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Abstract

The network and Fuclidean Steiner tree problems require a shortest tree spanning
a given vertex subset within a network G = (V, E, d) and Euclidean plane, respectively.
For these problems, we present a series of heuristics finding approximate Steiner tree with
performance guarantee coming arbitrary close to 14+1n2 & 1.693 and 1+In % ~ 1.1438,
respectively. The best previously known corresponding values are close to 1.746 and

1.1546.
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1 Introduction

Let G = (V, E,d) be a graph with a vertex set V, an edge set £ and distance function
d:E — RT. A tree T is called a Steiner tree of 5, 5 C V, if S is contained in the vertex
set of T.

Network Steiner Problem (NSP). Given G and 5, find the shortest Steiner tree
(also called the Steiner minimal tree) of 5.

This problem is N P-complete [9], so many approximation algorithms for Steiner minimal
trees appeared in the last two decades. The quality of an approximation algorithm is
measured by its performance ratio: an upper bound on the ratio between the achieved
length and the optimal length.

NSP belongs to M AX SN P-class [3], so the constant factor approximation algorithm
exists [13] and for some € > 1, e-approximation is N P-complete [1]. To find such € is an
important open problem.

Without loss of generality we may assume that G is complete, i.e. for any uw — v-path
in G, there is an edge (u,v) € E. Moreover, the length of any edge in GG coincides with the
length of the minimal path between its ends. G's denotes a subgraph of G induced by the
set S.

Euclidean Steiner Problem (ESP). Given a point set S in Fuclidean plane, find the
shortest Steiner tree spanning 5.

*Dept of CS, Thornton Hall, UVA, Charlottesville, VA 22903-2442 email: alexz@cs.virginia.edu. Research
partially supported by Volkswagen Stiftung.



For ESP, the graph Gg is the same as for NSP.

A well-known minimum spanning tree heuristic for the Steiner tree problem approximates
a Steiner minimal tree with a minimum length spanning tree (MST) of a complete graph
G's. Du and Hwang [7], Takahashi and Matsuyama [13] proved that the exact performance
ratios of this heuristic are equal to % ~ 1.1547 and 2 for ESP and NSP, respectively.

Two better heuristics appeared recently while consideration of so called k—restricted
Steiner trees. The approximation guarantee of the generalized greedy heuristic is bounded
by 11/6 [15] for NSP and 1.1546 for ESP [8]. The series of evaluation heuristics achieves
better guarantees while increasing of their runtime. Their performance ratio converges to a
value close to 1.746 [4, 5] for NSP.

The main result of this paper is the following

Theorem 1 There is a polynomial-time (1 4 Inrg)-approzimation scheme {Ap, k =
2,3,...} for the Steiner tree problems, where ry is a performance ratio of the minimum
spanning tree heuristic.

Corollary 1 There is a polynomial-time (1 +1n2)- and (1 +1n %)-appmximatian scheme
for NSP and ESP, respectively.

In the next section we describe a general framework for different heuristics solving Steiner
tree problems and approximation algorithms Ag. In section 3 we prove the performance
guarantee for these algorithms.

2 The greedy contraction framework

First we introduce some denotations: Smt(.S) and smt(.9) are a Steiner minimal tree of .§
and its length, respectively. For a complete graph Gg, Mst() denotes MST of G'g, and
M(S) denotes its length. Sm#(5) may in general contain vertices of V\\\S. So any Steiner
tree contains the set S of terminal vertices and some additional vertices. A Steiner tree is
called a full Steiner tree, if it does not contain internal terminal vertices. If a Steiner tree is
not full, then we can split it into the union of edge-disjoint full Steiner subtrees which are
called full components.

Contraction of a full Steiner tree T means reducing to 0 the lengths of edges of Gg
connecting terminal vertices of T. We denote by S/T the result of contraction. Note that
contraction reduces the value M(S),i.e. M(S/T) < M(S).

For all the Steiner tree problems, the following greedy contraction framework is success-
fully used in approximations.

Greedy contraction framework (GCF)

(1) repeat until My(S5) =0
(a) find a full Steiner tree 7" in a class K which minimizes
a criterion function f(T): T* — argminrer f(T).
(b) insert T*in LIST.
(¢) contract T*, 5 — S/T*.
(2) reconstruct an output Steiner tree from trees of LIST.



To determine a performance guarantee of an algorithm A embedded in GCF we may
bound the following two ratios:

smtﬁy
a = —/r,
smi

where smiy is the the minimum tree length in the family K containing all Steiner trees
with full components belonging to K, and

St 4

2= smtg’
where st4 is the length of the output Steiner tree of A. Thus, a performance ratio pr(A)
equals to their product pr(A) = a1 - as.

Many famous heuristics can be embedded in this framework considering different defini-
tions of a class K and a criterion function f.

The minimum spanning tree heuristic. The class K consists of all paths in G and
f(T) = d(T). The exact bounds for a; were proved in [7, 13]. An equality a; = 1 follows
from the famous fact that the greedy algorithm finds exact MST of a graph.

The Rayward-Smith’s heuristic (RSH) [12]. The class K contains stars and f(7T') =
4(T)

——, where 7 is the number of leaves of 7. For NSP, exact upper bounds a; < 5/3 and
aq - ay < 2 were proved in [15, 16] and [14], respectively.

The generalized greedy heuristic (GGH) [16]. The class K consists of trees with k&
terminal vertices and f(T) = d(T) — (M(S)— M(S/T)). For NSP, the same (as for RSH)
exact upper bound aq < 5/3 [15, 16] holds. For k = 3, the upper bound ay - as < 11/6
[16] may be not exact. Berman [6] found an instance of NSP such that a; - a; > 5/3 and
conjectured that ay - ay < 43/24 (k = 3). For ESP, a1 - ay < 1.1546 (k = 128) [8].

In this paper we present

The relative greedy heuristic (RGH). The class K = K}, contains all trees with at
most k terminal vertices. The criterion function f is defined slightly different than for GGH.

d(T)
M(S) = M(S/T) (1)

I(T) =

Now we describe the class K = K}, and review known facts about it. A Steiner tree is
called k—restricted if all its full components have at most k terminal vertices. Let the short-
est k—restricted Steiner tree for the set S, denoted by Smt(5), have the length smt,().
Note, that Smity(S) = M(S5).

Below we give constants for ESP in brackets, they should be less than for NSP. Let

rr = sup{smtp(9)/smt(5)}. The bound for the MST-heuristic implies ro = 2 [13] (3 = %

[7]). As mentioned above, r3 = 5/3 [15, 16] (conjectured value ~ 1.073 [8]), r4 < 3 and
rg < ;)—1 [4]. Moreover, rox < 1+ % [8]. Unfortunately, even when k = 4, computing optimal
k—restricted Steiner tree is NP-hard [9]. For k& = 3, this problem is still open although V.
Arora et al. [2] applied so called backtrack greedy approach and conjectured that it gave

polynomial-time approximation scheme.



GGH and RGH approximate k—restricted Steiner minimal trees. Berman and Ramayer
suggested a more complicated way to approximate such trees [5]. They construct a family
of evaluation heuristics By, and bound a performance ratio of By with the following value

Ti—1— T
1—1

k

pr(By) < ry— Z

=3

Knowing bounds for r,x we may count an upper bound for limy_ .. pr(By) which is close to

1.746. Since 1 is not evaluated for k unequal to powers of 2, this value might be less. The
next step [10] decreases the bound for Berman/Ramayer algorithm by 4= = 0.02.

For RGH, limj_., a1 = limp_., 7z = 1. In the next section we prove that ay < 1+ In 2.

In other words, it induces a polynomial (14 In 2)-approximation scheme for STP. Again we

are not sure that 1+ In 2 is an exact upper bound for this scheme.

3 The performance guarantee

In this section we determine a performance ratio of a relative greedy heuristic A, while
it approximates a minimal k-restricted Steiner tree. In other words, we bound the value
ay = ay(Ag). For brevity, below we omit S in the following denotations: smt(.9), smi(9),
M(S).

Lemma 1 ay(Ar) <1+1In M

smiy °

Proof. We need the following denotations. Let T be the output tree of RGH Aj and
T =Ty U---UT; be a partition of T into its full components, i.e. LIST = {Ty,....,T;}. We
denote the length of T; by d; = d(T;), Mo = M(S). Recursively, M; = M(S/T;) and

m; = M1 — M; (2)
So the criterial function (1) equals f(7;) = Tcrlb—l
We also partition the optimal k-restricted Steiner tree T™ into its full components: T =

UTT. Tt is easy to see that
J(T*) > mind(T7) > f(T}),

since Ty = argmin f(T'). So we obtain

d t
Q1 STtk
mq MO

We may apply the same argument to the k-restricted Steiner tree after contraction of T7.

ﬁ < smir(S/Th) < smiy,

mo M1 - M1
Inductively we obtain
d; t .
R R T (3)
m; — M;_4

Now we apply an analysis technique due to Leighton and Rao [11] to prove Inequality
(5). Substituting Equality (2) into (3), we get

d;

smig

M; < Misa(1 - —) (4)



Unraveling (4), we obtain
di

smip

M, < Mo [J(1- ).

=1
Taking natural logarithm on both sides and simplifying using the approximation In(1+4z) <
x, we obtain

M, T_d;
0 > 22_1 v (5)
M, smity,
Note that M; = M;_y — m; = 0, since Step (1) of GCF interrupts when M(S) = 0.
So we can choose r such that M, > smitp > M,11. We partition m,4q into two parts
myy1 = m*+m' such that m* = M, — smt; and m’ = smt; — M, 1. We also partition d, 4
. . . d, * ’ .
in the same proportion, i.e. d,y1 = d* +d" and m_r% = % = % (d"=0if m' = 0). Denote
* =M, —m*.
r+1 T
These denotations allows us to put down (5) for M,

Mo Yo dit+d”
n—2 >
]\/AI'T_I_1 smity,

In

|

Note that Tcrlb—ii < 1. Indeed, T; = argmin f(T), but f(e) = 1 for any nonzero edge
e € Mst(S). Therefore,

r+1 T
d(T) <Y di+ Mopy =) di+d* +d' + Mgy

Thus, we are ready to finish the proof of Lemma:

Siditd | d 4 Moy

smip smig
M, "+ M, M,
o M gy Moy g
Mr smiy, smiy,

To prove Theorem 1 we only need to note that

M§£<>

smiy smi

4 Conclusion

In this paper we introduced a greedy conraction framework for a wide class of heuristics for
the Steiner tree problem. A series of new relative greedy heuristics embedded in this frame-
work has a better approximation ratio which tends to 1+1In r5, where r5 is the approximation
ratio for the MST-heuristic.

We applied relative greedy heuristics to the Steiner tree problems in networks and in
Fuclidean plane. The performance guarantee of these heuristics comes close to 1 4+ In2 =
1.693 and 1+1n % ~ 1.1438, respectively. These values improved the best previously known
bounds of 1.746 and 1.1546.
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