage system. Both the active and
semantically-smart techniques use the same underlying
technique of running general-purpose computation on the
disk processor. Their primary differences lie in how the
processing capabilities are used (offloading an application
vs. running a storage-side optimizer). Since our focus in
this paper is on the design of the underlying hardware, we
do not make an explicit distinction between these two tech-
niques to optimize system performance.

Prior evaluation methodologies in the area of active stor-
age have used real system emulation [16] and software-
based simulation [1, 25, 13]. The emulation approach, al-
though useful for designing active disk algorithms, does
not provide the flexibility of exploring various hardware al-
ternatives. ADSim [1] is a simulator that uses a simplis-
tic model of the storage system and a very coarse grained
model of the processor. In this simulator, a trace is col-
lected from a real system and is fed into ADSim to repre-
sent the execution of the processor. The effect of varying
the disk processor clock frequency is simulated by scaling
the timestamps of this input trace. DBSim [13] is another
simulator that was specifically designed to simulate DBMS
operations and its design is similar to ADSim. In this paper,

we show that the microarchitectural design and data layouts
can have a significant impact on performance and therefore
it is important to consider these parameters when simulating
active storage systems.

3 Design of MIDAS

MIDAS simulates a host system interacting with the I/O
path via an interconnection network. The simulated I/O
path can include disk drives with programmable processors
(which we shall refer to hereafter as theDisk Processing
Unit or DPU) and programmable storage controllers. The
microarchitecture of each of these components is config-
urable. Using this framework, we can explore the effects
of different processor microarchitectures, physical diskand
network designs, and communication protocols on applica-
tion performance. In this section, we give an overview of
the MIDAS design, providing details about its constituent
simulation models, and how they integrate to simulate en-
tire systems. Before we explain the design of the simulator,
we would like to clarify our terminology. We use the term
modelto refer to an implementation of a hardware compo-
nent in thesimulatorand the terminstanceto mean a phys-
ical entity that issimulated.

The basic building block in MIDAS is the Processing
Element (PE) model. The PE model consists of a proces-
sor, which is capable of running ad-hoc code, interacting
with a disk drive. The processor and disk models are glued
together via a layer called theSpace Manager. The start-
ing points for building MIDAS are Simplescalar [4] and
Disksim [6], which simulate the processor and disk respec-
tively. Simplescalar is an execution-driven simulator that
allows one to study a wide variety of processor and cache
organizations. Disksim is an event-driven simulator and
has detailed parameterized models for disk drives, storage
caches, and interconnects.

Using the PE as the basic building block, we can com-
pose simulation models for higher-level system organiza-
tions, such as, disk arrays and even a host system inter-
acting with the I/O path. An active disk is simulated by
executing code on the PE processor (which corresponds to
the DPU) and interacting with its corresponding PE disk,
via the Space Manager. An “array of active disks” consists
of multiple PE instances, one of which serves as the array
controller. The array controller PE instance does not use
its own disk model; it uses the MIDAS API to communi-
cate with other PEs. Likewise, we can disable the processor
model in a PE to simulate a vanilla disk drive that does not
perform any local computation. MIDAS simulates and co-
ordinates the execution of code across multiple PE instances
via a Checkpointing Mechanism. An “active storage sys-
tem” consists of multiple active disks or arrays communi-
cating with a host machine. The host PE instance, like the
array controller, uses the MIDAS API for its communica-
tion. The actual data transfers between all these hardware
components is simulated by the Network Model. This hier-
archical design is shown in Figure 1. We now describe how
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Figure 1. Overall Design of MIDAS.

each of these parts is implemented.

3.1 Processing Element (PE) Model

The PE model forms the core of MIDAS. In general, a
PE instance consists of a processor that is interfaced with
a local disk drive. Translation of memory addresses (used
by the processor model) to physical disk blocks (used by
the disk model) is handled by the Space Manager. From
an implementation viewpoint, we use the Simplescalar
sim-outorder simulator as our processor model, which
we extend to simulate a finite-size main memory. This main
memory serves as the on-board disk cache, an array con-
troller cache, or the main memory of the host system, de-
pending upon how a specific PE instance is configured for
simulation. For simulating the PE disk, we use the Disksim
disk drive timing model. This disk drive model captures
the mechanical overheads of a disk access (e.g., seek time
and rotational latency) based on characteristics, such as,the
drive RPM and the number of disk zones.

The processor model interfaces with the disk model at
three points, namely, instruction cache misses, data cache
misses, and system calls. At anytime during the execution
of an application, if the processor needs to access data thatis
not resident in its memory hierarchy, a disk access is made.
This access is simulated by the processor model generat-
ing an I/O request to the disk model. The disk model uses
information about the current state of the disk (e.g., loca-
tion of the disk arm) and the I/O request, to determine the
time for the disk access and returns this latency to the pro-
cessor model. This procedure is illustrated in Figure 1(a).
This latency is then applied to the instruction that gener-
ated the I/O request, thereby delaying its completion time.
Care is taken to ensure that future instructions that depend
on the delayed instruction realize a penalty and indepen-
dent instructions do not, subject to any structural hazardsin
the processor pipeline. Interfacing the processor and stor-
age models requires simulating file accesses and swapping.

MIDAS handles these tasks via theSpace Manager.

3.2 Space Manager

Simplescalar does not simulate the communication be-
tween the processor and the memory hierarchy that lies be-
yond the L1 and L2 caches. Disksim, on the other hand,
provides detailed timing information about disk accesses
for a given I/O request but does not simulate the hardware
layers above the storage system. Due to this disconnect be-
tween the simulators, neither of them provide any form of
simulation for system calls, file operations, and swap space
management. The Space Manager is responsible for provid-
ing the basic functionality for allowing the processor and
disks models to be integrated.

Note that the Space Manager is not intended to simu-
late an operating system. Instead, the Space Manager is
meant to facilitate integrating the processor and disk mod-
els with sufficient detail so that one could conduct architec-
tural/microarchitectural exploration of active storage sys-
tems. However, compared to evaluation infrastructures used
in prior active storage research (described in Section 2), the
level of simulation detail provided by MIDAS is signifi-
cantly higher.

3.2.1 Simulating File Accesses

The Space Manager models a simple FAT-like [15] file sys-
tem. This file system is exercised at the points where the
processor and disk model interact, namely, during cache
misses and system calls. We model the basic space man-
agement tasks of data layout management and disk block
allocation. When the file system is initialized by the Space
Manager, we layout the file data on disk using a user-
specified configuration file. The configuration information
consists of a list of files that are used by the simulated appli-
cation, the simulated disks on which they are to be stored,
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and the specific layout policy to be used by the Space Man-
ager. These layout policies vary from contiguous alloca-
tion of the blocks of a file on disk, to those that allow files
to be fragmented. When a processor makes a request for
file data, the Space Manager translates the high-level file
requests into logical disk block addresses, which are then
presented to the disk model. The disk model converts these
logical block requests into physical disk addresses, consist-
ing of cylinder, surface, and sector numbers.

We implement disk block allocation as a bidirectional
scheme that is a hybrid of the First-Fit and Best-Fit policies
[17]. The block allocation scheme starts searching from the
last block associated with the file on disk along two direc-
tions, going closer to the center of the platter and going far-
ther from it, and gives preference to the free block which is
on an outer track (since the outer tracks experience higher
data rates).

Simplescalar does not provide detailed simulation of sys-
tem calls. MIDAS captures the I/O behavior of system
calls in detail. The Space Manager simulates the follow-
ing UNIX-style system calls:open, close, seek,read,
write, andcreat.

3.2.2 Simulating Swapping

Simplescalar does not bound the size of the simulated main
memory. This simulation methodology is not well suited for
simulation of active storage systems in which applications
process data that might not fit within the main memory of
the processing devices involved in the computation. This is
especially true for active disks, which are highly memory
constrained.

In MIDAS, whenever code or data resident on a PE can-
not completely fit within its own main memory, the Space
Manager handles their swap to disk and their subsequent
possible reloading into memory. For PE instances simu-
lated as active disks, their local disk serves as their swap
space. To handle PE instances that do not have a local disk,
we can designate “swap areas” on other PE instances that
have a local disk drive. Mappings between a PE instance
and its corresponding swap area are specified via a configu-
ration file. These mappings are used by the Space Manager
to simulate swapping.

3.3 Checkpointing Mechanism

Since MIDAS simulates multiple PE instances, the state
of the processor structures (both architected and microar-
chitected) and the contents of the entire storage hierarchy
of each PE instance needs to be tracked on a per-cycle ba-
sis. In addition to the processor and memory states, state
information pertaining to the disk model (e.g., the exact lo-
cation of the disk arm) needs to be tracked as well. All this
state information is tracked using a checkpointing mecha-
nism. From the implementation viewpoint, the checkpoint-
ing mechanism allows an arbitrary number of PE instances
to be simulated using a single PE model. This is achieved
by maintaining an array of data structures, one for each PE

instance, which contains the full PE state. When the sim-
ulation is in progress, for each PE instance, we restore its
checkpoint from its previous cycle, simulate a single cycle
on that PE, record its newly generated state, and then move
onto the next PE instance.

3.4 Network Model

MIDAS simulates the communication between various
PE instances via the Network Model. The possible commu-
nication paths simulated by the Network Model are shown
in Figure 2(a). The Network Model is implemented as a
pluggable module and exports a well-defined interface to
the rest of MIDAS. This is primarily done so that we can
incorporate a variety of interconnection network topologies
and characteristics without having to modify other parts of
the simulator.

The primary input parameter to the Network Model is
the bandwidth. The Network Model is invoked either ex-
plicitly, using the MIDAS API, or implicitly through system
calls from the host or array controllers that need to read or
write data that may reside on remote PE instances. In either
case, there are a set of basic operations required to simulate
traffic over the network. The PE that wishes to access the
network invokes a function callednetwork latency,
which takes the following parameters: destination PE iden-
tifier, source PE identifier, and the size of the data to be
transferred. The identifiers for the various PEs are assigned
at the beginning of the simulation. Using this data and ad-
ditional information about the current state of the network,
network latency calculates the time required to trans-
fer a packet containing the data from the source to the desti-
nation. The implementation of thenetwork latency
function depends on the specific network model that is
plugged into MIDAS. The following discussion focuses on
the default network model that is implemented in MIDAS.
We plan to create a library of simulation models for more
sophisticated networks and protocols in the future.

In the default network model, the communication time is
calculated assuming that the network employs Frequency
Division Multiplexing (FDM) to apportion the network
bandwidth among the various devices. Each PE instance is
assumed to be connected to a single full-duplex link, whose
bandwidth is equal to the total network bandwidth divided
by the number of PE instances. The network model cap-
tures contention and queuing at each of the links. If there
are multiple requests pending for a particular PE instance,
the requests are buffered on behalf of the destination PE
and are serviced in FCFS order. If a PE instance is un-
able to transmit data due to insufficient bandwidth on its
local pipe, the request is buffered within a queue on behalf
of the sender. Since a single network packet is generated
for an entire buffer worth of data, each pending request has
to wait, in FCFS order, for sufficient bandwidth on its lo-
cal pipe before it can attempt transmission. The network
model uses information about the residual bandwidth of the
sender’s local pipe and the size of the network packet, to
calculate the total transmission time. To accommodate cir-
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cumstances where there is heterogeneity in the link capaci-
ties between certain PE instances, the network model allows
the bandwidth of the links to be overridden, on a link by link
basis, from the default FDM-based assignment.

3.5 MIDAS API

A key feature of active storage is the decomposi-
tion, orchestration, and mapping of computation to dif-
ferent processing sites on the I/O path. MIDAS pro-
vides an API to port parallel applications to the simula-
tor. These API functions resemble Remote Procedure Calls.
There are three API functions:AS COMPUTE REQUEST,
AS DATA READY, andAS COMPUTE DONE. The usage of
these functions is shown in Figure 2(b).
AS COMPUTE REQUEST is used to request a particular

computation to be performed by a remote device. For ex-
ample, the host can request all active disks in the system
to scan through their local data. This function takes, as
input, the destination PE identifier and the arguments for
the remote procedure. The API call invokes the Network
Model to simulate the latency for transmitting the request
to the destination PE. The remote PE instance then invokes
the appropriate procedure on its local data. Processed data
is returned to the requester via theAS DATA READY API
call. Each remote PE instance might send a stream of pro-
cessed data back to the original requester, which is achieved
through multiple invocations of theAS DATA READY func-
tion. Each remote computing device indicates the end of its
data stream via theAS COMPUTE DONE API call.

4 Workloads

A key challenge in evaluating active storage is that tradi-
tional benchmark suites used in computer architecture re-

search, such as SPEC [22], are not representative work-
loads. We require applications that do significant amounts
of I/O as well as computation. Other desired application
characteristics include data-parallelizability and highselec-
tivity, which is a measure of the data reduction achieved as a
result of storage-side processing. Developing a representa-
tive benchmark suite for active storage is an open research
problem, which we do not attempt to tackle in this paper.
Instead, we choose workloads that have been used in prior
active storage research [1, 16]. (The workloads are com-
piled for the Simplescalar PISA ISA).

• Image Edge Detection: The objective of this work-
load is to detect the facial features of subjects (which
are edges) in each image. The edge detection is per-
formed using the Smallest Univalve Segment Assimi-
lating Nucleus (SUSAN) algorithm [20]. Our dataset
consists of a set of images from the MIT CBCL Face
Recognition Database [14]. In the nonactive storage
implementation of this workload, the host requests an
image from the storage system, performs edge detec-
tion, and then requests the next image. Since the host
requests one image at a time and the image sizes in the
database are relatively small (around 10 KB per im-
age), we do not stripe the disk blocks within individual
files across multiple disks. However, we do distribute
the contents of the database over multiple disks. In
the active storage version of this procedure, each DPU
performs the computation on its local set of images and
streams the edges back to the host. The host itself does
not perform any computation on the images.

• Nearest Neighbor Search: This workload imple-
ments a commonly used search procedure. This pro-
cedure works as follows: given a search criteria and
non-negative integerk, the nearest neighbor search re-
turns thek database records that match or come clos-
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est to matching the criteria. We use a database from
the National Oceanic and Atmospheric Administration
(NOAA) National Hurricane/Tropical Prediction Cen-
ter as our dataset [10]. This database contains informa-
tion about tropical cyclones in the North Atlantic from
the years 1851-2005, with storm progressions recorded
at six-hour intervals. Each record in this database has
several fields, including, the date and time of the storm,
the latitude and longitude of the storm, etc. For a
given (latitude,longitude) pair, we compute thek trop-
ical storms that occurred closest to the given coordi-
nate. The search procedure scans through the entire
database, calculating the Euclidean distance between
the search coordinates and the (latitude,longitude) pair
of each stored record, maintaining a list of thek clos-
est matches. We resort to a full scan of the database for
each query, since scanning has been shown to be effi-
cient for such multi-attribute searches [16]. The non-
active storage implementation of this workload reads
in the entire database from disk, performs the search,
maintaining thek closest matches. Since the entire
database needs to be scanned to compute the query re-
sult, we assume that we can transfer data to the host
from the multiple disks, in parallel. The active storage
implementation performs the search locally on each
disk and returns itsk closest matches to the host. The
host then calculates thek closest matches from this re-
duced data set. In our experiments, we setk=3.

5 Validation

Validation is an important step in the design of any archi-
tecture simulator. We evaluated the accuracy of the simula-
tor against real hardware. Although it is challenging to vali-
date the simulator against a real active storage system (since
programmable disks and controllers are not available), it is
possible to validate against existing systems.

We ran the Image Edge Detection workload on three dif-
ferent systems: a high-end laptop, a slightly old desktop
machine, and a high-end server. This workload was chosen
because it performs a significant amount of both computa-
tion and I/O and can therefore exercise all parts of the sim-
ulator. The laptop had a 1.83 GHz Intel Pentium-M proces-
sor, 1 GB of main memory, and a 80 GB 5400 RPM SATA
disk drive. The desktop was composed of a 350 MHz Pen-
tium II processor, 384 MB of main memory, and a 40 GB
7200 RPM IDE disk drive. The server had a 2.0 GHz AMD
Opteron processor, 2 GB of main memory, and a 160 GB
7200 RPM SATA disk drive. Each of these systems ran the
Linux operating system, with the Ext3 file system.

We configured MIDAS to model the hardware of these
three machines as closely as we could. We conducted in-
dependent runs on each of the real machines, rebooting the
system between successive runs to ensure that caching ef-
fects do not skew our measurements. We used the confi-
dence interval method to determine the number of indepen-
dent runs required to get the execution time to be accurate
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Figure 3. Execution time of the Image Edge
Detection application on real systems and
their simulated counterparts.

within 1 second at the 95% confidence level. We then com-
pared the results obtained from these runs to the simulated
result reported by MIDAS. The results from this validation
are given in Figure 3. For each machine, shown on the x-
axis, the pair of bars give the execution time of the workload
on the simulated and real system respectively. The standard
error (in seconds) for the real system runs are shown above
the corresponding bars.

As we can see from the Figure, the execution time on
the real machines and their simulated counterparts are very
close. The maximum difference between the two is 8.9%,
which is reported for the desktop machine. The timing num-
bers obtained from the real system runs are slightly higher
than those reported by MIDAS primarily due to the oper-
ating system, whose execution overheads are not simulated
in MIDAS. Nevertheless, the differences are small and MI-
DAS captures the behavior of real systems accurately.

6 Experimental Setup

The parameters used in the simulations are given in Ta-
ble 1. We simulate the host machine as having an 1.6 GHz
8-wide issue processor, with a 32 KB L1 and 64 KB L1
d-cache and i-cache respectively (both 2-way set associa-
tive), a 4-way set-associative 512 KB unified L2 cache, and
512 MB of main memory. The DPU is modeled to resem-
ble the ARM-based Intel XScale-based PXA255 processor
[9]. Modern SCSI disk drives use disk processors that are
similar to the PXA255 [2] and have 8-32 MB of DRAM for
their disk cache. Since the PXA255 processor is available in
three different clock frequencies (200, 300, and 400 MHz),
we use these DPU speeds in our experiments. We choose
the bandwidth of our simulated interconnection network to
be 533 MB/s, which is similar to PCI Express.
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Host Processor Parameters
Processor Clock-Frequency 1.6 GHz

Fetch/Decode/Issue/Commit Width 8
Fetch-Queue Size 8

Branch-Predictor Type Bimodal
Table-size of 2K entries

RAS Size 64
BTB Size 2K-entry 2-way

Branch-Misprediction Latency 7 cycles
RUU Size 128
LSQ Size 64

Integer ALUs 4 (1-cycle latency)
Integer Multipliers/Dividers 2 (3,20)

FP ALUs 2 (2)
FP Mult./Div./Sqrt. 1 (4,12,24)

L1 Cache Ports 2
L1 D-Cache 32KB, 2-way with 32B line-size (2)
L1 I-Cache 64KB, 2-way with 32B line-size (2)

L2 Unified Cache 512 KB, 4-way with 64B line-size (12)
Main Memory Size 512 MB
TLB Miss-Latency 30 cycles

Main Memory Latency 64 cycles

Disk Processor Parameters
200,300,400 MHz

1
1

Bimodal
Table-size of 128 entries

8
128-entry direct-mapped

4 cycles
16
8

1 (1-cycle latency)
1 (3,20)

1 (2)
1 (4,12,24)

2
32KB, 32-way with 32B line-size (2)
32KB, 32-way with 32B line-size (2)

32 KB, 32-way with 32B line-size (12)
32 MB

20 cycles
64 cycles

Disk Drive Parameters
Disk Capacity 9.29 GB

Rotational Speed 10,000 RPM
Average Seek Time 4.48 ms

Platter Diameter 3.3 inches
# Platters 1

Interconnection Network Parameters
Total Bandwidth 533 MB/s

Transmission+Time
of Flight Overhead 0.18 ms

Message Header Size 1 B

Table 1. Configuration parameters of the host, DPU (default v alues), the disk drive (data transfer
system), and the interconnection network. Latencies of ALU s/caches are given in parenthesis. All
ALU operations are pipelined except division and square-ro ot.

7 Using MIDAS to Explore Active Storage
Architectures

We now present three examples of how MIDAS can be
used to explore architectural tradeoffs in active storage sys-
tems. First, we study the effect of varying the DPU clock
frequency on the performance, assuming all I/O to be se-
quential. This first case study focuses solely on the process-
ing aspects of active storage. In the second case study, we
factor in the effects of the electro-mechanical parts of the
disk drive by introducing random I/O. The final case study
takes full advantage of the microachitectural simulation ca-
pabilities of MIDAS to evaluate the impact of varying the
microarchitecture of DPUs. Please note that these exam-
ples are not intended to comprehensively explore the design
space of active storage systems, nor meant to suggest opti-
mizing a particular hardware component. Instead, they are
intended to demonstrate the utility of the MIDAS simulator.
We have conducted a more detailed evaluation of the de-
sign space of active storage architectures using additional
benchmarks. The interested reader is referred to [21] for
the details of this study.

The primary metric that we use isspeedup, which is cal-
culated as the ratio between the total execution time of an
application on a given active storage configuration to that on

the corresponding baseline configuration, which does not
use any storage-side computation. In all the experiments,
we configure the baseline system to use the same number of
disks, data distribution, and disk block layout as their active
storage counterparts.

7.1 Usage Example 1: Studying the Im-
pact of DPU Clock Frequency

In the first set of experiments, we evaluate the impact of
DPU clock frequency on the performance of active storage.
We vary the DPU clock frequency from 200 MHz to 400
MHz and consider storage systems with 2, 4, and 8 disks re-
spectively. We assume that all data is accessed sequentially,
and therefore disk seeks and head switches are minimal. All
the disks send out a stream of data, either to their respective
DPUs (in the case of active storage), or to the host system
via the network (for the baseline). The results of this ex-
periment are shown in Figure 4. The x-axis of each graph
corresponds to a DPU clock frequency and the y-axis gives
the speedup. Each of the curves correspond to a storage
system with the given number of disks.

Looking at the trends across both the workloads, we ob-
serve that as we increase the number of disks, from 2 to
8, the performance of the active storage systems improve.
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Figure 4. Impact of DPU clock frequency.

This is because, with an increasing number of active disks,
the application can exploit more DLP. As expected, increas-
ing the DPU clock frequency benefits performance as well.
However, between the two workloads, we see contrasting
behaviors. For the Image Edge Detection application, even
the highest performance configuration (8-disk system with
400 MHz DPUs) is unable to do better than the baseline ap-
proach of doing all the computation at the host. On the other
hand, the Nearest Neighbor Search application enjoys con-
sistently higher performance than Image Edge Detection for
the same number disks, and the 8-disk active storage con-
figuration outperforms the baseline even with a 200 MHz
DPU. We now explain why this happens.

The Image Edge Detection workload fetches one image
from disk, processes it, and then fetches the next image file.
Therefore, in the baseline system, the host processes data in
relatively small chunks. Moreover, the application code is
predominantly composed of integer instructions, since the
pixels of an image are encoded as integers. The host can
handle this code efficiently given its relatively wide integer
execution pipeline and its high clock frequency. Although
the active storage configurations can process data in par-
allel and also have the added benefit of parallel I/O trans-
fers, the small data footprint combined with the high com-
putational power of the host favors the baseline approach.
On the other hand, for the Nearest Neighbor Search appli-
cation, the host scans the entire database to compute the
query result. With sequential I/O and the parallel trans-

fer of data from the disks, the host gets a large amount of
data from the storage system at a high rate. The Nearest
Neighbor Search also uses a significant amount of floating-
point arithmetic, to compute the Euclidean distance of (lat-
itude,longitude) pairs, which are represented as real num-
bers. However, the floating-point execution pipeline of the
host processor is narrower than the integer pipeline. The
large data footprint combined with fewer floating point pro-
cessing resources impose a greater burden on the host sys-
tem. However, as we increase the number of DPUs, we
get both higher floating-point parallelism as well as data-
level parallelism. Due to the large data footprint, exploiting
DLP has a more significant impact on the performance of
the Nearest Neighbor Search application. These factors end
up favoring the active storage approach for this workload.

7.2 Usage Example 2: Studying the Im-
pact of Random I/O

Having seen the performance of active storage under se-
quential I/O, we now factor in the effects of disk seeks and
study the behavior under random I/O. We simulate such disk
I/O behavior by choosing the starting block address of each
data unit stored on disk to be at a random location. For
the Image Edge Detection application, each image corre-
sponds to an individual data unit. For the Nearest Neighbor
Search workload, a set of consecutive database records that
fit within a 512B disk block constitutes a data unit. We as-
sume that all the disk blocks within a data unit are stored
sequentially. Care is taken to ensure that no two data units
have overlapping block addresses. The results from this ex-
periment are shown in Figure 5.

With the introduction of random I/O, we now see a trend
reversal between the two applications. For the Image Edge
Detection application, even the 4-disk active storage system
starts providing a speedup over the baseline and the 8-DPU
400 MHz configuration provides more than 2X speedup.
On the other hand, the Nearest Neighbor Search workload
suffers severe performance degradation. Neither the use of
more DPUs nor higher DPU clock frequencies have appre-
ciable impact on the speedup of this application. We shall
now explain the reason for these trends.

For the Image Edge Detection application, the lack of
parallel data transfers from disk has a detrimental impact on
baseline performance. This is because, one of the biggest
benefits of a parallel I/O system is the ability to hide the
latency of seeks. In a parallel I/O system, we can allow
data to be transferred from some disks while others might
be seeking. In the baseline case, where code is executed
sequentially, a physical seek operation would lead to a dis-
ruption in the I/O stream, during which the host processor
is stalled waiting for the data to arrive. On the other hand,
in an active storage system, even when one DPU is stalled
due to a seek, the other DPUs can still process their local
data and hence provide latency hiding. This is an interest-
ing scenario where, in spite of the host not explicitly taking
advantage of the parallelism of the I/O system, the active
storage system implicitly taps into thisdata-transferparal-
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Figure 5. Impact of Random I/O.

lelism. In the baseline case, we would expect to tap into
the I/O parallelism from the host side of the system. For
the Nearest Neighbor Search application, the parallel I/O
system is available even for the baseline system. However,
due to random I/O, the throughput of the storage system is
lower than with sequential data access. As a result of this,
the host receives the contents of the database at a lower data
rate. Therefore, unlike with sequential I/O, the host gets
data in smaller fragments, which it can process more effi-
ciently. This tilts the balance towards the baseline.

7.3 Usage Example 3: Studying the Im-
pact of Superscalar DPU Organiza-
tions

One of the main advantages of MIDAS is that we can
study microarchitectural tradeoffs in active storage system
design at a relatively fine granularity. Many of these trade-
offs are very challenging to study using emulation [16, 8]
or the simplistic simulation techniques [1, 13] used in prior
work. We now consider one such microarchitectural design
parameter, namely, the width of the DPU pipeline. We ex-
plore how exploiting Instruction Level Parallelism (ILP) at
the DPUs could affect the performance of an active storage
system. We consider 2-way and 4-way out-of-order super-
scalar DPU microarchitectures. For each superscalar DPU
configuration, we increase the processor resources, from
those given in Table 1, to accommodate the higher pipeline

widths. We assume that the data is accessed sequentially (as
done in Section 7.1). The results from this experiment are
shown in Figure 6 for an 8-DPU active storage system. (We
conducted this experiment for the other storage system sizes
as well and found the trends to be similar). For each graph
in Figure 6, the leftmost point on the x-axis corresponds
to the non-superscalar DPU organization that we used in
the previous experiments. The y-axis indicates the speedup
over the 8-disk (nonactive) baseline system. Each of the
curves corresponds to a particular DPU clock frequency.
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Figure 6. Impact of using superscalar proces-
sors for the DPUs.

This experiment reveals very interesting trends. First,
we observe that the wider-issue superscalar DPUs improve
the performance of both applications. For the Image Edge
Detection workload, going in for even a 2-way superscalar
DPU, with 300 or 400 MHz clock frequencies, now pro-
vides a speedup over the baseline. The wider integer execu-
tion pipeline at each of the DPUs allows a greater amount
of ILP to be exploited. This higher processing parallelism
on the storage side of the system now has a more domi-
nant effect on performance than the higher clock frequency
of the host, thereby tilting the balance towards active stor-
age system. For the Nearest Neighbor Search workload,
the superscalar DPUs boost performance as well, although
the benefits are less pronounced than for Image Edge De-
tection. Although the superscalar DPUs benefit the inte-
ger instructions in the application, the width of the floating-
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point pipeline increases only moderately. The number of
floating-point adders and multiplier/divider units for the2-
way and 4-way DPUs are (1,1) and (2,2) respectively. The
corresponding integer pipelines have (2,2) and (4,4) of these
functional units for the 2-way and 4-way configurations re-
spectively.

Within the speedup profiles for each of the workloads,
we observe interesting tradeoffs between clock frequency
and ILP. For the Image Edge Detection workload, we ob-
serve that a superscalar DPU that runs at 200 MHz is able
to out-perform single-issue DPUs that run at a higher clock
frequency (the 2-way and 4-way organizations provide a
greater speedup than the 300 MHz 1-way and 400 MHz 1-
way configurations respectively). In fact, the 4-way 200
MHz DPU provides slightly better performance than even
the 2-way 300 MHz counterpart. Similar tradeoffs can be
observed for the Nearest Neighbor Search workload as well,
although the differences are less pronounced.

This case study indicates that there is indeed scope
for exploring DPU organizations in more detail. MIDAS
provides the necessary capabilities for conducting such
architecture-oriented research on active storage.

8 Conclusions

This paper has presented MIDAS, which is an accurate
execution-driven simulator for studying the architectureof
active storage systems. We have described the design of
the simulator, providing details about the Processing Ele-
ment and Network Models, the Space Manager, and the API
for writing parallel applications. Using two data intensive
workloads, we have demonstrated how MIDAS can be used
to study various architecture tradeoffs in the processing and
the data-transfer subsystems.
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