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Abstract

The Zephyr project is part of an effort to build a National Compiler Infrastructure,
which will support research in compiling techniques and high-performance computing.
Compilers work with source code, abstract syntax, intermediate forms, and machine
instructions. By using high-level descriptions of the representations and semantics of
these forms, we expect to be able to create compiler components that will be usable with
different source languages, front ends, and target machines.

To help deal with multiple machines, we are developing a family of Computer Systems
Description Languages (CSDL) to describe properties that are relevant to the construc-
tion of compilers and other systems software. The languages describe properties of a
machine’s instructions or its mutable state, or both. Of particular interest is the de-
scription of the semantics of instructions, i.e., their effects on the state of the machine.
This report describes our preliminary design of A-RTL, a CSDL language for specifying
instructions’ semantics.

We describe the effects of instructions using register transfer lists (RTLs). A register
transfer list is a collection of assignments to locations, which represent registers, memory,
and all other mutable state. We prescribe a form of RTLs that makes it explicit how to
compute the values assigned and on what state the computation depends. The form also
makes byte order explicit and provides for instructions whose effects may be undefined.

Because our form of RTLs contains so much information, it is convenient for use by
tools, but it would be tedious to write RTLs by hand. A-RTL, which is based on the
A-calculus and on register transfer lists, is a metalanguage designed to make it easier for
people to write RTLs and to associate them with machine instructions. It enables us
to omit substantial information from hand-written specifications; the A\-RTL translator
infers the missing information and puts the resulting RTLs into canonical form. A-RTL
also provides a “grouping” construct designed to help specify large groups of similar
instructions.

We are still designing A-RTL. This report presents a short overview of A-RTL, followed
by examples. The examples include definitions of basic operators, which we believe will
be useful for describing a wide variety of machines, as well as excerpts from descriptions
of the SPARC and Pentium. We have chosen excerpts that illustrate features which are
characteristic of these particular machines; for example, we show a model of SPARC reg-
ister windows, and we show how A-RTL can help manage the complexity of the Pentium
instruction set.

Both the machine descriptions and A\-RTL itself are under development, so this report
is a snapshot of a work in progress. We issue it now to solicit feedback both on our
overall approach and on the details of A-RTL. Please send feedback by electronic mail to
zephyr-investigators@virginia.edu.
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Chapter 1

Overview of CSDL

Machine descriptions
for machine-level tools

Special-purpose and general-purpose computers are
designed at a rapid pace, and software tools and
technology don’t always keep up. The tools we need
include not only the compilers, assemblers, link-
ers, and debuggers familiar to all programmers, but
also less familiar tools, like profilers, tracers, test-
coverage analyzers, and general code-modification
tools. Most of these tools must work with machine
instructions.

Machine-dependent detail makes it hard to build
machine-level tools. For many years, compilers
have used machine descriptions to capture such de-
tail. Machine descriptions isolate target-specific in-
formation so that it can easily be examined and
changed. Despite their successful use in compilers,
machine descriptions are seldom used to build other
systems software. Descriptions used in compilers
are hard to reuse because they typically combine
information about the target machine with infor-
mation about the compiler. For example, “machine
descriptions” written using tools like BEG (Emmel-
mann, Schroer, and Landwehr 1989) and BURG
(Fraser, Henry, and Proebsting 1992) are actually
descriptions of code generators, and they depend
not only on the target machine but also on a partic-
ular intermediate language. In extreme cases (e.g.,
gece’s md files), the description formalism itself de-
pends on the compiler.

We believe we can simplify construction of com-
pilers and other machine-level tools by developing
description techniques that separate machine prop-
erties from compiler concerns. We expect this capa-
bility to be useful in a National Compiler Infrastruc-
ture because it will lead to a back-end infrastructure
that should be usable not only with many different
target machines, but also with different source lan-
guages, front ends, and intermediate languages.

Some existing languages for machine description,
like VHDL (Lipsett, Schaefer, and Ussery 1993)
and Verilog (Thomas and Moorby 1995) do describe
only properties of the machine, but they are at too
low a level, describing implementations as much as
architectures. These description languages require
too much detail that is not needed to build systems
software.

We are designing a family of Computer Systems
Description Languages (CSDL) to support a variety
of machine-level tools while remaining independent
of any one in particular. We have several goals for
CSDL:

e Descriptions should be composed from simple
components. Each component should describe,
as much as possible, a single aspect of the
target machine. Such aspects might include
calling conventions, representations of instruc-
tions, pipeline implementations, memory hier-
archy, or other properties. It should not always
be necessary to describe aspects completely.
For example, most compilers use only a sub-
set of the instructions available on a particular



machine, and a compiler writer should be re-
quired to describe only that subset.

e An application writer should be able to derive
useful tools not only when the components de-
scribing individual aspects are incomplete, but
also when not all aspects are described. An
application writer should not have to describe
aspects of the machine unless the information
is needed to build his application. For exam-
ple, an application writer working entirely at
the assembly-language level or above should
not have to describe binary representations of
instructions. Someone writing a garbage col-
lector might need to describe the stack-frame
layouts determined by a calling convention, but
he should not have to describe the instruc-
tions used in the calling sequences that estab-
lish those layouts.

e Components, especially those describing “core
aspects,” should be reusable. For example,
writers of all specifications should benefit from
having a common formalization of what it
means to be a “SPARC instruction supported
by the bare hardware.”

CSDL forms a family of languages because all fam-
ily members have the same view of two core aspects
of machines: instructions and state. This report ex-
plains the CSDL view of these core aspects, and it
presents a rationale for and examples of the most
important member of the CSDL family, which de-
scribes the semantics of machine instructions.

Core aspects for CSDL

To identify core aspects to be used throughout
the CSDL family, we examined descriptions used
to help retarget a variety of systems-level tools.
These tools included an optimizer (Benitez and
Davidson 1988), a debugger (Ramsey and Han-
son 1992), an instruction scheduler (Proebsting and
Fraser 1994), a call-sequence generator (Bailey and
Davidson 1995), a linker (Ferndndez 1995), and an
executable editor (Larus and Schnarr 1995). Cur-
sory inspection showed no single common aspect of

a machine used in descriptions for all of these tools,
but a closer look revealed that all the descriptions
refer either to the machine’s instruction set or to
its storage locations, and some to both. For ex-
ample, the specifications used by the scheduler and
linker refer only to the machine’s instructions and
the properties thereof. The specifications used in
the call-sequence generator and in the debugger’s
stack walker refer only to storage, explaining in de-
tail how values move between registers and mem-
ory. The specifications used in the optimizer and
the executable editor refer both to instructions and
to storage, and in particular, to how instructions
change the contents of storage. From these obser-
vations, we have chosen to require that languages in
the CSDL family refer to instructions, storage, or
both, and that they use the models of instructions
and storage presented below.

Instructions

The CSDL model of an instruction set is a list of
instructions together with some identifying infor-
mation about their operands. Although instruc-
tion names in assembly languages are typically over-
loaded, CSDL requires instructions to have unique
names, because tools often need uniquely named
code for each instruction in an instruction set. For
example, an assembler might use a unique C pro-
cedure to encode each instruction, or an executable
editor might use a unique element of a C union to
represent an instance of each instruction.

An individual instruction is viewed as a function
or constructor that, when applied to operands, pro-
duces something interesting: a binary representa-
tion, an assembly-language string, a semantics, etc.
Instruction descriptions that use the CSDL core will
include the names and types of the operands of each
instruction. Types will include integers of various
sizes, but it will also be possible to introduce new
types to define such machine-dependent concepts
as effective addresses. Values of these new types
may be created by applying suitable constructors;
for example, Chapter 6 shows how a Pentium ef-
fective address may be formed by applying any of



9 constructors, each one representing a different ad-
dressing mode.

The structure defined by CSDL constructors and
their operands can be viewed as a discriminated-
union type. It is also equivalent to an ASDL gram-
mar (Wang et al. 1997), without recursion, in which
the start symbol is “instruction,” other nontermi-
nals refer to machine-level concepts like “effective
address” or “integer-instruction operand,” and ter-
minal symbols are defined by integers or addresses.
This structure is a simplification of the “construc-
tor” from the Specification Language for Encoding
and Decoding (SLED) of the New Jersey Machine-
Code Toolkit (Ramsey and Ferndndez 1997). It
is determined by the machine, independent of any
tool, so it should be useful in any specification lan-
guage that deals with individual machine instruc-
tions. For example, the nML machine-description
language (Fauth, Praet, and Freericks 1995) uses
this structure, although nML is otherwise quite dif-
ferent from SLED.

Properties of instructions

Experience with the New Jersey Machine-Code
Toolkit shows that many applications can be built
from specifications that discuss only instructions
and their properties, with no reference to storage.
Such applications include assemblers and disassem-
blers, as well as code generators that work by pat-
tern matching on the names of instructions.

We specify properties of instructions in a compo-
sitional style, so instructions’ properties are func-
tions of the properties of their operands. We formal-
ize that style using attribute grammars. For exam-
ple, assembly-language representations of instruc-
tions can be computed as synthesized attributes,
where the attributes are strings. Binary representa-
tions can also be computed as attributes, where the
attributes are SLED “patterns.” Attributes readily
support machines like the 68000 family, in which
the representations of effective addresses depend on
context.

Storage

The CSDL model of a storage space is a sequence
of mutable cells. A storage space is like an array;
cells are all the same size, and they are indexed
by integers. For example, a typical microprocessor
has a memory made up of 8-bit cells (bytes) and a
register file made up of 32-bit cells. The number of
cells in a storage space may be left unspecified.

The state of a machine can be described as the
contents of a collection of storage spaces. We use
storage spaces to model main memory, general-
purpose registers, special-purpose registers, condi-
tion codes, and so on.

Experience with CCL, a Calling Convention Lan-
guage (Bailey and Davidson 1995), shows that ap-
plications can be built from specifications that dis-
cuss only storage, with no reference to instructions.
For example, calling conventions can be described
by discussing the placement of parameters in stor-
age cells and the the effects of calls and returns
on storage. From a CCL description one can gen-
erate procedure prologs and epilogs in a compiler,
and one can also generate code to test compilers’
implementations of calling conventions (Bailey and
Davidson 1996). One might be able to derive stack
walkers or exception-handling code from similar de-
scriptions. A garbage collector may need to know
which locations in storage can contain pointers; this
is a property of an application, not of a machine,
but it can be described using the CSDL storage
core. (We want to describe application properties
as well as machine properties, but we want to keep
them separate.)

Languages in the CSDL family may refer to in-
dividual locations. Ways of writing locations may
vary, but each one must resolve to a name of a stor-
age space and an integer offset identifying a cell
within that storage space.

Combining instructions
and storage

An architecture manual tells programmers what
constitutes the state of the processor, and it lists



instructions and their operands, but the most im-
portant thing it does is explain the semantics of
each instruction in terms of that instruction’s ef-
fects on the state of the processor. Many applica-
tions can be built based on this information, but
some require more detail than others. For example,

e Information about control flow is enough to
build control-flow graphs.

e Information about calling conventions may be
enough to recognize procedure calls and re-
turns.

e Information about locations read and written is
enough to build data-flow graphs. Such graphs,
together with the ability to match individual
instructions, may suffice to build code-editing
tools like EEL (Larus and Schnarr 1995) or
ATOM (Srivastava and Eustace 1994).

e Information about register-transfer semantics
is enough to build code improvers in the style of
PO (Davidson and Fraser 1980), vpo (Benitez
and Davidson 1988), and gcc (Stallman 1992).
These code improvers work by pattern match-
ing, so they need not know what all of the
register-transfer operators do. They do, how-
ever, need at least a partial semantics, to per-
form strength reduction, constant folding, and
similar transformations.

e To build a code generator, one needs to know
more about the operators used in the regis-
ter transfers. In particular, one needs to know
enough so that one can find a sequence of in-
structions to implement each operation in the
compiler’s intermediate code. It is sufficient
to know that the intermediate code and the
instructions compute the same operation; one
need not know exactly what the operations do
to the bits.

e To build an emulator like SPIM (Larus 1990)
or a binary translator like FX!32 (Thomp-
son 1996), one needs enough information about
the operations in the register transfers to inter-
pret the the effect of each register transfer on
each bit of the processor’s state.

We believe that these applications and more can be
served by providing register-transfer semantics for
instructions. The effect of a particular instruction
can be specified as a register-transfer list (RTL),
which modifies storage cells. As with other proper-
ties of instructions, the RTL is computed using an
attribute grammar.

In principle, a single register-transfer description
could support all of the different uses above. A
single RTL could be given different interpretations,
depending on its intended use. We believe we can
support this mode of specification by prescribing
a rigid form for RTLs, while supplying suitable ab-
straction mechanisms for use within that form. Ab-
straction mechanisms support our goals of enabling
application writers to leave irrelevant facts unspeci-
fied. For example, we want to make it easy to write
an RTL that means “register rd is assigned an un-
specified function of registers rs and rt.”

Languages in the CSDL family

We consider SLED, for specifying representations
of instructions (Ramsey and Ferndndez 1997), and
CCL, for specifying calling conventions (Bailey and
Davidson 1995), to be the first languages in the
CSDL family. We are developing a new language,
A-RTL, for specifying instruction semantics. We ex-
pect that CSDL will expand to include languages
for specifying properties of memory hierarchies
and of pipelines. Indeed, the simple functional-
resource languages of Proebsting and Fraser (1994)
and Bala and Rubin (1995) fit nicely into the CSDL
framework.

This report focuses on A\-RTL. The report does
not give a specification or definition of \-RTL, be-
cause \-RTL is not sufficiently developed for a spec-
ification or definition to be worthwhile. Instead,
this report presents some essential properties of A-
RTL, and it gives examples of machine specifica-
tions using the current, imperfect version. Chap-
ter 2 describes the form of register transfer lists used
in A-RTL. Chapter 3 presents A-RTL and discusses
its translation into RTLs. Chapter 4 describe some
basic content which fits into that form, and which



we believe will be useful for describing many ma-
chines. Chapters 5 and 6 present excerpts from A-
RTL descriptions of the SPARC and Pentium pro-
cessors, respectively.



Chapter 2

Register Transfer Lists

Computer scientists have used register transfers
in many different forms. For \-RTL, we have chosen
a form designed for use by tools, not by people. We
have therefore insisted that as much information as
possible be explicit in the RTL itself. Under our
current plan,

e RTLs are represented as trees.

o All operators are fully disambiguated, e.g., as
to type and size.

e There is no aliasing of locations.

o Fetches are explicit, as are changes in the size
or type of data.

e Stores are annotated with the size of the data
stored.

e Explicit tree nodes specify byte order. More
generally, they specify how to transfer data be-
tween storage spaces of different granularity.

e RTL should be a typed representation. We
plan to generate RTL type checkers from CSDL
specifications. Optimizations and other trans-
formations that are intended to preserve se-
mantics should also preserve the property of
being well typed. Typing is a good way to
catch bugs in optimizers (Morrisett 1995).

The form of RTLs proposed here may be suitable
not just for specification, but also for use in the im-
plementations of compilers, binary translators, and
other tools.

(ASDL specification of the form of RTLs)=
ty = (int) -- size of a value, in bits
exp = CONST (const)

| FETCH (location, ty)
| APP (operator, exp*)
location = AGG(aggregation, cell)
cell = CELL(space, exp)
effect = STORE(location dst, exp src, ty)
| KILL(location)
| KILLALL(space)
guarded = GUARD(exp, effect)
rtl = RTL (guardedx*)

Figure 2.1: ASDL specification of the form of RTLs

Form of RTLs

Figure 2.1 uses the Zephyr Abstract Syntax De-
scription Language (Wang et al. 1997) to show the
form of RTLs. A register transfer list is a list of
guarded effects. Each effect represents the transfer
of a value into a storage location, i.e., a store opera-
tion. The transfer takes place only if the guard (an
expression) evaluates to true. Locations may be
single cells or aggregates of consecutive cells within
a storage space. Values are computed by expres-
sions without side effects, which simplifies analy-
sis and transformation. These expressions include
integer constants, fetches from locations, and ap-
plications of RTL operators to lists of expressions.
Effects in a list take place simultaneously, as in Di-
jkstra’s multiple-assignment statement, so one RTL
represents one change of state. This decision makes



it possible to specify swap instructions without hav-
ing to introduce temporary locations.

Not every effect is a true assignment. A kill effect
changes the value in a storage location in an unde-
fined way. Kill effects are needed to model such
architectural specifications as “the effect of a logi-
cal instruction on the AF flag is undefined.”

The “kill all” effect in Figure 2.1 kills all of the
cells in the given storage space. It is needed to give
a semantics to certain phrases of A-RTL. We haven’t
demonstrated a need for it yet, but it may be useful
to model stores into arbitrary memory locations.

As an example of a typical RTL, consider a
SPARC load instruction using the displacement ad-
dressing mode, written in the SPARC assembly lan-
guage as
(sample SPARC instruction)=

1d [4sp-121, %i0
Although we would not want to specify just a sin-
gle instance of a single instruction, the effect of this
load instruction might be notated in A-RTL as fol-
lows:!

(A-RTL for sample instruction)=

$r[24] <-- $m[$r[14]1+(~12)]
because the stack pointer is register 14 and register
i0 is register 24. The corresponding RTL is much
more verbose, with the sizes of all quantities iden-
tified explicitly, as a fully disambiguated tree:

STORE #32
— ~~
AGGB ﬁ32 #32 FETC? #32
LUCI’I’ AGGB ?8 #32
CUN%T #5 LOCI’m’
24 ADD #32
— ~
FETC? #32 SX #1? #32
AGGB #F2 #32 CUNS? #13
LUCI’I’ -12
CUNSF #5
14

The various constants labeled with hash marks,
like #32, indicate the number of bits in arguments,

IThe ~ in ~12 is a unary minus.

results, or data being transferred. Such constants
will fit into a generalization of the Hindley-Milner
type system (Milner 1978).

Figure 2.2 shows the operators used in this tree.
The left child of the STORE is a subtree represent-
ing the location consisting of the single register i0,
which is register 24. The right-hand child represents
a 32-bit word (a big-endian aggregration of four
bytes) fetched from memory at the address given
by the subtree rooted at ADD. This node adds the
contents of the stack pointer (register 14) to the
constant —12. The constant is a 13-bit constant,
and the SX operator sign-extends it to 32 bits, so it
can be added to the stack pointer.

Types in RTLs

RTL is intended to be a typed format. The type
system is under development, but it is expected to
include the following types:

#nbits A value that is n bits wide.

#n loc A location containing an n-bit value.

#ncells One of a sequence of n-bit storage
cells, which can be aggregated to-
gether to make a larger location, as by
the AGGB nodes in the example tree.

bool A Boolean condition.

effect A side effect on storage.

Figure 2.2 uses these types to show the types of
the operators used above. We plan to extend Mil-
ner’s type inference to this system, so that those
writing specifications in A-RTL can omit types and
widths. Unlike in ML, type inference alone will not
guarantee that terms make sense; in general, it will
be necessary to check additional constraints. For
example, in the RTL shown above, it would be nec-
essary to check that the signed integer —12 can be
represented using 13 bits, and that 32 is a multiple
of both 8 and 32.

RTL languages and translation

Although we have prescribed the form of RTLs, we
can’t write any RTLs until we choose a set of lo-



STORE : V#n.#n loc X #nbits — effect

FETCH : V#n.#n loc — #nbits

AGGB : V#n.V#w.#n cells — #w loc

LOC ’m’ : #32bits — #8cells
LOC ’r’ : #5bits — #32cells
ADD : V#n.#nbits X #nbits — #nbits

SX : V#n.V#w.#nbits — #wbits

CONST : V#n.(constant) — #nbits

Store an n-bit value in a given location. The type indicates that
for any n, STORE #n takes an n-bit location and an n-bit value
and produces an effect.

For any n, FETCH #n takes an n-bit location and returns the n-bit
value stored in that location.

For any n and w, AGGB #n #w aggregates an integral number of
n-bit cells into a w-bit location, making the first cell the most
significant part of the new location, i.e., using big-endian byte
order. w must be a multiple of n. (w and n are mnemonic for
wide and narrow.)

Given a 32-bit address, LOC ’m’ returns the 8-bit cell in memory
referred to by that address.

Given a 5-bit register number, LOC ’r’ returns the corresponding
32-bit register (a mutable cell).

For any n, ADD #n takes two n-bit values and returns their n-bit
sum. Carry and overflow are ignored.

For any n and w, SX #n #w takes an n-bit value, interprets it as a
two’s-complement signed integer, and sign-extends it to produce
a w-bit representation of the same value. w must be greater
than n.

For any n, CONST #n k represents the n-bit constant k. &£ must
be representable in n bits. The same k£ could be used with dif-
ferent ns.

Figure 2.2: Some RTL operators and their types

cations and a set of RTL operators. These choices
define an RTL language. Any specification written
in A-RTL can introduce new storage spaces (and
therefore new locations) and new RTL operators,
determining an RTL language for use in that spec-
ification.

For use during compilation, we restrict RTLs
to a subset of a full RTL language. Each RTL
used in a back end based on the wpo optimizer
(Benitez and Davidson 1988) must satisfy the wvpo
invariant for the target machine. An RTL satisfies
that invariant if and only if it can be represented
in a single instruction on the target machine. All
RTLs manipulated by wvpo satisfy this invariant, so
vpo can stop and emit machine code at any time.
We use the name X-RTLs refer to the set of RTLs
satisfying the vpo invariant for machine X.

Interpretations of RTLs

One reason we restrict the form of RTLs is to limit
their possible meanings or interpretations. For ex-
ample, access to the mutable state of a machine
is available only through the fetch and store oper-
ations built into the RTL form, so we can easily
tell what state is changed by an RTL and how that
change depends on the previous state. Researchers
and tools working with our form of RTLs have free-
dom to define interpretations of only two parts of
the RTL form: aggregations and operators.

RTL aggregations specify byte order. More gen-
erally, aggregations make it possible to write an
RTL that stores a w-bit value in (or fetches a w-
bit value from) & consecutive n-bit locations, pro-
vided that w = kn. Such an aggregation has type
#n cells — #w loc, and its interpretation must be
a bijection between a single w-bit value and k n-



bit values. Moreover, when w = n, the bijection
must be the identity function. Storing uses the bi-
jection, and fetching uses its inverse, making it pos-
sible to combine RTLs using forward substitution.
Little-endian and big-endian aggregations will be
built into A\-RTL, as will an “identity aggregation”
that is defined only when w = n. We imagine that
users could define other aggregations by giving sys-
tems of equations, as in Ramsey (1996).

RTL operators must be interpreted as pure func-
tions on bit vectors. Consequently, the result of ap-
plying an RTL operator must not depend on proces-
sor state; the operator must give the same answer
every time. Chapter 4 presents a collection of RTL
operators that we expect can be used to describe
many different machines. We don’t expect this set
to be complete; on the contrary, we expect that
any machine description written in A-RTL will in-
troduce a handful of new RTL operators which will
be unique to that machine.



Chapter 3

Using A-RTL to specity register

transfer lists

Bare RTLs are both spartan and verbose. Ex-
pressions do not include if-then-else, so condition-
als must be represented by using guards on effects.
There is no expression meaning “undefined;” as-
signments of undefined values must be specified us-
ing a kill effect. These restrictions, and the require-
ment that operations be fully disambiguated, make
RTLs a form that is good for manipulation by tools
but not so good for writing specifications.

A-RTL is a metalanguage that enables specifi-
cation writers to attach RTL trees to SLED-like
constructors without having to write everything
explicitly. Eventually, A-RTL will be a higher-
order, strongly typed, polymorphic, pure func-
tional language based largely on Standard ML
(Milner, Tofte, and Harper 1990). A variation on
the Hindley-Milner type system will make it pos-
sible to write flexible, type-safe functions without
having to write types explicitly. The current imple-
mentation of A-RTL is, however, untyped.

Design considerations

We have drawn on our experience with SLED
(Ramsey and Fernandez 1997) to identify mecha-
nisms and properties that are desirable in any
CSDL language, including A-RTL. These include:

e Use of constructors to provide an abstract view
of the machine’s instruction set, and use of at-
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tributes to specify properties of instructions.
These mechanisms are close kin to attribute
grammars and to the denotational approach to
semantics, both of which have long histories of
utility.

Use of default, unnamed attributes (for exam-
ple, binary representation or default construc-
tor type), sometimes supported by special syn-
tax. By providing a default case that does not
have to be named, we can unclutter specifi-
cations. For example, when we refer to an
operand of type Address, the location desig-
nated by that effective address should be the
default meaning.

Use of a specialized sublanguage for defining
attributes. SLED uses patterns to specify
binary representations; A-RTL uses the pre-
scribed forms of RTLs, to be augmented by a
sophisticated type system.

Language constructs that help eliminate repe-
tition by permitting simultaneous description
of many instructions at once. Such constructs
reduce the number of opportunities for er-
rors, and they help keep specifications concise
and readable. A-RTL includes two such con-
structs: first class functions, and a generaliza-
tion of SLED’s grouping construct, which itself
is based on Icon generators (Griswold 1982).



e Formal notation that matches informal descrip-
tions found in architecture manuals. The ar-
chitecture manual is the standard model of the
machine that is shared by all tool builders, so
this close match not only helps people read
specifications, it helps them write correct spec-
ifications. A\-RTL enables users to define their
own infix operators, and Chapters 4, 5, and 6
show how we have used this capability to create
an ISP-like notation for RTLs.

We expect to be able to analyze A\-RTL specifica-
tions for internal consistency and “plausibility.” For
example, it should be possible to identify cases in
which a register number is mistakenly used as an
immediate value instead of as an offset into the stor-
age space modeling the register file.

Restrictions eased in \-RTL

A-RTL descriptions are easier to write than bare
RTLs in three ways: grouping and higher-order
functions can help eliminate repetition, the type
system will eliminate the need to write sizes explic-
itly, and A-RTL relaxes several of the restrictions
on the form of RTLs. In particular,

e In A\-RTL, it is not necessary to write fetches
explicitly.

e A-RTL gives the illusion that bit slices (sub-
fields) are locations that can be assigned to.

e M\-RTL gives the illusion that aggregates of cells
are locations that can be assigned to, and it
is not usually necessary to write aggregations
explicitly.

Implicit fetches

Most programmers are used to writing z : =z +1
and having the x on the left denote a location while
the = on the right denotes the value stored in that
location. Typical compilers identify “lvalue con-
texts” and “rvalue” contexts and automatically in-
sert fetches in rvalue contexts. We do the same in
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A-RTL, but instead of using syntax to identify the
contexts, we intend to use types.

We use types and not syntax because A\-RTL has
no special syntax for writing RTL assignments. In-
stead of an assignment syntax, A-RTL provides a
built-in store function that accepts a location and
a value and produces an effect. Any user-defined
function might result in a call to the built-in store,
so we have to recognize the right and left contexts
by their types. Thus, if a location is used where a
value is expected, we insert a fetch.

A-RTL does almost everything with functions,
not syntax, so the writer of a specification can nor-
mally redefine the meaning of a notation by defin-
ing a new function with the same name. This
strategy doesn’t work with implicit fetches because
there is no explicit notation associated with a fetch.
We want users to be able to control the meanings
of these fetches, however, because many machines
have resources that are almost, but not quite, se-
quences of mutable cells. For example, SPARC reg-
isters can be viewed as a collection of 32 mutable
cells, except that register 0 is not mutable and al-
ways contains 0. We would like users to be able to
define special meanings for “fetch from register 0”
and “store into register 0” so the rest of the specifi-
cation can pretend that the registers are an ordinary
storage space. We do so by permitting users to at-
tach fetch and store methods to each storage space.
Methods not given explicitly default to the stan-
dard fetch and store operators. Sample fetch and
store methods for the SPARC are shown on page 25.
If we wanted, we could use fetch and store meth-
ods to describe the true implementation of SPARC
registers, in which “registers” 8 through 31 denote
locations accessed indirectly through the register-
window pointer (CWP).

Slices

Many machine instructions manipulate fragments
of a word stored in a mutable cell. For example,
some machines represent condition codes as indi-
vidual bits within a program status word. Many
machines have instructions that, for example, as-
sign to the least-significant 8 bits of a 32-bit register.



To make it easy to specify such instructions, A-RTL
creates the illusion that a sub-range or “slice” of a
cell can be a location in its own right, one that is
a suitable argument for a fetch or store operation.
This illusion helps keep machine descriptions read-
able; for example, an effect that sets the SPARC
overflow bit simply assigns to it, hiding the fact
that it is buried in a program status word that has
to be fetched, modified, and stored.

A-RTL uses a special syntax for slices because the
slicing operation is overloaded; it can be applied
to locations or to values. Examples of the syntax
include

z@[k] Bit & of z. By default,
bit 0 is the least significant
bit. A future version of A-
RTL may make it possible
to change the numbering.
Bits k; through ks of z, in-
clusive.

A k-bit slice of x, with the
least significant bit at e.

k’s denote integer constants, e’s denote expressions,
and z’s may denote values or locations. In all cases
the size of the slice is known statically, so its type
can be computed automatically. We use the Greek
letter o to stand for any of these slice specifications.

Given a slice specification o, SLICE, is an over-
loaded function that maps locations to locations or
values to values. The illusion that slices are loca-
tions is implemented by rewriting, according to the
following rules:

@ [k‘l . k}g]

@[k bits at €]

FETCH(SLICE, [)
SLICE, !l + n

++ SLICE, (FETCH/)
— | < bitInsert,(FETCHI,n)

where [ is a location and n is a value. After the
rewriting, all slices operate on bit vectors, and all
fetches and stores operate on true locations. Invoca-
tion of user-defined fetch and store methods takes
place after the rewriting of slices. This ordering
makes it possible to use fetch and store methods to
define cell-like abstractions, while ensuring that the
meaning of slicing is always consistent with respect
to such abstractions.
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Implicit aggregation

A-RTL provides the special syntax $space [offset]
for references to mutable cells. The offset can be
an arbitrary expression, but the space must be a lit-
eral name, so that \-RTL can identify the storage
space and use appropriate fetch and store methods.
To make this cell a location, \-RTL applies an ag-
gregation, which is also associated with the storage
space as a method. The default method is the iden-
tity aggregation, which permits only “aggregates”
of a single cell.

When little-endian, big-endian, or other aggre-
gations are used, \-RTL will infer the size of the
aggregate. We have not yet determined the rules
to be used for the inference, but we hope at least
to support the automatic inference that four 8-bit
bytes must be aggregated to form a value that goes
into a 32-bit register.

The implementation of A-RTL used in subsequent
chapters does not support aggregation.

Overview of \-RTL

From the point of view of external tools, the output
of a A-RTL specification is a set of bindings of values
to attributes of constructors. The part of \-RTL
used to specify values is a pure functional language
without recursion. The implementation used in this
report is untyped, but A-RTL will eventually use a
polymorphic typed calculus. Many features of A-
RTL are inspired by Standard ML.

To describe syntax, we use an EBNF gram-
mar with standard metasymbols for {sequences},
[optional constructs], and (alternative | choices).
We use large metasymbols to help distinguish them
from literals. Terminal symbols given literally ap-
pear in typewriter font. Other terminal symbols
and all nonterminals appear in italic font. Excerpts
from the grammar begin with the name of a non-
terminal followed by the = (“produces”) symbol.

A \-RTL specification is a sequence of structures.
A-RTL uses structures to organize the name space of
values, and structures will play a role in a modules
system for A-RTL. A value x declared in a struc-



ture S is visible within S as just x, but outside S
it can only be referred to as S.x. Structures are
written

structure =
structure struct-name is struct {declaration} end

Constructors and storage spaces occupy their own
individual name spaces, which are flat. RTL oper-
ators are also expected to occupy a separate, flat
name space, but within \-RTL they are not dis-
tinguished from other kinds of values. Eventually,
A-RTL will check that the same name is not used
to declare distinct RTL operators in two different
structures.

Declarations are either top-level or inner decla-
rations. Inner declarations may appear anywhere,
but top-level declarations may appear only outside
of function and value definitions. Top-level decla-
rations appear only in contexts that guarantee they
will be evaluated exactly once.

Top-level declarations

A-RTL’s top-level declarations may introduce struc-
tures, locations, storage spaces, RTL operators, or
bindings to attributes of constructors.

Storage spaces are introduced by storage; they
name the storage space, give its granularity (width
of an individual cell) and size (number of cells), and
possibly fetch, store, or aggregation methods.

RTL operators are introduced by:

declaration =
rtlop (operator-name | L {operator-name} ])

For example,

rtlop bit
rtlop [= <>]

introduces three new RTL operators.

In the current implementation of A-RTL, rtlop
introduces an arbitrary, abstract value. Because it
is the only abstraction mechanism available, it is
sometimes put to odd uses. A future version of
A-RTL will require that the type of the RTL op-
erator(s) be specified. A-RTL will support poly-
morphic operators applicable to arguments of any
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size. This parametric polymorphism will let pro-
grammers use to use the same operator to add both
16- and 32-bit integers. A-RTL will not support
overloading, so a different operator will be required
to add floating-point values.

Attribute bindings are introduced as follows:

declaration =
attribute of {constmctor is ewpression}

attribute =
default attribute of
| attribute (attrjbute-name | default) of

constructor =
opcode ( [operand—name {, operand—name}] )

Each expression must be terminated by a newline; if

an expression doesn’t fit on one line, it must contain

an open parenthesis or brace so that the A\-RTL

compiler knows to continue to the closing delimiter.
For example,

default attribute of
nop() is do_nothing

defines the effect of a no-op.

An expression bound to an attribute must denote
a legal fragment of RTL; in the current implemen-
tation, this means a value, a location, or an RTL.
More precisely, an expression must denote an RTL
template. An RTL template becomes a fragment
of RTL when suitable fragments of RTL are sub-
stituted for the constructor’s operands. An RTL
template is an RTL, except that

e Names of constructor operands may be used
to stand for RTL expressions. (Eventually we
hope to use names of operands to stand for
locations as well as values, but the current im-
plementation does not support this usage.)

e Tuple or record selections from constructor
operands may be used to stand for RTL ex-
pressions.

e Vectors of RTL expressions subscripted by con-
structor operands may be used in place of RTL
expressions.



A tuple or record containing RTL templates is also
considered an RTL template. The most notable
consequence of these rules is that no expression
whose normal form contains a A-abstraction is an
RTL template; A-abstractions must be applied to
arguments.

Eventually there will be a precise, formal defini-
tion of RTL template.

Inner declarations

Inner declarations may appear anywhere a top-level
declaration may appear, and they may also appear
in let-expressions, where they are the only kind
of declaration permitted. Their typical usage is to
bind local values in function bodies. Inner declara-
tions include value bindings, function bindings, and
fixity declarations. Value and function bindings are
written as

declaration =
val value-spec is expression
| fun value-spec argument-pattern is expression

value-spec = name | [ {na,me} ]

The square brackets in value-spec represent A-RTL’s
grouping mechanism, in which the ezpression actu-
ally denotes a sequence of values, and each value in
the sequence is bound of the corresponding name
on the left.

As examples, consider

val do_nothing is RTL.SKIP
fun bool n is n <> 0
val [eq nel is [(=) (<>)]

A-RTL supports user-defined infix operators with
arbitrarily many levels of precedence. Precedence
levels range from 999, which represents the highest
possible precedence (tightest binding) for an infix
operator, down to the most negative integer on the
machine (loosest binding). The syntax is

declaration =
(infixl | infixr | infixn) precedence value-spec

| nonfix value-spec

Infix operators must be declared to be left-associa-
tive, right-associative, or non-associative with other
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operators of the same precedence. For example, we
can make equality testing infix and non-associative
using

infixn 5 [= <>]

A single instance of an infix operator can be made
“nonfix” (treated as an ordinary value) by enclosing
it in parentheses. The nonfix declaration makes
this behavior permanent.

Expressions

A-RTL expressions include records, tuples, integers,
conditionals, and functions (A-abstractions). As
in ML, the juxtaposition of two expressions indi-
cates function application, and function application
has higher precedence than any infiz operator. Fig-
ure 3.1 shows the syntax for expressions.

Grouping

A group may appear in place of an expression any-
where in \-RTL. Whereas an expression denotes a
single value, a group denotes a sequence of values.
All operations except binding distribute over the
group, so if the expression in a declaration contains
a group, then that expression denotes a sequence of
values, no matter how deeply nested the group is.
The most common operations to distribute over a
group are function application and tuple formation.

The usual syntax for a group is a list of expres-
sions in square brackets. The expressions need not
be of the same type. Ordinary function application
is inoperative at the top level of a group, so the
group [f x] is a group containing two values, as is
[f (x)]. To use function application or infix opera-
tors within a group, one must include the whole ap-
plication in parentheses, e.g., [(f x)] or [(£(x))].
In addition to the usual syntax, A-RTL provides two
kinds of special syntax to create groups of integers.
All use square brackets:

expression =
[ {ezpression} ]
| [ expression ..
| [ expression to expression

expression ]

[by exrpression | columns e:vpression] ]



expression =
( expression {, ea:pression} )

| { member-name is ea:pression{, member-name is ewpression} }

| [. expression {, ezpression} .]

| let {declaration} in expression end

| if expression then expression else expression fi
| \ argument-pattern . expression
| expression. member-name

| $ space-identifier [ expression ]
| expression @ [slice-specification]
| expression expression

| identifier

| literal-constant

Tuple

Record

Vector

Local declarations
Conditional
Function
Selection
Location

Slice

Function application
Named value
Constant

Figure 3.1: A-RTL expressions

In the latter two cases, the constituent expressions
must be compile-time constants.

Groups are evaluated left to right, last-in, first-
out, so for example the expression

([a ], [12D)

denotes the same sequence of four expressions as
[(a, 1) (a, 2) (b, 1) (b, 2)]

The evaluation rule and the design of groups in gen-
eral are based on the generator mechanism of the
Icon programming language (Griswold 1982).

The primary role of groups is to make it easy
to specify multiple machine instructions in a sin-
gle attribute binding. This is done by using value-
spec (either a single name or a sequence of names in
square brackets) to form the opcodes of construc-
tors. Multiple value-specs may be used to combine,
for example, a group of operations with a group of
suffixes. Chapters 5 and 6 have examples.

opcode = value-spec{*value-spec}

Lexical conventions

Like identifiers in ML, A-RTL identifiers may be
alphanumeric or symbolic. An alphanumeric iden-
tifier begins with a letter and continues with letters,
digits, underscores, and primes. A symbolic identi-
fier is a sequence of the symbols
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18+/\:<=>7@7 | %Y ;-"#.

Such an identifier may begin with any symbol ex-
cept #.

Identifiers consisting solely of two or more dashes
introduce comments; the comment includes the
dashes and continues to the end of the line. For
example, -— and --- introduce comments, but -->
and --*—- do not. A comment is equivalent to a
newline.

An integer literal is a sequence of decimal digits;
A-RTL has no floating-point literals. A-RTL also
supports hexadecimal literals beginning with Ox,
octal literals beginning with 0, and binary literals
beginning with Ob.

Literals and identifiers preceded by # are intended
to be used to represent widths in A-RTL’s forth-
coming type system; in the current implementation,
they are equivalent to ordinary literals and identi-
fiers.

The initial basis

Most of the RTL-specific content of A-RTL is in the
initial basis, i.e., the collection of predefined func-
tions and values. Figure 3.2 shows A-RTL’s initial
basis.



Boolean constants:

true Truth

false Falsehood

RTL operators and other functions used to create RTLs:

RTL.STORE Takes location and value, produces effect.

RTL.FETCH Fetches value from location.

RTL.SKIP The empty RTL; an effect that does nothing.

RTL.GUARD Takes a Boolean expression and an effect and produces an effect.
RTL.NOT Boolean negation.

RTL.EFFECTS

Functions on vectors:
sub
Vector.spanning

[.x,z+1,...,y.]1.
Vector.foldr
in Standard ML ’97.

Takes two effects (RTLs) and composes them so they take place simultaneously
(list append on list of effects).

Vector subscript, a left-associative infix operator with precedence 5.
A curried function of two arguments. Vector.spanning ¢ y produces the vector

A higher-order function used to visit every element of a vector. Like Vector.foldr

Figure 3.2: A-RTL’s initial basis

Style

A-RTL provides expressive power with few restric-
tions. Writers of specifications use the functions
in A-RTL’s initial basis to create RTLs that corre-
spond to the form prescribed in Chapter 2. Writers
can also introduce new RTL operators. This free-
dom gives us ample scope for experimenting with
different styles of description—as well as ample rope
with which to hang ourselves. We expect our exper-
iments to lead to a library of useful RTL operators,
as well as useful \-RTL functions. Chapter 4 gives
a preliminary collection of RTL operators.

A-RTL provides no looping or recursion con-
structs. Loops whose sizes are known in ad-
vance can be simulated by using Vector.foldr and
Vector.spanning. Because this style will be famil-
iar only to those well versed in functional program-
ming, we expect eventually to provide some syntac-
tic sugar for it.
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Differences between A\-RTL and Stan-
dard ML

Although A-RTL is inspired in large part by Stan-
dard ML, there are significant differences, which
may interest ML programmers. Syntactic differ-
ences include:

e The defining connective is is, not =.
e if expressions must be terminated by fi.

e Identifiers declared infix must be explicitly
identified as left-, right-, or non-associative.

Arbitrarily many levels of precedence are avail-
able.

e Dot notation is used to select elements from
records as well as from structures.

e Comments begin with an identifier consisting
of n dashes, where n is at least 2. Comments
end at the end of a line.



There are also some semantic restrictions:

e There are no side effects (mutation, excep-
tions), so order of evaluation does not matter.

e Functions may not be recursive, so the nor-
mal form of all expressions can be computed
at compile time.

e There are no datatype constructors. As a
corollary, the only patterns used in function
definitions are those that match tuples or
records.

17



18a

18b

18¢

Chapter 4

Basic RTL operators

This chapter describes RTL operators and functions that we expect to be useful for describing many different
machines. As we do throughout this document, we use the noweb literate-programming tool (Ramsey 1994)
to present examples of A-RTL. Noweb extracts the code from the same files used to produce this document,
so we can run the examples through the \-RTL compiler and make sure everything compiles.

A noweb file contains explanatory text interleaved with named “code chunks,” which contain source code
and references to other code chunks. The names of chunks appear italicized and in angle brackets, as in the
following C code:

(summarize the problem 18a)= 18cp
printf ("Inputs are: ");

(for every i that is an input, print i and a blank 18b)

printf ("\n");

(for every i that is an input, print i and a blank 18b)= (18a)

for (i = 1; i < argc; i++)

printf("%s ", argv[il);

The = sign indicates the definition of a chunk. Definitions of a chunk can be continued in a later chunk;
noweb concatenates their contents. Such a concatenation is indicated by a += sign in the definition:
(summarize the problem 18a)+= <18a

printf("Must process %d files\n", argc-1);
noweb adds navigational aids to the document. Each chunk name ends with the number of the page on which
the chunk’s definition begins. When more than one definition appears on a page, they are distinguished by
appending lower-case letters to the page number. When a chunk’s definition is continued, noweb includes
pointers to the previous and next definitions, written “<18a” and “18c».” The notation “(18a)” shows where
a chunk is used.

Because A-RTL does not yet have modules, we use noweb to include the chunk (RTL basics 19a) in our
descriptions of the SPARC and the Pentium.
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4.1 Building RTLs

A-RTL is intended for building RTLs, not analying them, so it doesn’t expose all the structure of RTLs;
single effects, guarded effects, and full RTLs (lists of guarded effects) all have the same type effect. The
initial basis provides ways to create and combine effects. We define a more compact, infix notation for parts
of the basis.

(RTL basics 19a)= 19bp>
val do_nothing is RTL.SKIP -- type will be effect
val --> is RTL.GUARD -- type will be bool * effect -> effect
val <-- is RTL.STORE -- type will be #n loc * #n bits -> effect

infixr 1 -->

infixn 2 <--

In the underlying representation, the semantics of these operations is extended to full RTLs in the obvious
way. For example, RTL.STORE produces an RTL containing a single effect whose guard is true.

We don’t need an explicit FETCH, because fetches are inserted automatically, and we don’t need an explicit
CONST, because \-RTL compiles literal constants into RTL CONST nodes.

We use a semicolon to combine simultaneous effects. We plan eventually to have an andthen operator to
indicate sequential composition of effects, which would presumably be implemented by forward substitution.
Substitution isn’t implemented in the current \-RTL, so we make andthen equivalent to simultaneous effects,
even though this semantics for andthen is incorrect.

(RTL basics 19a)+= <19a 19c>
val ; is RTL.EFFECTS -- type will be effect * effect -> effect

val andthen is ;

infixl O ;

infixl "1 andthen

4.2 Booleans

true, false, and RTL.NOT are the Boolean operators in A-RTL’s initial basis. We prefer to use not to stand
for Boolean negation.

(RTL basics 19a)+= <19b 20c>
val not is RTL.NOT

For writing other Boolean functions A-RTL has only if-then-else-fi, which A-RTL rewrites into suitable
guards. We would like to have connectives andalso and orelse, but introducing them presents a choice
about level of detail: should they be introduced as new RTL operators, whose semantics must be defined
outside of \-RTL, or should they be defined in terms of the existing A-RTL primitives? We would like to
try both alternatives, because they provide different levels of detail in the generated RTLs.

Eventually, A-RTL will have mechanisms to support multiple levels of abstraction, probably by using some
sort of parameterized modules. For now, we resort to some literate-programming tricks that are equivalent
to conditional compilation. noweb can extract this code in two versions, designated simple and full. Code
chunks tagged [simple] and [full] appear only in the corresponding versions, and untagged code chunks
appear in both versions.
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In the simple version, the boolean connectives are left abstract. In the full version, we give them their
standard definitions. The simple version has the advantage that the RTLs are smaller and easier to read,
but the disadvantage that the semantics have to be specified elsewhere. In the full version, these connectives
are expanded to primitives, so they automatically get their proper semantics.

(RTL basics [simple] 20a)= 20e >
rtlop [andalso orelse] -- Boolean connectives

Conditional definition.

(RTL basics [full] 20b)= 20f>
fun andalso (p, q) is if p then q else false fi
fun orelse (p, q) is if p then true else q fi

Conditional definition.

No matter what their definitions, we want these connectives to be left-associative infix operators.

(RTL basics 19a)+= <19c 20dv
infixl 3 orelse
infixl 4 andalso

In the long run, equality and inequality will probably have to have some built-in semantics, but for now,
we leave them abstract.
(RTL basics 19a)+= <20c 20g>
rtlop [= <]
infixn 5 [= <>]
We have chosen to make inequality a primitive RTL operator, although we could have defined it in terms of
equality by writing val <> is \(x,y). not (x = y).
We can convert between booleans and bits. Again we have the choice of making things abstract or concrete.

(RTL basics [simple] 20a)+= <120a 21fp
rtlop bit -- type will be bool -> #1 bits -- turn boolean into bit
rtlop bool -- type will be #1 bits -> bool -- turn bit into boolean

(RTL basics [full] 20b)+= <20b 22ap

fun bit p is if p then 1 else 0 fi
fun bool n is n <> 0

4.3 Integer arithmetic and comparisons

These operations represent integer arithmetic performed on the bit-vector representation. Multiplication
and division come in two flavors. One interprets its operands as unsigned integers; the other interprets
its operands as two’s-complement signed integers. There are two sets of signed division operators because
division may truncate towards —oco (divs and mods) or towards 0 (quots and rems). There is, of course, no
such distinction for unsigned division.

(RTL basics 19a)+= <20d 2la>

rtlop [add subtract neg muls mulu divu modu divs mods quots rems < <= > >=]
-- standard arithmetic operators of several different types
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The intended semantics of add and subtract is “add with carry” and “subtract with borrow.” We define
shorthands for the common case where carry (or borrow) in is 0 and carry out is uninteresting:

(RTL basics 19a)+= <20g 21bp
fun +(n, m) is (add(n, m, 0)).result -- add returns {result, carry}
fun -(n, m) is (subtract(n, m, 0)).result -- subtract returns {result, borrow}

The arithmetic operators obey the usual rules of precedence.
(RTL basics 19a)+= <2la 2lce

infixl 7 [divs mods quots rems divu modu quotu remu]
infixl 6 [+ -]
infixn 5 [< <= > >=]
Comparisons are left abstract instead of being defined in terms of < and =.
We can sign-extend or zero-extend integers. These operators should be polymorphic in the sizes of the
arguments and results.
(RTL basics 19a)+= <21b 21dv
rtlop [sx zx] -- type will be #n bits -> #m bits

4.4 Logical operators

Most processors offer a variety of bitwise operations on bit vectors, including those shown here.

(RTL basics 19a)+= q2lc 2ler
rtlop [and or xor] -- #n bits * #n bits -> #n bits
rtlop com -- #n bits -> #n bits -- ‘complement’ because ‘not’ is boolean
rtlop bitInsert -- {value : #w bits, 1lsb : #k bits} -> #n bits -> #w bits
rtlop bitExtract -- {value : #w bits, lsb : #k bits} -> #n bits

bitInsert and bitExtract insert into or extract from a w-bit (“wide”) value. The thing inserted or
extracted is n bits (“narrow”), and the widths of both wide and narrow values are normally inferred by the
type system. (We may change the types planned for bitInsert and bitExtract.)

There are instructions that manipulate bit fields whose widths aren’t known statically. These computations
can’t be expressed with bitInsert and bitExtract, because we can’t assign a type (width) to the results.
But we can define bitTransfer as a combination extraction and insertion, and in fact, this is the way such
instructions must behave. Even an instruction that extracts k bits from a 32-bit word, where k is not known
until run time, must still insert the result into some storage location of known size—typically a 32-bit word
of all zeros.

(RTL basics 19a)+= <21d 22b>
rtlop bitTransfer

—— {src: {value:#w bits, lsb:#k bits}, dst:{value:#w bits, lsb:#k bits}, width:#j bits} -> #w bits

-- extract width bits from src at lsb, insert into dst at 1lsb

Most processors have shift instructions. We could make the shift operations primitive RTL operators, or
we could define them in terms of bit transfer.

(RTL basics [simple] 20a)+= <20e
rtlop [shl shrl shral
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(RTL basics [full] 20b)+= <20f
fun shl (w, n, k) is
bitTransfer {src is {value is n, 1lsb is 0},
dst is {value is 0, 1lsb is k7,
width is w - k}
fun shrl (w, n, k) is
bitTransfer {src is {value is n, lsb is kJ},
dst is {value is 0, 1lsb is 0},
width is w - k}
fun shra (w, n, k) is
bitTransfer {src is {value is n, lsb is k},
dst is {value is sx n@[1 bit at w-1], 1lsb is 0},
width is w - k}

4.5 Byte order

The current implementation of A-RTL does not support aggregations, but we would like to be able to use
them in our sample specifications, so we define both big- and little-endian aggregations to be the identity
function.

(RTL basics 19a)+= <2le 22c>

fun bigEndian size is \x.x
fun littleEndian size is \x.x

4.6 Undefined effects

The current implementation of A-RTL does not support the kill effects. In a later implementation, we plan

to use the question mark to stand for an “undefined” value. All »-RTL functions and RTL operators will be

strict in this value, and RTL.STORE(loc, ?) will become RTL.KILL loc. We would like to use the question

mark in our example descriptions, even though A\-RTL doesn’t yet have the machinery to give it its eventual

meaning, so we introduce it as a nullary RTL operator.

(RTL basics 19a)+= <22b 22dv
rtlop 7 -- type will be #k bits

4.7 Floating-point arithmetic

Floating-point operations need to come in different families, so for example we could distinguish IEEE 754

floating point from VAX floating point. Right now the name space of RTL operators is flat, so such

distinctions are impossible. It nevertheless seems reasonable to put these operators in a structure. Our

treatment of floating-point operators is not complete; we only sketch some possibilities.

(RTL basics 19a)+= 422¢
structure IEEE754 is struct

(IEEE 75/ floating point 23a)
end
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We use operators surrounded by slashes to designate floating-point arithmetic operations.

(IEEE 754 floating point 23a)= (22d) 23bp>
rtlop [/+/ /-/ /*/ /] -- basic floating-point arithmetic
rtlop [fabs fsqrt] -- special floating-point operators

All these operators will eventually be parameterized by the size (type) of their operands.

When we get a type system, the conversions will be polymorphic in two widths: the argument and result
widths. We may need a whole family of float-to-integer operators in order to account properly for rounding
modes.

(IEEE 75} floating point 23a)+= (22d) <23a 23co
rtlop [i2f £2i] -- conversions to/from integer.

There are the special values £0 and Fo0.

(IEEE 75/ floating point 23a)+= (22d) <23b 23d»
rtlop [pzero mzero] -- plus and minus zero -- type will be #n bits
rtlop [pinf minf] -- plus and minus infinity -- type will be #n bits
There are NaNs.

(IEEE 75} floating point 23a)+= (22d) <23c 23er
rtlop NaN -- type will be function from significand to value

There are four rounding modes required by the standard.
(IEEE 75/ floating point 23a)+= (22d) <23d

structure Round is struct
rtlop [nearest zero down up] -- what to round toward
end
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Chapter 5

Describing the SPARC, Version 8

This chapter illustrates A-RTL by specifying a handful of SPARC instructions. Load and store instructions
illustrate the basic techniques used to move data of different sizes. Logical instructions and add instructions
show simple groups of computational instructions; each group offers a slightly different treatment of condition
codes. Specifications of save and restore instructions illustrate one of several possible treatments of register
windows. In this case we have not yet achieved our goal of separating hardware behavior from software
conventions; our model of register windows describes the abstraction that is presented by the combination
of hardware, calling convention, and operating system.

5.1 Storage spaces

Storage locations manipulated by SPARC instructions include memory and several kinds of registers. We
have little to say about memory other than that the machine is byte-addressed and uses big-endian byte
order.

(SPARC basics 24)= (35¢) 25c>
storage
‘m’ is cells of 8 bits called "memory" aggregate using bigEndian
val bigE is bigEndian -- useful abbreviation

We introduce the abbreviation bigE for cases where we want to write aggregation explicitly.

Integer Registers

We normally expect that a machine’s registers can be modeled as a simple collection of mutable cells, but the
SPARC has two architectural features that don’t fit this model: an immutable register and register windows.
Register 0 is immutable; fetches from register 0 always return zero, and stores into register 0 have no effect.
Registers 1-7 are ordinary mutable cells, but registers 8-31 are aliases for locations in a collection of register
windows. The register windows are overlapping sets of 16 registers; an implementation may provide from
2 to 32 sets. Bits 0-4 of the processor state register constitute a current window pointer (CWP). When
an instruction refers to a register numbered 8-31, the processor uses the CWP and the register number to
identify a window of 16 registers and a register in that window. The SPARC save and restore instructions
manipulate the CWP, as do traps and returns from traps.
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This low-level model would be easy to describe using A\-RTL, but it is not the model used by most compiler
writers. Compiler writers seldom need to use register 0 explicitly, because SPARC assembly languages
provide “synthetic” instructions that use register 0 as needed. Instead of using the detailed semantics of
register windows, compiler writers adhere to the SPARC calling convention, which (with some help from
the operating system) gives the illusion of an infinite collection of register windows, and which allocates one
register window to each activation of each procedure.! The compiler must reserve space on the stack for use
as backing store, and it must use save and restore in procedure prologs and epilogs.

A-RTL is not biased toward any particular model of register windows, and in fact it could be used to specify
different models which might be useful in different situations. Eventually, \-RTL will have a modules system
that will enable us to create different models, at different levels of abstraction, of such things as SPARC
register windows. For this document, we have chosen a fairly abstract model that is convenient for compiler
writers. We hide most of the low-level hardware behavior, and we describe registers (except register 0) as a
simple collection of mutable cells. Section 5.2 shows the details of the model that are needed to specify the
effects of the save and restore instructions.

Dealing with register 0 is fairly simple; there are only two reasonable models. One is the full semantics;
the other is a model which specifies only that register 0 is immutable. The simpler model suffices for some
compilers, and the resulting RTLs are easier to understamd. As in Chapter 4, we use [simple] and [full]
to show the two alternatives.

(SPARC basics [simple] 25a)= 26c >
structure Reg is struct
fun fetch n is $r[n]
fun store (n, v) is n <> 0 --> $r[n] <—- v
(alias functions for in, out, local, and global registers 29a)
end

Conditional definition.

We make register 0 immutable by ensuring that attempts to store into it have no effect. The full semantics
also shows that fetches return 0.

(SPARC basics [full] 25b)= 26b >
structure Reg is struct
fun fetch n is if n = O then O else $r[n] fi
fun store (n, v) is n <> 0 --> $r[n] <—- v
(alias functions for in, out, local, and global registers 29a)
end

Conditional definition.

In this straightforward model of registers, we use these special fetch and store methods, and we also permit
registers to be aggregated into pairs, so we can describe instructions like 1dd.

(SPARC basics 24)+= (35¢) <24 26ar>
storage
’r’ is 32 cells of 32 bits called '"registers"
store using Reg.store
fetch using Reg.fetch
aggregate using bigEndian

1«Optimized leaf procedures” may use their caller’s register window.
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Integer Unit control/status registers

This specification gives a bare minimum of information about special registers. It emphasizes condition
codes.

(SPARC basics 24)+= (35¢) <25¢
storage ’i’ is 6 cells of 32 bits called "IU control/status registers"
locations

[PSR WIM TBR Y PC nPC] is $i[[0..5]1]
Properly speaking, the integer condition codes are part of the processor state register (PSR).
(SPARC basics [full] 25b)+= <25b

structure icc is struct
locations [N Z V C] is PSR@[1 bit at [23 22 21 20]]
end
Because references to bits 20—23 of the PSR can be hard to understand, we would like to refer to the condition
codes more abstractly. Eventually, the A-RTL modules system will provide for such abstractions, but for
now we resort to dirty tricks. We create a nullary RTL operator for each bit, then bind the names to the
locations in an imaginary - space. In the [simple] version, references to, e.g., the N bit come out as $-[N]
instead of $i[0]@[23].
(SPARC basics [simple] 25a)+= <25a
structure icc is struct
storage ’-’ alias bogus is
cells of 32 bits called "bogus space for abstract locations"

rtlop [N Z V C]
locations [N Z V C] is $bogus[[N Z V C]]
end

5.2 SPARC instructions
SPARC addresses and operands

The SPARC has a simple structure for effective addresses and operands. As far as the hardware is concerned,
there are only two addressing modes, depending on whether the immediate bit is used. We’ve chosen to
let the default attribute of the addressing modes be the address, not the location in memory denoted by
that address. The address is the value of register rsi1, plus either the value of register rs2 or the result of
sign-extending a 13-bit immediate value.

(address modes and operands 26d)= (35¢c) 26en
default attribute of
indexA(rsl, rs2) is $rlrsi] + $rlrs2]

dispA (rsil, simm13) is $r[rsi] + sx simmi3

The rmode and imode constructors produce the values used in operands of type reg_or_imm.

(address modes and operands 26d)+= (35¢c) <26d
default attribute of
rmode (rs2) is $rlrs2]

imode (simm13) is sx simmil3
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Load instructions

The SPARC architecture provides for not one but 256 possible address spaces. By default, load instructions
use space 0x0A in user mode and space 0x0B in supervisor mode. The mode is determined by the value of
the S bit in the processor state register. Values from other address spaces may be obtained by using the
“load from alternate space” instructions, but these instructions are privileged. We omit all this complexity
from our description, treating the machine as if it were always in user mode. This omission is partly for
simplicity, but partly because A\-RTL does not deal well with numbered collections of storage spaces.

The specifications of the load-integer instructions give us our first opportunity to factor A-RTL descriptions.
On the left-hand side, the phrases [s u] and [b h] are like for loops, and the carets (~) join parts of
constructor names, so the opcode on the left-hand side expands to the list of constructors 1dsb, 1dsh, 1dub,
and 1duh. Corresponding to [s u] on the right-hand side is the “expression group” [sx zx]. sx and zx
were introduced in Section 4.3 to stand for sign extension and zero extension, respectively. Corresponding
to [b h] is the expression group [#8 #16]. The # sign introduces an integer constant representing a width,
and the effect here is to produce big-endian aggregations of 8 and 16 bits. Combining the two groups specifies
four instructions—signed and unsigned versions of byte and halfword loads.

(instruction defaults 27a)= (35¢) 27bp
default attribute of
1d"[s u]l"[b h] (address, rd) is $rlrd] <-- [sx zx] (bigE [#8 #16] $m[address])

This double factoring works smoothly because the two 2-groups are in the same order on the left- and
right-hand sides.

We use another group to define load and load-double instructions, which don’t require sign extension or
zero extension. For 1dd, two 32-bit registers are implicitly aggregated to hold a 64-bit value.

(instruction defaults 27a)+= (35¢c) <27a 28ap
1d-~["" d] (address, rd) is $r[rd] <-- bigE [#32 #64] $m[address]

The chunks named (instruction defaults 27a) define the default attributes of instructions. We have chosen
to use the default attributes to specify the “main effect” of these instructions, but there are circumstances in
which the processor traps instead of executing this main effect. Traps are not relevant to all specifications, so
we have chosen to give the trap semantics separately, by binding them to an attribute named trap. Again,
with a proper modules system, trap semantics could be omitted from some specifications.

All loads except byte loads could trap if the address is improperly aligned. The load-double also traps if
rd is an odd-numbered register.

(trap semantics 27c)= (35¢c) 28bp
attribute trap of
1d~["" sh uh] (address, rd) 1is alignTrap(address, [4 2 2])
ldd(address, rd) is alignTrap(address, 8); rd@[0] <> 0 --> trap(illegal_instruction)

(SPARC utilities 27d)= (35¢) 29bp
fun alignTrap (address, k) is address modu k <> 0 --> trap(mem_address_not_aligned)

The interaction of the trap semantics with the main semantics is not specified in A-RTL.
The instructions that load floating-point registers or coprocessor registers don’t illustrate anything new,
so we have omitted them from this example specification.
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Store instructions

The store-halfword and store-byte instructions use bit extraction to show what part of the register is stored.

(instruction defaults 27a)+= (35¢c) <27b 28cr
sth (rd, address) is $m[address] <-- $r[rd]@[16 bits at 0]
stb (rd, address) is $ml[address] <-- $r[rd]@[ 8 bits at 0]

st~["" d] (rd, address) is $m[address] <-- bigE [#32 #64] $r([rdl]

The trap semantics for store instructions is the same as for load instructions. A more aggressively factored
specification might merge the trap semantics of the two groups.
(trap semantics 27c)+= (35c) <27c 28d»
st~ ["" h] (address, rd) is alignTrap(address, [4 2])
std(rd, address) is rd@[0] <> 0 --> trap(illegal_instruction); alignTrap(address, 8)

Swapping load-store instructions

Because the semantics of a register-transfer list is that of simultaneous assignment, we can specify swapping
instructions without resorting to temporaries.
(instruction defaults 27a)+= (35¢) <28a 30c>
ldstub(address, rd) is $r[rd] <-- zx $m[address]; $m[address] <-- Oxff
swap (address, rd) is $r[rd] <-- bigE #32 $m[address]; bigE #32 $m[address] <-- $r[rdl]
We plan some experiments to determine under what circumstances we want not to require explicit aggrega-
tion.
Trap semantics for swap is like that for load and store.

(trap semantics 27c)+= (35c) <28b 35b»>
attribute trap of swap(address, rd) is alignTrap(address, 4)

Save and restore instructions

To describe the effects of save and restore, we introduce a fictional storage space w to stand for the
locations where registers are saved. Some of these locations correspond to hardware register windows; others
correspond to reserved locations on the stack.

(register windows 28e)= (35c¢)
storage
‘w’ is cells of 32 bits called "register windows"

’.? alias dot is 1 cell of 32 bits called "register-window pointer"
locations
winptr is $dot[0]
The location called winptr is analogous to the current window pointer (CWP), but they are not identical.
At any moment during the execution of a program, cells $w[0. .winptr-1] hold the contents of registers that
have been saved with previous save instructions. Other cells in w space have undefined contents. Figure 5.1
shows the layout of w space.
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Space available
winptr | for future saves

Recently saved
winptr — 8 local registers

Recently saved
winptr — 16 in registers

Previously
saved registers

Figure 5.1: Layout of w space used to model register windows

The registers have aliases, which are shown in Table 4-1 in the SPARC manual (SPARC 1992). To make it
easier to specify the save and restore instructions correctly, we create functions that implement these aliases.
(alias functions for in, out, local, and global registers 29a)= (25)

fun in’ is $r[n+24]
is $r[n+16]
is $r[n+8]
is $r[n]

We have to use in’ and local’ because in and local are reserved words in A-RTL.

The true behavior of a save instruction is to decrement CWP and to trap if the new value is invalid
(according to the Window Invalid Mask register). The normal trap handler provides the illusion of infinite
register windows, by saving register windows on the stack and by adjusting the WIM register. We model this
illusion as movement of out registers to in registers and movement of in and local registers to the w space.

Global registers are unchanged by save; Figure 5.1 helps clarify what happens to the others.

(SPARC utilities 27d)+= (35¢) «27d 29c>

fun saveQut n is Reg.in’ n <-- Reg.out n

fun savelocal n is $w[winptr+8+n] <-- Reg.local’ n

fun saveln n is $wlwinptr+n] <-- Reg.in’ n

fun local’

n

n
fun out n
n

fun global

We use functions from the built-in Vector structure to create do8 such that do8 f applies £ to the integers

0 to 7 and returns the simultaneous composition of the resulting effects. If this idiom proves useful, we will

provide syntactic sugar for it.

(SPARC utilities 27d)+= (35¢c) <29b 30bp
fun do8 f is Vector.foldr (\(n, effects). f n ; effects) RTL.SKIP (Vector.spanning 0 7)

We would like simply to write

(incorrect instruction specifications 29d)= 30an
save (rsl, reg_or_imm, rd) is (
do8 saveOut; do8 savelLocal; do8 saveln; winptr <-- winptr + 16;
$r[rd] <-- $rlrsi] + reg_or_imm)

Conditional definition.
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but the problem with this specification is that it is ill-formed whenever rd is an “in” register—the explicit
assignment to rd conflicts with the assignment created by do8 saveOut, and there is no way to say which
one takes priority. We do not want to write
(incorrect instruction specifications 29d)+= <29d
save (rsl, reg_or_imm, rd) is (
do8 saveOut; do8 savelocal; do8 saveln; winptr <-- winptr + 16
andthen
$r[rd] <-- $rlrsi] + reg_or_imm)

because the right-hand side of the assignment would use values from the new register window, not from
the old one. One possible, if unpleasant, way out of this dilemna is to guard the assignments created by
saveOut, so that register rd is not touched:
(SPARC utilities 27d)+= (35¢c) <29c¢ 30d»
fun saveRegs rd is
let fun saveOut n is rd <> n+24 --> Reg.in’ n <-- Reg.out n
fun savelLocal n is $wlwinptr+8+n] <-- Reg.local’ n

fun saveln n is $wlwinptr+n] <-- Reg.in’ n
in do8 savelut; do8 savelocal; do8 saveln; winptr <-- winptr + 16
end
(instruction defaults 27a)+= (35¢c) <28c 30er

save (rsl, reg_or_imm, rd) is saveRegs rd; $rl[rd] <-- $rlrsi] + reg_or_imm

We use similar tactics to specify restore.

(SPARC utilities 27d)+= (35¢c) <30b 30f>
fun restoreRegs rd is
let fun restoreQut =n is rd <> n+8 --> Reg.out n <-- Reg.in’ n
fun restorelocal n is rd <> n+16 --> Reg.local’ n <-- $w[winptr-8+n]
fun restoreln n is rd <> n+24 --> Reg.in’ n <-- $w[winptr-16+n]
in do8 restoreOut; do8 restoreLocal; do8 restoreln; winptr <-- winptr - 16
end
(instruction defaults 27a)+= (35¢c) <30c 3le>

restore (rsl, reg_or_imm, rd) is restoreRegs rd; $r[rd] <-- $r[rsl] + reg_or_imm

Logical instructions

The SPARC doesn’t have a bitwise-complement instruction; instead, each logical instruction has a variant

that complements its second operand. Using existing RTL operators, we define functions to represent these

“logical-complement” operations. We use com for bitwise complement; not works only on booleans.

(SPARC utilities 27d)+= (35¢) <30d 3lap
fun [andn orn xnor] (a, b) is [and or xor](a, com b)
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The logical instructions include variants that set condition codes and variants that leave condition codes
unchanged. Because this is a common pattern among SPARC instructions, we define leave_cc and set_cc
to help specify these two kinds of effects. Instructions that do set condition codes typically set the N and Z
bits according to the value of an integer result. There is no single typical treatment of the 0 and C bits, so
we require that values for these bits be passed in.

(SPARC wutilities 27d)+= (35¢) <30f 31b»
fun set_cc(result, overflow, carry) is
icc.N <-- bit (result < 0);
icc.Z <-- bit (result = 0);
icc.V <-- overflow;
icc.C <-- carry

fun leave_cc (result, overflow, carry) is do_nothing

The logical instructions clear overflow and carry.

(SPARC utilities 27d)+= (35¢) <3la 3lce

fun logical_cc (result) is set_cc(result, 0, 0)

The logical instructions are among the SPARC instructions that take the form
® rsl, reg_or_imm, rd

where @ is a binary operator. We define the function binary to get the effect of this common form.
(SPARC utilities 27d)+= (35¢) <31b 31dv
fun binary (operator, rsl, r_o_i, rd) is $r[rd] <-- operator($r[rsi], r_o_i)
This function by itself isn’t sufficient for variants that set the condition codes. binary with cc combines
the main effect with whatever effects are produced by special cc, a code-setting function that is passed in.
If this function is leave_cc, the condition codes won’t be changed.
(SPARC utilities 27d)+= (35¢) <3lc 32bo
fun binary_with_cc (operator, rsl, r_o_i, rd, special_cc) is
let val result is operator($r[rsi], r_o_i)
in $r[rd] <-- result; special_cc result
end

We use factoring and these utility functions to specify all the logical instructions at once.

(instruction defaults 27a)+= (35¢c) <30e 32c>
[and or xor andn orn xmor]~[cc ""] (rsl, reg_or_imm, rd) is
binary_with_cc([and or xor andn orn xnor], rsl, reg_or_imm, rd, [logical_cc leave_cc])

Add instructions

Our treatment of the add instructions is similar to our treatment of the logical instructions, except
e These instructions can set the overflow and carry bits, and
e Addition is a trinary operator, because there may be “carry in.”

Overflow semantics is a bit tricky, so in the [simple] version of the specification we leave it abstract.
(SPARC utilities [simple] 31f)= 33c>
rtlop add_overflows

Conditional definition.

31



32a

32b

32¢

32d

(SPARC utilities [full] 32a)= 34ap
fun add_overflows (x, y, c) is
let val {result, carry} is add(x, y, c)
in x@[31] = y@[31] andalso x@[31] <> result@[31]
end

Conditional definition.

An add-like operator takes three arguments and returns two results, so we can’t used binary with cc.
The main effect always takes one result and stores it in rd, plus there may be a secondary effect on the
condition codes. This secondary effect requires all the operands.

(SPARC wutilities 27d)+= (35¢) <31d 32dv
fun add_like (operator, rsl, operand2, operand3, rd, special_cc) is
let val main is (operator($r[rsl], operand2, operand3)).result
in $r[rd] <-- main; special_cc ($r[rsl], operand2, operand3)
end
fun add_cc (x, y, c) is
let val {result, carry} is add(x, y, c)
in set_cc(result, bit(add_overflows(x, y, c)), carry)
end

These functions suffice to specify the add instructions, but the naming of the instructions makes the factoring
a bit tricky. A 4-group on the left-hand side corresponds to two 2-groups on the right-hand side. Groups
are evaluated in left-to-right LIFO order, so the rightmost group varies most rapidly, and so for example the
addcc constructor corresponds to the use of 0 for operand3 and the use of add_cc for special cc.

(instruction defaults 27a)+= (35¢c) <3le 33bp

[add addcc addx addxcc] (rsl, reg_or_imm, rd) is
add_like(add, rsl, reg_or_imm, [0 (icc.C)], rd, [leave_cc add_cc])

One might wish that icc.C did not require parentheses here.

Multiply instructions

The multiplication and division instructions treat a general-purpose register and the Y register as a single
64-bit register. The Reg64 structure shows how to use such a pair to hold a 64-bit value. To put the value
in the pair, we put the most significant 32 bits in the Y register and the least significant 32 bits in the
general-purpose register. To recover the value, we zero-extend the general-purpose register to 64 bits, then
insert the contents of the Y register in place of the most significant 32 bits (which we know to be zeroes).
(SPARC utilities 27d)+= (35c) <32b 33an
structure Regb4 is struct
fun set (reg, n) is Y <-- n@[32 bits at 32]; $rlreg] <-- n@[32 bits at 0]
fun get reg is bitInsert {value is zx $rlregl, 1lsb is 32} Y
end
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The multiply instructions produce a 64-bit result, and they have their own way of setting condition codes,
so we define another pair of auxiliary functions.
(SPARC utilities 27d)+= (35¢) <32d
fun mul_like (operator, rsl, r_o_i, rd, special_cc) is
let val result is operator($r[rsi], r_o_i)
in Reg64.set(rd, result); special_cc result
end
fun mul_cc(result) is set_cc(result, ?, ?)

An undefined, rather than unspecified, value is the right thing for the V and C bits, because the manual
says that “specification of this condition code may change in a future revision to the architecture. Software
should not test this condition code.”
(instruction defaults 27a)+= (35¢c) <32c 34b»
[u s]"mul~["" cc] (rsl, reg_or_imm, rd) is
mul_like([mulu muls], rsl, reg_or_imm, rd, [leave_cc mul_cc])

Branch on integer condition codes

The SPARC processor can branch on any of 16 conditions, each of which is a function of the 4 condition-code
bits. Here, we give the tests abstractly, without showing the functions. The val declaration of the 16 tests
hides the previous declaration of the same identifiers as RTL operators.
(SPARC utilities [simple] 31f)+= <31f
structure IccTest is struct
rtlop [A N NE E G LE GE L GU LEU CC CS POS NEG VC VS]
-- type is function from integer condition codes to boolean
val [A N NE E G LE GE L GU LEU CC CS POS NEG VC VS] is
[ANNEEGLEGEL GU LEU CC CS POS NEG VC VS] icc
-- functions are applied to icc, and results are boolean
end
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Here, we define the test conditions as specified in the manual. We let Z, N, V, and C stand for the proper
bits within the condition code, and we use or, xor, and not as bit operations, not boolean operations.
Finally, after all the bit computations, we use the utility function bool to turn the result into a boolean, so
it can be used as a guard.

34a (SPARC utilities [full] 32a)+= <32a
structure IccTest is struct
val [ANNEE G LE GE L GU LEU CC CS POS NEG VC VS] is
let val [Z N V C] is [(icc.Z) (icc.N) (icc.V) (dicc.C)]

val not is com -- make usage conform to manual
infixn 3 [or xor]
in bool [ 1 0
(not 2) Z
(not (Z or (N xor V))) (Z or (N xor V))
(not (N xor V)) (N xor V)
(not (C or Z)) (C or 2Z)
(not C) C
(not N) N
(not V) V]
end

end

The way we specify the branch instructions may look a bit odd, because the selection of a condition, which
we are used to thinking of as a postfix notation like xz.A, becomes an ordinary functions by virtue of being
parenthesized, e.g., (.A).? These functions are then grouped and applied to IccTest. The result of the
application is a group of tests, each of which is the appropriate member of the IccTest structure. That
group is then used to guard an assignment to nPC, which models a delayed branch.
34b (instruction defaults 27a)+= (35¢) <33b 35ar
b"[a n ne e g le ge 1 gu leu cc cs pos neg vc vs] (target, annul) is
let val conditionOf is [(.A) (.N) (.NE) (.E) (.G) (.LE) (.GE) (.L)
(.6u) (.LEU) (.CC) (.CS) (.POS) (.NEG) (.VC) (.VS)]
in condition0f IccTest --> nPC <-- target
end

To specify when the instruction in the delay slot should be annulled, we define an attribute annul _delay.
Annuling occurs only if the annul bit is set. For the conditional branches, there is an additional requirement
that the branch not be taken.

34c (other attributes of instructions 34c)= (35c¢)
attribute annul_delay of
b"[_ _ne e g le ge 1 gu leu cc cs pos neg vc vs] (target, annul) is
(annul <> 0 andalso
not ([(IccTest.A) (IccTest.N) (IccTest.NE) (IccTest.E)
(IccTest.G) (IccTest.LE) (IccTest.GE) (IccTest.L)
(IccTest.GU) (IccTest.LEU) (IccTest.CC) (IccTest.CS)
(IccTest.P0S) (IccTest.NEG) (IccTest.VC) (IccTest.VS)]))
[ba bn] (target, annul) is annul <> 0

2It’s possible that we should drop this notation in favor of the somewhat clearer (\x.x.A).
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Call and jump instructions

Both call and jump instructions save the current value of the program counter.

(instruction defaults 27a)+= (35¢) <34b
call (target) is nPC <-- target; Reg.out 7 <-- PC
jmpl (address, rd) is nPC <-- address; $r[rd] <-- PC

(trap semantics 27c)+= (35¢c) <28d
attribute trap of jmpl (address, rd) is alignTrap(address, 4)

5.3 Putting it all together

This code chunk is expanded into our A-RTL description of the SPARC. Actually, it is expanded into
two different descriptions, depending on whether the [simple] or [full] alternative is chosen. The Sparc
structure includes not only the code from this chapter but also the (RTL basics (conditional)) from Chapter 4.

(sparc.rtl 35¢)=
structure Sparc is struct
(RTL basics (conditional))
(SPARC basics 24)
(register windows 28e)
(address modes and operands 26d)
(window dressing for trap semantics 35d)
(SPARC wutilities 27d)
default attribute of
(instruction defaults 27a)
(other attributes of instructions 34c)
attribute trap of
(trap semantics 27c)
end

Code written to file sparc.rtl.

All that is left to do is to define what we mean by trap. Ideally, we would like a A\-RTL abstraction
mechanism that would let us define trap as “an unspecified function from a 7-bit code to an effect.” Without
a type system or a modules system, we have to specify a concrete effect. Rather than try to specify the
complete semantics of traps, we model a trap as an assignment to a nonexistent location.

(window dressing for trap semantics 35d)= (35¢) 35er
storage ’t’ is 1 cell of 7 bits called "bogus trap value"

fun trap k is $t[0] <-- k

These bindings include only the “trap type” of a handful of traps. We have omitted trap priorities.
(window dressing for trap semantics 35d)+= (35¢) <35d

val [data_store_error

illegal_instruction
mem_address_not_aligned

tag_overflow
1 is [0x2b 0x02 0x07 0x0al -- 7-bit constants to be passed to trap
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Chapter 6

Describing the Intel Pentium

This chapter shows how we use \-RTL to describe some aspects of the Pentium instruction set that don’t
have obvious analogs on the SPARC. Most Pentium instructions come in byte, word (16-bit), and doubleword
variants, and these variants treat parts of the Pentium registers as first-class locations. We show how to
work with these locations and how to give them their usual names. A single effective address can refer to
different parts of a register depending on the opcode with which it is used, so we specify the meanings of
effective addresses as triples from which one element is selected depending on context.

By a mixture of opcodes and instruction prefixes, the Pentium offers many variants of each basic operation,
so factoring the specification is a concern. We use the logical instructions to illustrate aggressive factoring,
different notations for instructions that implement binary operations, and a slightly different treatment of
condition codes.

The large-scale structure of the Pentium description resembles that of the SPARC description, except that
we add some examples that use infix and.

(intel.rtl 36)=

structure Pentium 1is struct

(RTL basics (conditional))
(basics 37a)
(effective-address utilities 39¢)
(effective addresses 40a)
val [OF CF AF SF ZF PF] is [(Reg.0F) (Reg.CF) (Reg.AF) (Reg.SF) (Reg.ZF) (Reg.PF)]
(utilities 39d)

local
infixl 3 and
in
default attribute of (instruction defaults using infiz and 41b)
end
default attribute of (instruction defaults 43a)
end

Code written to file intel.rtl.
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6.1 Storage spaces

We begin with the basics—registers and memory. The Intel registers require no special fetch or store methods.
The machine uses little-endian byte order.
(basics 37a)= (36) 37bp
storage
’r’ is 8 cells of 32 bits called "registers"
’m’ is cells of 8 bits called "memory"
aggregate using littleEndian

Registers

In the Intel architecture, parts of registers have their own names. Figure 6.1 shows the various parts of the

general-purpose registers and the names used to refer to them. We put the definitions for the registers into

their own A-RTL sub-structure so we can more easily manage the name space.

(basics 37a)+= (36) <37a
structure Reg is struct

(registers 37c)
end

It is straightforward to define these locations in A-RTL.

(registers 37c)= (37b) 37d»
locations
[ EAX ECX EDX EBX ESP EBP ESI EDI ] is $r[[0..7]]
-- EAX is $r[0], etc...

[ AX CX DX BX SP BP SI DI ] is $r[[0..7]] @ [0..15]

[ AL CL DL BL ] is [EAX ECX EDX EBX] @ [8 bits at 0]
[ AH CH DH BH ] is [EAX ECX EDX EBX] @ [8 bits at 8]

Dealing with the instruction encoding is more complex. Registers are referred to by number, but as can
be seen from Figure 6.1, the number doesn’t uniquely determine the location. In fact, a register number
maps to one of three locations, depending on context. These three arrays specify which register, or part
thereof, is denoted by which number in which context:

(registers 37c)+= (37b) <37c 39apr
val byte is [. AL, CL, DL, BL, AH, CH, DH, BH .]

val word is [. AX, CX, DX, BX, SP, BP, SI, DI .]

val dword is [. EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI .]

To find out which location is denoted by a register number, we use the number to index the array chosen to
represent the proper context.
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Register

AH

AL

32

16

EAX

CH

CL

32

16

ECX

DH

DL

32

16

EDX

BH

BL

32

16

EBX

Sp

32

16

ESP

BP

32

16

EBP

SI

32

16

ESI

DI

32

16

EDI

Figure 6.1: Intel Pentium registers
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Status and Control Registers

The Pentium has two 32-bit status and control registers, EFLAGS and EIP. EIP is the instruction pointer.
EFLAGS is a collection of 1-bit status flags and 1- or 2-bit control and system flags.
39 (registers 37c)+= (37b) <«37d
storage
’c’ is 2 cells of 32 bits called "control registers"

locations
[ EFLAGS EIP ] is $c[[0..1]]

What are commonly called condition codes are referred to as status flags in Intel documentation. The
Pentium has six.
39b (registers [full] 39b)=
locations
[ CF PF AF ZF SF OF 1 is EFLAGS @ [1 bit at [0 2 4 6 7 11]]
-- carry parity auxiliary-carry zero sign overflow

Conditional definition.
In the simplified specification, we pretend that flags occupy their own storage space.
39¢ (registers [simple] 39c)=
storage ’F’ is 6 cells of 1 bit called "abstraction representing flag bits"
locations [ CF PF AF ZF SF OF 1 is $F[[0..5]]

Conditional definition.

Most instructions set flags in stylized ways, as shown in Table 3-2 on page 3-14 of the Pentium manual
(Intel 1993). In particular, the values of SF, ZF, and PF are determined by simple tests of the result of an
operation. We capture this common semantics in the A-RTL function set_flags. OF, AF, and CF are set
based on conditions that are different for different kinds of instructions, so we pass their values to set_flags.
We pass a record, not a tuple, to set_flags, so the order in which values are given does not matter.

39d (utilities 39d)= (36) 4lan
rtlop parity -- (number of bits set) mod 2
fun set_flags {result, o, a, c} is
SF <-- bit (result < 0);
ZF <-- bit (result = 0);
PF <-- bit (parity (result@[0..7]) = 0);
OF <-- o; AF <-- a; CF <-- ¢

Defining the other flags within EFLAGS is straightforward, and they are omitted from this example.

Effective addresses

Within an effective address, a register number may denote one of three locations, depending on context. We
define functions regb, regw, and regd to be used in these contexts.

39 (effective-address utilities 39e)= (36) 40er
fun regb n is Reg.byte sub n -- returns an 8-bit location
fun regw n is Reg.word sub n -- returns a 16-bit location
fun regd n is Reg.dword sub n -- returns a 32-bit location
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The context is usually determined by the opcode, not within the effective address itself. We would never-
theless like an effective address to have a denotation (a default attribute) independent of any context. Our
solution to this problem is to let the denotation be a record with three elements—one for each context. The
R function creates such a record from a register number. We name the elements b, w, and d to stand for the
byte, word, and doubleword locations.

(effective addresses 40a)= (36) 40bo

fun R n is {b is regb n, w is regw n, d is regd n}

An address in memory also stands for one of three locations, depending on context. (Because a location
includes size as well as address, we get one byte, two bytes, or four bytes, all at the same address.) The
M function does for memory what R does for registers: turn a number into a collection of locations, one of
which will be used based on context.

(effective addresses 40a)+= (36) <40a 40c>

fun M address is { b is littleEndian #8 $m[address]

, W is littleEndian #16 $m[address]
, d is littleEndian #32 $m[address]
}

Finally, in order to make immediate operands look like register or memory operands, we define an I
function, which creates a record that provides the same immediate value, no matter what the context.
(effective addresses 40a)+= (36) <40b 40d>

fun I immed is { b is immed, w is immed, d is immed }

Effective addresses denote registers or memory locations.

(effective addresses 40a)+= (36) <40c
default attribute of
Indir (r) is M (regd r)
Disp8 (d, r) is M (sx d + regd r)
Disp32 (d, r) is M (sx d + regd r)
Index ( base, index, ss) is M (regd base + regd index << ss)
Index8 (d, base, index, ss) is M (regd base + sx d + regd index << ss)
Index32 (d, base, index, ss) is M (regd base + sx d + regd index << ss)
ShortIndex (d, index, ss) is M ( sx d + regd index << ss)
Abs32 (a) is M a
Reg (r) isRr
We define C notation for 32-bit shifts.
(effective-address utilities 39e)+= (36) <139

val [>> <<] is \(n, k).[shrl shl1](32, n, k)
infixl 8 [>> <«]
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41c

Instructions

The Pentium architecture provides more opportunities for factoring than does the SPARC. Most instructions
come in three size variants, and each variant uses one of the three contexts. These variants would be tedious
to specify repetitiously, so we use A-RTL’s higher-order functions and generators to reduce repetition. A
very common pattern of execution is the “two-operand instruction,” which we can write

l<lor

where @ is a generic binary operator, [ is an effective address dependent on context, and r could be a
context-dependent effective address or an immediate value that has been “put in context” by the I function.
The A-RTL function 11r embodies this pattern of computation. It takes two (curried) arguments: the
triple (/, ®,r), and a size function that determines the context by choosing the b, w, or d element from each
operand record.!
(utilities 39d)+= (36) <39d 42ap
fun 1llr (left, op, right) is \size. size left <-- op(size left, size right)
val [b w d] is [(.b) (.w) (.d)]
We also define functions b, w, and d to be used as size. The parentheses around .b, .w, and .d are required
because record-field selection is normally a postfix operation.

Logical instructions

The Pentium has 42 instructions that implement the three logical operations AND, OR, and XOR. (A-RTL
counts different size variants as different instructions.) All these instructions have side effects on the status
flags (condition codes) as well as the [ < [ @ r effect. This section shows progressively more aggressive ways
to use A-RTL to describe such large groups of similar instructions.

In A\-RTL, one can declare any identifier to be an infix operator. Infix operators can be convenient when
specifying single instructions, as shown in the specification of these three variants of AND, which operate on
the A register.

(instruction defaults using infiz and 41b)= (36) 4lcv
ANDiAL (i8) is Reg.AL <-- Reg.AL and 1i8
ANDiAX (i16) is Reg.AX <-- Reg.AX and 1i16
ANDiEAX (i32) is Reg.EAX <-- Reg.EAX and 1i32

Infix notation is less convenient when describing groups of instructions. Here we use the 11r function
defined above to define some variants that work on two or three sizes of values. The parentheses around
(and) convert it from an infix operator to an ordinary value that can be passed as a parameter to 11r.

(instruction defaults using infiz and 41b)+= (36) <41b 42b>
ANDi ~[b w d] (addr, i) is 1lr (addr’, (and), I i) [b w d]
ANDio~[w d]"b (addr, i) is 1lr (addr’, (and), I (sx i)) [ w dl
ANDmr~[b ow od] (addr, reg) is 1llr (addr’, (and), R reg) [b w d]
ANDrm~[b ow od] (addr, reg) is 1llr (R reg, (and), addr’) [b w d]

IThis function won’t work quite the way we want under a Hindley-Milner type system, because some uses require the size
parameter to be polymorphic. The problem can be corrected by making size, b, w, and d pairs, and by applying one element
to left and another to right.
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The I and R functions create three-element records that are selected from by the size functions also passed
to 11r. Groups in square brackets are used to define multiple variants at once. Each variant uses either b,
w, or d as a size function.

We would like the parameter addr also to represent a three-element record, since that is the type of the
default attribute of an effective address, as defined in Section 6.1. Unfortunately, the current implementation
of A-RTL has no type information, and it cannot infer that addr must represent a record containing locations.
We therefore use the bogus value addr’ in place of the address parameter addr. When A-RTL is improved,
these definitions will go away, and addr’ will be replaced with addr.

(utilities 39d)+= (36) <4la 42c»
rtlop stands_for_addr

val addr’ is M stands_for_addr

The 11r function helps factor the specification, but the ordinary function-application syntax is not very
evocative of what is going on. Here, we use the infix operators :=, <, and > with non-standard meanings,
creating a sort of “mixfix” notation that is more suggestive of the semantics:

dst :=1<@>r.
We use the notation first, then define it.
(instruction defaults using infiz and 41b)+= (36) <4lc
ANDiAL (i8) is Reg.AL <-- Reg.AL and i8
ANDiAX (i16) is Reg.AX <-- Reg.AX and 1il6
ANDiEAX (i32) is Reg.EAX <-- Reg.EAX and 1i32
ANDi~[b w 4] (addr, i) is bin (addr’ := addr’ <(and)> I i) [b w dl]
ANDio~[ w d]°b (addr, i) is bin (addr’ := addr’ <(and)> I (sx 1)) [ w d]
ANDmr~[b ow od] (addr, reg) is bin (addr’ := addr’ <(and)> R reg) [b wdl
ANDrm~[b ow od] (addr, reg) is bin (R reg := R reg <(and)> addr’) [b w dl

We implement the notation by defining :=, <, and > to build up records, then defining bin to create the
effect describing the assignment. Since < and > have existing definitions from Chapter 4, we save those
definitions in 1t and gt.

(utilities 39d)+= (36) <42a 43bp
nonfix [< >]

val [1t gt] is [< >] -- save these for later

fun < (1, operator) is { 1 is 1, operator is operator }

fun > ({1, operator}, r) is { 1 is 1, operator is operator, r is r }

fun := (dst, {1, operator, r}) is { dst is dst, 1 is 1, operator is operator, r is r}

infixn 10 <

infixn 11 >

infixn 12 :=

fun bin {dst, 1, operator, r} is \size . size dst <-- operator (size 1, size r)
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It turns out that OR and XOR have the same structure as AND, so we factor the description to include
those instructions as well. Once we do that, there’s no point in making the operators infix.

(instruction defaults 43a)= (36) 44ar
[AND OR XOR]“iAL (i8) is Reg.AL <-- [and or xor] (Reg.AL, i8)
[AND OR XOR]"iAX (i16) is Reg.AX <-- [and or xor] (Reg.AX, i16)
[AND OR XOR]"iEAX (i32) is Reg.EAX <-- [and or xor] (Reg.EAX, 1i32)
[AND OR XOR]"i"[b w d](addr, i) is

bin (addr’ := addr’ <[and or xor]> I i) [b w d]
[AND OR XOR]"i"[ow od]~b (addr, i) is

bin (addr’ := addr’ <[and or xor]> I (sx i)) [ w d]
[AND OR XOR] mr~[b ow od] (addr, reg) is

bin (addr’ := addr’ <[and or xor]> R reg) [b wdl
[AND OR XOR]"rm~[b ow od] (addr, reg) is

bin (R reg := R reg <[and or xor]> addr’) [b wdl

Now that we have machinery in place, a minor extension will enable us also to specify the effects of these
instructions on the status flags (condition codes). Section 4.4.1 of the Pentium manual says “The AND, OR,
and XOR instructions clear the OF and CF flags, leave the AF flag undefined, and update the SF, ZF, and
PF flags.” The function logical flags implements this behavior.

(utilities 39d)+= (36) <42c 43cp

fun logical_flags n is set_flags {result is n, o is 0, ¢ is 0, a is 7}

In our description of the SPARC, we defined a “main effect” function like bin and passed it a function
that set the condition code. Here, we use a slightly different approach—we define bin’ to return both the
main effect and the result of the instruction, and we pass bin’ and its arguments to a function that sets the
condition code.

(utilities 39d)+= (36) <43b 43dw>
fun bin’ {dst, 1, operator, r} is
\size .
let val result is operator (size 1, size r)
in A{result is result, effect is size dst <-- result}
end

logical combines the “main effect” and the effects on the flags.

(utilities 39d)+= (36) <43c 44cp
val logical is \main.\arg.\size.
let val {result, effect} is main arg size
in effect; logical_flags result
end
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Here’s the final definition of 42 Pentium instructions, including their effects on the flags. We have re-cast
the first three groups so we can apply logical. Because Reg.AL represents a single location, not a triple,
we use \x.x (the identity function) as a “size selector.” The same trick applies to Reg.AX and Reg.EAX.

44a (instruction defaults 43a)+= (36) <43a 44bp

[AND OR XOR]"iAL (i8) is

logical bin’ (Reg.AL := Reg.AL <[and or xor]> i8) (\x.x)
[AND OR XOR]“iAX (i16) is

logical bin’ (Reg.AX := Reg.AX <[and or xor]> i16) (\x.x)
[AND OR XOR]iEAX (i32) is

logical bin’ (Reg.EAX := Reg.EAX <[and or xor]l> i32) (\x.x)
[AND OR XOR]"i"[b w d](addr, i) is

logical bin’ (addr’ := addr’ <[and or xor]> I i) [b wdl
[AND OR XOR]"i~[ow od]"b (addr, i) is

logical bin’ (addr’ := addr’ <[and or xor]> I (sx 1)) [ w dl
[AND OR XOR]"mr~[b ow od] (addr, reg) is

logical bin’ (addr’ := addr’ <[and or xor]> R reg) [b wdl

[AND OR XOR]“rm~[b ow od] (addr, reg) is
logical bin’ (R reg :

R reg <[and or xor]> addr’) [b w dl

The remaining logical instruction, NOT, comes in only three variants, and it does not affect the condition
codes.

44b (instruction defaults 43a)+= (36) <44a
NOT"[b ow od] (addr) is unary (com, addr’) [b w dl

44c (utilities 39d)+= (36) <43d
fun unary (op, v) is \size . size v <-- op (size v)
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Chapter 7

Index

The indices are split into two pieces, one for the SPARC and one for the Intel. We’ll combine them one day.

7.1 List of chunks

(for every i that is an input, print i and a blank 18b)
(IEEE 754 floating point 23a)
(RTL basics 19a)

(RTL basics [full] 20b)

(RTL basics [simple] 20a)
(summarize the problem 18a)
(address modes and operands 26d)
(alias functions for in, out, local, and global registers 29a)
(incorrect instruction specifications 29d)

(instruction defaults 27a)

(other attributes of instructions 34c)

(register windows 28e)

(RTL basics (conditional))

(SPARC basics 24)

(SPARC basics [full] 25b)

(SPARC basics [simple] 25a)

(SPARC utilities 27d)

(SPARC utilities [full] 32a)

SPARC utilities [simple] 31f)

sparc.rtl 35c)

trap semantics 27c)

window dressing for trap semantics 35d)

basics 37a)

effective addresses 40a)

effective-address utilities 39e)

instruction defaults 43a)

N~ o~~~ o~~~
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(instruction defaults using infix and 41b)
(intel.rtl 36)

(registers 37c)

(registers [full] 39b)

(registers [simple] 39c)

(RTL basics (conditional))

(utilities 39d)

7.2

+:  2la, 21b, 26d, 29a, 29b, 29d, 30a, 30b, 30c,
30d, 30e, 40d

-1 18c, 21a, 21b, 22a, 23a, 26¢, 28e, 30d, 35e, 39b,
39e

-->: 19a, 25a, 25b, 27c, 27d, 28b, 30b, 30d, 34b

/: 23a, 23b, 26a

/*/: 23a

/+/: 23a

/-/: 23a

<: 18b, 20g, 21b, 31a, 39d, 42b, 42c, 43a, 44a

<--: 19a, 25a, 25b, 27a, 27b, 28a, 28¢, 29b, 29d,
30a, 30b, 30c, 30d, 30e, 31a, 31c, 31d, 32b, 32d,
34b, 35a, 35d, 39d, 41a, 41b, 42b, 42c, 43a, 43c,
44c

<=: 20g, 21b

<>: 20d, 20f, 25a, 25b, 27c, 27d, 28b, 30b, 30d,
32a, 34c

> 20g, 21b, 42b, 42c, 43a, 44a

>=: 20g, 21b

?: 22c, 33a, 43b

add: 20g, 21a, 32a, 32b, 32c

and: 21d, 23c, 30f, 31e, 33c, 36, 41b, 41c, 42b,
43a, 44a

andalso:

Identifier index

20a, 20b, 20c, 32a, 34c

andthen: 19b, 30a

bigEndian: 22b, 24, 25c

bit: 20e, 20f, 22a, 26b, 31a, 32b, 35e, 39b, 39c,
39d, 39e

bitExtract:

bitInsert: 21d, 32d

bitTransfer: 2le, 22a

bool: 19a, 20e, 20f, 34a

com: 21d, 30f, 34a, 44b

divs: 20g, 21b

divu: 20g, 21b

21d
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do_nothing: 19a, 3la
down: 23e
fabs: 23a
f£2i: 23b
fsqrt: 23a
IEEE754: 22d
i2f: 23b
littleEndian:
23c
20g, 21b
20g, 21b, 27d

20g, 33b

20g, 33b

mzero: 23c

NaN: 23d

nearest: 23e

neg: 20g, 34b, 34c

not: 19c, 34a, 34c

21d, 30f, 31le, 34a, 43a, 44a
20a, 20b, 20c

23c

22b, 37a, 40b
minf:
mods:
modu:
muls:
mulu:

or:

orelse:

pinf:

pzero: 23c

quots: 20g, 21b

rems: 20g, 21b

Round:_égg

shl: 21f 22a, 40e

shra: 21f, 22a

shrl: 21f, 22a, 40e

subtract: 20g, 2la

sx: 2lc, 22a, 26d, 26e, 27a, 40d, 41c, 42b, 43a,
44a

up: 23e

xor: 21d, 30f, 31e, 34a, 43a, 44a

zero: 23c, 23e, 39b

21c, 27a, 28c, 32d

zX:



+ 2la, 21b, 26d, 29a, 29b, 29d, 30a, 30b, 30c,
30d, 30e, 40d

-: 18c, 21a, 21b, 22a, 23a, 26c, 28e, 30d, 35e, 39b,

39
-->: 19a, 25a, 25b, 27c, 27d, 28b, 30b, 30d, 34b
/: 23a, 23b, 26a
<: 18b, 20g, 21b, 31a, 39d, 42b, 42c, 43a, 44a
<--: 19a, 25a, 25b, 27a, 27b, 28a, 28c, 29b, 29d,

30a, 30b, 30c, 30d, 30e, 31a, 31c, 31d, 32b, 32d,

34b, 35a, 35d, 39d, 41a, 41b, 42b, 42c, 43a, 43c,
44c

<>: 20d, 20f, 25a, 25b, 27c, 27d, 28b, 30b, 30d,
32a, 34c

7 22c¢, 33a, 43b

A: 33c, 33c, 34a, 34b, 34c

add: 20g, 21a, 32a, 32b, 32c

add_cc: 32b, 32¢

add_like: 32b, 32c

add_overflows: 31f 32a, 32b

alignTrap: 27c, 27d, 28b, 28d, 35b

and: 21d, 23c, 30f, 3le, 33c, 36, 41b, 41c, 42b,
43a, 44a

andalso: 20a, 20b, 20c, 32a, 34c

andn: 30f, 31e

andthen: 19b, 30a

bigE: 24, 27a, 27b, 28a, 28¢

bigEndian: 22b, 24, 25c

binary: 3lc

binary with cc: 31d, 3le

bit: 20e, 20f, 22a, 26b, 31a, 32b, 35e, 39b, 39c
39d, 39e

bitInsert: 21d, 32d

bool: 19a, 20e, 20f, 34a

C: 26b, 26¢, 31a, 32c, 34a

CC: 33c, 33c, 34a, 34b, 34c

com: 21d, 30f, 34a, 44b

CS: 33c, 33c, 34a, 34b, 34c

data_store_error: 3be

do8: 29c, 29d, 30a, 30b, 30d

do_nothing: 19a, 3la

E: 33c, 33c, 34a, 34b, 34c

fetch: 25a, 25b, 25¢

G: 33c, 33c, 34a, 34b, 34c

GE: 33c, 33c, 34a, 34b, 34c

get: 32d

global:

29a
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GU: 33c, 33c, 34a, 34b, 34c

icc: 26b, 26¢, 31a, 32c, 33c, 34a

IccTest: 33c, 34a, 34b, 34c

in’: 29a, 29b, 30b, 30d

L: 33c, 33c, 34a, 34b, 34c

LE: 33c, 33c, 34a, 34b, 34c

leave cc: Jla, 3le, 32c, 33b

LEU: 33c, 33c, 34a, 34b, 34c

local’: 29a, 29b, 30b, 30d

logical cc: 31b, 3le

modu: 20g, 21b, 27d

mul_cc: 33a, 33b

mul_like: 33a, 33b

muls: 20g, 33b

mulu: 20g, 33b

N: 26b, 26¢, 31a, 33c, 33c, 34a, 34b, 34c

NE: 33c, 33c, 34a, 34b, 34c

NEG: 33c, 33c, 34a, 34b, 34c

neg: 20g, 34b, 34c

not: 19c, 34a, 34c

21d, 30f, 31e, 34a, 43a, 44a
30f, 31e

29a, 29b, 30b, 30d, 35a

P0OS: 33c, 33c, 34a, 34b, 34c

Reg: 2ba, 25b, 25c, 29b, 30b, 30d, 35a, 36, 37b,
39e, 40d, 41b, 42b, 43a, 44a

Reg64: 32d, 33a

restoreRegs: 30d, 30e

saveln: 29b, 29d, 30a, 30b

saveLocal: 29b, 29d, 30a, 30b

saveQut: 29b, 29d, 30a, 30b

saveRegs: 30b, 30c

set: 32d, 33a

3la, 31b, 32b, 33a

or:
orn:
out:

set_cc:

Sparc: 35c¢

store: 25a, 25b, 25¢

sx: 2lc, 22a, 26d, 26e, 27a, 40d, 41c, 42b, 43a
44a

trap: 27c, 27d, 28b, 28d, 35b, 35c, 35d, 35e

V: 26b, 26¢c, 31a, 34a

VC: 33c, 33c¢, 34a, 34b, 34c

VS: 33c, 33c, 34a, 34b, 34c

30f, 31e

xor: 21d, 30f, 3le, 34a, 43a, 44a

Z: 26b, 26c¢, 31a, 34a

Xxnor:



zx: 2lc, 27a, 28¢, 32d

+:  2la, 21b, 26d, 29a, 29b, 29d, 30a, 30b, 30c,
30d, 30e, 40d

-: 18c, 21a, 21b, 22a, 23a, 26¢, 28e, 30d, 35¢e, 39b,
39

:=: 42b, 42c, 43a, 44a

<: 18b, 20g, 21b, 31a, 39d, 42b, 42c, 43a, 44a

<--: 19a, 25a, 25b, 27a, 27b, 28a, 28¢, 29b, 29d,
30a, 30b, 30c, 30d, 30e, 31a, 31c, 31d, 32b, 32d,
34b, 35a, 35d, 39d, 41a, 41b, 42b, 42c, 43a, 43c,
44c

>: 20g, 21b, 42b, 42¢, 43a, 44a

>>: 40e

7 22c¢, 33a, 43b

addr’: 4lc, 42a, 42b, 43a, 44a, 44b

AF: 36, 39b, 39c, 39d

and: 21d, 23c, 30f, 31e, 33c, 36, 41b, 41c, 42b,
43a, 44a

b: 40a, 40b, 40c, 41a, 41c, 42b, 43a, 44a, 44b

bin: 42b, 42¢, 43a

bin’: 43c, 44a

bit: 20e, 20f, 22a, 26b, 31a, 32b, 35e, 39b, 39c,
39d, 39e

byte: 37d, 39e

CF: 36, 39b, 39c, 39d

com: 21d, 30f, 34a, 44b

d: 40a, 40b, 40c, 40d, 41a, 41c, 42b, 43a, 44a, 44b

dword: 37d, 39e

gt: 42c

I: 40c, 41c, 42b, 43a, 44a
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littleEndian: 22b, 37a, 40b

1lr: 4la, 41c

logical: 43d, 44a

logical flags: 43b, 43d

1t: 42c

M: 40b, 40d, 42a

OF: 36, 39b, 39c, 39d

or: 21d, 30f, 31e, 34a, 43a, 44a

parity: 39b, 39d

Pentium: 36

PF: 36, 39b, 39c, 39d

R: 40a, 40d, 41c, 42b, 43a, 44a

Reg: 2ba, 25b, 25c, 29b, 30b, 30d, 35a, 36, 37b,
39e, 40d, 41b, 42b, 43a, 44a

regb: 39, 40a

regd: 39e, 40a, 40d

regw: 39, 40a

set_flags: 39d, 43b

SF: 36, 39b, 39c, 39d

shl: 21f, 22a, 40e

shrl: 21f, 22a, 40e

stands_for_addr: 42a

sx: 2lc, 22a, 26d, 26e, 27a, 40d, 41c, 42b, 43a
44a

unary: 44b, 44c

w: 40a, 40b, 40c, 41a, 41c, 42b, 43a, 44a, 44b

word: 37d, 39e

xor: 21d, 30f, 31le, 34a, 43a, 44a

zero: 23c, 23e, 39b

ZF: 36, 39b, 39c, 39d
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