
Physically Unclonable Function -Based Security and Privacy in RFID Systems ∗

Leonid Bolotnyy and Gabriel Robins

Department of Computer Science, University of Virginia

{lb9xk, robins}@cs.virginia.edu

Abstract

Radio Frequency Identification (RFID) is an increasingly

popular technology that uses radio signals for object identifi-

cation. Tracking and authentication in RFID tags have raised

many privacy and security concerns. On the other hand, known

privacy and security cryptographic defenses are too hardware-

expensive to incorporate into low-cost RFID tags. In this paper,

we propose hardware-based approaches to RFID security that

rely on physically unclonable functions (PUFs). These func-

tions exploit the inherent variability of wire delays and par-

asitic gate delays in manufactured circuits, and may be im-

plemented with an order-of-magnitude reduction in gate count

as compared with traditional cryptographic functions. We de-

scribe protocols for privacy-preserving tag identification and

secure message authentication codes. We compare PUFs to

digital cryptographic functions, address other uses of PUFs to

enhance RFID security and suggest interesting directions for

future research. The proposed solutions are efficient, practical,

and appropriate for low-cost RFID systems.

1 Introduction

Existing Radio Frequency Identification (RFID) security al-

gorithms rely on digital cryptographic primitives that require

relatively high hardware cost (e.g., thousands of gates per tag

to implement [6], which could be prohibitive for cheap RFID

tags). We propose a low-cost hardware-based approach to RFID

security that requires only hundreds of gates to implement, and

is based on physically unclonable functions (PUFs).

A physically unclonable function (PUF) is a random num-

ber function that can only be evaluated by a specific instance

of the underlying hardware [8]. A PUF computes its output by

exploiting the inherent variability of wire delays and gate de-

lays in manufactured circuits. These delays in turn depend on

highly unpredictable factors, such as manufacturing variations,

quantum mechanical fluctuations, thermal gradients, electro-

migration effects, parasitics, noise, etc. A good PUF is there-

fore not likely to be accurately modeled succinctly, nor be pre-

dicted or replicated, even using identical hardware (which will

still have different random manufacturing variations and asso-

ciated delays, and thus yield an implemented function different

from the first). Moreover, PUFs may be implemented with an

order-of-magnitude reduction in gate count, as compared with

traditional cryptographic functions.

∗This research was supported by a Packard Foundation Fellowship,

by NSF Young Investigator Award MIP-9457412, and by NSF grants

CCR-9988331 and CCF-0429737. For additional related papers see

http://www.cs.virginia.edu/robins

The idea of a physically unclonable function originated in

[16] with an emphasis on optical PUFs. A silicon PUF proto-

type was designed in [7] [12] based on relative delay compar-

isons. Their design is highly reliable, can tolerate varying envi-

ronmental conditions, and contains enough manufacturing vari-

ations to make each PUF circuit substantially different from the

same PUFs in other chips. Although not proven, an important

characteristic of the PUF proposed in [12] is that it is difficult to

create an accurate model for it based on at most polynomially-

many known input/output pairs.

In [17], the authors propose an off-line reader authentication

algorithm based on PUFs that uses public key cryptography,

which is still prohibitively expensive for low-cost RFID tags.

A simple PUF-based identification/authentication algorithm for

RFID, based on [8], was proposed in [15]. In this scheme the

back-end system learns many challenge-response pairs for each

PUF circuit (i.e., each tag), and then uses hundreds of chal-

lenges at a time to identify and authenticate millions of tags,

probabilistically ensuring unique identification [8] [15]. How-

ever, the lack of access control provisions in this approach ex-

poses tags to identification by adversarial readers. Moreover,

tags do not maintain a state and do not use any randomness in

their responses, making them vulnerable to tracking. Since nu-

merous challenges are necessary for single tag identification,

many communication rounds between the reader and the tag

are necessary, increasing the required identification time and

the tag’s power consumption. In light of these shortcomings,

we argue that it is more appropriate to use a challenge-response

communication scheme for authentication purposes only. Send-

ing a tag ID to the reader first will allow the reader to greatly

reduce the number of communication rounds with a tag and to

query tags with different challenges; still, tag tracking remains

possible.

There are two important PUF parameters pivotal to our dis-

cussion. The first parameter, denoted τ , represents the proba-

bility that the PUF output for a random input challenge is the

same as the PUF output of another identical tag for the same

challenge. To empirically compute τ for n tags, we can deter-

mine how many of the
(

n
2

)

possible tag pairs produce identical

outputs for a given challenge. The probability τ is computed as

the ratio of such pairs to the total number of pairs. The second

parameter, denoted µ, represents the probability that the output

of a PUF for a given challenge is different from the PUF’s refer-

ence output (i.e., the output recorded in a stable controlled refer-

ence environment). Different operational conditions can affect

µ, e.g., variations in temperature, voltage, and circuit manufac-

turing variability [12]. All of these factors need to be considered

when designing a PUF-based RFID system.

2 PUF Assumptions

We assume that an adversary cannot construct an accurate

model of a PUF from a polynomial number of known in-

put/output pairs (i.e., polynomial in the PUF’s size or its in-

put/output bit-lengths). We also assume that the pairwise PUF

collision probability τ is constant for any challenge, indepen-

dent of the number of identical responses that tags output to

other challenges. These assumptions are justifiable based on the

practical experiments discussed in [12]. We postulate that phys-

ical tampering with a tag’s PUF or probing it to measure actual

wire delays will modify the PUF and thereby destroy the very

function that it is designed to compute. We assume that the PUF

is secure against side-channel attacks that try to recover the key

(i.e., the PUF’s computational behavior). Relying on these as-

sumptions, we will sketch proofs of the privacy/security of our

algorithms, considering only algorithmic attacks and assuming

that a PUF is a random function.

3 PUF-Based Tag Identification Algorithm

We propose a simple, single-use 1-step identification algo-

rithm for preserving privacy against passive adversaries. An

algorithm is privacy preserving if an adversary can not distin-

guish between any pair of tags. We will elucidate the underlying

assumptions after we describe the algorithm, since they will be

more readily understood in the context of the algorithm. Our tag

identification algorithm is based on the classical cryptographic

idea of using pseudonyms or one-time-pads to provide security.

3.1 Related Work

Several previous works use pseudonyms to provide RFID

privacy. For example, the “minimalist-approach” of [9] uses le-

gitimate readers to update pseudonyms aboard a tag after each

authentication. Using PUFs to generate new pseudonyms al-

lows pseudonyms to be updated much less frequently. Another

scheme builds hash-chains [1] and requires tags to implement

two relatively costly digital cryptographic hash functions. In

contrast, our scheme only needs a single PUF (since the func-

tion p is secret / random / unpredictable to an adversary), while

still remaining unsusceptible to simple tag tracking. If the PUFs

are one-way functions (but not necessarily collision resistant),

we can use PUFs in place of the two hash functions of [1] to

protect secret tag identifiers.

3.2 Our Tag Identification Algorithm

We now describe our PUF-based tag identification protocol.

Let ID be an identifier stored aboard a tag, and let p denote the

tag’s PUF. When a reader interrogates a tag, the tag responds

with ID and updates its identifier to p(ID). The reader looks

up ID in its database to determine the tag’s identity. This im-

plies that the back-end database needs to store the sequence

ID, p(ID), p(2)(ID), . . . , p(k)(ID) for each tag, where p(i) de-

notes the composition of the PUF p with itself i times.

Note that it is important for the PUF responses to be reliable

(i.e., return consistently equal output responses for the same

inputs), since otherwise errors will compound in long chains

of PUF compositions. To address this issue, we propose run-

ning p multiple times for the same ID at each stage of the com-

position, selecting the majority answer for the new ID, to en-

sure that the value of the new ID is stable and reliable (i.e.,

unperturbed by random environmental factors). For example,

in a reference environment where the probability of an unreli-

able PUF value is µ = 0.02, if we execute the PUF N = 5
times at each PUF invocation, the reliability of the last value of

k = 100 PUF compositions can be estimated as R(µ,N, k) ≥

(1 −
∑N

m= N+1

2

(

N
m

)

µm(1 − µ)N−m)k ≈ 0.992268. Thus the

reliability of a large number of PUF compositions can be made

arbitrarily high using only a modest number of repetitions at

each stage of the composition chain. Note that without such it-

eration at each stage of the composition, the expected length of

a reliable composition chain is smaller (e.g., for µ = 2% and no

iterations, i.e., N = 1 at each stage, the expected chain length

before an erroneous value appears is 1−µ
µ

= 1−0.02
0.02 = 49).

Another technique for increasing the probability of tag iden-

tification using PUF-computed IDs is to run several PUFs in

parallel, each independently generating its own composition

chain. At each query, the tag sends a tuple of PUF values to

the reader (i.e., one value for every PUF aboard the tag). The

reader will continue normal identification operations as long as

at least one of the PUF chains is still valid (i.e., a tuple of PUF

compositions is considered to be reliable if at least one of its

component PUF values is reliable). Since the variance of a ge-

ometric distribution is high, such a “super chain” of tuples is

expected to remain valid longer than any of its individual com-

ponent PUF chains. In particular, for a tuple of size q (i.e., us-

ing q independent composition chains in parallel), the expected

number of consecutive successful identifications is:

S =

∞
∑

x=1

x · [(1 − (1 − µ)x+1)q − (1 − (1 − µ)x)q]

For example, for a tuple of size q = 2, we have S ≈ 73, and

for a tuple of size q = 3, the expected length of a valid chain

rises to S ≈ 90. This multiple-chain strategy increases the

overall probability of successful tag identification. Having sev-

eral PUFs aboard a tag is not an unreasonable hardware bur-

den, since PUFs can be implemented using only a small num-

ber of gates. Alternatively, a single PUF can be used to simulate

multiple PUFs by using an extra input PUF parameter to select

from a family of different PUF functionalities. We can combine

the two techniques by iterating each tuple component multiple

times, thus increasing the overall reliability.

In all of the above strategies, once an expected number of

reliable pseudonyms is exhausted, a tag can start a new chain

using a new seed identifier. Such seed identifiers can be stored

aboard the tag, or provided to the tag by the reader (which im-

plies that the back-end database must store several PUF value

composition chains for each tag). In summary, given a rea-

sonable strategy to maintain reliability, a good PUF can extract

from a single seed identifier many pseudonyms that can be used

to privately identify tags.

3.3 Assumptions and Requirements

We assume that the adversary does not carry out a denial

of service attack (e.g., this can be enforced by considering only

passive adversaries). We assume that an adversary cannot phys-

ically overwrite identifiers on tags that it may own without dam-

aging (or at least altering) their PUF circuits. This assumption

is important for the PUF of [12] that we rely upon, as it has a

relatively large tag differentiation τ value (e.g., τ = 0.4 [12]).

If a better PUF is available (i.e., one with a smaller τ value),

this assumption may become unnecessary.

We place the following requirements on secret key construc-

tion by the back-end system. For the algorithm to ensure tag

privacy, the PUF must be able to generate long chains of unique

IDs (i.e., without repetitions). Moreover, different tags should

not yield identical PUF outputs. This implies that the number

of possible inputs/outputs should be significantly larger than

the number of tags in the system. If an ID does repeat, the

algorithm chooses a different ID for that tag. Since tags up-

date their internal state after each read, the reader must supply

enough power to the tags to support write operations (as write

operations require more power than reads).

3.4 Adversarial Model

The privacy of the identification algorithm will be deter-

mined from an experiment performed by an adversary. An

adversary will observe the reader’s communication with mul-

tiple tags (at most polynomially-many rounds in the bit-length

of PUF input), and single out two tags. The reader will then

randomly select one of these two tags and run the identification

algorithm once. An adversary is successful in compromising a

tag’s privacy if it can determine which of the two tags the reader

has selected with a probability substantially greater than 1
2 (i.e.,

better than simply guessing).

Theorem 3.1 Given a random oracle assumption [2] for

PUFs, an adversary has no advantage in attempting to com-

promise a tag’s privacy.

Proof sketch: By observing the non-repeating output se-

quences of any two tags and receiving the next output from one

of them, an adversary cannot determine which one of the two

PUF functions computed it, since PUFs are assumed to behave

as random functions.

4 PUF-Based MAC Protocols

A message authentication code (MAC) protocol is a three-

tuple (K,T, V) where K is the key generation algorithm, T is

the tagging algorithm, and V is the verification algorithm. The

algorithm K generates a key for use by algorithms T and V .

The tagging algorithm takes message m as the input, and out-

puts its signature σ. The verification algorithm verifies that the

signature σ for a message m is authentic. A MAC protocol is

secure if it is resistant against forgeries. An adversary is suc-

cessful in forging a signature if it can create a valid signature

for a message whose signature it has not seen before.

4.1 Related Work

A message authentication code (MAC) aboard a tag can be

implemented using a standard cryptographic hash function (e.g,

MD5, SHA-256), or be based on a block cipher such as the Ad-

vanced Encryption Standard (AES). Alternatively, for low-cost

implementation, a one-time signature scheme [11] can be used,

as noted in [10], where each bit position of the signature has

two associated secrets - one for 0 and one for 1. Then, the sig-

nature is an ordered sequence of secrets that corresponds to 0
or 1 in each bit position. However, such a scheme requires a

prohibitive amount of memory aboard a tag. A more “minimal-

istic” approach, where each secret is only a single bit, is sug-

gested in [10], which, in order to avoid simple forgeries, length-

ens the message size and makes the message space sparser. This

scheme allows the construction of a one-time MAC. We suggest

a different PUF-based MAC implementation that is efficient and

allows messages to be signed multiple times.

4.2 Our MAC Protocols

Our PUF-based MAC algorithms use multiple PUF compu-

tations to sign a message. Note that in a tag authentication al-

gorithm the reader authenticates a tag, whereas in a MAC algo-

rithm, a tag signs / authenticates a message. The message the

tag signs is used as the input to a PUF, and the PUF’s output is

the signature / MAC. We give two MAC protocols that rely on

a PUF for security. The choice of protocol depends on the size

of the message space.

Before presenting the algorithms, we emphasize that the key

used to sign a message is the PUF itself. Consequently, if the

message space is small, the back-end database can make the

required precomputations to learn the desired behavior of the

PUF. However, if the message space is large, such exhaustive

precomputations are infeasible. Therefore, the size of the mes-

sage space dictates the tag design requirements and drastically

affects the preferred MAC protocols used.

The PUF-based MAC protocols we describe are differ-

ent from standard cryptographic MAC algorithms. First, the

keys that the verifier requires to validate a signature are large,

whereas standard cryptographic MACs have short keys. Sec-

ond, one of our MAC algorithms cannot verify a signature

without the physical presence of the tag that signed the mes-

sage, and our other algorithm can not sign arbitrary messages.

These properties are unusual for classic cryptographic algo-

rithms based on digital secrets, but are appropriate for resource-

constrained RFID systems. In order to keep tag cost down, the

computational burden is pushed to the back-end system.

Our protocols cannot be applied to all scenarios requiring

MAC computations aboard tags (e.g., where the message space

is large and MAC verification must be performed when a tag is

not within range of a verifier). However, PUFs can still be used

for general MAC constructions as part of a key generation algo-

rithm, thus preventing physical attacks on otherwise vulnerable

tags. Our MAC protocols can be used in some applications of

“yoking-proofs” [4] [10], where confirmation is sought that a

group of tags are read simultaneously.

Our proposed MAC protocols assume a powerful adversary

that can adaptively select up to polynomially-many (m,σ) pairs

from which it seeks to forge valid future signatures. We de-

signed our protocols to resist forgery even if the signature ver-

ifiers are off-line (i.e., they do not participate in the signing al-

gorithm), as is required in [4] [10]. We will state the scheme-

specific assumptions below, during the discussions of individual

protocols.

Before presenting the algorithms, we give an example of

where our MAC constructions can be used. In this example,

heat sensitive objects are tagged with RFID tags containing un-

powered temperature sensors [14]. As these perishable items

transit from the seller/supplier to the buyer/consumer, their tem-

perature must provably not exit a specified range. The buyer’s

readers in the vicinity of the objects will collect temperature

readings from the tags during transport. To provide the temper-

ature range guarantee, the buyer’s readers will request that the

sensing RFID tags sign the temperature values. When the ship-

ment arrives at its destination, the buyer will verify that the tem-

peratures/messages signed by the objects are authentic. This

example is applicable to the case when the size of the message

space is large and signatures need to be verified in the vicinity

of the tag that signed the message. This example is also valid

when the size of the message space is small (e.g., if the temper-

ature values are discretized or rounded to the nearest degree).

4.3 Large Message Spaces

When the size of the message space is large, we cannot

perform all of the desired PUF computations before deploying

the tags. Consequently, signature verification can only be per-

formed when a tag in transit is within reader range (e.g., when

it arrives at its destination). For now we disallow hardware tam-

pering attacks; later we will discuss how the issue of hardware

tampering can be addressed.

The essential basis of a MAC signature for PUF p and mes-

sage m is p(m). To prevent unauthorized reuse (or replay) of

such a signature, we modify the behavior of the PUF p using a

unique token c to yield a more general parametrized PUF func-

tion pc(m) whose behavior depends on c. Since a passive tag

does not have a clock aboard, it can instead prevent a replay

attack by using a random number or a counter. Using a counter

as a unique token instead of a random number has the advan-

tage that it timestamps the message and creates a natural to-

tal ordering of the signatures (e.g., in our buyer/seller example

above, the replay of past signatures will be easily detected with

a counter-based scheme). However, it also has the disadvantage

of revealing the state of a tag, which could leak private informa-

tion aboard the tag. Note that randomness can be used in PUF

computations as well, since signatures are verified in the pres-

ence of their generating tag. The signature algorithm does not

accept input from the reader to allow for off-line verification. In

on-line scenarios, readers can supply inputs to the signing PUF.

To reduce the probability τ of forgery using the computa-

tions of other tags, multiple PUF computations are required to

create a signature. Therefore, the signature for a message m

is {c, r1, . . . , rn, pc(r1,m), . . . , pc(rn,m)}, where r1, . . . , rn

are different random numbers generated aboard the tag. This

computation is similar to the one needed for tag authentication.

However, in the MAC algorithm, the random input to the PUF

is generated by the tag rather than the reader, and it includes a

timestamp c.

The choice of n (the number of PUF computations) depends

on τ , µ (defined above), and the application requirements. To

quantify the reliability of message authentication and the dif-

ficulty for an adversary to forge a signature using equivalent

PUFs, we compute the probability probv that a valid signature

is verified as authentic, and also the probability probf that a

forged signature is incorrectly determined to be valid by the

verifier. Because µ in [12] is non-negligible, some error(s) may

be allowed in PUF computations during verification. Allowing

such errors, however, will make the adversary’s task easier.

The probability that at most t out of n PUF responses differ

from the corresponding reference responses [12] is:

probv(n, t, µ) = 1 −
n

∑

i=t+1

(

n

i

)

µi(1 − µ)n−i

On the other hand, the probability that at most t out of n re-

sponses differ from the responses of another tag is:

probf (n, t, τ) = 1 −
n

∑

j=t+1

(

n

j

)

τ j(1 − τ)n−j

For example, using the empirical values reported in [12] for

PUF:{0, 1}64 → {0, 1}8 with feed-forward arbiters, τ = 0.4
and µ = 0.02 (in a reference environment), and taking n = 30
and t = 3, yields a valid signature detection probability of

probv = 0.997107 and a forgery non-recognition probability of

probf = 0.000313. These probabilities are arguably sufficient

for many RFID applications. However, if greater security guar-

antees are necessary, n and t can be easily adjusted to increase

probv and to decrease probf even further.

In general, the application will require 0 ≤ probf < β and

α < probv ≤ 1 for some reliability probability requirements α

and β, and fixed n and t. Figure 1 shows the graphs of probv

and probf from which appropriate n, t, α, and β can be deter-

mined. These graphs also show that increasing n and t causes

probv and probf to rapidly converge to 1 and 0, respectively.1

In these graphs we set t = 0.1 · n, in order to simplify the

illustration.

Theorem 4.1 Given a random oracle assumption for PUF p,

the probability that an adversary can forge a signature σ for a

message m is bounded from above by β.

Proof sketch: To forge a signature for a message m, an ad-

versary must find n distinct numbers r1, . . . , rn as well as an

unused counter value c, and compute the correct PUF values

1Note that the number t of PUF responses allowed to be incorrect must be a

growing function of the number of challenge-response iterations n. That is, the

more challenges a tag has to respond to, the more errors it is allowed to make,

otherwise probv will approach 0.

25 30 35 40 45 50

0.994

0.995

0.996

0.997

0.998

0.999

(a) probv(n)

25 30 35 40 45 50

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

(b) probf (n)

Figure 1. Graphs showing (a) the valid signature detection probability probv , and (b) the forgery non-recognition probability probf , as

functions of the number of challenges n. Following [12], we set the tag uniqueness probability τ = 0.4, and the reliability probability

µ = 0.02. We also fix t = 0.1 · n. The two functions are plotted on different vertical scales to better illustrate their behavior. Note that the

valid signature detection probability probv quickly converges to 1, and the forgery non-recognition probability probf quickly converges to

0, as a result of only a modest increase in the number of challenges n.

pc(ri,m) for at least n − t of them. Since p is assumed to be

random and c was never inputted into p, an adversary can do no

better than to rely on the tag(s) in its possession.

Since the message space is large, the key (i.e., the number of

message-response pairs needed to uniquely specify a PUF’s be-

havior in digital form, assuming a PUF is difficult to model) is

too long to compute and store in the back-end database. There-

fore, a tag must be within range of the verifier for MAC verifi-

cation. The signature is verified by asking the tag to recompute

the value of pc on input (r,m) for each r generated by the tag

during the signing algorithm. If at most t out of n responses are

incorrect, the signature is assumed to be authentic, otherwise it

is a forgery.

The signature verification can be authorized by a tag based

on a special password sent to the tag by the verifier. The verifi-

cation can proceed in the clear (i.e., be observable by an ad-

versary) if it is a one-time operation. Otherwise, the verifi-

cation should be performed securely (e.g., take place inside a

radio-protected environment such as a “Faraday cage”). The

password-based verification mechanism provides a back-door

(side-channel) for an adversary to forge a signature, and thus

must be protected. We assume that two passwords can be com-

pared without leaking any side-channel information. For exam-

ple, it is important to compare passwords in their entirety rather

than bit-by-bit, to prevent relatively simple power analysis at-

tacks [13].

Observe that in this algorithm, a PUF is analogous to a pub-

lic key. The algorithm for a PUF computation (i.e., the PUF

schematic) is known, but the private key (i.e., a PUF’s in-

put/output behavior) remains unknown. In our buyer/seller ex-

ample, even though the seller possesses a tag, he cannot predict

the tag’s PUF computations. Private key cryptography cannot

offer an equivalent solution without relying on trusted parties.

This PUF property can also be leveraged to achieve private tag

ownership transfer.

The MAC protocol discussions above disallowed hardware

tampering. This restriction was imposed because a physical at-

tack on the MAC protocol may allow an attacker to steal the

digital password to the MAC verification algorithm, allowing

him to forge a signature. We can defend against such physi-

cal tag tampering by physically locating the tag’s verification

password storage circuitry below the PUF’s circuit/wires. This

strategy will cause an invasive attempt to recover this password

to physically alter (or even destroy) the PUF with high likeli-

hood.

Similarly, the source of the message should also be protected

by the PUF. However, even with such physical protection, the

verifier will not know if tag tampering occurred during verifi-

cation, since the verifier does not have knowledge of any secret

information aboard the tag besides the verification algorithm

password. Therefore, in order to detect forgeries, the verifier

must learn some information about the PUF before the tags are

deployed. Specifically, it may learn enough information to au-

thenticate the tag, as discussed above. Thus, the signature is

verified only after successful tag authentication.

4.4 Small Message Spaces

If the set of messages that may need to be signed is relatively

small and known a priori, PUF outputs can be computed for a

selected set of tokens for all of the messages. The tokens gener-

ated aboard a tag prevent adversarial replays of signatures, and

the tokens cannot be random, in order to allow signature verifi-

cation without a tag’s presence. Consequently, as in the MAC

protocol discussed above, counters aboard a tag can serve as

tokens. Since counters are part of the signature, some private

information about the tags may leak out to an adversary. Next,

we discuss the Key Generation, Tagging, and Verification com-

ponents of the MAC protocol.

During Key Generation, the verifier creates a table of PUF

values for each tag and for all possible message and counter

values. The Tagging algorithm signs a message and the Veri-

fication algorithm verifies the signature. The key generated by

the back-end system is necessarily large to enable verification

without the tag’s presence. As before, construction of the key

occurs in a secure environment before the tags are deployed.

The ability to construct keys can subsequently be disabled by

short-circuiting certain wires. Alternatively, a special password

can be used to control access to the key learning process, and a

key can be recomputed when necessary.

Let M be a small set of messages, and let k be the number of

signatures a tag needs to produce. Let P be the set of tag/PUF

identifiers, and let c denote a tag’s counter. For each PUF p ∈

P , each message m ∈ M , and 1 ≤ i ≤ n, we compute p
(i)
c (m)

for 1 ≤ c ≤ k · q, and p(i) denotes the composition of PUF with

itself i times. This dataset K of PUF values serves as the key

stored with the verifier. The signature for message m is σ =

({c, pc(m), . . . , p
(n)
c (m)}, {c + 1, pc+1(m), . . . , p

(n)
c+1(m)},

. . ., {c + q − 1, pc+q−1(m), . . . , p
(n)
c+q−1(m)}). After signing

the message, a tag will increment its counter, c = c + q.

Input: Message set M ; tag/PUF identifiers set P ;

of needed signatures k; # of sub-signatures q

for each PUF p ∈ P do

for i = 1 to |M | do

for c = 1 to k · q do

Key[p,mi, c] = {c, pc(mi), . . . , p
(n)
c (mi)}

end

end

end

Figure 2. Key Generation Algorithm

Input: Message m; # of sub-signatures q

Signature σ = ({c, pc(m), . . . , p
(n)
c (m)},

{c + 1, pc+1(m), . . . , p
(n)
c+1(m)}, . . . ,

{c + q − 1, pc+q−1(m), . . . , p
(n)
c+q−1(m)})

Side effect: c = c + q

Figure 3. Tagging Algorithm

In order to minimize an adversary’s chances of mounting

a successful impersonation attack, we create a composite sig-

nature consisting of a sequence of q “sub-signatures”, each

containing n PUF computations. To avoid storing n counters

aboard a tag, we instead compose the PUF with itself n times.

Since the PUF’s reliability is not perfect, and each repeated

PUF composition depends heavily on the output of the preced-

ing one, an invalid result computed early in the chain (see Sec-

tion 3) may invalidate all subsequent values. To address this

issue, a PUF can be run several times for each input; moreover,

multiple independent PUF chains (i.e., sub-signatures) can be

employed. The verifier checks that at least a threshold number

of sub-signatures are valid. The algorithms for Key Genera-

tion, Tagging, and Verification are shown in Figures 2, 3, and 4

respectively.

Input: Key K; PUF p;

of needed signatures k; # of sub-signatures q;

allowed number t of incorrect PUF responses;

Signature σ = ({c, pc(m), . . . , p
(n)
c (m)},

{c + 1, pc+1(m), . . . , p
(n)
c+1(m)}, . . . ,

{c + q − 1, pc+q−1(m), . . . , p
(n)
c+q−1(m)})

verify that 1 ≤ c ≤ k · q
v = 0
for each sub-signature σc do

σ∗ = K[p,m, c]
if σc agrees with σ∗ in at least n − t terms then

v = v + 1
end

end

if v ≥ threshold then
accept

else
reject

end

Figure 4. Verification Algorithm

Theorem 4.2 Given a random oracle assumption for a PUF p,

the probability that an adversary could forge a signature σ for

a message m is bounded from above by q · β.

Proof sketch: We assume that an adversary can determine (or

probabilistically guess) the counter value c that a tag will use to

sign its next message. However, since the PUF is assumed to be

a random function, and accurate PUF modeling is not possible,

an adversary can do no better than use other tags for imperson-

ation. The success probability of forging a single sub-signature

is therefore bounded by β; similarly, the success probability of

forging the whole signature is bounded by q · β.

4.5 Attacks on the MAC Protocols

Relying on the properties of PUFs (described above), we

consider four possible types of attacks against the MAC proto-

cols described, and suggest corresponding PUF-based defenses

for each one.

1. Impersonation attacks: An adversary can try to manufac-

ture a duplicate of a target tag and then use it to forge sig-

natures. Alternatively, an adversary can obtain (or steal)

multiple PUF-based tags, and use their responses to im-

personate the PUF of the target tag. Relying on the phys-

ical properties of PUF construction, we assume that du-

plicating a PUF or selecting an equivalent PUF out of a

large pool, is improbable (indeed, this is exactly why such

functions are called “unclonable”). Moreover, increas-

ing n and t can make the valid signature detection prob-

ability probv arbitrarily close to 1, and the forgery non-

recognition probability probf arbitrarily close to 0, thus

making impersonation improbable.

2. Modeling attacks: An adversary can attempt to model a

PUF by observing / learning the PUF signatures for se-

lected messages. However, the highly unpredictable fac-

tors that determine a PUF’s behavior are very difficult to

model [7] [8] [12]. Alternatively, an adversary can try to

physically dissect a tag and use electrical testing probes

to measure its internal wire delays. Such attacks will be

foiled by the fact that the very delays thus attempted to

be measured will themselves be significantly altered by

the electrical coupling between the circuit and the mea-

suring probes. Moreover, such an approach is likely to be

very disruptive to the integrity of the RFID chip, e.g., it

can easily damage the overlying circuit components while

probing / measuring the underlying wires [8].

3. Side-channel attacks: Side-channel attacks such as timing

and power analyses, among others, can attempt to deter-

mine the secret information stored aboard a tag. However,

PUF-based secrets appear to be difficult to learn because

they are difficult to represent both accurately and concisely

in digital form, and thus are not easy to model.

4. Hardware tampering attacks: Hardware tampering attacks

that attempt to physically probe wires run a high risk of al-

tering (or destroying) the PUF’s computational behavior.

Also, attempting to physically read-off or alter the digital

key/password from a tag can damage the overlying wires

and alter the tag’s behavior, as discussed earlier. Hardware

tampering can be detected using the authentication proto-

col discussed above.

5 Comparing PUF with Digital Hash Functions

PUFs require much less hardware to implement than the

known cryptographic hash functions (which require thousands

of gates). For example, existing designs of MD4, MD5, and

SHA-256 require from approximately 7,350 gates to 10,868

gates to implement [6]. It is possible to use block ciphers to

implement hash functions; however, even RFID-specific imple-

mentation of the Advanced Encryption Standard (AES) requires

3,400 gates [5]. Alternatively, a special hash function design

for low-power devices can be used [19], but this scheme still

requires 1,701 gates for a 64-bit input size, and its security has

not yet been widely accepted.

In contrast, PUF-based hash functions require fewer gates

than the construction of [19]. Based on a suggested PUF circuit

implementation [8], we estimate that the delay circuit requires

about 6 to 8 gates for each input bit, and the oscillating counter

circuit that measures delay requires about 33 gates. Therefore,

a 64-bit input PUF requires only about 545 gates, considerably

fewer than alternative schemes, and an order-of-magnitude im-

provement over standard hash functions.

On the other hand, the low hardware complexity of PUF-

based hash functions has a cost. The output of a PUF is only

probabilistically consistent with the expected output. Also, dif-

ferent copies of a PUF circuit tend to have similar compu-

tational behavior (i.e., many input-output pairs are identical).

In addition, PUF-based back-end systems must have enough

memory to store all the challenge/response pairs for each chip.

These constraints give rise to interesting constructions.

From an adversary’s viewpoint, PUFs form an attack target

that is different from classical digital cryptographic systems.

To break traditional keyed hash functions, adversaries attempt

to determine the key of the hash function. In contrast, learning

a PUF’s “key” appears to be more difficult since the key is dif-

ficult to represent accurately in a concise form. Analogously to

the key discovery attack on standard hash functions, one could

attempt to build a model for the PUF. However, model building

for PUFs seems quite difficult because the PUF circuits contain

numerous built-in non-linear delay components.

Compared to their digital counterparts, PUF-based hash

functions appear to be more resistant to side-channel attacks

and even to physical tampering. This is due to the apparent

difficulty of creating a duplicate PUF, even when all the de-

sired physical measurements can be made. No known digital

hash function has this property. Thus, PUFs are highly desir-

able in otherwise vulnerable RFID systems which are too cost-

constrained to implement more complicated defenses. On the

negative side, PUFs rely on physical characteristics which are

not easy to quantify, making PUF security difficult to guarantee

or characterize analytically.

6 Building Physically Unclonable Functions

The PUF design of [8] is the first known prototype of a sili-

con PUF. One of the weaknesses of this design is that it employs

an oscillating counter circuit to measure intrinsic delays, thus

requiring a long time to sufficiently separate delay values for

different challenges. Such a slower counting mechanism may

not be problematic aboard an RFID tag (which is idle most of

the time). However, this may slow down the manufacturing pro-

cess when many challenge-response pairs need to be collected

for each tag, and such manufacturing delays may translate into

increases in overall system cost.

The distribution of the delay values for different challenges

tends to be Gaussian, with many challenges producing identi-

cal (or similar) outputs even when signals take different paths

through the delay circuit. Consequently, some challenges

should be avoided, which requires them to be identified and fil-

tered out during manufacturing when the database of the chal-

lenge/response pairs is created. Also, the reliability of the PUF

responses is relatively low, requiring more computation rounds,

while still risking producing noise. These are serious issues that

may not be critical in high-end PUF systems, but are likely to

be critical for low-cost RFID tags.

In order to avoid these drawbacks, a better PUF circuit could

leverage sub-threshold voltage techniques [18] to compare gate

polarizations, thus running quickly without using an oscillating

counter. Such methods can be expected to better separate PUF

values for different challenges, and thus avoid highly skewed

distributions of PUF responses while still preserving PUF relia-

bility and unpredictability. To keep the PUF modeling difficult,

variable non-linear delays can be added to the circuit [8].

7 Future Research

More work is needed in the area of hardware-based RFID

to help bring the ideas presented in this paper into commercial

reality. Theoretical breakthroughs would include theorems that

characterize the security of PUFs. RFID tags equipped with

PUFs satisfying current RFID standards need to be fabricated

and thoroughly tested under different environmental and oper-

ational conditions. For example, sub-threshold voltage -based

PUFs that exploit non-linear circuit behavior seem promising.

The behavior of PUF-based tags should be tested under vary-

ing levels of motion, acceleration, vibration, temperature, noise,

etc. In each application / scenario, the probability of output col-

lision τ and the probability of an incorrect response µ should be

characterized as functions of the operational environment.

New PUF-based RFID security protocols should be devel-

oped for different applications, including multi-tag regimes [3].

PUFs can also benefit RFID ownership transfer algorithms, and

in helping to detect and negate privacy compromises in tree-

based identification protocols. Utilizing PUFs aboard RFID

readers (as opposed to only aboard tags) can help thwart ma-

licious readers in the field, and make it much more difficult for

adversaries to clone readers. Finally, we note that while the

inherent unpredictability of PUF outputs can be exploited to

permit certain protocols (as done above), their predictability in

some instances can be exploited to create other new protocols.

8 Conclusion

Since RFID tags are power-limited and cost-constrained, it

is not feasible to implement full-fledged cryptographic security

mechanisms aboard RFID tags. We therefore proposed a PUF-

based approach that utilizes hardware support to provide secu-

rity and privacy. PUFs supply an exponential number of keys

aboard the tags, thereby providing a viable practical solution

to a critical key distribution problem. PUFs can also protect

tags from cloning, even if an adversary has physical access to

them and their circuit schematics. This property makes PUF-

equipped tags valuable in access control and authenticity veri-

fication applications.

We have shown how PUFs aboard RFID tags can be used

to implement tag identification while relying on hardware sup-

port and making the unauthorized tracking of tags considerably

more difficult. We also described novel protocols for message

authentication codes (MACs) that require little hardware re-

sources and thus mitigate tag cost escalation. We compared

PUFs to their digital counterparts and offered possible improve-

ments in PUF design. We outlined numerous directions for

PUF-related future research that include extensive testing of

PUFs, proving security theorems about PUFs, designing new

algorithms, and putting PUFs into RFID readers.

9 Acknowledgements

We thank Blaise Gassend and Daihyun Lim for fruitful dis-

cussions on PUF complexity, and Ben Calhoun for suggestions

on how to build a better PUF. Special thanks go to the reviewers

who helped to greatly improve the paper.

References

[1] G. Avoine and P. Oechslin, A scalable and provably secure

hash based RFID protocol, International Workshop on Pervasive

Computing and Communication Security, pp. 110-114, 2005.

[2] M. Bellare and P. Rogaway, Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols, Proc. ACM Conf.

on Computer and Communications Security, pp. 62-73, 1993.

[3] L. Bolotnyy and G. Robins, Multi-Tag Radio Frequency Identifi-

cation Systems, Proc. IEEE Workshop on Automatic Identifica-

tion Advanced Technologies, pp. 83-88, 2005.

[4] L. Bolotnyy and G. Robins, Generalized ‘Yoking-Proofs’ for a

Group of RFID Tags, Proc. International Conference on Mobile

and Ubiquitous Systems (Mobiquitous), 2006.

[5] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, Strong Au-

thentication for RFID Systems Using the AES Algorithm, Proc.

Workshop on Cryptographic Hardware and Embedded Systems

(CHES), Springer LNCS 3156, pp. 357-370, 2004.

[6] M. Feldhofer and C. Rechberger, A Case Against Currently Used

Hash Functions in RFID Protocols, Workshop on RFID Security

(RFIDSEC), 2006.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, Controlled

Physical Random Functions, Proc. Computer Security Applica-

tions Conference, 2002.

[8] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, Silicon

Physical Random Functions, Proc. Computer and Communica-

tion Security Conference, 2002.

[9] A. Juels, Minimalist Cryptography for Low-Cost RFID Tags,

Proc. International Conference on Security of Communication

Networks (SCN), pp. 149-164, 2004.

[10] A. Juels, ’Yoking-Proofs’ for RFID Tags, Proc. International

Workshop on Pervasive Computing and Communication Secu-

rity, pp. 138-143, 2004.

[11] L. Lamport, Constructing Digital Signatures from a One Way

Function, Technical Report CSL-98, SRI International, 1979.

[12] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S.

Devadas, Extracting Secret Keys From Integrated Circuits, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

13 (10), pp. 1200-1205, 2005.

[13] Y. Oren and A. Shamir, Power Analysis of RFID Tags,

http://www.wisdom.weizmann.ac.il/˜yossio/rfid/.

[14] M. Philipose, J. Smith, B. Jiang, A. Mamishev, S. Roy, and K.

Sundara-Rajan, Battery-Free Wireless Identification and Sens-

ing, Pervasive Computing, Jan-Mar 2005.

[15] D. Ranasinghe, D. Engels, P. Cole, Security and Privacy: Mod-

est Proposals for Low-Cost RFID Systems, Proc. Auto-ID Labs

Research Workshop, Zurich, Switzerland, September 2004.

[16] P. Ravinkanth, Physical One-Way Functions, Ph.D. Thesis, MIT,

2001.

[17] P. Tuyls and L Batina, RFID-Tags for Anti-Counterfeiting, Top-

ics in Cryptology (CT-RSA), The Cryptographers’ Track, RSA

Conference, pp. 115-131, 2006.

[18] A. Wang, B. Calhoun, A. Chandrakasan, Sub-threshold Design

for Ultra-Low Power Systems, Springer, 2006.

[19] K. Yuksel, Universal Hashing for Ultra-Low-Power Crypto-

graphic Hardware Applications, Master Thesis, Worcester Poly-

technic Institute, Massachusetts, 2004.

