MIDAS: An Execution-Driven Simulator for Active Storage Architectures

Shahrukh Rohinton Tarapdre Clinton Wills Smullen, I\ Sudhanva Gurumurthi

 Lockheed Martin Advanced Technology Labs * Department of Computer Science
Cherry Hill, NJ 08002 University of Virginia
starapor@atl.Imco.com Charlottesville, VA 22904
{cws3k, gurumurtii@cs.virginia.edu

Abstract cessing such large volumes of data is a challenging prob-
lem [24]. For example, a business analyst often needs to

Many applications today are highly data intensive and interactively query a large database whose contents might
have stringent performance requirements. In order to meetP€ continuously changing due to round-the-clock customer
the performance demands of these applications, we n(a(e(Lransactlons over the Internet. Such a query can take devera
to optimize both the processing and I/O subsystems. One ours to complete, even if the database is run on a high-

L s ; u performance cluster [19].
promising approach to optimize performance is to use “Ac- D he data i _ ¢ ¢ licati
tive Storage” systems, where we use disk drive controllers ue to the data intensive nature of many of applications,

and storage array controllers as offload processors for the the "I/ Paih” plays an important role in determining their
torage y orroadp ; overall performance. The I/O path is a hierarchy of compo-
data intensive parts of an application and exploit Data-

X -~ nents consisting of disk drives, array controllers, andrint
Level Parallelism (DLP) across the ensemble of processing connection networks. Due their impact on performance, a
components. From the architecture viewpoint, the design considerable amount of effort has been put into optimizing
space of such active storage systems is large. There are ahe I/O path, by using faster and higher bandwidth intercon-
number of choices for the microarchitecture of the proces- nects, faster disks, etc. However, power consumption poses
sors at the disk, storage array controller, and host, the or- a significant problem for these traditional performancé-sca
ganization of the electro-mechanical parts of the diskelriv ing techniques [7, 12]. On the other hand, many of the 1/O
and the characteristics of the interconnection network be- Path components have processing capabilities that can be
tween these components. Since these design choices cdffilized for general-purpose computation. By tapping into

have a significant impact on performance, we need a sim-thIS processing power, the multiple d'SI.(S’ each with thel_r
. o . . local processor and data, can now be viewed as Processing
ulator that can give us detailed insights into the behavior

f1h Thi he Modeling Inf Elements (PEs) of a multiprocessor. These PEs can then be
of these systems. 'NIS paper presents the Mode Ing In ras'collectively used to exploit Data-Level Parallelism (DLP)
tructure for Dynamic Active Storag®/{DAS). MIDAS is i applications. This computing paradigm, referred to as

an accurate execution-driven simulator that captures both “active Disks” or “Active Storage”, has been proposed at
the processing and 1/0 behavior of active storage systems different points over the past three decades [3, 1, 16, 11].
We describe the design of MIDAS, providing details about pegpite this research, the end result has been rather dis-
the various simulation models and how they interact. We appointing: active disks, due to their limited processing
then present three case studies that illustrate how MIDAS power, are capable of handling only very simple operations
can be used to study architectural design tradeoffs in activ (e.g., data scans and counting [16, 1]). Anything more com-
storage systems. plex has been relegated to high-end storage clusters and ap-
pliances [8, 23], whose hardware, power, and cooling costs
are significantly higher than disk drives. Indeed, commer-
. cial systems that perform some processing on the storage-
1 Introduction side are built using such appliances [5, 23]. Although the
prior work has motivated what active storage could do, en-
Computing today is highly data-driven. Many appli- abling this technology requiresomputer architecture sup-
cations process large volumes of data for which a low POt
turnaroundtime is required. These applications spanakver The architecture space of active storage is large. For ex-
fields, such as, business analytics, bioinformatics, scien ample, we can have disk drives of different RPMs, and disk,
tific data processing, unstructured data processing, and gestorage, and host processors with varying microarchitec-
ographical information systems. However, efficiently pro- tural characteristics. Exploration of this rich designampa

requires simulation tools that can provide detailed insigh we show that the microarchitectural design and data layouts
into the behavior of the system when running data intensivecan have a significant impact on performance and therefore
applications. In this paper, we introduce tkedeling In- it is important to consider these parameters when simgatin
frastructure for Dynamic Active Storage (MIDAS)IDAS active storage systems.

provides execution-driven simulation of both the proasgsi

and /0 behavior of an active storage system. MIDAS also .

provides an API to facilitate the pa?allexllization of applic 3 Design of MIDAS

tions to be simulated.

The organization of the rest of this paper is as follows. MIDAS simulates a host system interacting with the 1/O
The next section presents an overview of the related work.path via an interconnection network. The simulated 1/0
Section 3 presents the design of MIDAS. The workloads path can include disk drives with programmable processors
used in this paper are described in Section 4 and Section Jwhich we shall refer to hereafter as tBisk Processing
provid_es details about the Va_Iidation. Section 6 gives the Unit or DPU) and programmab|e storage controllers. The
experimental setup. In Section 7, we show how MIDAS mjcroarchitecture of each of these components is config-
can be used for design space exploration of active storagejrable. Using this framework, we can explore the effects

systems. Section 8 concludes this paper. of different processor microarchitectures, physical disk
network designs, and communication protocols on applica-
2 Reated Work tion performance. In this section, we give an overview of

the MIDAS design, providing details about its constituent
simulation models, and how they integrate to simulate en-

Active storage systems were first proposed as “databasdire systems. Before we explain the design of the simulator,
machines” to accelerate query processing [3]. Although thi we would like to clarify our terminology. We use the term
idea did not initially gain much traction, primarily due to modelto refer to an implementation of a hardware compo-
cost reasons, there has been a resurgence of active storagent in thesimulatorand the terninstanceto mean a phys-
research starting from the late nineties [1, 16, 11]. Achary ical entity that issimulated
et al. [1] and Riedel et al. [16] investigated using the pro- The basic building block in MIDAS is the Processing
cessor inside vanilla disk drives to exploit DLP. Keeton et Element (PE) model. The PE model consists of a proces-
al. [11], on the other hand, proposed replacing a traditiona sor, which is capable of running ad-hoc code, interacting
disk array with a storage server. The closest that these prio with a disk drive. The processor and disk models are glued
work came to investigating architecture alternatives is to together via a layer called tH&pace ManagerThe start-
evaluate the impact of different disk processor speeds oning points for building MIDAS are Simplescalar [4] and
performance [1, 25, 13]. Disksim [6], which simulate the processor and disk respec-

Another approach to storage-side computation is to usetively. Simplescalar is an execution-driven simulatorttha
“Semantically Smart” disk drives [18], where the disk allows one to study a wide variety of processor and cache
processor runs code that is application-aware and proacorganizations. Disksim is an event-driven simulator and
tively optimizes the storage system. Both the active and has detailed parameterized models for disk drives, storage
semantically-smart techniques use the same underlyingcaches, and interconnects.
technique of running general-purpose computation on the Using the PE as the basic building block, we can com-
disk processor. Their primary differences lie in how the pose simulation models for higher-level system organiza-
processing capabilities are used (offloading an applicatio tions, such as, disk arrays and even a host system inter-
vs. running a storage-side optimizer). Since our focus in acting with the 1/0O path. An active disk is simulated by
this paper is on the design of the underlying hardware, we executing code on the PE processor (which corresponds to
do not make an explicit distinction between these two tech-the DPU) and interacting with its corresponding PE disk,
nigues to optimize system performance. via the Space Manager. An “array of active disks” consists

Prior evaluation methodologies in the area of active stor- of multiple PE instances, one of which serves as the array
age have used real system emulation [16] and software-controller. The array controller PE instance does not use
based simulation [1, 25, 13]. The emulation approach, al-its own disk model; it uses the MIDAS API to communi-
though useful for designing active disk algorithms, does cate with other PEs. Likewise, we can disable the processor
not provide the flexibility of exploring various hardware al model in a PE to simulate a vanilla disk drive that does not
ternatives. ADSim [1] is a simulator that uses a simplis- perform any local computation. MIDAS simulates and co-
tic model of the storage system and a very coarse graineddrdinates the execution of code across multiple PE insgance
model of the processor. In this simulator, a trace is col- via a Checkpointing Mechanism. An “active storage sys-
lected from a real system and is fed into ADSim to repre- tem” consists of multiple active disks or arrays communi-
sent the execution of the processor. The effect of varying cating with a host machine. The host PE instance, like the
the disk processor clock frequency is simulated by scalingarray controller, uses the MIDAS API for its communica-
the timestamps of this input trace. DBSim [13] is another tion. The actual data transfers between all these hardware
simulator that was specifically designed to simulate DBMS components is simulated by the Network Model. This hier-
operations and its design is similar to ADSim. In this paper, archical design is shown in Figure 1. We now describe how

Data/Computation
Request

Simulation

Data/Computation Latency Application Result
Request
Array
Latency
Computation Latency
PE Model SimpleScalar Data Access
Latency Latency
Computation Latency ga‘a’ C"["‘p”‘a""" SimpleScalar
eques

| Interconnection Network |
Latency

Data/Computation
Request
Disksim @
v PE Model

(Active/Vanilla Disk)

Data/Computation
Request

Latency

Data Access

Latency

— |

Storage System

Data Blocks
Access

(a) Processor Element Model (b) Array of Active Disks (c) metStorage System

Figure 1. Overall Design of MIDAS.

each of these parts is implemented. MIDAS handles these tasks via tBpace Manager

3.1 Processing Element (PE) Model 3.2 Space Manager

The PE model forms the core of MIDAS. In general, a gjmplescalar does not simulate the communication be-

PE instance consists of a processor that is interfaced withyeen the processor and the memory hierarchy that lies be-
a local disk drive. Translation of memory addresses (usedyond the L1 and L2 caches. Disksim. on the other hand

by the processor model) to physical disk blocks (used by yrqyiges detailed timing information about disk accesses
the disk model) is handled by the Space Manager. Fromsq 4 given 1/0 request but does not simulate the hardware
an implementation viewpoint, we use the Simplescalar |oyers apove the storage system. Due to this disconnect be-
si mout or der simulator as our processor model, which yyeen the simulators, neither of them provide any form of
we extend to simulate a finite-size main memory. This main gjmy|ation for system calls, file operations, and swap space
memory serves as the on-board disk cache, an array conmanagement. The Space Manager is responsible for provid-

troller cache, or the main memory of the host system, de-jng the basic functionality for allowing the processor and
pending upon how a specific PE instance is configured for §isks models to be integrated.

simulation. For simulating the PE disk, we use the Disksim Note that the Space Manager is not intended to simu-

disk drive timing model. This di?" drive model Captures |oie an operating system. Instead, the Space Manager is
thedm?c?anlclalll toverhegds %f a d'ﬁk acg[:es_,st_(e.g., fﬂe]ek UMfeant to facilitate integrating the processor and disk mod-
gr! r%gll\jl)nadiihency) gse f%r.”f(aracteristics, sudne@s, - g\ with sufficient detail so that one could conduct architec
”_ﬁ] andthe nugllerto f's ZOf?tehS-th disk model ttural/microarchitectural exploration of active storages-s
€ processor model Inteértaces with e diSk model alyo g However, compared to evaluation infrastructured use

three points, namely, instruction cache misses, data cachg, o active storage research (described in Sectioh2), t
MISSES, a_nd system calls. At anytime during the execution|q, e of simulation detail provided by MIDAS is signifi-
of an application, if the processor needs to access datsthat cantly higher

not resident in its memory hierarchy, a disk access is made.
This access is simulated by the processor model generat-

ing an I/O request to the disk model. The disk model uses32 1 Smulating File Accesses

information about the current state of the disk (e.g., loca-

tion of the disk arm) and the 1/O request, to determine the The Space Manager models a simple FAT-like [15] file sys-
time for the disk access and returns this latency to the pro-tem. This file system is exercised at the points where the
cessor model. This procedure is illustrated in Figure 1(a). processor and disk model interact, namely, during cache
This latency is then applied to the instruction that gener- misses and system calls. We model the basic space man-
ated the 1/0O request, thereby delaying its completion time. agement tasks of data layout management and disk block
Care is taken to ensure that future instructions that dependallocation. When the file system is initialized by the Space
on the delayed instruction realize a penalty and indepen-Manager, we layout the file data on disk using a user-
dent instructions do not, subject to any structural haziards specified configuration file. The configuration information
the processor pipeline. Interfacing the processor and stor consists of a list of files that are used by the simulated appli
age models requires simulating file accesses and swappingeation, the simulated disks on which they are to be stored,

and the specific layout policy to be used by the Space Man-instance, which contains the full PE state. When the sim-
ager. These layout policies vary from contiguous alloca- ulation is in progress, for each PE instance, we restore its
tion of the blocks of a file on disk, to those that allow files checkpoint from its previous cycle, simulate a single cycle
to be fragmented. When a processor makes a request foon that PE, record its newly generated state, and then move
file data, the Space Manager translates the high-level fileonto the next PE instance.

requests into logical disk block addresses, which are then

presented to the disk model. The disk model convertsthese3.4 Network Model

logical block requests into physical disk addresses, sbnsi
ing of cylinder, surface, and sector numbers.

We implement disk block allocation as a bidirectional
scheme that is a hybrid of the First-Fit and Best-Fit poficie
[17]. The block allocation scheme starts searching from the
last block associated with the file on disk along two direc-

tions, going closer to the center of the platter and going far o rast of MIDAS. This is primarily done so that we can

ther from it, and gives preference to the free block which is jncqrporate a variety of interconnection network topoagi
on an outer track (since the outer tracks experience higher,

data rat and characteristics without having to modify other parts of
alara es). the simulator.
Simplescalar does not provide detailed simulation of sys-

. The primary input parameter to the Network Model is
tem calls. MIDAS captures the /O behavior of system o panqwidth. The Network Model is invoked either ex-
calls in detail. The Space Manager simulates the follow-

_ licitly, using the MIDAS API, or implicitly through system

Ing UNIX-style system callsopen, cl ose, seek, r ead, (F:Jalls ¥rom tr?e host or array controﬁers '[};lat negd tg read or
write, andcreat. write data that may reside on remote PE instances. In either
case, there are a set of basic operations required to senulat
3.2.2 Simulating Swapping traffic over the network. The PE that wishes to access the

network invokes a function calledet wor kI at ency,

Simplescalqr dges not bound the size c.)f the simulaf[ed MaiNyhich takes the following parameters: destination PE iden-
memory. This simulation methodology is notwell suited for ifier source PE identifier, and the size of the data to be

simulation of active storage systems in which applications -5 sterred. The identifiers for the various PEs are asdigne
process data that might not fit within the main memory of 5 e beginning of the simulation. Using this data and ad-
the processing devices involved in the computation. Tis is yjtiona| information about the current state of the network
especially true for active disks, which are highly memory ot \wor k | at ency calculates the time required to trans-

constrained. , fer a packet containing the data from the source to the desti-
In MIDAS, whenever code or data resident on a PE can- ation. The implementation of theet wor k | at ency

not completely fit within its own main memory, the Space g,¢tion depends on the specific network model that is
Manager ha”d'?s thelr swap to disk and t.helr subsequenbmgged into MIDAS. The following discussion focuses on
possible reloading into memory. For PE instances simu- o qefault network model that is implemented in MIDAS.
lated as active disks, their local disk serves as their swapyy plan to create a library of simulation models for more
space. To handle PE instances that do not have a local diSksophisticated networks and protocols in the future.
\r/]ve can ldes:gg_atkeds_wap areas onbother PE instances that |, the default network model, the communication time is
ave a local disk drive. Mappings between a PE instance e jated assuming that the network employs Frequency
and its corresponding swap area are specified via a configupyision Multiplexing (FDM) to apportion the network
ration file. These mappings are used by the Space Managefangwidth among the various devices. Each PE instance is

MIDAS simulates the communication between various
PE instances via the Network Model. The possible commu-
nication paths simulated by the Network Model are shown
in Figure 2(a). The Network Model is implemented as a
pluggable module and exports a well-defined interface to

to simulate swapping. assumed to be connected to a single full-duplex link, whose
L . bandwidth is equal to the total network bandwidth divided
3.3 Checkpointing Mechanism by the number of PE instances. The network model cap-

tures contention and queuing at each of the links. If there
Since MIDAS simulates multiple PE instances, the state are multiple requests pending for a particular PE instance,
of the processor structures (both architected and microarthe requests are buffered on behalf of the destination PE
chitected) and the contents of the entire storage hierarchyand are serviced in FCFS order. If a PE instance is un-
of each PE instance needs to be tracked on a per-cycle baable to transmit data due to insufficient bandwidth on its
sis. In addition to the processor and memory states, statdocal pipe, the request is buffered within a queue on behalf
information pertaining to the disk model (e.g., the exaet lo of the sender. Since a single network packet is generated
cation of the disk arm) needs to be tracked as well. All this for an entire buffer worth of data, each pending request has
state information is tracked using a checkpointing mecha-to wait, in FCFS order, for sufficient bandwidth on its lo-
nism. From the implementation viewpoint, the checkpoint- cal pipe before it can attempt transmission. The network
ing mechanism allows an arbitrary number of PE instancesmodel uses information about the residual bandwidth of the
to be simulated using a single PE model. This is achievedsender’s local pipe and the size of the network packet, to
by maintaining an array of data structures, one for each PEcalculate the total transmission time. To accommodate cir-

J000

Disk

Array Controller
w‘

PE Requesting PE Performing
Computation Computation

Time
AS_DATA_READY

AS_COMPUTE_DONE

t

(a) Possible communication paths between simulated device (b) Inter-PE communication using the

MIDAS API.

Figure 2. MIDAS Network Model and API.

cumstances where there is heterogeneity in the link capacisearch, such as SPEC [22], are not representative work-
ties between certain PE instances, the network model allowdoads. We require applications that do significant amounts
the bandwidth of the links to be overridden, on alink by link of I/O as well as computation. Other desired application

basis, from the default FDM-based assignment.

3.5 MIDAS API

A key feature of active storage is the decomposi-
tion, orchestration, and mapping of computation to dif-
ferent processing sites on the I/O path. MIDAS pro-
vides an API to port parallel applications to the simula-

characteristics include data-parallelizability and hsglec-
tivity, which is a measure of the data reduction achieved as a
result of storage-side processing. Developing a reprasent
tive benchmark suite for active storage is an open research
problem, which we do not attempt to tackle in this paper.
Instead, we choose workloads that have been used in prior
active storage research [1, 16]. (The workloads are com-
piled for the Simplescalar PISA ISA).

tor. These API functions resemble Remote Procedure Calls. Image Edge Detection: The objective of this work-

There are three API functionsAS_COVPUTE_REQUEST,

AS_DATA READY, andAS_COVPUTE_DONE. The usage of

these functions is shown in Figure 2(b).
AS_COVPUTE_REQUEST is used to request a particular

computation to be performed by a remote device. For ex-

load is to detect the facial features of subjects (which
are edges) in each image. The edge detection is per-
formed using the Smallest Univalve Segment Assimi-
lating Nucleus (SUSAN) algorithm [20]. Our dataset
consists of a set of images from the MIT CBCL Face

ample, the host can request all active disks in the system Recognition Database [14]. In the nonactive storage

to scan through their local data. This function takes, as
input, the destination PE identifier and the arguments for
the remote procedure. The API call invokes the Network
Model to simulate the latency for transmitting the request

implementation of this workload, the host requests an

image from the storage system, performs edge detec-
tion, and then requests the next image. Since the host
requests one image at a time and the image sizes in the

to the destination PE. The remote PE instance then invokes gatabase are relatively small (around 10 KB per im-
the appropriate procedure on its local data. Processed data age), we do not stripe the disk blocks within individual

is returned to the requester via tAS_DATA_READY API

files across multiple disks. However, we do distribute

call. Each remote PE instance might send a stream of pro- the contents of the database over multiple disks. In

cessed data back to the original requester, which is aathieve

through multiple invocations of th&S_DATA_READY func-

tion. Each remote computing device indicates the end of its

data stream via thaS_COVPUTE_DONE API call.

4 Workloads

A key challenge in evaluating active storage is that tradi-
tional benchmark suites used in computer architecture re-

the active storage version of this procedure, each DPU
performs the computation on its local set ofimages and
streams the edges back to the host. The host itself does
not perform any computation on the images.

e Nearest Neighbor Search: This workload imple-
ments a commonly used search procedure. This pro-
cedure works as follows: given a search criteria and
non-negative intege, the nearest neighbor search re-
turns thek database records that match or come clos-

est to matching the criteria. We use a database Image Edge Detecton
. Validation of Single Disk Systems
the National Oceanic and Atmospheric Administre

(NOAA) National Hurricane/Tropical Prediction Ci 3
ter as our dataset [10]. This database contains inf s
tion about tropical cyclones in the North Atlantic fr 25

the years 1851-2005, with storm progressions rect
at six-hour intervals. Each record in this databas:
several fields, including, the date and time of the st 15 B

the latitude and longitude of the storm, etc. F !

Time (sec.)

given (latitude,longitude) pair, we compute thé&op- 0s —
ical storms that occurred closest to the given co o
nate. The search procedure scans through the e commn e e

database, calculating the Euclidean distance be
the search coordinates and the (latitude,longitude : . .
of each stored record, maintaining a list of thelos F|gure.3. Exec_utlo.n time of the Image Edge
est matches. We resort to a full scan of the databa Detection application on real systems and
each query, since scanning has been shown to be effi- their simulated counterparts.

cient for such multi-attribute searches [16]. The non-

active storage implementation of this workload reads

in the entire database from disk, performs the search,

maintaining thek closest matches. Since the entire within 1 second at the 95% confidence level. We then com-

database needs to be scanned to compute the query r yared the results obtained from these runs to the simulated
sult, we assume that we can transfer data to the hos

from the multiole disks. in parallel. The active storace esult reported by MIDAS. The results from this validation
im Iementatior:1 erfor}ns Ii)he seérch locally on eagch are given in Figure 3. For each machine, shown on the x-

np P y axis, the pair of bars give the execution time of the workload
disk and returns it& closest matches to the host. The

host then calculates thieclosest matches from this re- °" the simulated and real system respectively. The standard
. error (in seconds) for the real system runs are shown above
duced data set. In our experiments, weksel.

the corresponding bars.

. . As we can see from the Figure, the execution time on
5 Validation the real machines and their simulated counterparts are very
close. The maximum difference between the two is 8.9%,
which is reported for the desktop machine. The timing num-

tecture simulator. We evaluated the accuracy of the simula-P€rs obtained from the real system runs are slightly higher
tor against real hardware. Although it is challenging to-val than those reported by MIDAS primarily due to the oper-
date the simulator against a real active storage systeme(sin ing System, whose execution overheads are not simulated
programmable disks and controllers are not available3, iti N MIDAS. Nevertheless,_the differences are small and MI-
possible to validate against existing systems. DAS captures the behavior of real systems accurately.
We ran the Image Edge Detection workload on three dif-
ferent systems: a high-end laptop, a slightly old desktop
?achine,.and a high-enq server. This workload was choserB Experimental Setup
ecause it performs a significant amount of both computa-
tion and I/0O and can therefore exercise all parts of the sim-
ulator. The laptop had a 1.83 GHz Intel Pentium-M proces-
sor, 1 GB of main memory, and a 80 GB 5400 RPM SATA The parameters used in the simulations are given in Ta-
disk drive. The desktop was composed of a 350 MHz Pen-ble 1. We simulate the host machine as having an 1.6 GHz
tium 1l processor, 384 MB of main memory, and a 40 GB 8-wide issue processor, with a 32 KB L1 and 64 KB L1
7200 RPM IDE disk drive. The server had a 2.0 GHz AMD d-cache and i-cache respectively (both 2-way set associa-
Opteron processor, 2 GB of main memory, and a 160 GB tive), a 4-way set-associative 512 KB unified L2 cache, and
7200 RPM SATA disk drive. Each of these systems ran the 512 MB of main memory. The DPU is modeled to resem-
Linux operating system, with the Ext3 file system. ble the ARM-based Intel XScale-based PXA255 processor
We configured MIDAS to model the hardware of these [9]. Modern SCSI disk drives use disk processors that are
three machines as closely as we could. We conducted insimilar to the PXA255 [2] and have 8-32 MB of DRAM for
dependent runs on each of the real machines, rebooting théheir disk cache. Since the PXA255 processor is available in
system between successive runs to ensure that caching ethree different clock frequencies (200, 300, and 400 MHz),
fects do not skew our measurements. We used the confiwe use these DPU speeds in our experiments. We choose
dence interval method to determine the number of indepen-the bandwidth of our simulated interconnection network to
dent runs required to get the execution time to be accuratebe 533 MB/s, which is similar to PCI Express.

Validation is an important step in the design of any archi-

Host Processor Parameters Disk Processor Parameters

Processor Clock-Frequency 1.6 GHz 200,300,400 MHz
Fetch/Decode/lssue/Commit Widt| 8 1
Fetch-Queue Size 8 1
Branch-Predictor Type Bimodal Bimodal
Table-size of 2K entries Table-size of 128 entries
RAS Size 64 8
BTB Size 2K-entry 2-way 128-entry direct-mapped
Branch-Misprediction Latency 7 cycles 4 cycles
RUU Size 128 16
LSQ Size 64 8
Integer ALUs 4 (1-cycle latency) 1 (1-cycle latency)
Integer Multipliers/Dividers 2 (3,20) 1(3,20)
FP ALUs 22 1(2)
FP Mult./Div./Sqrt. 1(4,12,24) 1(4,12,24)
L1 Cache Ports 2 2
L1 D-Cache 32KB, 2-way with 32B line-size (2) 32KB, 32-way with 32B line-size (2)
L1 I-Cache 64KB, 2-way with 32B line-size (2) 32KB, 32-way with 32B line-size (2)
L2 Unified Cache 512 KB, 4-way with 64B line-size (12 32 KB, 32-way with 32B line-size (12
Main Memory Size 512 MB 32 MB
TLB Miss-Latency 30 cycles 20 cycles
Main Memory Latency 64 cycles 64 cycles
- Disk Drlye Parameters Interconnection Network Parameters
Disk Capacity 9.29 GB Total Bandwidth 533 MB/s
Rotational Speed || 10,000 RPM — -
Average Seek Time 4.48 ms Tran_sm|SS|0n+T|me
- - of Flight Overhead 0.18 ms
Platter Diameter 3.3inches |
Message Header Siz§ 1B
Platters 1

Table 1. Configuration parameters of the host, DPU (default v alues), the disk drive (data transfer
system), and the interconnection network. Latencies of ALU s/caches are given in parenthesis. All
ALU operations are pipelined except division and square-ro ot.

7 Using MIDAS to Explore Active Storage the corresponding baseline configuration, which does not
Architectures use any storage-side computation. In all the experiments,
we configure the baseline system to use the same number of

disks, data distribution, and disk block layout as theiivact
We now present three examples of how MIDAS can be storage counterparts.

used to explore architectural tradeoffs in active storgge s
tems. First, we study the effect of varying the DPU clock
frequency on the performance, assuming all I/O to be se-
guential. This first case study focuses solely on the precess
ing aspects of active storage. In the second case study, we
factor in the effects of the electro-mechanical parts of the In the first set of experiments, we evaluate the impact of
disk drive by introducing random 1/O. The final case study DPU clock frequency on the performance of active storage.
takes full advantage of the microachitectural simulatian ¢ We vary the DPU clock frequency from 200 MHz to 400
pabilities of MIDAS to evaluate the impact of varying the MHz and consider storage systems with 2, 4, and 8 disks re-
microarchitecture of DPUs. Please note that these exam-spectively. We assume that all data is accessed sequgntiall
ples are not intended to comprehensively explore the desigrand therefore disk seeks and head switches are minimal. All
space of active storage systems, nor meant to suggest optithe disks send out a stream of data, either to their resgectiv
mizing a particular hardware component. Instead, they areDPUs (in the case of active storage), or to the host system
intended to demonstrate the utility of the MIDAS simulator. via the network (for the baseline). The results of this ex-
We have conducted a more detailed evaluation of the de-periment are shown in Figure 4. The x-axis of each graph
sign space of active storage architectures using additionacorresponds to a DPU clock frequency and the y-axis gives
benchmarks. The interested reader is referred to [21] forthe speedup. Each of the curves correspond to a storage
the details of this study. system with the given number of disks.

The primary metric that we use sgpeedupwhich is cal- Looking at the trends across both the workloads, we ob-
culated as the ratio between the total execution time of anserve that as we increase the number of disks, from 2 to
application on a given active storage configurationtothato 8, the performance of the active storage systems improve.

7.1 Usage Example 1: Studying the Im-
pact of DPU Clock Frequency

Image Edge Detection fer of data from the disks, the host gets a large amount of

Normalized Speedup of Active Storage

Sequential Data Layout data from the storage system at a high rate. The Nearest
° Neighbor Search also uses a significant amount of floating-
o / point arithmetic, to compute the Euclidean distance of (lat
e itude,longitude) pairs, which are represented as real num-
1 / bers. However, the floating-point execution pipeline of the
o host processor is narrower than the integer pipeline. The
§ / T large data footprint combined with fewer floating point pro-
o - — cessing resources impose a greater burden on the host sys-
o " tem. However, as we increase the number of DPUs, we

get both higher floating-point parallelism as well as data-

oPy Freersy () level parallelism. Due to the large data footprint, exphajt
(@) DLP has a more significant impact on the performance of
Nearest Neighbor Search the Nearest Neighbor Search application. These factors end
e edbomisl baa Loyt up favoring the active storage approach for this workload.
” _— 7.2 Usage Example 2: Studying the Im-
- — pact of Random I/O
R
// e Having seen the performance of active storage under se-
e quential /0, we now factor in the effects of disk seeks and
ot — study the behavior under random I/O. We simulate such disk
o I/O behavior by choosing the starting block address of each
’ data unit stored on disk to be at a random location. For
e the Image Edge Detection application, each image corre-
(b) sponds to an individual data unit. For the Nearest Neighbor
Search workload, a set of consecutive database records that
Figure 4. Impact of DPU clock frequency. fit within a 512B disk block constitutes a data unit. We as-

sume that all the disk blocks within a data unit are stored

sequentially. Care is taken to ensure that no two data units
This is because, with an increasing number of active disks,have overlapping block addresses. The results from this ex-
the application can exploit more DLP. As expected, increas- periment are shown in Figure 5.
ing the DPU clock frequency benefits performance as well. With the introduction of random 1/0, we now see a trend
However, between the two workloads, we see contrastingreversal between the two applications. For the Image Edge
behaviors. For the Image Edge Detection application, evenDetection application, even the 4-disk active storagessyst
the highest performance configuration (8-disk system with starts providing a speedup over the baseline and the 8-DPU
400 MHz DPUs) is unable to do better than the baseline ap-400 MHz configuration provides more than 2X speedup.
proach of doing all the computation at the host. On the otherOn the other hand, the Nearest Neighbor Search workload
hand, the Nearest Neighbor Search application enjoys consuffers severe performance degradation. Neither the use of
sistently higher performance than Image Edge Detection formore DPUs nor higher DPU clock frequencies have appre-
the same number disks, and the 8-disk active storage coneiable impact on the speedup of this application. We shall
figuration outperforms the baseline even with a 200 MHz now explain the reason for these trends.

DPU. We now explain why this happens. For the Image Edge Detection application, the lack of
The Image Edge Detection workload fetches one imageparallel data transfers from disk has a detrimental impact o

from disk, processes it, and then fetches the next image file baseline performance. This is because, one of the biggest
Therefore, in the baseline system, the host processesdata ibenefits of a parallel 1/O system is the ability to hide the
relatively small chunks. Moreover, the application code is latency of seeks. In a parallel 1/0 system, we can allow
predominantly composed of integer instructions, since thedata to be transferred from some disks while others might
pixels of an image are encoded as integers. The host came seeking. In the baseline case, where code is executed
handle this code efficiently given its relatively wide irkeg sequentially, a physical seek operation would lead to a dis-
execution pipeline and its high clock frequency. Although ruption in the I/O stream, during which the host processor
the active storage configurations can process data in paris stalled waiting for the data to arrive. On the other hand,
allel and also have the added benefit of parallel I/O trans-in an active storage system, even when one DPU is stalled
fers, the small data footprint combined with the high com- due to a seek, the other DPUs can still process their local
putational power of the host favors the baseline approach.data and hence provide latency hiding. This is an interest-
On the other hand, for the Nearest Neighbor Search appli-ing scenario where, in spite of the host not explicitly takin
cation, the host scans the entire database to compute thadvantage of the parallelism of the I/O system, the active
query result. With sequential 1/0 and the parallel trans- storage system implicitly taps into thitata-transfemparal-

ol g0 Dtecton, widths. We assume that the data is accessed sequentially (as
Random Data Layout done in Section 7.1). The results from this experiment are

s shown in Figure 6 for an 8-DPU active storage system. (We

25 conducted this experiment for the other storage syster size

/ as well and found the trends to be similar). For each graph

in Figure 6, the leftmost point on the x-axis corresponds

: to the non-superscalar DPU organization that we used in
S /./ the previous experiments. The y-axis indicates the speedup
over the 8-disk (nonactive) baseline system. Each of the

Normalized Speedup
-

S\
05
P .
curves corresponds to a particular DPU clock frequency.
0
200 300 400
DPU Frequency (mhz)
Image Edge Detection
Effect of Processor Width - 8 Disk Active Storage
(a) Sequential Data Layout
25
Nearest Neighbor Search
Normalized Speedup of Active Storage
Random Data Layout) P
029
‘§ 15 (—4—200 Mhz
0.28 / & —e—300 Mhz
H —e—2400 Mhz
H s /
& =42 Disk:
S 02 / =4 Disk: 05
5 —=—3 Disk:
3
S 025 /
0
1way 2way 4way
o2 Processor width

0.23
200 300 400 (a)

DPU Frequency (mhz)

Nearest Neighbor Search
Effect of Processor Width - 8 Disk Active Storage
(b) Sequential Data Layout

Figure 5. Impact of Random 1/O.

=200 Mhz
——300 Mhz
|—=—400 Mhz

!

lelism. In the baseline case, we would expect to tap into
the 1/O parallelism from the host side of the system. For
the Nearest Neighbor Search application, the parallel 1/0
system is available even for the baseline system. However,
due to random I/O, the throughput of the storage system is 0
lower than with sequential data access. As a result of this, ’ Processor i
the host receives the contents of the database at a lower data (b)
rate. Therefore, unlike with sequential 1/O, the host gets
data in smaller fragments, which it can process more effi-
ciently. This tilts the balance towards the baseline.

Normalized Speedup

Figure 6. Impact of using superscalar proces-
sors for the DPUs.

7.3 Usage Example 3: Studying the Im-

pact of Superscalar DPU Organiza- This experiment reveals very interesting trends. First,
tions we observe that the wider-issue superscalar DPUs improve
the performance of both applications. For the Image Edge
One of the main advantages of MIDAS is that we can Detection workload, going in for even a 2-way superscalar
study microarchitectural tradeoffs in active storageeyst DPU, with 300 or 400 MHz clock frequencies, now pro-
design at a relatively fine granularity. Many of these trade- vides a speedup over the baseline. The wider integer execu-
offs are very challenging to study using emulation [16, 8] tion pipeline at each of the DPUs allows a greater amount
or the simplistic simulation techniques [1, 13] used in prio of ILP to be exploited. This higher processing parallelism
work. We now consider one such microarchitectural designon the storage side of the system now has a more domi-
parameter, namely, the width of the DPU pipeline. We ex- nant effect on performance than the higher clock frequency
plore how exploiting Instruction Level Parallelism (ILF) a of the host, thereby tilting the balance towards active-stor
the DPUs could affect the performance of an active storageage system. For the Nearest Neighbor Search workload,
system. We consider 2-way and 4-way out-of-order super-the superscalar DPUs boost performance as well, although
scalar DPU microarchitectures. For each superscalar DPUhe benefits are less pronounced than for Image Edge De-
configuration, we increase the processor resources, frontection. Although the superscalar DPUs benefit the inte-
those given in Table 1, to accommodate the higher pipelineger instructions in the application, the width of the flogtin

point pipeline increases only moderately. The number of
floating-point adders and multiplier/divider units for the
way and 4-way DPUs are (1,1) and (2,2) respectively. The
corresponding integer pipelines have (2,2) and (4,4) cfghe
functional units for the 2-way and 4-way configurations re-
spectively.

Within the speedup profiles for each of the workloads,
we observe interesting tradeoffs between clock frequency
and ILP. For the Image Edge Detection workload, we ob-
serve that a superscalar DPU that runs at 200 MHz is able
to out-perform single-issue DPUs that run at a higher clock
frequency (the 2-way and 4-way organizations provide a
greater speedup than the 300 MHz 1-way and 400 MHz 1-
way configurations respectively). In fact, the 4-way 200
MHz DPU provides slightly better performance than even
the 2-way 300 MHz counterpart. Similar tradeoffs can be
observed for the Nearest Neighbor Search workload as well,
although the differences are less pronounced.

This case study indicates that there is indeed scope
for exploring DPU organizations in more detail. MIDAS
provides the necessary capabilities for conducting such
architecture-oriented research on active storage.

(5]
(6]

(7]

(8]

El
[10]

[11]

[12]
(23]

8 Conclusions
[14]

This paper has presented MIDAS, which is an accurate
execution-driven simulator for studying the architectofe
active storage systems. We have described the design of
the simulator, providing details about the Processing Ele- [16]
ment and Network Models, the Space Manager, and the API
for writing parallel applications. Using two data intersiv
workloads, we have demonstrated how MIDAS can be used [;7]
to study various architecture tradeoffs in the processimy a
the data-transfer subsystems.

[15]

(18]

9 Acknowledgements

19

We thank Parthasarathy Ranganathan, Mustafa Uysal,[
and Kevin Skadron for their inputs. This research has been [20]
supported in part by NSF CAREER Award CCF-0643925,
NSF grants CNS-0551630, CNS-0627527, and gifts from

Intel, HP, and Google. [21]

References [22]

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Prograing (23]

Model, Algorithms and Evaluation. IRroceedings of the Interna-
tional Conference on Architectural Support for Programgnlran-
guages and Operating Systems (ASPL@®@3pes 81-91, October
1998.
[2] ARM Collaborates With Seagate For Hard Disc Drive Cohtiane
2002. ARM Press Release.
H. Boral and D. DeWitt. Database Machines: An Idea WhoiseeT
Has Passed? |IRroceedings of the International Workshop on
Database Machingpages 166—-187, September 1983.
D. Burger and T. Austin. The SimpleScalar Toolset, \ansB.0.
http://www.simplescalar.com.

[24]

[25]

(3]

(4]

10

EMC Centera.
http://www.emc.com/products/systems/centera.jsp.

G. Ganger, B. Worthington, and Y. Patt. The DiskSim
Simulation Environment Version 2.0 Reference Manual
http://www.ece.cmu.edu/ ganger/disksim/.

S. Gurumurthi, A. Sivasubramaniam, and V. NatarajarskiDrive
Roadmap from the Thermal Perspective: A Case for Dynamic-The
mal Management. IProceedings of the International Symposium
on Computer Architecture (ISCA)ages 38-49, June 2005.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyayanan,

G. Ganger, E. Riedel, and A. Ailamaki. Diamond: A Storagehirc
tecture for Early Discard in Interactive SearchPiroceedings of the
USENIX Conference on File and Storage Technonologies (FAST
April 2004.

Intel PXA 255 Processor.
http://www.intel.com/design/pca/prodbref/252780.htm

B. Jarvinen, C. Neumann, and M. Davis. A Tropical Cyedbata
Tape for the North Atlantic Basin, 1886-1983: Contents, itam
tions, and Uses. Technical Report NWS NHC 22, National Ocean
and Atmospheric Administration (NOAA), 1984.

K. Keeton, D. Patterson, and J. Hellerstein. The Castnfelligent
Disks (IDISKs).SIGMOD Record27(3):42-52, September 1998.
E. Kim and et al. Energy Optimization Techniques in @Gusnter-
connects. IrProceedings of the International Symposium on Low
Power Electronics and Desigpages 459-464, August 2003.

G. Memik, M. Kandemir, and A. Choudhary. Design and Eagibn
of Smart Disk Architecture for DSS Commercial Workloads.
Proceedings of the International Conference on Parall@d&ssing
(ICPP), pages 335-342, August 2000.

MIT Center for Biological and Computational LearninGBCL)
Face Recognition Database. http://cbcl.mit.edu/
software-datasets/heisele/facerecognition-datalftasie.

S. Mitchell. Inside the Windows 95 File Syste®@’'Reilly & Asso-
ciates, Inc. (ISBN: 1-56592-200-X), 1997.

E. Riedel, G. Gibson, and C. Faloutsos. Active Storage_ airge-
Scale Data Mining and Multimedia. Rroceedings of the Interna-
tional Conference on Very Large Data Bases (VLD&)ges 62—73,
August 1998.

A. Silberschatz, P. Galvin, and G. Gagr@perating Systems Con-
cepts - Sixth Edition John Wiley and Spns Inc. (ISBN: 0-471-
25060-0), 2003.

M. Sivathanu, V. Prabhakaran, F. Popovici, T. DenehyA#paci-
Dusseau, and R. Arpaci-Dusseau. Semantically-Smart Djsk S
tems. InProceedings of the Annual Conference on File and Storage
Technology (FASTMarch 2003.

In

] H. Smith. Delivering on the Promise of Business AnalytiTech-

nology Roundtable IV Talk, November 2005.

S. Smith and J. Brady. SUSAN - A New Approach to Low
Level Image Processingnternational Journal of Computer Vision
23(1):45-78, May 1997.

C. Smullen, S. Tarapore, S. Gurumurthi, P. Ranganattzam
M. Uysal. Active Storage Revisited: The Case for Power and Pe
formance Benefits for Unstructured Data Processing Apiiica.

In Proceedings of ACM Computing Frontiers (CR)ay 2008.

SPEC - Standard Performance Evaluation Corporation.
http://www.spec.org/.
The Netezza Performance Server System.

http://www.netezza.com/products/products.cfm.

The Office of Science Data-Management Challenge - Répam

the DOE Office of Science Data-Management Workshops, March-
May 2004. http://www.sc.doe.gov/ascr/Final-report-yizh.

M. Uysal, A. Acharya, and J. Saltz. Evaluation of Actiésks for
Decision Support Databases. Rroceedings of the International
Symposium on High-Performance Computer Architecture (ARPC
pages 337-348, January 2000.

