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ABSTRACT

Software reuse is being pursued in an attempt to improve programmer productivity. The
concept of reuse is to permit various artifacts of software development to be used on
more than one project in order to amortize their development costs.

Productivity is not the only advantage of reuse although it is the most widely publicized.
By incorporating reusable parts into a new product, the parts bring with them whatever
qualities they possess, and these can contribute to the quality of the new product. This
suggests that reuse might be exploited for achieving quality as an entirely separate goal
from improving productivity. If useful properties pertaining to quality could be shown to
be present in products as a direct result of software development based on reuse, this
might be a cost-effective way of achieving those qualities irrespective of the productivity
advantages.

The adjective certified is sometimes used to describe parts that have been tested in some
way prior to entry into a library but the term certified is not formally defined in the reuse
literature. In this paper, we address the issue of certifying reusable parts. We advocate
the development of software by reuse with the specific intent of establishing as many of
the required properties in the final product as possible by depending upon properties
present in the reusable parts. For this goal to succeed, a precise definition of certification
of reusable parts is required and such a definition is presented. The benefits of the
definition and the way in which it supports the goal are explored.
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1. INTRODUCTION

A substantial difficulty that appears to be limiting software reuse is a lack of
perceived quality in the artifacts being reused. Although a software engineer may have
available a library of useful artifacts or reusable parts, there is frequently a reluctance to
use them because of concerns about quality. Essentially, the engineer feels that without a
lot of knowledge of the part, he or she would be better off rebuilding it. The observation
that lack of perceived quality is a detractor from reuse is based only on anecdotal
evidence but appears to be the software-reuse manifestation of the ‘‘not-invented-here’’
syndrome.

By incorporating reusable parts into a new product rather that rebuilding them,
productivity is improved. However, possible improvement in productivity is not the only
advantage of reuse although it is the most widely publicized. The parts bring with them
whatever qualities they possess, and, at least in principle, these contribute to the quality
of the new product. Thus, extensive effort expended to establish desirable properties of
the reusable parts might permit establishment of the same or similar properties in the
product with substantially less effort than would otherwise be required.

The adjective certified is sometimes used to describe parts that have been tested in
some way prior to entry into a library (e.g., [24]). Testing parts prior to their insertion
into a reuse library is often claimed to be a productivity advantage. There is the vague
expectation that building software from tested parts will somehow make testing simpler
or less resource intensive, and that products will be of higher quality [3, 13, 24]. For
example, Horowitz and Munson [10} give the potential productivity improvement
through reuse for the entire lifecycle. The various aspects of testing are listed, and a
potential reduction in cost resulting from reuse is shown for each. Despite these various
discussioggs of testing and reuse, the term certified is not formally defined in the reuse
literature '.

In this paper, we address the issue of certifying reusable parts. We advocate the
development of software work products by reuse with the specific intent of establishing
as many of the required properties in the final product as possible by depending upon
properties present in the reusable parts. For this goal to succeed, a precise definition of
certification of reusable parts is required and such a definition is presented. The benefits
of the definition and the way in which it supports the goal are explored. An important
byproduct of a precise definition of certification is that it provides a mechanism for
communication about part quality between the developer of a part and users of the part.
Users no longer have to question the quality of parts - certification describes for the
prospective user exactly what can be expected of a part. This eliminates the “‘not-
invented-here”’ difficulty mentioned above and facilitates higher reuse levels.

1t is imporiant to nete that the informal use of the term certification in the context of reuse is entirely separate from other uses
in software engineering, for example as a synoaym for formal verification [28].



2. TERMINOLOGY

In software development that incorporates reuse, any software work product is
constructed to as great an extent as possible by reusing parts (also known as components)
that have been prepared previously and stored in reuse libraries with the specific goal of
their being available for reuse. Parts may be large or small, may be skeleton systems,
skeleton subsystems, complete subsystems, complete low-level subprograms, or any
other structure that has the potential for being reused. In the modern approach to reuse,
reuse libraries might contain any form of work product including specification parts,
design parts, test plan parts, as well as more traditional source-code parts. This is an
important aspect of the field of reuse since the economic benefits of reusing artifacts
other than source code is likely to be substantial,

Parts are obtained either by deliberately failoring them from the outset specifically
for reuse or by scavenging them from existing software. A scavenged part might require
some refinement or reengineering in order to increase its potential for reuse before being
placed into a reuse library. This will depend to a large extent on whether or not the
author of the part planned for reuse when the part was constructed.

No matter what its origin, a part might be suitable for use in a new application
immediately upon location or might need to be modified in a process referred to as
adaptation. In some cases, provision for modification is included when a part is written.
Adaptation might be as simple as setting a parameter, but could also involve making a
substantial modification, For example, before it can be used, a part that implements a
desired sort algorithm might require that details of the records to be sorted be defined,
including denoting the field to be used for comparison. However, a user of the part might
also wish to adapt the part by redefining the order relationship to be used when sorting.
This might involve rewriting substantial portions of the part.

Adaptation has been recognized as a necessity for generalized source-code reuse to
the extent that provision for it is finding its way into programming languages. Generic
program units are present in Ada [27], for example, to support adaptation. The designer
of an Ada generic part can parameterize sections of the code and allow the user of the
part to specify the details when instantiating it. Symbolic constants and conditional
compilation also provide facilities for modifying source text at compile time according to
the needs of a particular use.

Finally, even when reuse is consistently and extensively practiced, custom artifacts
have to be built for those elements of the work product that could not be constructed by
reusing parts from a library. These custom artifacts might themselves be a source of new
parts for inclusion in a reuse library.

3. DEFINING CERTIFICATION

Although no formal definition of certification exists in the context of reuse, it is
essential that such a definition be available to permit users to trust reusable parts and to
permit the exploitation of reuse in support of work-product quality. With no definition,
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there can be no assurance that parts retrieved from a reuse library possess useful
properties nor that different parts possess the same properties. Given the informal
notions of certification that have appeared, it is tempting to think that a definition of
certification should be in terms of some test metric or similar. For example, certification
might mean that a source-code part has been tested to achieve some particular value of a
coverage metric or has a failure probability below some critical threshold.

The major difficulty with this approach, no matter how carefully applied, is that any
single definition that is offered cannot possibly meet the needs of all interested parties.
In practice, it will meet the needs of none. Knowing that source-code parts in a reuse
library have failure probabilities lower than some specific value is of no substantial merit
if the target application requires an even lower value. A second difficulty is that by
focusing on a testing-based definition, other important aspects of quality are omitted
from consideration. It is useful in many cases, for example, for parts to possess
properties related to efficient execuiion. Finally, note that testing is not an especially
meaningful notion for libraries other than source-code libraries.

With these difficulties in mind, it is clear that a different approach to certification is
required. The following are proposed as definitions for use in the context of reuse and
are used throughout the remainder of this paper:

Definition: Property
A property is a true statement about some aspect of a reusable part. A
property might be an assumption that a part makes about its operating
environment or a specific quality that a part can have.

Definition: Certification Instance
A certification instance is a set of properties that can be possessed by the
type of part that will be certified according to that instance.

Definition: Certified Part
A part is certified according to a given certification instance if it possess
the set of properties prescribed by that instance.

Definition: Certification
Certification is the process by which it is established that a part is
certified.

In establishing a certified reuse library, the associated certification instance has to be
defined and the process by which these properties are demonstrated has to be created.
When developing a part for placement in the library, it is the developer’s responsibility to
show that the part has the properties required for that library, When using a part, it is the
user’s responsibility to enquire about the precise set of properties that the part has and
ensure that they meet his or her needs.

These definitions appear to be of only marginal value because the prescribed
properties are not included. However, it is precisely this aspect that makes the definitions
useful. The definitions have three very valuable characteristics:



(1) Flexibility.

2)

(3)

As many different certification instances can be defined as are required, and
different organizations can establish different sets of properties to meet their needs.
Although the ability to create different sets of properties is essential, the
communication that a single set facilitates within a single organization or project is
also essential. Within an organization, that organization’s precise and unambiguous
instance of certification is tailored to its needs and provides the required assurance
of quality in its libraries of certified parts.

Generality.

Nothing is assumed about the type of part to which the definitions apply. There are
important and useful properties for parts other than source code. For example, a
precise meaning for certification of reusable specification parts could be developed.
This would permit the requirements specification for a new product to be prepared
from certified parts with the resulting specification possessing useful properties, at
least in part. Useful properties in this case might be certain aspects of completeness
or, for natural language specifications, simple (but useful) properties such as
compliance with rules of grammar and style.

Precision.

Once the prescribed property list in the certification instance is established, there is
no doubt about the meaning of certification. The property list is not limited in size
nor restricted in precision. Thus certification can be made as broad and as deep as
needed to support the goals of the organization.

The utility of multiple definitions and the major benefit of communication between

the part developer and part user is illustrated in Figure 1. The developer of the part
knows exactly what qualities have to be present and the user of the part knows exactly
what qualities can be assumed.

The properties included in a specific instance of certification can be anything

relevant to the organization expecting to use the certified parts. The following are
examples of properties that might be used for source-code parts:

Compliance with a detailed set of programming guidelines such as those prepared
for Ada [22].

Subjected to a rigorous but informal correctness argument.
Tested to some standard such as achieving a certain level of a coverage metric.

Compliance with certain performance standards such as efficient processor and
memory utilization or achieving some level of numeric accuracy.
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Figure 1 - Multiple Certification Instances.

4. INSTANTIATING CERTIFICATION

The definition of certification presented in the previous section provides the various
advantages cited, but, since no specific properties are mentioned, it offers no guidance on
what a particular instance of certification should be. This raises the issue of exactly
which properties should be included by an organization in the instance of certification for
its own reuse library or libraries.

Many properties come to mind as being desirable. However, since preparation of
reusable parts is a major capital undertaking, it is inappropriate to include properties that
are not essential. Consider, for example, requiring the existence of a formal proof that a
source-code part has some specific quality as part of a certification instance. This means
that each part in a certified library must be accompanied by such a proof. This is likely
to raise the cost of developing those parts considerably. Unless the existence of the
proofs can be exploited routinely to establish characteristics of systems built using those
parts, the proofs are of marginal value at best. In other words, it is not desirable to have
parts that are “‘too good™’. This issue is a concern for all types of work products and all
properties.



The opposite circumstance is also a factor. If establishing a necessary characteristic
of a work product is facilitated by incorporating reusable parts having a certain property,
then that property had better be included in the certification instance. In other words, it is
important to have parts that are ‘‘good enough™.

Precisely what determines the properties that should be included in a certification
instance for a given reuse library? The key to the definition of any specific instance is
the use to be made of the properties in the definition. The only justification for the
inclusion of a particular property in a certification instance is that possession of that
property by parts in a library contributes to the establishment of useful characteristics in
work products built from those parts. Thus a certification instance is developed from the
characteristics desired of work products built from the associated library, and the
determination of these characteristics is part of domain analysis [18]. The sequence of
events, therefore, is to determine the desired domain properties and then from these
determine the properties required of reusable parts. These become the certification
instance. Of course, this does not preclude the possibility of a common instance being
used for many libraries or ‘‘standard’” instances being developed for groups of domains
or classes of application. These concepts are illustrated in Figure 2.

This approach appears to shift the problem rather than solve it The original
problem was the selection of properties in an instance of certification. The new problem
is the determination of domain properties from which the instance of certification is
derived. However, in practice, the domain properties are the ones of real concern, and
they are very likely to be defined by the domain analysis. If certification is an important

Reusable Parts Certified Reusable Parts

Part Reusable
Certification Parts Work Products
Process Libraries
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Part ‘ Domain
Properties / ==t Analysis

Certification Instance

Figure 2 - Development Of A Certification Instance,




facility for a particular domain, then acquisition of the necessary domain properties will
have to be a well-defined aspect of the associated domain analysis.

It is not the case that an identified domain property and the associated part property
would necessarily be the same, although they might be. What is required is that part
properties permit the demonstration of useful properties of work products built from
them, and this might require explicit manipulation of information about the parts.
Consider, for example, a reuse library of source-code parts intended for developing real-
time applications. The certification instance in that case might require a determination of
the absolute bound on execution time for a certified part on a given host
computer/compiler combination and recording of that bound along with the part in the
reuse library. Availability of the time bounds does not permit anything to be concluded
immediately about any system built using the parts. However, analysis of the final
system structure using knowledge of the time bounds of the parts can facilitate the
assurance of meeting required real-time deadlines for some system structures.

A simple example where the part property and the domain property are the same is
source-code programming standards. Clearly, if certified parts follow required
programming standards, then that portion of a complete system built from such parts will
follow the standards also. Showing that a complete system complies with required
coding standards is facilitated in this case since the source text derived from reusable
parts need not even be checked.

5. EXAMPLES OF CERTIFICATION PROPERTIES

To illustrate the ideas described in the previous section, we examine some
significant properties of two types of work product that might be built with reusable
components. The work products are requirements specifications and source code.

5.1. Requirements Specifications

Figure 3 shows a reusable specification component written in *““Z°° [23], a
specification language. The component is the specification of a display in which some
numeric quantity is presented on a panel of seven-segment displays. Many embedded
systems from consumer electronics to avionics require such displays. To minimize
hardware costs, it is often the case that much of the management of such a display is
controlled by software. For example, translation of a digit into its seven-segment
representation is often done in software although there are readily available hardware
implementations.

Initially, specification of such displays seems unnecessary. Merely stating that the
display needs to be driven by the software appears to be sufficient. However, the wealth
of detail that must be defined makes this a difficult and error-prone approach. Decisions
left to the programmer in that case include the namber of digits displayed, whether a sign
is displayed, where the sign is displayed if present, whether the sign floats if present,
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digit = 0. . radiz U {point, negative, blank}
Jeature = {none, fived, float}

NumericDisplay : feature x N x N — (R — seq digit)

V sign : feature; width, radiz : N; r: R; output : seq digit e
NumericDisplay(sign, width, radiz)r = output <
sign = none = v > 0
A s :seqdigit o
value(s) == r
A digit 1 =0 = digit 2 = point V #s =1
A digit(#s) = 0 = trunc r = r
Ar <0A sign = fized =
(output 1 = negative
N display(sign, width — 1, rediz) (—r) = tail output)
Ar <0 A sign = float =
#s 2> width =
display(fized , width, radiz) r = output
A #s < width =
output = " [{blanks(width — 1 — 4ts),
display(sign, width — 1, radiz) (—r))
Ar>0=
round(r) < radizvidth
A Fs < width =
output = 7 [(blanks(width ~ #s), {negative), s)
N #s > width = output = s [ 1., width

Figure 3 - Reusable Specification Part In Z.

whether leading zeros are suppressed, whether a single zero is displayed before the
decimal proint for values less than one, and the precise mapping of digits to illuminated
segments’. For a consumer product, leaving these decisions to the programmer is far
from satisfactory because subtle display errors could lead to a recall. For an avionics
system, leaving these decisions to the programmer could be quite dangerous.

+ Note that there are two mappings for the digits 1 and 9, for example.



The specification part in Figure 3 is parameterized to permit selection of appropriate
responses to some of the questions raised above so that a complete specification for a
display can be created immediately and supplied to a software engineer for
implementation. The part in Figure 3 does not deal with all of the questions raised in
order to keep its size reasonable. It is merely for illustration. Figure 4 is a display
specification that uses the part from Figure 3. It specifies an 8-digit decimal display with
floating decimal point that will be used to display a time-varying quantity called
‘‘altitude’’ that is specified elsewhere.

An important point to note here is that a complex specification problem is dealt with
very effectively through reuse. If the part shown in Figure 3 were available in a library,
the specification shown in Figure 4 is all that would be needed for a relatively
sophisticated application and could be prepared very quickly (assuming knowledge of the
part).

Z is a hierarchical language in which elements of a specification are combined in a
manner not unlike the uses graph of modules in a programming language. It has,
therefore, a structure that lends itself to application of reuse in much the same way that
systematic reuse is applied at the source-code level. Elaborate specifications can be built
in Z by employing extensive reuse if suitable libraries are available.

If libraries of specification parts were available to support a reuse paradigm for
specifications, what would be the role of certification? In particular, what properties
would a certification instance for a Z reuse library contain? The answer, of course,
would be defined by the associated domain analysis, but, for purposes of illustration, we
consider some sample properties and examine how they would be exploited.

First of all, since Z is a language with a precise syntax and semantics, any
certification instance would include a set of rules akin to programming standards for
source code. Such rules would define layout of the syntax, define conventions for
selecting identifiers, specify elements of the Z syntax to avoid, and prescribe appropriate
ways of using the language features. The reusable part shown in Figure 3 follows such a
set of rules designed to promote readability and eliminate common errors.

_ Display
output : seq ssd
Vit:timee
output = NumericDisplay(float, 8, 10){ eltitude )

Figure 4 - Sample Display Specification In Z.




A significant certification property for specification parts is rigorous but informal
correctness. It is very difficult to specify even simple things, such as a display, and be
sure that all issues have been covered correctly. However, it is worthwhile expending
effort, perhaps in the form of a systematic inspection, to examine a reusable specification
part to ensure that it is complete, free of ambiguities, and specifies meaningful
functionality. Composing a complete specification by incorporating such certified parts
frees the specifier from much of the tedious yet important detail since these qualities are
known to hold for the parts.

Another example of a certification property for specification parts is the treatment of
time. Z does not treat time in a special way, it is just a variable that a specifier may
define if necessary. This flexibility leads to inconsistency if time is introduced
inadvertently more than once in a specification. If one notion of time is an integer count
of seconds from a starting time and another is an integer count of milliseconds from a
different starting time then serious specification inconsistencies will arise. The
certification property that is needed to take care of this is to have a prescribed notion of
time for all parts in a reuse library. In this way, any specification built form these parts
will be assured of treating time consistently.

In summary, reusable specification parts in languages like Z offer an enormous
potential productivity gain. In some cases, they will permit specifications to be built in
circumstances where specifications would otherwise be missing with the ensuing risk of
the wrong software being built. For many important applications, precise specifications
are essential and certified specification parts permit very high quality specifications to be
built very rapidly.

5.2. Source Code

Consider now the development of software in Ada using reusable parts,
Certification properties might well include the timing information mentioned earlier as
well as adherence to some set of programming standards. Such properties map fairly
obviously into useful domain properties.

Much more significant opportunities exist, however, for exploiting certification in
Ada source code development. As an example, consider the treatment of exceptions in
Ada. If an Ada program unit raises an exception, a handler is sought within the unit. If
one exists, it is executed and the unit is completed, but otherwise the exception is
reraised in the caller at the point of the call in a process called propagation.

This approach associates handlers for exceptions with program scope dynamically,
and leads to a variety of problems [11]. For example, an exception might be propagated
an arbitrary distance up the stack of active subprogram calls thereby terminating all of
the active subprograms in which a handler was not located. Worse is the possibility that
a programmer-defined exception might be propagated out of the name scope for the
exception into a region where the name of the exception is not known but a hander is still
being sought. In that case, a handler can only invoked if it is for the catch-all exception
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name others, It is unlikely that programmers ever intend such situations to arise but,
because of the dynamic association of handlers, it is very difficult to show that such
sitnations will not arise.

Reuse of certified parts can help to deal with this problem. Leaf parts, for example,
might be required to comply with one or more of the following properties:

- - No exceptions are declared within the part.

- -  No exceptions are propagated out of the part.

- - The part contains handlers for all predefined exceptions.

-~ Handlers are present in every block within the part for all declared exceptions.

- - All possible call sequences have been generated during testing of the part and no
path exists in which an exception becomes anonymous or in which propagation is
unbounded.

Similarly, subsystems or canonical designs might be required to comply with one or
more of the following properties:

- - Within the call structure, handlers for others have been included in a *‘firewall’”
Structure to ensure that no unbounded exception propagation can occur,

- - If the subsystem is terminated by an unanticipated exception propagation, provision
is made within the part to restart in a meaningful way.

Suitable combinations of such properties would permit the known difficulties with Ada
exception handling to be dealt with very effectively. It could be shown with a high
degree of assurance that these known difficulties would not occur in systems built thh
reusable parts, at least not because of defects in the reusable parts.

A second example of a significant certification benefit is in the area of tasking
performance. Building concurrent systems is always difficult. Actually developing the
algorithms is much harder than developing sequential algorithms but concurrent systems
also introduce new classes of faults such as race conditions, deadlock, and starvation.
Ada software is affected, in addition, by priority inversion.

Once again, if reusable parts are known to possess suitable properties, some of these
difficulties can be alleviated. In this case, reusable parts might be required to comply
with one or more of the following properties:

- - No shared variables are referenced within the part.
- - There is no internal concurrency within the part.

- - No execution conditions with the part can lead to tasking'error.
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- = Correct operation of the part has been shown not to depend on specific priority
values nor on specific system scheduling algorithms.

- - All entry calls made by the part and its entry definitions are documented correctly
and in a machine-processable notation,

The use of most of these properties in establishing system properties is fairly obvious.
The last property in the list is intended to permit automatic or semi-automatic analysis of
deadiock potential and priority inversion. Freedom from deadlock can be shown easily
for tasking structures that follow simple rules, and a certification instance can include
properties that facilitate building systems that do follow the appropriate rules. If the
rules are followed, all that is required is that the interactions undertaken by the
constituent tasks be available for analysis, Where the tasks are derived from reusable
parts, the certification instance can ensure that the requisite information is available for
deadlock analysis of the system.

A similar analysis can be undertaken to seek possible cases of priority inversion in

Ada task structures. Once again, a certification instance can be developed that ensures........

the necessary information is available for analysis.

6. CERTIFICATION AND TESTING

Although certification allows the inclusion of any desired properties for parts of any
type, properties associated with testing will frequently be present in certification
instances dealing with source-code parts. Because of its importance, testing is the focus
of the remainder of this paper.

6.1. Testing Issues

Many testing issues are raised by the inclusion of reuse in a software development
method. For example, in the context of preparing parts for entry into a library some of
the testing issues raised are:

(1) Part quality.
By definition, a part that is entered into a reuse library is being offered for use by
others and has to be prepared for every possible use [20]. This is very different
from the normal development situation in which a piece of software is intended for
a single use and is usually tested with that in mind.

(2) Part type.
Testing is complicated by differing part structures. Very few reusable source-code
parts will be subprograms. Other parts will be skeleton systems, essentially
canonical designs, in which the overall structure of the program is present but the
bulk of the detail is missing since it is application specific thereby making meaning
testing quite challenging.

“12.



(3) Adaptable parts.
Adaptable parts, i.e., parts designed to be modified before use such as Ada generic
units, present significant challenges for testing. The parameters used with Ada
generic units are not merely numeric or symbolic but can be subprograms thereby
allowing different instances to function entirely differently. This raises the question
of exactly how, or even if, generic program units can be tested in any useful way

[6].

Once prepared and placed into a reuse library, taking advantage of the testing
properties of parts also raises issues, for example:

(1) Part use.
A reusable part will be used in many different circumstances. The possibility exists,
however, that a part may be selected that does not guite meet the precise needs of a
particular application. Where informal specification techniques are used for parts in
reuse libraries and reliance is placed on human insight for part selection and
matching, it will be difficult to ensure that a selected part does precisely what is
required and that the part is being used correctly [9, 17, 19].

(2) Part revision.

As with any software, a reuse library will be the subject of revision. Parts will be
enhanced to improve their performance in some way yet maintain their existing
interface. Systems built with such parts are then faced with a dilemma,
Incorporating the revised parts might produce useful performance improvements but
the resuliing software will differ substantially from that which was originally built
and tested. Can revised parts with ‘‘identical” interfaces be trusted, and, if not,
what testing needs to be performed when revised parts are incorporated?

(3) Part adaptation.
Once a part is changed, the results of any testing that took place prior to placing the
part in the library cannot necessarily be trusted. That testing might have been
extensive and be expensive to repeat in its entirety.

Some of the issues summarized here can be addressed by suitable certification
properties and associated exploitation. For illustrative purposes, we consider the unique
issues raised by adaptable parts and adaptation.

6.2. Adaptation And Adaptable Parts

There are two forms of adaptation that need to be addressed, anticipated and
unanticipated. Anticipated adaptation occurs when a user exploits facilities for change
that were designed into the part, such as occurs with an Ada generic part or a part
dependent on symbolic parameters. Unanticipated adaptation occurs when a part is
modified in a way that was not planned, usually using a text editor.

In many cases there are restrictions inherent in the design of a part to which any
anticipated adaptation must adhere. In the simplest case, a symbolic constant might be
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used to define a quantity such as the size of an array dimension. Adaptation then consists
of setting the symbolic constant prior to using the part. The design of the part, however,
might necessitate that certain restrictions be imposed, such as the size being within
prescribed limits, or having some property, such as the size being a power of two.

In a language like Ada, many elements of the operational environment of a program
can be controlled by source-text parameters and the values required might be interrelated
in non-obvious ways. For example, representation clauses in Ada can be used to define
record formats, enumerated type representations, storage available for objects of a given
type, and the characteristics of numeric types, among other things. Parameterization of
many of these quantities is very likely in a part designed for reuse and the associated
interrelationships might be quite involved.

In a more general context, a restriction imposed on an adaptation might be a
functional restriction on some piece of supplied program text. A procedure parameter to
an Ada generic unit, for example, might be required to meet certain functional constraints
inherent in the design of the generic unit. A more complex situation is likely to arise if a
part in a library is actually a canonical design. In that case, substantial volumes of code
will have to be added to the basic design. The code added might itself be obtained from
a reuse library, but will almost certainly have to meet many restrictions imposed by the
canonical design.

For purposes of certification, two issues need to be addressed. Assuming that a
certification property exists that calls for parts to be tested, then exactly how to test
adaptable parts has to be dealt with. The second issue arises when a certification
property is exploited to establish a property of a system in which certified parts are
included. In order to exploit the fact that a part has been tested and to be sure that the
part works as the developer intended, it is essential that the adaptation has met any
restrictions inherent in the part.

Testing Adaptable Parts

The problem of testing adaptable parts amounts to ensuring that the adaptable part
will function correctly assuming that an adaptation complies with the restrictions
associated with design of the part.

Adaptable parts usually cannot be executed without adaptation. Each specific
adaptation represents a degree of freedom that has to be constrained in order to use the
part, and the key question is whether the part will work correctly once these constraints
or selections are installed.

The various adaptations that are provided with an adaptable part are similar in many
ways to inputs to the part. From the point of view of correct functionality, setting a
symbolic parameter, say, has some of the characteristics of reading an input of the same
type as the parameter. The part should, in principle, operate correctly for every valid
value of the parameter just as it should for every valid value of an input. Unfortunately,
this analogy breaks down when the adaptation provided by the part requires the user to
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supply functional rather than merely parametric information. In that case there is no
notion of type that can be used to determine a valid set of values for the parameter and no
obvious selection mechanism for test cases.

The only workable approach at this stage to testing an adaptable part is to instantiate
the part with specific adaptations and then test it using some conventional approach to
unit testing, Complete testing will then consist of repeating this test process with
“‘systematic’’ settings of the various adaptations. Systematic in this case is essentially
equivalent to the conventional problem of test case selection. A key research issue that
remains is to find useful ways of doing this for adaptations that require functional
information to be supplied.

Checking Anticipated Adaptation

If an adaptable part has been tested as part of certification, then exploitation of that
testing is completely dependent on the adaptation in a particular case having been done
correctly. If they are documented at all, the various restrictions imposed on an
adaptation are usually documented as comments. No mechanism is provided in existing
production programming systems to permit such restrictions to be checked. Ada does
provide static expressions thereby permitting extensive computation to be performed at
compile time. Gargaro and Pappas present an example of checking this way in Ada [9].
However, checking restrictions is not the intent of such static expressions, they do not
provide the complete range of facilities needed, and there is no mechanism to permit
signaling a violation other than forcing a contrived, compile-time exception.

In general, the checking that is required amounts to ensuring that an implementation
(albeit often a small one) meets a specification. Checking an anticipated adaptation is,
therefore, a special case of verification. The restrictions correspond to the specification
and the adaptation itself corresponds to the implementation. It is important to note that
the specification in this case does not derive from, and is not related directly to, the
original specification for the application. The specification is a consequence of the
design of the reusable part.

In a non-reuse setting, this verification will be performed by the author of a part. If
the part is placed into a reuse library, however, the checks must be performed by the
user. Correct use then relies on the restriction being documented fully by the author,
noticed by the user, and checked accurately by the user. Achieving correct use on a
regular basis seems unlikely given this almost total reliance on human effort.

Anticipated adaptation can be dealt with using special-purpose variants of existing
techniques that are used for program verification. Just as with verification of complete
programs, certain properties of adaptation can be checked completely and others not. For
example, it is simple to check that a symbolic constant meets a range or special property
criteria. However, it is not possible, in general, to check that a subprogram supplied as a
generic parameter complies with required functional constraints.
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Checking beyond that inherent in most programming languages is possible using
some form of supplementary notation. For example, Anna [15] is a notation designed to
permit specifications to be added to Ada source programs. Anna, however, is not
designed to perform the kind of verification described here, and although some of the
required checking can be specified in Anna, it is not possible to distinguish easily the
checks that Anna will perform before execution time. For checks that are delayed by the
Anna system until execution time, the verification of the various adaptations becomes
confused with the verification of the entire program unit that is being executed. Also,
such checks require processor and memory resources at execution time, and may not be
checked at all unless the assertion is carefully placed. Checking restrictions that derive
from the design of a part is an activity that is best performed as a fundamental element of
the adaptation process. ‘

A far better approach to checking the constraints required in an anticipated
adaptation is to incorporate machine-processable statements of the required restrictions
within the source text of the part. Checking for compliance is then performed after
adaptation but before traditional compilation. Such a notation can be thought of as an
assertion mechanism that operates prior to compilation rather than during execution.

This mechanism will not support the checking of all restrictions, for example many
forms of required functionality. Using the analogy with program verification once again,
adaptation restrictions that cannot be checked with a pre-compilation assertion
mechanism can be dealt with by testing the adapted part but again prior to conventional
compilation. The concept is to associate with a reusable part a set of test cases that must
be executed satisfactorily by any user-specific code supplied during adaptation. The tests
will be defined by the author of the part and executed by the user of the part. In the same
sense that software testing is an informal approach to verification, this approach is an
informal way of assuring that adaptation constraints are met. The overall flow of
activities that permit adaptable parts to be used and the associated constraints machine
checked is shown in Figure 5.

Checking Unanticipated Adaptation

On occasion, arbitrary changes made using an editor might be required when
attempting to reuse an existing part even if the part was designed for reuse. Such
unanticipated adaptation is far harder to deal with than anticipated adaptation because its
effect on the software is unpredictable. There is still the desire, however, to limit the
amount of retesting that is needed if a certified part is changed. If all the testing carried
out previously has to be repeated after adaptation, the economic impact will be severe
and could even be a deterrent to reuse.

The problem that has to be dealt with in this case is precisely that of conventional
program verification. Note, however, that the verification required in this case is quite
different from the verification required with anticipated adaptation. A modified part is
different from the original part and obviously satisfies different specifications after
unanticipated adaptation. If the specifications were not different after unanticipated
adaptation, there would be no point in modifying the part in the first place.
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Figure 5 - Checking Anticipated Adaptation.

Storing the specification of a part in machine-processable form and modifying the
specification along with the part with extensive automated checking and support is the
best way to deal with unanticipated adaptation. Unfortunately, in general, this is
probably not a practical approach to the problem at this point in the present embryonic
state of reuse technology.

A promising first approach to dealing with many of the issues, at least partially, is
the instrumentation of reusable parts with executable assertions [1, 15, 17]. In fact, Anna
[15] is described as a notation for specification although it does not have the
completeness characteristics of a rigorous approach such as VDM [12]. However, Anna
does provide a rich notation for writing executable assertions.

The role of instrumentation using assertions is to include design information with
the part, in particular to permit design assumptions to be documented in a machine-
processable way. The effects of arbitrary changes cannot be checked with any degree of
certainty in this way. However, there is some empirical evidence that executable
assertions provide a useful degree of error detection when properly installed [14].
Executable assertions can be used therefore as part of a system for checking parts
subjected to unanticipated adaptation.
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7. CONCLUSION

Software reuse can be exploited to improve work-product quality in conjunction
with the highly publicized goal of using it to improve productivity. The reuse of parts
that have been shown to possess desirable properties has the potential for conveying
those properties to the work product in which the parts are used. This information can
then be used to help establish desirable properties in the final product. Desirable
properties go far beyond simple functional correctness and might include properties in
areas such as maintainability, execution efficiency, or portability.

To do this effectively requires a precise framework for dealing with part quality, a
topic typically referred to in the literature on reuse as certification. Such a framework
has been presented. A byproduct of the use of this framework is that it provides a means
of documenting the qualities possessed by reusable parts. Within a development
organization this permits users of reusable parts to have confidence in the parts,
confidence that is usually missing. This is expected to facilitate systematic reuse
considerably and thereby to promote higher levels of reuse.

A number of significant issues arise when considering both the testing of reusable
parts and the testing of systems incorporating reusable parts. The most significant issues
arise from the need to deal with adaptable parts, ie., those designed for change, and
adapted parts, i.e. those changed after being taken from a reuse library. To ensure that
adaptable parts have been tested prior to placement in a reuse library requires entirely
different techniques from those developed for traditional unit testing. Similarly, ensuring
that an adaptable part has been adapted properly prior to its inclusion in a new product is
a new form of verification to which traditional methods do not immediately apply.

For software reuse to succeed in delivering a substantial improvement in

productivity requires progress in a number of areas. Part certification is an important
one.
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