Bayesian Estimation
and the Kalman Filter

Allen L. Barker
Donald E. Brown
Worthy N. Martin

IPC-TR-94-002
July 15, 1994
(Revised Sept. 19, 1994)

Institute for Parallel Computation
School of Engineering and Applied Science
University of Virginia
Charlottesville, VA 22901

This research was sponsored in part by the Jet Propulsion Laboratory
under grant number 95772.

Abstract

In this tutorial article we give a Bayesian derivation of a basic state es-
timation result for discrete-time Markov process models with independent
process and measurement noise and measurements not affecting the state.
We then list some properties of Gaussian random vectors and show how the
Kalman filtering algorithm follows from the general state estimation result
and a linear-Gaussian model definition. We give some illustrative exam-
ples including a probabilistic Turing machine, dynamic classification, and
tracking a moving object.

1 Introduction

The goal of this paper is to provide a relatively self-contained derivation
of some Bayesian estimation results leading to the Kalman filter, with em-
phasis on conceptual simplicity. The results we present are really just a
repackaging of standard results in optimal estimation theory and Bayesian
analysis, following mainly from references [Med69, JH69, Sal89, Ber85]. We
hope, though, that this paper will provide useful results which can be put
to immediate practical use. We adopt a Bayesian approach because it lends
itself to a straightforward, intuitive derivation.

The usual Bayesian derivation proceeds by first generating a posterior
density from the prior density and current measurement, and then updating
this posterior density to be the prior density for the next time step. This
process is then repeated sequentially for all measurements. In this paper we
consider the problem as a batch estimation problem, where we are given all
the data at once. From this batch estimate the recursive algorithm follows
from the ordering of the computations by which the mathematical expression
is evaluated. We also encapsulate some of the algebraic manipulations into
a theorem on multiplying Gaussian densities.

We have tried to write out enough steps in the derivations that each equa-
tion follows easily from the previous ones. Some results are stated without
proof, though, and we have sacrificed some formality and generality for the
sake of clarity. In Section 2 we formally define the problem for general den-
sities. In Section 3 we derive an expression for the desired solution in terms
of the known densities. In Section 4 we give some theorems on Gaussian
random vectors and densities. In Section 5 we give a linear, Gaussian model
and use the results in Sections 3 and 4 to derive the Kalman filtering algo-
rithm, which efficiently solves the problem in this case. In Section 6 we give
some examples. The general progression is from abstract to more concrete;
some readers may wish to skim the first few sections on a first reading and
concentrate on the examples, particularly Example 3. The notes at the end
of each section provide additional information but are not needed to follow
the main text except as indicated.

2 The Problem

First a bit of notation. We will write 25 = x({x), that is, the discrete
subscript k£ indexes a real-valued variable ¢, which is the argument to z.

These real-valued variables can take on any values and in particular need
not be evenly spaced. We assume the association is ordered so that ¢; < ¢;
iff © < j. We refer to these variables as time instances, though in many
applications these variables do not refer to time. We write the tilde symbol
above random variables, and take the variable name without the tilde to
refer to a member of the random variable’s range. Thus Z is a vector random
variable, an observation (or value, or mathematically a realization) of which
may be z. We write p(z) for the density function of random vector #, and
likewise p(z|y) for this density conditioned on § = y. We assume the density
value associated with any observed event is nonzero. We generally allow
random vectors to contain both continuous and discrete random variables
as elements.
We consider system models of the class

Tryr = [Tk, Thothy tigr) (1)
Zrv1r = 9(Tpg1, Orgr), (2)

where the density p(z¢) of random vector Zo and the densities for all mem-
bers of the vector random variable families 75 and q~§k are assumed to be
known a priori. All of these random variables with known densities are as-
sumed mutually statistically independent. We also assume that from these
equations the densities p(ay1|2r) and p(zg41|zk+1) can be computed. We
are given the set Z = {(z1,t1),...,(2n,t,)} of observed values for the ran-
dom variables Z; at » known time points. The problem is to determine, for
any given future time instant ¢, with ¢ > n, the posterior density p(z,|Z)

for state 7, given the observed data Z. The problem is illustrated in Figure
1.

Notes:

1. We assume density functions, possibly containing Dirac delta func-
tions, are defined for all probability distributions we deal with.

2. The random variable families # and & in (1) and (2) are discrete-
time independent stochastic processes. The %, form a discrete time
Markov process because we have the property p(zi|zo,...,25-1) =
p(zk|xk—1). This property holds for any past state conditioning: we can
eliminate conditioning on all but the most recent state. It can be shown
that a Markov process is also reverse-time Markov: given the state
conditioned on any future states we can eliminate the conditioning

Measur enent s:

CoLrT

Figure 1: Given the measured data Z and the density for initial state zq,
calculate the density for final state z,.

on all but the closest future state in time. When all elements of the
state vector Zj are discrete random variables the term Markov chain
is usually used instead of Markov process.

3. Equation (1) is a motion model, or state transition equation, and is
a description, here a stochastic (or probabilistic) one, of the motion
of the state vector with time. Equation (2) is a sensor model, or
measurement model, and is a description, here also stochastic, of the
information sensors return about the state.

4. Note the generality of the concept of “states” zj in (1). A dependence
on any finite number of previous states can be reduced to Markov de-
pendence using the trick of augmenting the state vector and “copying
states forward” in the state update (1). This is analogous to reducing
a high order differential equation to a system of first order equations.

5. The time values in the arguments to f, equation (1), are known values,
and we could generally include vectors of any known values in the
arguments to f and g.

6. In our derivations, we really only need to know the densities p(z41|z)
and p(zp41|ekyr1) rather than (1) and (2) and the random variables
involved. Equations (1) and (2) are useful in modeling physical situ-
ations; in some cases, though, it may be simpler to just define these
conditional densities as the model.

7. This problem, with t, > %, is a filtering problem. The problem with
ty < 1y is a smoothing problem, which can be handled similarly to the
filtering problem.

8. Equation (1) is an iterated function system; such systems have received
much recent study in relation to nonlinear dynamics and chaos the-
ory. See [Ber92, CY92] for reviews of such systems from a statistical
viewpoint.

3 Calculating the Posterior Density

In this section we derive an expression for the desired posterior density
p(z4|Z) in terms of the known density functions. We assume the reader is
familiar with multivariate joint and conditional densities, and with relations
such as Bayes’ rule and p(z,y) = p(z|y)p(y) for random vectors and y.

The first step we take in deriving our expression for p(z,|Z) is to write
p(z4|Z) in terms of the joint density p(zo,...,2,,24|Z). By definition
p(z4|Z) is just the marginal

pla,|Z) = /dX P20, s T, 24| Z), (3)

where [dX is taken to mean the multiple integral over all space of the vari-
ables xg,...,z,. If any elements in mixed random vector x; are discrete we
may take the integral as a shorthand for summation with respect to discrete
elements and integration with respect to continuous ones. Alternately, we
could consider discrete densities as mixtures of delta functions or write the
integrals as Stieltjes integrals.

Applying Bayes’ rule to (3), we get

plzg|Z) = /dX P(Z|zo,. s xp, xg)p(20s ooy Ty, 2g) [P(Z), (4)
where
p(Z) = /d.rq / dX p(Z|zo, .. s 2n, 2g)p(Z0, ..\ Tn, Zy) (5)

is the normalizing constant. Now, from equation (2) and the independence
of the ¢ we can write

plag|Z) = ¢! / dX p(z|z1)...p(zalzn)p(zo, - . o 20, 24), (6)

4

where we have set ¢ = p(7).

Since we assume ¢ > n, we can break down the joint density p(zo, ..., z,, z4)
as
P20y s Ty 2q) = plaglzo, ..., z0)p(zo, ..., 25)
= plagley)p(zos - 2n—1,2,)
= p($q|$n)p($n|$o7...7$n_1)p(3607...7$n_1)

= plaglra)p(nlra1)p(zos- - s Ta-1)

paglrs) [1_1 p(wﬂxi_l)] Po),

where we have used the Markov property (see note 2, section 1) to eliminate
conditioning and repeatedly applied Bayes’ rule to “unroll” p(zo, ..., 2., 2,).
Plugging in we get
play|Z) = c—l/dX p(=1]21) - p(zalen)p(y]2n) lH p(ﬂwlwi_l)l p(xo)-
=1
(7)

Finally, on rearranging terms, we obtain the result

plzglZ) = C_l/dX p(@o) [p(z1]zo)p(z1]21)] [p(@2|r1)p(22]22)] - - -

o [p(en—a|za—2)p(zn-1l2n-1)] [P(@a|n—1)p(z0n]20)] p(g|Tn)

pailZ) = [dX plao) [ﬂp(asim_l)p(almal plage).

The game now is to evaluate this expression. Notice that the terms depen-
dent on any z; appear in sequence, with at most 3 terms in the sequence.
These sequences are strictly increasing in time “left to right” in the equation.

Whether expression (8) can be efficiently evaluated depends strongly on
the form of the densities involved. We would like to find a sequence of
evaluation for the integrals such that the result after each step leaves an
expression which can then be efficiently evaluated in the next step, and so
on. In real-time problems an ordering which follows the time ordering of the
states is also desirable.

Let us consider equation (8) in the case where we take ¢ = n+4 1. In this
case we can rewrite (8) as

(8)

P(n41|Z,) =)
C_l/d‘r”/dX(n—l,O) [p(z0) [1:[plailzi)p(zile:) | plen|z,-1)

P(zn|Tn)p(Tng1]|zn)]-
where Z,, indicates the data set up to (z,,%,) and dX(,_1,0) indicates the

integral with respect to z¢,...,2,_1. When written in this form we can see
that the recursive equation
p(zesa|Ze) = ¢! /dﬂ% (@l Ze—1)p(zk|2k)p(@ kg1 |Tr)- (10)

holds by plugging in the underlined expression. The underlined density is
a recursive “function call” and the other densities in the r.h.s. were as-
sumed to be known a priori. Using recursive relations like (10) one can
efficiently update a previous estimate whenever new data is received, with-
out recomputing everything. This is especially important if the integrations
are performed numerically. Note that the way (10) is written the recursion
only goes down to p(z3|Z1) = p(z3|21), since Zy is undefined. In this case
it is more convenient to define the recursion in terms of a pair of mutually
recursive equations for p(xy|Z;_1) and p(xi|Zk) (see note 2).

Notes:

1. See [MCTWS86] for a measure-theoretic treatment of mixed continuous
and discrete random vectors.

2. It is often convenient to evaluate (8) using the time-ordered pair of
mutually recursive equations given by

pap1|Zi) = /d$k P(Tpg1, k| Z1)
= /d$k P(Zppr|Tr, Zr)p(2r| Z1)

= /dﬂ% P(@ppr|vr)p(2r| Zs)
and
pag|Zy) = plag|Zi-1, 2r)
x p(zlzr, Ze—1)p(2k| Zp—1)
= plzr|ler)pler]| Ze—1),

where we define Zy = () and p(2;|0) = p(zx). The recursive “function
calls” are underlined. The first equation can be considered a prediction
of a future state, and the second a measurement update or a correction
of the prediction when given a new observation or sensor report. We
could alternately have started with these equations and used them to
derive equation (8).

. When we “unrolled” the joint density we pulled out the z; in order

of decreasing time so we could use the Markov property to eliminate
dependencies. Using the backward transition densities p(a|zg41) we
can pull out the z; in increasing order using the reverse-time Markov
property. In fact, we can pull out variables in arbitrary order and
eliminate dependencies on all but the two nearest states in time, above
and below. When given p(z¢), though, we should pull out zg last.

Some Theorems on Gaussian Random Vectors
and Densities

Before considering the linear-Gaussian model we first present some theo-
rems related to Gaussian random vectors. Then in the following section we
apply these theorems to evaluate the integrals in equation (8) for the linear-

Gaussian model. From this point on, until the examples, we consider only
continuous random variables. First we make some definitions. Let

a be an 7 X 1 matrix (column vector),

A be an r X r symmetric, positive definite matrix,
b be an s X 1 matrix (column vector),

B be an s X s symmetric, positive definite matrix,
@ be an r X s matrix,

z be an s x 1 matrix (column vector),

Z be an s x 1 random matrix (column vector).

Define

and

C=0Q.AB) = (QA7Q+B7) (1)
= B-BQ(A+QBQ)'QB, (12)

c=¢(Q,a,A,b,B) = C[Q'A a+ B~ 'b] (13)
= b+ CQ'A™ (a—Qb). (14)

Also define the r-dimensional Mahalanobis distance M, as the quadratic
form

M(a, Ayz) = M,(a, Aca) = (1/2)(z —af A @ —a), (15)

and the Gaussian density function by
J(A) = (27)7" 2 det(A)7/2 (16)
Gla,Ax) = Go(e, A a)=J.(A) e Mrlads) (17)

Here G;(a, A, z) is the r-dimensional Gaussian (i.e. normal) density function
with mean a and covariance matrix A.

Using the above definitions we first give a theorem on adding Maha-
lanobis distances.

Theorem 1 Let variables a, A, r, b, B, s, ¢, C, and Q be defined as above.
Then

M, (a, A, Qz)+ Ms(b, Bz) = My(c,C,z)+ M,(a, A+ QBQ',Qb).

This theorem was taken from [Sal89], Appendix A, and a proof can be found
there. The proof is straightforward, though somewhat tedious, and involves
completing the square and applying the matrix inversion lemma (see note
1).

The following theorem, illustrating one of the amazing reproducing prop-
erties of the Gaussian density, can be easily proven using Theorem 1 along
with the relation

det(A)det(B)det(Q'A™'Q + B™") = det(QBQ’ + A).

Theorem 2 Let variables a, A, r, b, B, s, ¢, C, and Q be defined as above.
Then

Gr(a, A, Qu)Gs(b, B,x) = Gs(e,C,)G (a, A+ QBQ',Qb).

Note that Theorem 2 can be used to shift the dependence on = from a pair
of Gaussians to a single Gaussian. The theorem is illustrated in Figures 2
and 3 for an r = s = 2 dimensional case with ¢ = I. The two Gaussians

4

2

AN S N N N N N W A
[

~

[

0.08
0.06

0.04 density

\ 0.02

|
T T W W
5

Figure 2: Two Gaussian densities in @ = (21, 22)’ space to be multiplied.

shown in Figure 2 are the Gaussians in the l.h.s of Theorem 2. Note that
they are both Gaussians in variable z = (21,22)". The Gaussian in Figure
3 is their product, which is again Gaussian in z by the r.h.s. of Theorem 2.
The Gaussian in Figure 3 is not normalized; from Theorem 2 we know its
normalizing constant is the reciprocal of another Gaussian independent of
x.

We will also need the following result, that linear transformations of

Gaussian random vectors are Gaussian random vectors. See e.g. [JW88] for
a proof.

Theorem 3 Let &, x, b, B and () be defined as above. Let d be an s x 1
matriz of constants. Let & have density p(z) = G4(b, B,z). Then random
vector w = ¥ + d has density

plw) = Gs(b+d, B,w) = G(b, B,w—d),
and random vector § = Q% has density

p(y) = G (Qb,QBQ", y).

Figure 3: Product of the Gaussians is Gaussian (Theorem 2).

Notes:

1. The equivalence between (11) and (12) is known as the matriz inver-
sion lemma. Another useful formula is

AQ/(QAQ/‘|‘ B)—l — (A—l + Q/B_lQ)_lQ/B_l-

2. The term CQ'A™" in (14) is known as the Kalman gain matriz.

5 The Linear-Gaussian Case

We now consider a linear-Gaussian case of model equations (1) and (2), and
derive the Kalman filtering algorithm for efficiently computing p(z,|Z) in
this case. First we define some variables. Let

Z be an r x 1 random matrix (column vector),
® be an r X r matrix,

I' be an r X u matrix,

w be an m x 1 random matrix (column vector),
Z be an s X 1 random matrix (column vector),

10

H be an s X r matrix,

? be an s X 1 random matrix (column vector),

@) be an m x m symmetric, positive definite matrix,
R be an s X s symmetric, positive definite matrix,

o be an 7 X 1 matrix (column vector),
3 be an r X r matrix,
A be an r x 1 matrix (column vector),
A be an r X r matrix,

where we have left off the subscripting. The variables in the first group
occur directly in the model. Those in the second group are used in the
algorithm, and of these only ¢ and Yy occur directly in the model as the
known parameters for the density p(z) of initial state Zo.

The linear-Gaussian model we consider is given by

Tpyr = Py Tn + Digrp Wk (18)
Zpt1 = Hpp1 T + Opy, (19)

where in addition to the assumptions made for equations (1) and (2), we
assume p(wy) = Gpn(0,Q, wg) and p(vrg1) = G(0, Rgy1,vp41). That is,
Wy and 7 are independent Gaussian random vectors with zero mean and
covariance matrices @) and Ry, respectively. We are given that p(azg) =
G (09, X0, 20), with g a known 7 X 1 matrix and ¥ a known r X r positive
definite, symmetric matrix, i.e., Zg is Gaussian with mean ¢ and covariance
matrix Yg.

Since (18) and (19) have the form of (1) and (2) an expression for the
desired result p(z,|Z)is given by (8). Therefore we next compute expressions
for p(zg41|zx) and p(zg41|2k41) to plug into (8). Using Theorem 3 on (18)
and (19) we see

plargiler) = Go(@rpik Tr Tepr s Qrlhyr g > Tht1) (20)
Pzrrilerir) = Go(Higr kg, Brprs 2in)- (21)

We now use (20) and (21), along with Theorem 2, to develop a pair

of equations which we will then use to obtain an algorithm for evaluating

p(z4|Z) in the integral expression (8). Using (20) followed by Theorem 2 we
get

11

/ dg Gy (0ps o 2)p(hpn|2r)

= /d$k Go(0k, Xy 21)G (®rgr ke Ty D1 kQrT iy g » Thp1)

Gr(rgrs TrprkQrlirp + Cor1 Xk ®hi s Pryrkor) (22
= GT(/\k—I—l s Npgts $k+1) (23)

because the zj term is shifted to a single, normalized Gaussian which inte-
grates to 1. We now apply (21) followed by Theorem 2 again to get

GT(Ak-l—l 5 Ak+17 Th+1)P(Zk+1 |$k+1)

= GT(/\k—I—h Ak+17 $k+1)Gs(Hk+1 Tk+1, Rk+17 Zk+1)
Gr(e(Hpg1s 241> Rt Mgty Ar1) C(H g1 Rt Ay), Tr1(24)
= Go(Okt1s Zht1, Tht1)s (25)

<

where functions ¢ and C' are defined in equations (12) and (14), and we have
dropped the Gaussian term involving only constants to get proportionality.

Using these results we get an efficient algorithm, known as the Kalman
filtering algorithm, for evaluating p(z,|Z) in the case of the linear-Gaussian
model. We apply the above equations repeatedly in sequence, ending up
with the result already normalized. In other words we evaluate (8) “left to
right”, where the previously evaluated part is collapsed into a single Gaus-
sian. More specifically, start with known density p(zo) = G,(00, X0, 2¢) and
compute G'(A1, A1, 21) using (22). Using this result compute G, (o1, X1, 21)
using (24), followed by G, (Ag, Ag, z2) using (22), etc., with the final result
being p(z,4|Z) = Gr(Ang1, A1, 24)-

Notes:

1. Using note 2 in Section 3 we see p(zk|(z1,t1)s - - -5 (Zh—1,th—1)) = Gr(Ak, Ap, 2g)
and p(zg|(z1,t1),-- ., (2k, tk)) = Gr(ok, Xk, 2k). For this reason com-
puting (22) is often called the prediction step and computing (24) the
measurement update step.

2. The variable lettering in (18) and (19) follows that in [Med69].
3. Equation (12) is usually preferable to (11) for evaluating C' since it

uses fewer inverses. Similarly (14) is preferable to (13) for computing

12

¢. The form of the equations for computing ¢ and C starting with
the Kalman gain matrix, given in [Med69] and elsewhere, is preferable
computationally to the form we have presented. Instead of computing
(24) using (12) and (14), the Kalman gain matrix is first computed as

Kipr = Ay Higy [Hip A Hiy + Ry

Then it can be shown that

Y1 = [— K1 Hp1] A kg

and
ki1 = Meg1 + K1 [2r41 — Hpp1 Apa)-

Note that only one matrix inverse is required, and the matrix to be
inverted has the dimensions of the measurement vector, not the state
vector.

. Note that matrix @ in (18) need not be invertible. Also, setting a
column of f in (19) to the zero vector corresponds to an element of
the state vector which cannot be directly observed.

. Since the time increments t;4q — 3 are known values the matrices
&) 411 and I'y4q ; can contain any functions of these time increments.
If the state’s motion is assumed to obey an arbitrary finite order, con-
stant coefficient, linear, homogeneous differential equation in contin-
uous time then matrix ®;4q 5 becomes the matrix exponential which
solves the equivalent system of first order equations for x54q with ini-
tial condition zp.

. While we have used the time-ordered “left to right” evaluation of the
integrals in (8), Theorem 2 can be used to evaluate the integrals in
essentially any order. For example if the prior p(z¢) were not Gaus-
sian and its product with a Gaussian required numerical integration
then we could perform the integrals analytically with respect to the
Gaussians and then perform a single numerical integration at the end
with respect to zq.

. If a known r X 1 vector uy is added to the r.h.s. of (18), sometimes
called a control term, the only effect is to shift the mean of the Gaussian
in (20). The algorithm changes in that Apyq = ®pyq 1 0 + ug in (22)
and (23).

13

8.

There are a number of variations and extensions of the basic Kalman
filter algorithm to address, among other things, nonlinearities in the
motion model and numerical stability. See [CT84] for a survey. See
also [MS83] for another Bayesian derivation of the Kalman filter, and
[BSF8S] for a least squares approach and many additional references.

6 Examples

In this section we give some examples applying the preceeding results. A

general approach for a practical (as opposed to theoretical) application fol-

lows.

While we present the approach as a sequence of steps, the steps are

really interdependent.

step

step

step

step

step

step

step

1: Determine an appropriate state representation of the problem and
define the state transition function, or motion model, as a discrete-
time, deterministic function f. That is, assume all quantities including
errors, etc., are known exactly. Similarly, describe the measurement
model as a deterministic function ¢ of the known state.

2: Replace z¢ and all unknown quantities (corresponding to 7 in f and
¢ in ¢) by random variables. Write all variables which are functions of
random variables, e.g. the x} and z; for £ > 0, as random variables. In
our notation this step involves simply placing the tilde symbol above
the random quantities.

3: Define densities for the random variables 7, 7, and ¢ introduced
in step 2.
4: Make sure the independence assumptions of Section 1 hold. If not,

either revise the models definitions in step 1, try an augmented state
vector approach, or use more general results than those we have pre-
sented.

5: Compute the densities p(@g41|zk) and p(zg41|zg41). This is possi-
ble in theory, but may be difficult in practice. Alternately, we could
start with this as the first step and define these densities as the model.

6: Gather observed data Z from the system being modeled.

7: Use equation (8), or an equivalent form, to predict the density
for the state 7, at future time ?,. If the model has linear-Gaussian

14

form and is of low enough dimension to compute the necessary ma-
trix inverses then use the Kalman filter algorithm. Otherwise, develop
an acceptably efficient algorithm for evaluating (8). This can be ex-
tremely difficult or impossible if the model is not chosen with care,
and numerical or approximation techniques may be necessary.

step 8: Test the model’s predictions and, if necessary, refine the model.

We emphasize that equation (8) is an extremely general mathematical
result about estimation for discrete-time Markov systems with independent
random disturbances and measurements not affecting the state. As such it
has applications in finance, economics, engineering, the sciences, etc. The
generality of systems having the form of (1) and (2) is illustrated in Example
1, concerning a Turing machine. This is a somewhat theoretical example.
The random variables involved are purely discrete, thus all integrals are
interpreted as sums. Example 2 is a dynamic classification problem. The
state vector in this example is a combination of a discrete classification
variable and continuous variables corresponding to signal values. Example
3 concerns tracking a moving object, and is worked out in some detail. In
this example the model is linear-Gaussian, thus all random variables are
continuous and the Kalman filtering algorithm can be applied.

6.1 Example 1: An imperfectly observed, probabilistic Tur-
ing machine

A Turing machine [Men64, HU79] is a model of effective computation; no
known deterministic computations have been shown to be non-computable in
principle by a Turing machine. Informally, a Turing machine can be thought
of as a semi-infinite tape of symbols scanned by a tape head. At time ¢y the
tape contains the initial tape input in the leftmost cells of the tape, and a
special blank symbol in the remaining cells. A move of the Turing machine
takes it from time k to time k4 1 by writing a new character at the position
of the tape head and then moving the head left or right.

More formally, let () be a finite set of states, and let A = {0,1, B} be
an alphabet of characters. For our purposes, Turing machine M at time k
is characterized by a state ¢p from a finite set of possible states (), an n
dimensional row vector (or string, or array) of characters T), € A™ called the
tape, and an integer p; indexing the place of the “tape head” on the tape.
For this example we will use array notation and write Tx[:] for ith element
of the tape, with i > 0. We also define ¢ = Tj[py] as the character currently

15

being “scanned” by the tape head. We thus write the Turing machine at
time k as the vector My = (qx, nk, Tk, pr)’-

The initial state vector of the Turing machine is given as My = (qo, 170, 10,0)".
A function Move takes the machine from time k to time k+ 1 as My4q =
Move(My). We assume we have the functions

Move, : Q X A — @, (26)
Mover :QQ x A — A, (27)
Move, : Q x A — {-1,1}. (28)

Then we define the total Move() function as
Move(My) = (Move,(qx, cr)snk + 1, Try1, pr + Movey(pr, cx))'y (29)

where Tii1[nk41] = B, Try1[pr] = Mover(qy, k), and Tyy1[t] = Ty[7] oth-
erwise. Function Move is not defined for all machine states M}, and the
machine is said to halt at time k if Move(M}) is undefined or if pyyq = —1.
Note that the size of the tape increases with each time step to give a con-
structively infinite tape.

A probabilistic Turing machine [San69] can be characterized as a Tur-
ing machine where the function Move, takes an additional, discrete, inde-
pendent random variable as an argument [Gil77]. This random variable is
restricted to have finite range, i.e., it can have only finitely many possible
values. Thus, for example, in (29) Move, is replaced with Move,(qx, cx,),
so the next state is also a random variable, etc. Note that our formulation
is slightly different from those in [San69] and [Gil77]. A nondeterministic
Turing machine, in standard computer science terminology, can be char-
acterized as a Turing machine where Move, is multiple-valued. The non-
deterministic machine essentially branches and computes the results for all
possible ¢ values at each time step. An equivalent probabilistic Turing ma-
chine is a machine which computes all outputs having nonzero probability,
and where each possible Move, value in the nondeterministic machine is
assumed equally likely.

To put the Turing machine into the form of (1) we take 2 = My, and
Tp41 = Move(zy). The state is essentially the instantaneous description,
or 1D, of the machine at any given time. With this information stored in
the state vector no information about previous states is needed to run the
machine forward in time.

We have mapped the Turing machine into states z, of the form (1), but
we have not yet defined the sensor model ¢ of (2). We take the function ¢

16

to model an external agent’s observation of a probabilistic Turing machine
as it evolves in time. For example we might have Z31 = T41 + q~§k+17 with
& an appropriately dimensioned vector of independent random variables, so
the observer gets data corrupted by additive noise. As another example,
the observer may not be able to read some tape cells at all, but can read
all other state information perfectly. This type of model relates to another
characterization of nondeterministic machines, where the machine is allowed
to “guess an input structure” [GJT79].

6.2 Example 2: Dynamic classification of an input signal

Consider a discrete-time signal s(tz) € R%, k = 0,1,2,.... For example,
s(tr) might be amplitude values or time-localized frequency values taken
at discrete times from a person’s continuous speech stream. For simplicity,
assume the signal is sampled at constant time intervals. Assume that at each
time point ¢; the signal also has associated with it a discrete class value wy,
from a known, finite set of classes 2. In the speech processing example
we will take the class wy to represent the current word (or phoneme) being
spoken. The state representation we define for this problem is as follows.
The state zj is a vector of the previous L signal attribute vectors s along
with a discrete classification variable, i.e.,

T = (S(tk)/78(tk_1)/7 .. -75(tk—L)/7wk)/- (30)

Now, we cannot observe the state directly. At each time point t; we
measure a vector of real-valued signal attributes z;. For example, the vec-
tor z; might be noisy measurements taken from a microphone input. The
objective is to predict the class w; at each time £ > L. If s is continuous
then these measurement times determine the discrete time instants ¢; at
which we consider the continuous signal s(¢). Of course we cannot mea-
sure the class value wy directly, even with noise. Including it in the state
representation is a convenient fiction introduced to facilitate modeling.

Notice that we took the state to include the previous L attribute vectors
to allow more realistic motion models. In the speech context this means that
the current word being spoken is modeled as being a function of the speech
attributes at the previous I measurement times. Thus the model could take
into account a “sentence-like” block of previous speech with large enough
L. The classification variable wj could alternately be defined as the word
spoken at a previous time instant, to take information from the succeeding

17

speech into account, or the problem could be formulated as a smoothing
problem.

The function f in (1), or equivalently the density p(zy1|zk), is chosen
to model the flow of the state, with random elements taking uncertainties
into account. Thus in the speech data example it is a stochastic speech
model. We need to model, or estimate, the joint probability of s(¢x41) and
wr+1 given their values at the previous L time instants. Creating this model
is one of the most difficult and important tasks in an effective application.
We will not be more specific in describing f.

The function ¢ in (2), or equivalently the density p(zx41|zg+1), is cho-
sen to model the errors introduced in the measurement process. In the
speech example we model the signal transformation and noise introduced
by the microphone and any other sources, as well as the fact that we
cannot directly observe the class value wp. For concreteness, assume ¢
is of linear-Gaussian form (19), where H is a matrix having partitioned
form ([(4*D)(dx(L=1)d)|o(dx1)) with superscripts denoting the matrix di-
mensions. Thus at time k£ 4+ 1 the d-dimensional measurement z;yq is the
true signal vector s(ty41) corrupted by additive Gaussian noise. That is,
P(zks1|Tht1) = p(zrgr|s(tisr)) = Ga(s(tky1), I, zk41), where we have taken
the correlation matrix to be the identity matrix.

If we are given a set of data, equation (8) “solves” the problem of finding
the posterior density for the current state given the observed data. Since
the class w is a component of the state vector we can in principle integrate
out the other components to obtain a probability for each classification at
each time step. Of course (8) is really just a starting point. The models
and estimation algorithms must be chosen so that an acceptably efficient
implementation, in terms of running time and accuracy, can be found. Even
given a model with an acceptably efficient implementation, the problem of
estimating the parameters of the model remains. In this type of problem
one typically has a set of training data with known classifications, and the
goal is to set the parameters of the model to maximize the posterior density
of the parameter vector given the training data. Since finding the optimal
parameter vector is typically intractable, approximate algorithms like hill-
climbing or annealing are used. See [Rab89] for a tutorial introduction to
Markov models in speech recognition and a discussion of the many practical
problems that arise.

18

6.3 Example 3: Tracking a moving object

For this example we modify our notation slightly. We drop the convention
that subscripts are implicit time arguments, and instead we write the time
arguments explicitly. Thus we write z(¢)) where before we simply wrote zy.
We use subscripts instead to indicate the elements of vectors. For example
x;(ty) is the ith component of vector z at time .

Consider a ball of known mass m thrown at a robot. The goal of the
robot is to predict the position of the ball at time ¢,, perhaps as a subprob-
lem in an attempt to catch the ball. Over time the robot receives noisy
sensor measurements about the position of the ball. We assume the raw
sensor measurements have been preprocessed into position estimates con-
taminated with additive Gaussian noise. This noise is assumed to have a
known covariance matrix at each measurement time.

In what follows we first define the state-vector representation of the
thrown-ball system. Then we define the true differential equations describing
the motion of the ball. Next, we define the robot’s model of the ball’s motion
equations — these equations are not identical to the true equations of motion.
We then solve for the discrete-time form of the robot’s model and include a
noise term to help compensate for the fact that the model is incorrect. After
defining the true motion model and the robot’s motion model we define the
true sensor model, and assume the robot uses the true sensor model as well.
The robot’s model corresponds to equation (1) in the general system, and to
equation (18) in the linear-Gaussian system. The sensor model corresponds
to (2) in the general system and (19) in the linear-Gaussian system. Finally,
we give a specific example.

The coordinate system is a fixed, rectangular system with the third coor-
dinate as the vertical direction. We take the state (%) of the system to be
the position of the center of mass of the ball, y(tx) = (y1(tx), y2(tx), ys(tr))’,
along with its velocity vector v(ty) = (v1(tx), v2(tx), va(tr))’. Thus

a(ty) = (y(tp) v(ty)') (31)
= (y1(tr), yo(tr)s ys(tr), vi(te), va(tr), va(tr))
= (a1(ty), wa(tr), wa(te), 2alty), w5(tr), we(tr))'-

For the purposes of this example we assume the frue motion of the ball is
described by Newton’s law as

m a(t) = Force(t) = m(0,0,—g) — a(v1(t), vo(t), v3(1))’, (32)

19

where the ball experiences a retarding force proportional to its velocity in
addition to the force of gravity. The retarding force might, for example, be
due to air resistance. Thus

m(’yh é]% :z]S)/ = m(0707 _g)/_ 04(3217 3)27 3}3)/ (33)
or
i+ ay/m 0
2 + aga/m =10]. (34)
s +ays/m+yg 0

Notice that the system can be easily decoupled into three independent sys-
tems and solved separately. For the purposes of this example, though, we
consider all the equations simultaneously. Rewriting in terms of the state
vector z, defined in (31), we have

.fl(t) $4(t)

izgtg $5Et§

.f3 4 Zzg 4

i) | T —azat)/m (35)
#5(1) —axs(t)/m

Ze(t) —axg(t)/m—g

Now, the robot is assumed to model the thrown-ball system as (35) but
with o« = 0. That is, the retarding force is not accounted for in the model.
In Figure 4 we show the z5 and z3 components of a ball’s trajectory with
a = .5, the true model, as a dashed line. A ball’s trajectory with a = 0,
the robot’s assumed model, is the solid line. The initial condition for both
cases is z(tg) = (0,0,0,5,5,5) and we take mass m = 1.

Solving the robot’s model system for discrete-time and including additive
noise in the velocity transitions to compensate for modeling errors we obtain

(k1) = @1, te)a () + Dtpgr, te)w(ty) + ulty), (36)

where w(ty) is a 3-dimensional error or noise vector. Matrices ® and I' and
vector u will be defined next. Defining the time increment Aty = {341 — 1%
and writing out the matrices equation (36) becomes

xl(tk+1) 1 0 0 Atk 0 0 xl(tk)
xg(tk+1) 0 1 0 0 Atk 0 xg(tk)
xg(tk+1) _ 0 0 1 0 0 Atk xg(tk) (37)
$4(tk+1) o 0 0 0 1 0 0 $4(tk)
$5(tk+1) 0 0 0 0 1 0 $5(tk)
$6(tk+1) 0 0 0 0 0 1 x6(tk)

20

height
(x3)

1.2+
0.8} AN

0.6} \
0.4} \

0.2} \

\ distance
1 2 3 \ 4 5 (x2)

0.2} \

Figure 4: Trajectory of the ball under two different models.

0 0 0 0
8 8 8 wi(ty) (At0)2 /2
Tl A, 0 0 wally) |+ ¢’
0 Aty 0 ws(x) 0
0 0 Atk —(Atk)g

We can verify that (36) with w(;) = 0 solves (35) with a = 0 by differ-
entiating. Notice that the additive noise in the velocity transitions grows
linearly larger for longer time periods because of the way I' is defined. We
have used a control term u(t) (see note 7, Section 5) to incorporate terms
due to the constant accelleration. We could alternately have expanded to a
9-dimensional state representation by including three accelleration compo-
nents in the state.

We now consider the sensor model. The robot receives sensor measure-
ments only about the position of the ball, with Gaussian errors. Thus we
have

2(th4r) = H(te)2(trgr) + 7(trga), (38)

21

or, writing out the matrices,

21(thy1)
x9(T
21(thg1) 100000 ngtiig r1(trg1)
Zz(tk+1) = 01 0 0 00 $4(tk+1) + Tz(tk+1)
Z3(tk+1) 0 01 000 $5(tk+1) 7‘3(tk+1)
Te(tkt1)
(39)

Here r is a sensor error term (we have used the letter r instead of v for the
error term to avoid conflict with the velocity vector »). Unlike the error
terms wy in the motion model (36), the r; error terms are not assumed to
affect the ball’s trajectory; each rp affects only a single measurement zj.
Notice that because of the way H is defined the robot can only directly
sense the position of the ball, not its velocity, and these measurements are
corrupted with noise.

Now that we have defined both the robot’s model of the ball’s motion
and its sensor model as deterministic processes, we consider the unknown
quantities to be random variables. Thus we define densities for the quantities
w(ty), r(tx), and z(tp). In terms of the previous notation we would now write
the tilde symbol above these quantities and all functions of these quantities,
but we will not do this explicitly. We define p(w(tz)) = G35(0,1,w(ty)),
Pr(t)) = Ga(0,1/4,7(t,)), and p(a(te)) = Galo(to). L (ts)). We take
o(tp) = (0,0,0,5,5,5) to be the true initial condition as well as the mean
of the modeled prior p(z(ty)). Notice that with these Gaussian density
assumptions the robot’s model has linear-Gaussian form. That is, equation
(36) corresponds to (18), and (38) corresponds to (19). Thus, given a data
set Z, we can use the Kalman filtering algorithm to compute the density for
the state vector at any future time.

The Kalman filter algorithm allows us to compute a density estimating
the state at any future time, and this estimate is Gaussian. If the robot’s
model were identical to the true model then these estimates would be the
true densities for the future states. Since the model is incorrect, though,
they are only approximations. We may want the density for a subset of
the state elements, rather than for the entire state. For example, we may
want the density for only the position coordinates. In this case, because
the densities are Gaussian, we do not need to explicitly integrate out the
other components. The estimate for a subset of coordinate positions is again
Gaussian and is obtained by simply eliminating the unwanted coordinate po-

22

sitions and their corresponding rows and columns in the covariance matrix.
This can be seen by applying Theorem 3 with the matrix ¢ (of Theorem 3)
chosen to eliminate the unwanted coordinate positions, leaving the others
unchanged.

Assume that we observe the system at times ¢; = 1/8,1, = 1/3, and t3 =
1, and take ¢y = 0. We are given the dataset Z = {(2(¢1),11), (2(t2),t2), (2(3),13)}
sensed from the true trajectory with a = 0.5. Figure 5 is a phase plot of the
x5 and g components of the true trajectory. Time is not shown and could be
considered to be “coming out of the page”. The small circles along the path
indicate the ball’s true position at measurement times ¢y,...,{3. According
to the sensor model, a measurement is a sample from a Gaussian with mean
at the true position. The larger gray circles are the 39.3 percent probability
ellipses (circles in this case) for the measurements. The small squares show
the actual sampled values, which are the observed measurements (or the
realizations of the %;).

In Figure 6 we show the x5 and 23 components of the mean for the
Kalman filter estimate of the state. At the end of the first three of these
segments we show the 39.3 percent probability ellipse around the mean in
gray. Actually, though, each point on the curves is a mean value and has a
Gaussian density associated with it. Note that since the probability ellipses
do not depend on the measured data they remain circular (rather than
becoming elliptical) through time. The true trajectory is again shown as the
dashed curve. Time increases left to right along each piece of the estimate.
The breaks occur whenever a new measurement is received. The leftmost
solid segment is the mean of p(x(t)) for tg <t < ¢;. The next solid segment
is the mean of p(x(t)|(2(t1),t1)) for t; < t < ty, followed by the mean of
p(z(t)|(2(t1), t1), (2(t2), t2)) for t; <t < 13, etc. Only the final solid segment
is conditioned on all the data Z. After receiving all the data the other
estimates could be improved, if desired, by formulating the problem as a
smoothing problem (see note 7, Section 2). Notice that the estimates tend to
overshoot the true trajectory because the model does not take the velocity-
dependent retarding force into account. Immediately after measurements
are received the estimates tend to improve.

23

height
(x3)

.))) X) , distance
-1 1 2 3 % 5 6 (x2)

Figure 5: The ball’s true path and sensor data measured from it.

height
(x3)

distance
6 (x2)

Figure 6: Estimates of the ball’s path and the true path.

24

References

[Ber85]

[Ber92]

[BSF88]

[CT84]

[CY92]

[Dil94]
[Gil77]

[GIT9]

[HUT79]

[JH69]

[TWSS]

[MCTWS6]

[Med69]

James O. Berger. Statistical Decision Theory and Bayesian
Analysis. Springer-Verlag, 1985.

L. Mark Berliner. Statistics, probability and chaos. Statistical
Science, 7(1):69-122, 1992.

Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and
Data Association. Academic Press, 1988.

Chaw-Bing Chang and John A. Tabaczynski. Application of
state estimation to target tracking. IEFFE Transactions on Au-
tomatic Control, AC-29(2), 1984.

Sangit Chattergee and Mustafa R. Yilmaz. Chaos, fractals and
statistics. Statistical Science, 7(1):49-121, 1992.

Dan Dill. Interactive TeX/Mathematica documents, Feb. 1994.

John Gill. Computational complexity of probabilistic turing
machines. SIAM Journal on Computing, 6(4):675-695, 1977.

Michael R. Garey and David S. Johnson. Computers and In-
tractability. Freeman, 1979.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley,
1979.

Arthur E. Bryson Jr. and Yu-Chi Ho. Applied Optimal Control.
Ginn and Company, 1969.

Richard A. Johnson and Dean W. Wichern. Applied Multivari-
ate Statistical Analysis. Prentice Hall, 1988.

Shozo Mori, Chee-Yee Chong, Edison Tse, and Richard P.
Wishner. Tracking and classifying multiple targets without a
priori identification. IFEFE Transactions on Automatic Control,

AC-31(5), 1986.

J. S. Meditch. Stochastic Optimal Linear Fstimation and Con-
trol. McGraw Hill, 1969.

25

[Men64]

[MS83]

[Rab89]

[Sal’9]

[San69]

[Wol91]

Elliot Mendelson. Introduction to Mathematical Logic. Van
Nostrand, 1964.

Richard J. Meinhold and Nozer D. Singpurwalla. Understanding
the kalman filter. The American Statistician, 37(2):123-127,
1983.

Lawrence R. Rabiner. A tutorial on hidden markov models and

selected applications in speech recognition. Proceedings of the
IEEF, 77(2):257-285, 1989.

D. J. Salmond. Tracking in uncertain environments. Technical
report, Royal Aerospace Establishment, Farnborough, Hants,
UK, September 1989. From a Ph.D. thesis, University of Sussex.

Fugene S. Santos. Probabilistic turing machines and com-
putability. Proceedings of the American Mathematical Society,
22:704-710, 1969.

Stephen Wolfram. Mathematica: A System for Doing Mathe-
matics by Computer. Addison Wesley, 1991.

26

A The Kalman Filter in Mathematica

This appendix contains Mathematica [Wol91] code for generating some of the
graphs, as well as Example 3. The code was written and typeset using the TeX/Mathematica
system [Dil94].

First we perform some setup.

(
<<Statistics‘ContinuousDistributions‘
SetOptions[Plot, Frame->True];
$DefaultFont = {"Helvetica",4};
SeedRandom[31454623] ;

dashl = { Dashing[{0.005, 0.005}] };

dash2 = { Dashing[{0.01, 0.01}] };

dash3 = { Dashing[{0.01, 0.01, 0.001, 0.01}] };
solid = { };

)

Now we define the r-dimensional Gaussian density as in (15) to (17).

(

Mahalanobis[r_,a_,A_,x_] := (1/2) (x-a).Inversel[A].(x-a);
Jlr_,A_] := (2 Pi)"(-r/2) Det[A]l"(-1/2);
Gaussian[r_,a_,A_,x_] := J[r,A] Exp[-Mahalanobis[r,a,A,x]];
)

This code produces the illustrations of Theorem 2 in Section 4.

(
$DefaultFont = {"Helvetica', 2};
Print["Doing combined plot.."];
figurel=Plot3D[Evaluate[
Gaussian[2,{-1.5,0},{{4,2},{2,2}},{x,y}]1],
{x,-6,6}, {y,-5,5},
AxesLabel -> {"x1 ",ovx2 ", "density"},
AxesEdge -> {Automatic,{-1,-1},Automatic},
PlotRange -> {0,.08},
ViewPoint -> {0,-2,2},
PlotPoints -> 25,
DisplayFunction -> Identity,
ClipFill -> None];

27

figure2=Plot3D[Evaluate[
Gaussian[2,{1.5,0},{{4,-2},{-2,2}},{x,y}H],

{x,-6,6}, {y,-5,5},

AxesLabel -> {"x1 ",ovx2 ", "density"},

AxesEdge -> {Automatic,{-1,-1},Automatic},

PlotRange -> {0,.08},

ViewPoint -> {0,-2,2},

PlotPoints -> 25,

DisplayFunction -> Identity,

ClipFill -> None];
figure=Show[GraphicsArray[{figurel,figure2}]1];
PSTeX[figure,"gaussianPlot"];

Print ["Doing product plot.."];
figure3=Plot3D[Evaluate[
Gaussian[2,{-1.5,0},{{4,2},{2,2}},{x,y}]
Gaussian[2,{1.5,0},{{4,-2},{-2,2}},{x,y}1],

{x,-6,6}, {y,-5,5},

AxesLabel -> {"x1 ",ovx2 ","1likelihood"},

AxesEdge -> {Automatic,{-1,-1},Automatic},

PlotRange -> {0,.003},

ViewPoint -> {0,-2,2},

PlotPoints -> 25,

ClipFill -> None];
PSTeX[figure3,"productPlot"];

)

Doing combined plot..
PSTeX::file: Graphics being processed (without prolog) to file
"gaussianPlot.ps".

Doing product plot..

PSTeX::file: Graphics being processed (without prolog) to file
"productPlot.ps".

Now we compute Example 3 in Section 6. The code is a basic loop implemen-
tation of the Kalman filter algorithm. Alternately, we could have defined trans-
formation rules corresponding to Theorem 2 and had Mathematica evaluate (8)
automatically.

We first define the true motion equations of the thrown-ball system and solve
for the discrete-time equations.

(
stateVector[t_] := { x1[t], x2[t], x3[t], x4[t], x5[t], x6[t] };
system[t_,alpha_] :=

28

{ x1°[t] == =x4[t],

x2°[t] == x5[t],

x3’[t] == x6[t],

x4’ [t] == -alpha x4[t] / m,

x5’ [t] == -alpha x5[t] / m,

x6’[t] == -g + (-alpha x6[t] / m),

x6[0] == i6, x5[0] == i5, x4[0] == i4,

x3[0] == i3, x2[0] == i2, x1[0] == il };
soln[t_,alpha_] := DSolve[system[t,alpha], stateVector[t], t];
x[t_,0] = stateVector[t] /. soln[t,0]1[[11];
x[t_,alpha_] = stateVector[t] /. soln[t,alphal [[1]];
Print["System solution for alpha = 0:"];
Print["x[t] = ", x[t,0]];
Print["System solution for alpha > 0:"];
Print["x[t] = ", x[t,all;
)

LinearSolve::nosol: Linear equation encountered which has no solution.

LinearSolve::nosol: Linear equation encountered which has no solution.
System solution for alpha = 0:

2
gt
x[t] = {i1 + i4 t, i2 + i5 t, i3 + i6 t - -———, i4, i5, i6 - g t}
2
System solution for alpha > O:
i4d m i4d m iS5 m iS5 m
x[t] = {i1 + - , 12 + - s
a (a t)/m a (a t)/m
a E a E
g m
2 m (i6 + -—-)
itm gm a gmt i4 i5
> i3 + + - - 5 > s
a 2 (a t)/m a (a t)/m (a t)/m
a a E E E
g m
i6 + ———
gm a
> (=) + = ¥
a (a t)/m
E

Now we generate Figure 4. We plot two position coordinates of the state, zo

29

and z3, for the two different models. We take mass m = 1 and and time 0 <¢ < 1.
We define the initial condition to be z(t) = (0,0,0,5,5,5)".

(
i1=0; i2=0; i3=0; i4=5; i5=b; 1i6=5;
£=9.8; m=1;

figure=ParametricPlot[
Evaluate [{{x[t,01[[21],x[t,01[[311},{x[t,.510[2]1],x[t,.51[[311}}],
{t,0,1},
PlotRange -> Automatic,
PlotStyle -> { solid, dash2 },
AxesLabel -> {"distance\n(x2)","height\n(x3)"}];
PSTeX[figure, "ballPaths"]
)

PSTeX::file: Graphics being processed (without prolog) to file "ballPaths.ps".

Out [4]= -Graphics-

Next we measure some data from the system. First we define the measurement
times, along with some constants. We also define the measurement matrix H. Then
we run the system forward and “measure” the data Z from the true state vector.

(
g = 9.8; alpha = 0.5; m = 1;
t[01=0; t[11=1/8; t[2]1=1/3; t[3]1=1; t[4]=1.1;
H = {{1,0,0,0,0,0},
{0,1,0,0,0,03},
{0,0,1,0,0,03}3};
Dol[(
(* get a random noise vector *)
v[k+1] = { Random[NormalDistribution[0,1/2]],
Random[NormalDistribution[0,1/2]],
Random[NormalDistribution[0,1/2]] };
(* measure the position coordinates with noise *)
z[k+1] = H . x[t[k+1],0.5] + v[k+1];
),{k,0,2}];

Now that we have measured the data from the true system, we define the
parameters of the model system. We define the matrices ® and I' which appear
in the model, as well as the vector u. We take the definition of H as that given

30

previously, the true measurement matrix. Note that the assumed measurement
model is correct.

(

Phi[t1_,t0_] := {{1,0,0,t1-t0,0,0},
{0,1,0,0,t1-t0,0%},
{0,0,1,0,0,t1-t0},
{0,0,0,1,0,03},
{0,0,0,0,1,03},
{0,0,0,0,0,1}};

Unprotect[Gamma] ;

Gammal[t1_,t0_] := {{0,0,0},

{0,0,0%},
{0,0,0%},
{t1-t0,0,0},
{0,t1-t0,0},
{0,0,t1-t03}};

ulti1_,t0_] :={ 0,

0,

-g (t1-t0)"2 / 2,
0,

0,

-g (t1-t0)}

Next we define the means and covariance matrices for the densities of the un-
known quantities, which we assumed to be Gaussian.

(

sigmal0]1={0,0,0,5,5,5};
Sigma[0]=IdentityMatrix[6];
R = IdentityMatrix[3] / 4;
Q = IdentityMatrix[3];

)

Now we define C' and ¢ as in (12) and (14).

(

CFun[Q_,A_,B_] := B - B.Transpose[Q].Inverse[A + Q.B.Transpose[Q]].Q.B;
cFun[Q_,a_,A_,b_,B_] := b + CFun[Q,A,B].Transpose[Q].Inverse[A].(a-Q.b);
)

31

We now define the Kalman filter relations and loop over the data. After this
step the X; and Az matrices and the o and A; vectors will have been calculated.
In practice we could update our estimates after each measurement.

(
Do [(
Lambdal[k] = Gamma[t[k],t[k-1]] . Q@ . Transpose[Gamma[t[k],t[k-1]1]
+ Philt[k]l,t[k-111 . Sigmalk-1] . Transpose[Philt[k],t[k-1111;
Sigmalk] = CFun[H, R, Lambdalk]];
lambdalk] = Philt[k],t[k-11] . sigmalk-1] + ult[k],t[k-11];
sigmalk] = cFun[H,z[k],R,lambdalk],Lambdalk]];
), {k,1,3}];
)

Now we plot the estimated final two state coordinates.

(
(* define the prediction from a t_k time to an arbitrary time *)
mean0OfPrediction[lowK_,tVar_] :=
Phi[tVar,t[lowK]] . sigma[lowK] + ul[tVar,t[lowK]];
cov0fPrediction[lowK_,tVar_] :=
Gamma[tVar,t[lowK]].Q.Transpose[Gamma[tVar,t[lowK]]]
+ Phil[tVar,t[lowK]].Sigma[lowK].Transpose[Phi[tVar,t[lowK]]];
(* loop and compute each segment of the estimate’s mean *)
Do [(
fig[k] = ParametricPlot[Evaluate[Take[meanOfPrediction[k-1,tVar],{2,3}]1],
{tVar,t[k-1]1,t[k]},
DisplayFunction -> Identity,
AxesLabel -> {"distance\n(x2)","height\n(x3)"}];
covEllipse[k] = Graphics[{GrayLevel[.8], Disk[
Take[meanOfPrediction[k-1,t[k]]1,{2,3}]1,
N[Sqrt[covOfPrediction[k-1,t[k]1] [[3,311 111 } 1;
),{k,1,4}]1;
(* plot the true path of the ball *)
truePath = ParametricPlot[
Evaluate[{x[t,.51[[2]1],x[t,.51[[3]1]1}]1,
{t,0,1.1},
PlotRange -> {{-1,6},{-1.5,2.0}},
PlotStyle -> dash2,
AxesLabel -> {"distance\n(x2)","height\n(x3)"}];
(* plot circles along the true path at the measurement times, *)
(* and covariances of measurement errors centered at these points *)
timePoints = Graphics[{{GrayLevel[0.8],
Disk[{x[t[1],.5]1[[2]1]1,x[t[1],.51[[311},1/2],

32

Disk[{x[t[2],.51[[2]1]1,x[t[2],.51[[311},1/2],
Disk[{x[t[3]1,.51C[21]1,x[t[31,.5]1C[311},1/2]1%},
{GrayLevel[0.1],
Disk[{x[t[1],.510[21]1,x[t[1],.51[[311},.05],
Disk[{x[t[2],.51[[2]1]1,x[t[2],.51[[311},.05],
Disk[{x[t[3],.51[[2]1]1,x[t[3],.51[[311},.051}
315
(* plot squares at the measured data points *)
fillSquarelp_,w_] := Rectangle[{p[[1]1]-w,p[[2]]-w},{p[[11]+w,p[[2]1]1+w}];
dataZ = Graphics[{
GrayLevel[0.1],
fillSquare[Take[z[1],-2],.05],
fillSquare[Take[z[2],-2],.05],
fillSquare[Take[z[3],-2],.05]
315
(* combine plots to create Figure 5 *)
measuredFig = Show[truePath,timePoints,dataZ,truePath];
PSTeX [measuredFig, "measuredData"];
(* combine plots to create Figure 6 *)
estimateFig = Show[truePath,covEllipse[1],covEllipse[2],covEllipse[3],
figl1],figl2],£figl3]1,figl4], truePathl;
PSTeX[estimateFig, "estimatedPaths"]
)

PSTeX::file: Graphics being processed (without prolog) to file
"measuredData.ps".

PSTeX::file: Graphics being processed (without prolog) to file
"estimatedPaths.ps".

Out[10]= -Graphics-

From note 3 in Section 5, a more efficient algorithm for computing A, X, A, and
o 1s as follows. As a check we print the differences between these results and the
previously computed ones.

(

KSigmal[0] = Sigmal0];
Ksigmal[0] = sigmal0];
Do [(

(* Lambda and lambda are computed as before *)
Lambdal[k] = Gamma[t[k],t[k-1]] . Q@ . Transpose[Gamma[t[k],t[k-1]1]
+ Philt[k]l,t[k-1]1 . KSigmalk-1] . Transpose[Philt[k],t[k-1111;
lambdalk] = Philt[k],t[k-11] . Ksigmal[k-1] + ult[k],t[k-1]1];
(* compute Sigma and sigma using the Kalman gain matrix *)

33

)

KalmanGain[k] = Lambdal[k] . Transpose[H] . Inverse[
H . Lambdal[k] . Transpose[H] + R];
KSigmal[k] = (IdentityMatrix[6] - KalmanGain[k] . H) . Lambdalk];

Ksigmal[k] = lambdalk] + KalmanGain[k] . (z[k] - H . lambdalk]);
Print[" "]; Print["Differences for k=",k];

Print [MatrixForm[N[Sigma[k]-KSigmal[k]]1]," ", N[lsigmalk]-Ksigmalk]]];
), {k,1,3}];

Differences for k=1

0

0 0 0 o o {0.,0.,0.,0., 0., 0.}

Differences for k=2

0

0 0O 0 o o {0.,0.,0.,0., 0., 0.}

Differences for k=3

0

0 0 0 o o {0.,0.,0.,0., 0., 0.}

34

As a final check on the equations, we now generate some random vectors and
matrices and check Theorem 2. We use matrices of integers to get exact arithmetic,
and compute the ratio of the r.h.s. and l.h.s. of Theorem 2.

(

RandomMatrix[r_,s_] := Table[Random[Integer,{-100,100}]1,{i,1,r},{j,1,s}]1;

RandomVector[r_] := Table[Random[Integer,{-100,100}],{i,1,r}];

RandomPosDef [r_] := (tmp=RandomMatrix[r,r]; tmp=tmp . Transpose[tmp];
If[Det[tmp]l>0, tmp,RandomPosDef [r]]);

)
[}

!
~

= Random[Integer,{1,6}];

= Random[Integer,{1,6}];

= RandomVector[r];

= RandomPosDef[r];

RandomVector[s];

= RandomPosDef[s];

= RandomMatrix[r,s];

= RandomVector[s];

Print[Gaussian[r,a,A,Q.x] Gaussian[s,b,B,x] /
(Gaussian[s,cFun[Q,a,A,b,B],CFun[Q,A,B] ,x] Gaussian[r,a,A+Q.B.Transpose[Q],Q.b])];

),{test,1,10}]

KO Wo ko n R
1]

T S Y S

35

