The Effect of Instruction Set Complexity on Program
Size and Memory Performance

Jack W. Davidson
Richard A. Vaughan

Computer Science Technical Report TR-87-12
June 18, 1987

The Effect of Instruction Set Complexity on Program
Size and Memory Performance*

JACK W. DAVIDSON
RICHARD A. VAUGHAN

University of Virginia

One potential disadvantage of 3 machine with a reduced instruction set is that object programs may be substantially
larger than the object programs for a machine with a richer, more compiex instruction set. The main reason is that a
small instruction set will require more instructions o implement the ssme function. In addition, the tendency of
RISC machines to use fixed length instructions with a few instruction farmats contributes 10 increased object pro-
gram size. It has been conjectured that the resulting larger programs could adversely affect memory performance
and bus traffic. In this paper we report the results of a set of experiments 10 isolste snd desermine the effect of in-
struction set complexity on cache memory performance and bus traffic. Three high-level language compilers were
construcied for machines with instruction sets of varying degrees of complexity. Using a set of benchmark pro-
grams, we evaluated the effect of instruction complexity had on program size. Five of the programs were seiected
and address traces of their execution were obtained for each machine. These traces were used 10 perform a set of
trace-driven simulations to study each machine’s cache and bus performance. We found that the miss ratio was
severely affected by the increase in program size due 1o the simplicity of the instroction set. Owr measurements of
two to three times the bus traffic of machines with complex instruction sets. While it sappears that the degradation in
miss ratio can be corrected simply by increasing the size of the cache, reducing the amount of bus traffic doe 0 in-
creased program size may be problematic.

1. INTRODUCTION

One of the primary goals of a computer architect is the design and construction of machines that support the
efficient execution of the programs that will run on them. A number of new architecture design principles have
evolved for guiding the design of machines to support the execution of high-level languages. The distinguishing
characteristic ofthemacbineamwdusingﬂmeprimiplesisﬂsereducednumbcrofobctaﬁonscomainedin
the instruction set. Consequently, these machines have been termed RISCs—reduced instruction set computers

{12]. Patterson [14] lists some of the RISC design principles:

1. FumﬁomShouMbekeptsimphmksstbereisaverygoodmtodoomawise.
2. Microinstructions should not be faster than simple instructions.
3. Moving software into microcode does not make it better.

*This work was supported in part by the National Science Foundation under Grant CCR -3611653

4. Simple decoding and pipelined execution are more important than program size.
S. Compiler technology should be used to simplify instructions rather than to generate complex instructions,
Both imental and commercial machines have been built using these principles. These machines have
several characteristics in common. Patterson {14] and Henneasy [8] identify these characteristics.

1. Operations are register-to-register, with only LOAD and STORE operations accessing memory.
2. The operations and addressing modes are reduced.

3. A fixed length instruction and & small variety of instruction formats.

4. RISC branches avoid pipeline penalties.

The simplicity of the instruction set provides for a number of implementation advantages that can substantially
enhance the performance of the machine. For example, the restriction that arithmetic and logical operations be
mﬁm—bmgimmymnﬁthnmhdpbeﬁmmmmm&mb&mmmﬁauet
execution. The reduced number of operations and addressing modes may make it possible % produce & hardwired
control unit. If the implementation is microprogrammed, silicon resources may be freed for the implementation of
~ other features to enhance performance. Possibilities incinded, on-chip instruction and data caches, instruction
buffers, and larger register sets. Finally, the use of fixed length instructions and a few formats permits simpler, fas-
ter instruction decoding.

A disadvantage of a RISC machine is that the memory requirements of programs may be substantially greater
than those of programs on a complex instruction set machine (CISC). The number of instructions to implement a
given function on a RISC machine will normally be much greater than t.he number required for a CISC machine. In
addition, CISC machines usually have densely encoded instructions and a variety of instruction formats that further
reduces the size of object programs. It has been conjectured that the larger size of object programs on RISC
machines may negatively affect memory performance [20].

Normally, comparisons between RISC machines and CISC machines are difficult because the architectures
differ in more ways than just the edinplexity of their instruction sets. To perform fair experiments and so that no
unseen architectural bias is introduced, we used a technique called architectural subsetting {14). Three virtual
machines with instruction sets of varying degrees of complexity were created and a high-level language compiler
was constructed for each machine. The compilers were constructed using a state-of-the-art antomatic code geneia-

tion system. For each machine, a set of benchma:k programs were compiled and the size of the resulting programs

were compared across machines. Five of these programs were then selected, and for each of the three machines, an
address trace of their execution was obtained. These adress traces were used to perform trace-driven simulations
of cache memories of various sizes. We used the trace-driven simulations to evaluate the effect instraction set com-

plexity had on cache memory performance and bus traffic.

This paper has the following crganization. mzmmmm@mmmemu
The programming language used and how the compilers were constructed are described in Section 3. The effects of
instruction set complexity on object program size and on memory memary performance are reported in Section 4.
Conclusions are presented in Section 5.

2. THREE INSTRUCTION SETS
Bmmddiﬁm&himphmmﬁmaﬁmﬁm,&mmgmdcm&ngmmmm
without bias compare architectures is difficult. For example, measuring the execution speed of a high-level
* language program on different architectures may not revesl anything about the quality of the respective architec-
tures. Differences in implementation, packaging, and software all affect the outcome of the measurements. This is
not to say that such comparisons are not useful. It is, after all, the speed of the system (hardware and software) that

counts. However, such measurements are often used erroneously as indicators of architectural quality.

To perform a set of experiments where such sources of bias are eliminated as much as possible, we used a tech-
nique called architectural subsetting (14]. In this technique, the instruction set of a virtual machine is created by
selectively choosing instructions and addressing modes from an existing machine. The resulting virtual machine is
a subset of the base architecture. For the experiments reported here, we created three subsets of the VAX architec-
ture. The richness of the VAX instruction set makes it ideal for architectural subsetting, The virtual machines
represented by these subsets had instructions sets of varying degrees of complexity. The three machines are called
MAXVAX, MIDVAX, and MINVAX. Because the machines are subsets of the same architecture and thus have
the same underlying implementation, differences in instruction formats and operand and addressing mode encodings
are eliminated. The major features of these machines are described in the following sections. Appendix A contains

a complete description of the instruction sets of all three machines.

2.1 MAXVAX

The MAXVAX isstruction set is the part of the full VAX instruction set necessary to support the compilation of
Y programa. Y {7] is & high-level programming language that is similar in many respects to C. Section 3 contains a
brief introduction o Y. The MAXVAX inciudes 16 addressing modes and most instructions can use any addressing
mode as both a source and destination. Both two- and and three-address forms of the arithmetic and logical opera-
tions are included. In addition, the instruction set contzins special forms of common operations. For example, the
instruction set includes increment and decrement operations, a clear operation, and special instructions for pushing
operands and addresses on the runtime stack. It also contains instructions that are designed for efficient implemen-

tation of switch statements and lfoops.

2.2 MIDVAX

In contrast 10 the MAXVAX instruction set, the MIDVAX instruction set contains only eight addressing modes.
The instruction set is reduced further by allowing only two-address forms of arithmetic and logical instructions.
While the source operand can be any of the MIDVAX addressing modes, the destination operand must be a register.
Al special case instructions such as increment, decrement, clear, as well as the special stack instructions and loop

2.3 MINVAX

The MINVAX instruction set was constructed so as to approximate the instruction set of a typical RISC
machine. Consequently, the MINVAX instruction set contains only four simple addressing modes. Al arithmetic
and logical operations are two-address instructions and are register-to-register. Memory is accessed through load

and store type instructions only.

3. THREE COMPILERS

Three compilers for the Y programming Engmge for the MAXVAX, MIDVAX, and MINVAX machines were
constructed. Y {7] is a structured, general-purpose programming language intended for use in systems programming
applications, such as those described in Software Tools [10]. Syntactically and semantically, Y is similar 0 C. It

supponts separate compilation, recursive procedures, structured control flow constructs, and expressions involving

scalars, and arrays of insegers, characters, and reals. From a code generation point of view, Y is equivalent to C or

Pascal.

The code generators for the Y compilers were constructed using PO, a retargetable peephole optimizer [4]. PO
is particularly well-suited to architectiral experimentation for several reasons. It is quickly and easily retargeted to
a new machine by supplying a description of the target machine’s instruction set, and it is able © exploit any of the
target machine’s special operations and addressing modes. Finally, PO pexforms a number of optimizations that one
would expect a production compiler to perform. We point out that because the code selector of the compiler is con-
structed automatically by supplying a new machine description, the quality of the code emitted by the compiler has
ldepmde;cem:usﬁnotﬂwimplummﬂmmcodegmaﬁqum A schematic of a retarget-
able compiler that uses PO is shown in Figure 1.

PO is made up of three distinct phases called Cacher, Combiner, and Assigner. Each phase operates on register
transfer lists (‘RTLs’) which describe an instruction's effect. For example, a PDP-11 instruction thet adds two
registers would be expressed in the RTL notation as:

r{2] = rf2] + r[3]; CC = £{2] + r(3] 2 0:
Any RTL is machine specific, but the form of the RTL. is machine independent.

While PO can be used as a general-purpose peephole optimizer, it can also be used to replace a conventional
code generator found in a traditional compiler. Compilers developed using PO in this way use two pervasive stra-
tegies that lead to the generation of excellent code. The first strategy is 0 have the front-end generates naive, but
correct code for an abstract machine. The code expander translates the abstract machine code into suaightforwafd
code for the target machine. The code is inefficient, but simple to produce. Both of these phases are concerned only
with producing semantically correct code. Efficiency is not an issue. The second strategy is w perform all optimi-
zations on object code. The guiding principle is more complete and thorough optimization is possible by operating
on object code where knowledge of the target machine can be used. The above two strategies are similar to the

approach taken in the PL 8 compiler for the IBM 801 [1,15].

(source languages)
c Y Ada
front front front
end end end
1L
code code code
expanders expanders expanders
vax,pdp-11 68000 v pdp- 11 68000 vax pdp-11,68000

Vax-11
PDP-11 : Machine | | Combiner
0 A — Description '

assembly language
for target machine

Figure 1. Schematic of PO Compiler Development System.

Briefly, Cacher performs common subexpression elimination, allocates registers, performs a limited type of flow
analysis, and identifies dead variables. Combiner advances over Cacher’s output seeking adjacent instructions that

can be replaced with singletons. Combiner also performs the following optimizations:

1. targeting [11,17],
2. evaluation order determination [18], and
3. instruction scheduling if the machine includes a pipeline [16].

VMWKWWMWWMWNRMDMBEMM.
Both Combiner and Assigner are retargeted by supplying a description of the target machine’s instruction set. Com-
biner uses the machine description (MD) to determine whether the combined effect of two instructions can be
achieved by a single instruction. The MD is also used by Assigner to convert RTLs to assembly language. Other
documents offer a more complete treatment of Cacher and Assigner {3], and PO {4,5).

‘The code emitted by compilers constructed using PO compares favorably to the code produced by other state-
of-the-art code generation systems [4,5]. Indeed, PO has been used to create C compilers for the AT&T 3BS and
the VAX, as well as a validated commercial implementation of Ads.

4. RESULTS

A set of ten Y programs were selected (0 serve as benchmarks for evainating the effect of instruction set com-
plexity on object program size. The programs range in complexity from a simple solution 10 the eight queen's prob-

lem 1o a 3600-line compiler. The ten benchmark programs were:
8g—a recursive solution to the eight queens problem,
find—searches for a regular expression in a file,
ypp—thie Y preprocessor,

y—the Y front end,

wi—computes the frequency of word use in a file,
xd—a text editor,

ar—a file archiver,

roff—a text formatter,

. spo-—a simple peephole optimizer, and

10. od—a file dump utility.

4.1 Object Code Size

R R i o

Table I shows the sizes of the object code for the ten programs on the MAXVAX, MIDVAX, and MINVAX
machines. The MINVAX machine required an average of 2.5 times more memory than the MAXVAX, while the
MIDVAX machine required an average of 1.54 times more memory. We also measured the average instruction size
for each machine. For the MAXVAX, MIDVAX, and MINVAX respectively, the average instruction size was 4.10
bytes, 3.71 bytes, and 3.61 bytes. Because MINVAXcMIDVAX cMAXVAX, the above numbers indicate the
compiler was able to take advantage of the additional instruction set complexity, We note that Emer reported an

average instruction size of 3.8 bytes for the complete VAX {6).

-7-

Table L Program Size (Bytes) and Ratio to MAXVAX.

There have been other studies that examined the effect of instruction set complexity on program size. In 1981, a
group of researchers at the University of California at Berkeley compared the memory requirements of the VAX
and RISC I [13]). For the eleven benchmark programs they used, they found that the RISC 1 programs required an
average of 50% more memory than the VAX. In 1985, a group of researchers at Camegie-Mellon compared the
code size of 16 programs on the VAX and RISC II {2]. For those benchmarks, they found that the VAX required oa

average 3.5 timeg less memory than RISC I,

The results reported here fall between these two extremes. We believe that the results presented provide a more
accuraie characterization of the effect instruction set complexity has on program size. Most repors have compared
different machines, and consequently do not serve to isolate the effect of instruction set complexity on program size.
For example, the Berkeley experiments compared the VAX, a machine with 16 general-purpose registers, to RISC I,
a machine with 32 registers. As was noted by the Carnegie-Mellon researchers, CISC machines can also benefit
from additional registers.

A second possible source of bias is caused the the code generation technology used to build the compilers for the
machines being compared. Many of the previous studies on program size used the Unix portable C compiler (PCC)
to generate code for the machines being compared. The code generator for this compiler is retargeted by hand and
as Johnson, the author of PCC, notes, retargeting parts of the comﬁiler require hard intellectual effort {9]. The task
of getting ;his compiler to produce “‘optimal”’ code for a machine with a large number of operations and many
addressing modes is obviously going to be harder than getting it to generate “‘optimal’® code for a machine with a
simple instruction set. Consequently, the quality of the emitted code depends, to a large extent, on the ingenuity and

perseverénce of the person retargeting the compiler. In contrast, the three compilers used for the experiments

“8-

described here were constracted using an sutomatic code generation technology. The compilers were retargeted by
supplying a description of the targes machine’s instruction sett. Consequently, differences that could be cansed by
mmmdummmmmmﬂ. In addition, this code generation system is
specifically designed to exploit any special instructions or addressing modes the target machine may have.

The Camegie-Mellon experiments, on the other hand, compared the size of 16 programs that were handcoded in
assembly langusge. While the current generation of optimizing compilers produce excellent code, for smail pro-
grams (like the benchmarks used), humans can still probably do a betier job of gencrating code. Conseguently, we
believe that their measurements of the memory requirements of the VAX are 100 optimistic.

4.2 Cache Performance

To investigate the effect of program size on cache performance, we used the technique of trace-driven simula-
tion [19], Five of the benchmark programs were selected and addréss traces of their execution were obtained for the
three machines. The truces were generated by modifying and instrumenting the UNIX debugger, adb, to record
every address referenced by the program. The cache simulator measured the miss ratio and bus traffic. The miss
ratio is the number of cache misses divided by the number of cache accesses. The bus traffic is the number of
memory requests issued.

The five programs selected were wf, Ypp, v, 8q, and xd. When compared to the MAXVAX, these programs
required an average of 1.55 times more memory on the MIDVAX, and 2.5 times more memory on the MINVAX.
The average size of these programs is similar to the average size of the complete set of benchmark programs. The
simulations used all five traces to simulate multiprogramming. Scheduling of which trace to use next was done on a
round-robin basis. A context switch was performed every 10,000 time units. A cache hit incremented the clock by
one time unit, a cache miss incremented the clock by 10 time units, The traces were well over 250,000 references in
length so the effects of cold start could be ignored.

In creating the three compilers a number of steps were taken to ensure that any differences in address traces
were due to complexity of the instruction sets and not other factors. The register allocation and assignment phases

of the three compilers were given the same number of registers to allocate (eight). In addition, because the

+Because of the strategy of producing naive code in the front end ad because because MINVAXCMIDVAXCMAXVAX, it was
possible to use the same front exid for all three compilers.

Wﬂmhawmmmm,mwwmﬂmitmmmmusﬂmtbeoﬂm:wo
machines. The normat VAX subroutine camugcouvenﬁonmquimthatamnedmmsavearﬂrwmmemgm-
ters it uses. This could mean that the MINVAX and MIDVAX would be penalized on subroutine calls. To be fair,
the three compilers generated code to save and restare on procedure entry and exit all allocable registers regardless
of usage. Finally, we instrumented the compilers to report when register spills occurred. The five programs used in
these experiments had no register spills,

For the trace-driven simulations, the caches had the following parameters: a) two-way set-gssociative, b) LRU
replacement, ¢) write-through and no write-allocate, and d) a line size of 16 bywes. The width of the data path
between the CPU and the cache is 16 bytes and between the cache and memory is 8 bytes. Throughout the simula-
tions described in this paper, the line size, the number of elements per set, and the replacement algorithm were held
constant. Only the cache capacity was varied. In addition, we included the simulation of a simple instruction buffer
(IB). The simulated IB issues requests to the cache when there is room for 4 bytes in the buffer. The simulation

does not proceed until these bytes are placed in the buffer.

4.2.1 Miss Ratio

Figure 2 contains a piot comparing the miss ratios of the three machines using the address traces of the five pro-
grams. As one would expect, the MAXVAX had lower miss ratios than either the MIDVAX or MINVAX. For
caches less than 32K bytes, the magnitude of the difference between the MAXVAX and the MINVAX, however, is
surprising. For cache capacities of up to 32K bytes, the MINVAX would require a cache that is four times the size
of the MAXVAX cache to obtain equivalent or better perfarmance in terms of miss ratio. At cache size of 64k
bytes or greater, the machines have essentially the same performance. One of the advantages often cited for a RISC
is that the simplified implementation of the control unit may free silicon resources for other uses. Based on the
results presented here, these resources may well be needed to compensate for higher miss ratios due to the increased

working set size.

4.3 Memory Bus Traffic

An important factor in the design of a computer system is the amount of memory bus traffic. The amount of bus

traffic affects the memory bandwidth requirements. Because a machine with a simple instruction set requires more

-10-

020
0.154

0.104

0.08 -
Miss 0.07/
Rato 0.06+
0.05 4

0.04 5
0.03,

0.02 5

-0.01

2 8 16 2 64
Cache Size (K bytes
Figure 2. Miss Ratio vs. Cache Size for MAXVAX, MIDVAX, and MINVAX machines.

Cache MAXVAX
| Capucity | Traffic _ Relative
1 174976 | 1.00
2 116038 | 100
4 73354 | 100
8 42902 | 100
16 25500 | 100
2 177150 | 100
64 13156 | 100
128 12130 | 100
| 256 11467 | 1.00

Table IL. Bus Traffic and Ratio to MAXVAX,

instructions to implement a given function, all other things being equal, we can expect such a machine o have
higher memory bandwidth requirements than a machine with a complex, tightly encoded instruction set. Table II
compares the memory bus traffic for the five benchmark programs running on the MAXVAX, MIDVAX, and MIN-
VAX machines with caches of various sizes. The MINVAX machine has 2.5 to 3.5 times more bus traffic than the
MIDVAX machine. Even for a cache size of 256k bytes, the MINVAX machine produces 1.85 times more bus

traffic than the MAXVAX machine.

-11-

5. DISCUSSION AND SUMMARY

mmmmnmwemwummmmpmdeﬁmmmm
" gram size and memory performance. By using subsets of the same machine %0 represent machines with instruction
sets of varying complexity, we eliminased machine differences that could have affected program size. The
machines had the same number of registers, they used the same calling sequence, and they used the same encodings
for instructions and addressing modes they had in common. In addition, we used & state-of-the-art code generation
system that is capeble of exploiting a complex machine’s instruction set and addressing modes. We expect that
futyre compilers will be constructed with similar, if not betier, code generation echnology.

With ail other factors constant, we found that simple instruction sets can resylt in programs that require two and
a haif times more memory than the same programs on a machine with a complex instruction set. Our evaluation of
mhmmmmmrammmmamqmmm&mm
Fortunately, this aspect of performance can be cosrected through the use of large caches. Finally we examined the
amount of bus traffic on the three machines. Even with a large caches (>64k), a machine with a simple instroction
set can expect to generate twice as much bus traffic as @ machine with a complex instruction set. Overcoming the
potential performance boitleneck caused by the increased bus traffic will require innovative high-performance

memory systems,

~12-

[

10.
1L
12,
13.
14,
15.

16.

17.
18,

19,

. REFERENCES

Ansiander, M. and Hopkine, M., An Overview of the PL.8 Compiler, Proceedings of the ACM SIGPLAN
Notices '82 Sympesimm on Compiler Construction, Boston, MA, June 1982, 22-31.

Colwell, R. P, I, C. Y. H., Jensen, E. D., Sprunt, . M. B. and Kollar, C. P., Computers, Complexity, and
Controversy, JEEE Compuier 18, 9 (Sepeeeaber 1985), 8-19.

Davidson, J. W. and Frascr, C. W., Register Allocation snd Exhaustive Peephole Optimization, Soffware—
Practice and Experience 14,9 (September 1984), 857-866. :

Davidson, J. W, and Fraser, C, W., Code Sclection through Object Code Optimization, Transactions on
Programming Languages and Systems 6, 4 (October 1984), 7-32.

Davidson, J. W., A Retargetable Instruction Reorganizer, Proceedings of the SIGPLAN Notices '86
Symposium on Compiler Construction, Palo Alo, CA, June 1986, 234-241.

Emer, J. S. and Clark, D. W, A Characterization of Processor Performance in the VAX-11/790, Proceedings
of the 11th Annual Symposium on Computer Architecture, Ann Arbor, June 1984, 301.310.

Hanson, D. R., The Y Programming Langusge, S/IGPLAN Notices 16, 2 (Febroury 1981), 59-68.

Hennessy, J. L., VLSI Processor Architecture, JEEE Transactions on Computers 33, 12 (December 1984),
1221-1246.

Johnson, S. C., A Tour Through the Portable C Compiler, Unix Programmer’s Manual, 7th Edition 2B,
(January 1979), .

Kernighan, B. W. and Plauger, P. J., Software Tools, Addison-Wesley, Reading, MA, 1976. ,
Leverewt, B. W., Cattell, R. G. G., Hobbs, S. O., Newcomer, J, M., Reiner, A. H., Schatz, B. R. and Wulf, W.
A., An Overview of the Production Quality Compiler-Compiler Project, CMU-CS-79-105, Carnegie-Mellon
University, Pittsburg, PA, February 1979.

Patterson, D. A. and Diwzel, D. R., The Case for the Reduced Instruction Set Computer, Computer
Architecture News 8, 6 (October 1980), 25-33.

Patterson, D. A. and Sequin, C. H., RISC I: A Reduced Instruction Set VLSI Computer, Proceedings of the
Eighth Annual Symposium on Computer Architecture, Minneapolis, MN, May 1981, 443457,

Patterson, D. A., Reduced Instroction Set Computers, Communications of the ACM 28, 1 (January 1985), 8-
21,

Radin, G., The 801 Minicomputer, Proceedings of the Symposium on Architectural Support for Programming
Languages and Operating Systems, Palo Alto, CA, March 1982, 3947,

Rymarczyk, J. W., Coding Guidelines for Pipelined Processors, Proceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systems, Palo Alio, CA, March 1982, 12-
19,

Schatz, B. R., Algorithms for Optimizing Transformations in a General Purpose Compiler: Propagation and
Renaming, RC 6232, IBM Thomas J. Watson Research Center , Yorktown Heights, NY, October 1976.
Sethi, R. and Ullman, J. D., The Generation of Optimal Code for Arithmetic Expressions, Journal of the ACM
17, 6 (October 1970), 715-728.

Smith, A, J., Cache Memories, Computing Surveys 14, 3 (September 1982), 473-530,

Tanenbanm, A. S., Implications of Structured Programming for Machine Architecture, Communications of the
ACM 21,3 (March 1978), 237-246.

-13.

7. APPENDIX A
7.1 MAXVAX instruction Set

Addressing Modes
Ew@:mwm
reglister (N} N
register deferred mir{Nl] {zN)
direct m(A) : A
displacement m{riN] + C) C(xNy
autolncrement m{z{N1++] (N} +
autodecrement mi=--r{N]] - {rN}
autcincrement deferred n{llr{N]++]] *{eN) +
displacemant deferred m{l{r{N] + C}} *C (=N}

immediate c sC

indexed displacement nir(X) << 8Z + C} C[xX)
indexed register deferred mir (X} << SZ + riN]} {zN) (X
indexed irmediate dilisplacement mir{X} << 5SZ + £iN] + C] CicN)y (£X)
indexed autoincrement mir{X} << §S& + £ [N)1++) {zMN) +{xX]
indexed autodecrement m(z{X} << 52 + --r(N]) - (2N} (=X}
indexed autoincrement deferred m{riXl << SZ + m(ciN]++1) * (N +[2X).
indexed deferred displacement mir(X] << 52 + m{riN] + C]}] *C{cN) {cX}] '
‘ Operations
test nz = DST 7 0; ot DSY
compare nz « DST ? SRC; cmp DAT,SRC
bit test nz = DST ¢ SRC ¢ 0; bit SRC, SRC
clear DST = 0; nz2 » O; clr DST
push long 1{r[14}++] = SRC; nz = SRC 7 0O; pushl DST
move DST = SRC: nz = SRC ? 0; mov SRC,DST
convert DST = eve(SRC); nz = evt (SRC) ? 0; cvt SRC,DST
move address DST = addr(SRC); nz = addr(SRC) 7 0; mova SRC,DsT
push address L{r{l4l++} = addr(SRC); nz = addr(SRC) ? 0; pusha SRC
increment DST =« DST + 1: nz = DST + 1 7 0; ine DST
decrement DST = DST - 1: nz = DST - 1 2 0; dec DST
addition DST = SRC1 + SRC2; nx = SRCI + SRC2 1t 0; add SRC2,SRC1,DST
subtraction DST = SRC! - SRC2; nz = SRCI -~ SRC2 1 O: sub SRC2, SRC1, DST
multiplication DST = SRC1 * SRC2;: nz = SRCI * SRC2 7 0; mizl SRCZ, SRC1, DST
division DST = SRCI / SRC2: nz «» SRCI / SRC2 © 0: div SRC2,SRC1,DST
move negated DST = -SRC; nz = -SRC 7 0; mneg SRC, DST
move complemented DST = “SRC: nz = “SRC 2 0; mcom SRC, DST
bit set DST = SRCI | SRC2; nz « SRC] | SRC2 7 0; bis SRCZ, SRC1,DST
bit clear DST = SRCl ¢ "SRC2; nz = SRCI ¢« "SRC2 7 0; bic SRCZ,3RC1,DST
shift DST = SRCI << SRC2: nz = SRCl << SRC2: ashl SRC2,5RC!,DST
excliusive or DST = SRCI ~ SRC2: nz = SRCl * SRC2; xor SRC2,SRCI,DST
Jump pe = LABEL; ibr LABEL
conditional jumps pe = ng REL 0 -> LABEL | pc; +REL LABEL
add compare and branch pe = DST + SRC <= SRC2 -> LABEL | pe; ach SRC2,5RC!,DST, LABEL
add one and branch pe = DST + 1 < SRC -> LABEL | pe; acblss SRC,DST,LAREL

pe = DST + 1 <= SRC -> LABEL | pc;
pc = DST - 1 >= SRC -> LABEL | pc:
subtract one and branch pe = DST - 1 > SRC -> LABEL | pe;
case pc = DST - SRC! < SRCI -> LABEL | pc:
L call instruction (stack} PC = calls (memargs, DST) ;

add one and branch
subtract one and branch

aobleqg SRC, DST,LABEL
sobgeqg SRC,DST, LABEL
sobgtr SRC,DST,LABEL
case DST,SRCI,SRC2
calls mumargs DST

Notes: N and X denote register numbers. SZ indicates a shift count that depends of the size of datatype being
accessed. DST and SRC denote any of the addressing modes. The instruction set includes two-address and three-
address forms of the arithmetic and logical instructions. az denotes the condition codes; pe is the program counter.
REL denotes any of the six relational operations.

-14.

7.2 MIDVAX instruction Set

Addressing Modes

registayx £ {N) N

lvmediate c ¢

register deferred m(z{N]] (zN)

sutoincrement miz(N1++] (N) +

autodecrement m[~~z[N]] ~{zN)

direct m{A]) A

displacement mir (N} + C} C{zN}

displacement deferred m{l[r[N] + €1} *C(zN)

Operations

compare nz = DST ? SRC; . cmp DST, SRC
bit test nz = DST § SRC 7 0; bit SRC,SRC
load . r(N] = SRC; nz = SRC ? 0; mov SRC, oN
store DST = c{N}; nz = riN] 7 0; mov N, DST
addition r(NJ = £iN] + SRC: nz = r(N] + SRC ? G; add SRC, c¥
subtraction z[N] = £(N) - SRC; nz » £ [N] ~ SRC 7 0; sub SRC, oN
maltiplication e{N} = ¢{N} * SRC; nz = r{N] * SRC ? 0; mul SRC, :N¥
division r(NJ = 2[NY / SRC; nz = c[N] / SRC 1 0; div SIC, oV
negate r(N] = ~c[N]; nz = -z(N} ? 0; rnneg N, N
complement r(N}] = "r{N); nz = "z(N] ? 0; meom N, cN
canvert r(N] = eve (SRC); nx = eve (SRC) 7 0; cvt SNC, N
bit set r(N] « r[N) | SRC: nz « £i{N] | SRC 7 0; bis SRC, N
bit clear c{N] = £IN] & “SRC; nz = (N} & “SRC ? 0; bic SRC, N
shift riN] = riN] << SRC; nt » riN] << SRC: ashl SRC, N, N
exclusive or r{N] = £[N]) " SRC; nz = £{N] “ SRC; xor SRC, tN, =N
Jump pe = LABEL; jbr LABRYL.
conditional jumpm pc « nz REL 0 -> LABEL | pc; JREL LABEL
call instruction (stack) BC = calls (mwmargs, DST) ; calls numargs DST

Notes: N and X denote register numbers, DST and SRC denote any of the addressing modes. nz denotes the
condition codes; pc is the program counter. REL denotes any of the six relational operations.

-15-

7.3 MINVAX Instruction Set

Addressing Modes
e A23SNRLY Language |

register £ (N) N

immediate c sC

register deferred m(r(N]] (zN)

displacement n{r(N] + €] cirM)

Operstions

compare nz = r[N] ? r(X]; cmp X, N
bit test nz = £{N} & r{X] ? 0; bit N, X
load riNT = SRC: nz = SRC 7 Q; mov SRC, tN
store DST »« r(N]; nz « r(N) ? 0; mov N, DST
addition E(N} = 2(N] + c(X1; nz = (N} + £iX] 7 0: add X, N
subtraction [N} = c(N} - c{Xi; nz = c{NJ - z[X] ? O; sub X, N
miltipliication C{NJ = £[N] * r{X]; nz = [N} v c{X] ? 0; mul X, N
division riNJ = c(N] / £[X]: na = c[N} 7 cIX} 2 02 - div X, =N
negate r[N} = =riNl; nz = -r{N1 7 0; mneg N, N
complement r[N] = "c(N}; nz = “r({N}] % 0; mcom rN, oiN
convert t(N] = cvt (r[X1}; nz = eve{ziX]) ? O; evt X, N
bit set Z{NJ] = r(NJ] | c(X}; nz = o{N] | (X} 2 O; bis X, N
bit clear riNJ = c(Nf & “z[X); nz = c(NJ ¢ (X} ? O: bic X, N
shift ri{N] = riN] << z£{X}; nz = (N} << c{X] ? O; ashl X, rN, N
exclusive or (NI = ciN] " c[X]; nx = (N} * {X] 7 O; xor X, tN
Jump pe = LABEL: by LAREL
conditional jumps pec = nz REL 0 -> LABEL | pe; IREL, LARKL
call instruction (atack) PC = calls (mwmargs DST) ; calls mwewerys DST

Notes: ¥ and X denote register numbers. DST and SRC denote any of the addressing modes. nzr denotes the
condition codes; pc is the program counter. REL denotes any of the six relational operations,

-16-

