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Abstract

Field-programmable gate arrays (FPGAs) are an inexpensive and flexible “low risk” design
alternative to custom integrated circuits. While FPGA partitioning and technology mapping have
been well-studied, FPGA routing has received much less attention. In this paper we propose a
unified general framework for FPGA routing, which allows simultaneous optimization of multiple
competing objectives under a smooth designer-controlled tradeoff. Our approach is based on
a new and general multi-weighted graph formulation, enabling a good theoretical performance
characterization, as well as an effective, practical implementation. Our router is architecture-
independent, computationally efficient, and performs very well on industrial benchmarks. Finally,
our multi-weighted graph formulation is quite general and is directly applicable to many other
areas of combinatorial optimization.

1 Introduction

Field-programmable gate arrays (FPGAs) are an inexpensive and flexible design alternative to custom
integrated circuits. FPGAs are reusable high density ASICs that can be easily (re)configured by the
user [42], which has made them a popular “low risk” way to implement digital designs [37]. There
are a number of commercially available FPGA technologies [37], but generally, an FPGA architecture
consist of a symmetrical array of user configurable logic “blocks” or “cells” (each of which implements

a portion of the design logic), and a set of interconnection resources used for routing [5].

Partitioning and technology mapping in FPGAs has been extensively studied by e.g. [7] [10] [14]
[23] [34], where a typical goal is to minimize the maximum input-to-output circuit depth (which reduces
delay), while varying the total number of logic blocks used (which in turn affects placement and routing

feasibility), or some tradeoff between these two goals. For example, the Rmap algorithm [35] allows
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the user to specify parameters that balance logic block utilization with the goal of producing routable
designs during technology mapping; this algorithm attempts to reduce both local and global routing
congestion by “dilating” a design according to these parameters. More recent work has addressed the
issue of FPGA routability prediction during higher levels of the design cycle [3] [6] [35] [38]. Routability
is the likelihood of a particular technology mapping and placement solution being feasible to route using

the available interconnect resources.

While technology mapping and routability have been studied extensively, less attention has been
focused on the actual routing. This is surprising, since researchers have already noted that feasibility
in FPGA designs is constrained by routing resources more than by logic resources [38]. Moreover it was
observed that FPGA performance is often limited by routing delays, rather than by logic block and gate
delays [3]. Much of the research on FPGA routing has centered around the SEGA [28] detailed routing
algorithm and its predecessor, CGE [4] [5]. Both of these methods are used to route symmetrical-array
FPGASs, and allow critical nets to be given higher routing priority. SEGA and CGE use a global router
[33] which selects a sequence of channel edges for each connection, which are in turn used to assign
edges to specific connections, giving higher priority to edges which least affect other connections. In
the technology mapping research of [3], Steiner routing is performed by a global router, with each net
treated independently of preceding nets. Other research has adopted a more abstract model of FPGA
routing connections to explore Steiner routing of FPGAs [29], or explored issues such as bend reduction

in FPGA routing [39].

We found that previous works on FPGA routing is lacking for several reasons. First, some research
adopts models which are too abstract and are thus not directly applicable to any existing FPGA parts
[29]. Other works impose artificial global vs. local hierarchical routing dichotomies, resulting in very
poor solutions even for 3-pin nets [4] [5] [28] [33]. Finally, some tools attempt to optimize a particular
aspect of FPGA routing (e.g., bend minimization), but fail to unify this goal with other objectives,

nor do they allow any tradeoff between competing objectives [39].

We propose the first unified general framework for FPGA routing, where multiple competing ob-
jectives can be optimized simultaneously under a smooth designer-controlled tradeoff. Our approach is
based on a new and general multi-weighted graph formulation, and has the following advantages over

previous work. Qur approach:

e escapes the pitfalls of the conventional global/local dichotomy of routing by offering a single



unified and effective method;
e is architecture-independent, and is easily adapted to new FPGA architectural regimes;
¢ is both computationally efficient and relatively easy to code;

o is parallelizable at both the coarse-grain (i.e., concurrent net routing) and medium-grain (i.e.,

concurrent computation within a single net) levels;

o offers simultaneous optimization of multiple competing objectives (e.g., wirelength, congestion,

jog reduction, etc.), according to a flexible designer-controlled smooth trade-off scheme;
e admits additional new optimization criterion in a seemless and orthogonal manner;
e has a solid theoretical foundation, characterized by provably-good performance bounds; and

e is very general and may be directly applied to other areas of CAD, as well as to classic combina-

torial optimization problems (e.g., traveling salesman, graph matching, etc.)

The rest of the paper is organized as follows. In Section 2 we describe a typical symmetrical-
array FPGA architecture. Section 3 defines and discusses the FPGA routing problem. In Section
4 we discuss the graph model of FPGAs in detail. Section 5 describes our new hybrid approach to
FPGA routing. In Section 6 we develop a theory of multi-weighted graphs, and show how it can be
used in the simultaneous optimization of multiple objectives. Section 7 establishes the efficacy of our
implementation on industrial benchmark designs, and we conclude in Section 8 with future research

directions.

2 A Typical FPGA Architecture

A typical symmetrical-array FPGA [5] [42] consists of a rectangular array of logic blocks, separated
by channels containing routing resources (i.e., channel edges, connection edges and switchboxes), as
illustrated in Figure 1. TLogic blocks can be software-(re)programmed to implement arbitrary logic
functions; the input and output pins of these logic blocks may then be connected using the routing
resources, in order to realize the complete system logic design. The routing resources are also software-

(re)programmable, where edges are linked together into paths via programmable switches.
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Figure 1: A typical symmetrical-array FPGA architecture; this particular FPGA con-
tains a total of 25 logic blocks arranged in a 5 x 5 configuration. On the right we
see in more detail the switchbox interconnection options for the single channel edge
entering the top left of a switchbox; the other edges entering a switchbox have similar
interconnection capability.

Each switchbox contains internal edges which can be programmed to connect channel edges on
different sides of the switchbox, allowing routing paths to pass through the switchbox (either by going
straight through, or by making a right-angle turn). Switchboz flexibility [5] is the fanout which the
switchbox provides for each channel edge entering the switchbox. Note that in general, a switchbox
allows interconnections from a given channel edge to only a subset of the channel edges on the other
three sides [5], and this interconnection pattern need not be symmetric [42]. Connection edges are used
to connect logic block pins to channel edges. Connection flexibility [5] is a measure of the number of

channel edges to which a logic block pin can attach via connection edges.

Figure 2 illustrates the three types of routing edges: channel edges, connection edges and switchbox
edges. These edges are partitioned into groups, where a group is a set of edges of the same type
which are related by physical proximity. For example, all of the edges inside a switchbox belong to a
single group, and all of the channel edges that connect a given pair of switchboxes also belong to a
(different) single group. Clearly, a particular symmetrical-array FPGA can be completely characterized
via functions describing the switchbox interconnection options, the connection-edge to channel-edge
connection options, the number of rows and columns of logic blocks, and channel width (i.e., the

number of parallel channel edges per channel).
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Figure 2: Detail of routing resources for symmetrical-array FPGA showing channel and
switchbox edges (edges inside switchbox are not shown).

3 FPGA Routing

VLSI design using FPGAs is a very complex and computationally-intensive task; therefore, in order
to bring the combinatorial complexity of this problem down to a manageable realm, FPGA design is
traditionally divided into the following general steps: (1) Partitioning - the design, often too large to
fit on a single FPGA, must be divided into several coarse-grained pieces so that each can fit within
one FPGA and be handled independently of the others; (2) Technology mapping - for each portion of
the design that will be implemented on a single FPGA| that logic must be further divided into many
fine-grained fragments, so that each fragment is small enough to be implemented using a single FPGA
logic block; (3) Placement - each fragment of logic that is to go into each logic block must be assigned
an actual free FPGA logic block that will implement it; and (4) Routing - the appropriate sets of logic

blocks pins (i.e., nets) must be connected together using the available FPGA routing resources.

Our work addresses the routing phase of FPGA design. Thus, we assume that partitioning, tech-
nology mapping, and placement have already been performed, and our task consists of interconnecting
each net in the design without exceeding the available FPGA routing resources (i.e., the routing solution

must be feasible). The FPGA routing problem is therefore defined as follows:

The FPGA Routing Problem: Given an FPGA architecture along with a configuration of logic
block pin assignments and a collection of nets over these pins, route all the nets without exceeding the

total available FPGA routing resources.



In traditional VLSI routing regimes, wires can be placed in any available space within the routing
region(s); therefore, the main considerations in traditional routing are mostly geometrical in nature
(i-e., minimizing wirelength, avoiding collisions with other nets, compacting the overall layout, etc.).
In contrast, an FPGA architecture offers a limited discrete set of fized routing channels, and the
utilization of a given channel edge in one route excludes its usage in the routing of other nets; thus, the
FPGA routing problem is essentially combinatorialin nature (i.e., satisfying the allowable connectivity,
maintaining feasibility, etc.). However, a purely topological approach to FPGA routing may fail to
exploit certain available geometrical information, such as physical proximity of pins/blocks on the
FPGA, distance from the FPGA “border”, etc. On the other hand, a strictly geometrical approach to
FPGA routing may fail to take into account the topological /combinatorial constraints induced by the

discrete/limited nature of the available FPGA routing resources.

With this in mind, we propose a hybrid FPGA routing framework that combines both geometric and
combinatorial techniques, and which simultaneously enjoys the attractive properties of each without
undue sacrifices in either complexity or efficiency. Our method depends on and merges two well-studied

routing techniques:

1. geometry-based routing: the constraints here are mainly geometrical, with the typical objective

being to minimize overall wirelength; and

2. graph-based routing: the constraints here are mainly topological or combinatorial, with the typical

objective being to find a feasible solution given the routing constraints.

Although our proposed framework can use any pair of known existing methods from the above
two categories, for implementation purposes we chose two specific candidates, respectively: (a) for the
geometry-based routing component, we selected the Tterated 1-Steiner routing method of [21], since
it is known to have both excellent empirical performance [2] as well as an efficient implementation
[1]; and (b) for the graph-based routing candidate, we chose to use the provably-good graph Steiner
approximation scheme of [24], which can also be implemented efficiently [41]. Below we prove that our

hybrid of these two methods inherits the best characteristics of its two component methods.

Given that an FPGA routing solution is already feasible, our second major goal is to be able
to address secondary criteria, such as congestion reduction, jog minimization, delay optimization,

etc., and perhaps additional, yet unconsidered optimizations. Ideally, one would hope to achieve a



smooth designer-controlled tradeoff among such mutually-competing optimization goals. A second
major contribution of our work is the simultaneous optimization of such competing goals under a
unified framework, where the designer may choose the relative priorities of these various goals. We
achieve this by developing in Section 6 a theory of multi-weighted graphs, which is incorporated into
our FPGA router. An important added benefit of our multi-weighted graph approach is that it can be

used to model several important problems in optimization and operations research.

4 Modeling the FPGA as a Graph

Before we can apply graph-based techniques to FPGA routing, we must first model the FPGA as a
graph, where the overall graph topology mirrors the complete FPGA architecture. Paths in this graph
would correspond to feasible routes on the FPGA, and conversely. Each graph edge is assigned several
distinct weights that represent the various optimization criteria. For example, one set of edge weights
may represent wire lengths, a second set of edge weights can represent congestion information (measures
of congestion are discussed in Section 5.6), still a third set of edge weights can model jog penalties,
etc. Searches in the multi-weighted graph consider a weighted average of the values corresponding to
the different competing criteria, relative to given designer-selected tradeoff parameters. This technique
is very flexible in that new criteria are easily incorporated into the model by introducing additional
weight sets into the graph, resulting in a smooth tradeoff and a graceful performance degradation with
respect to the various criteria. Such a framework subsumes e.g., “alpha-beta” routing, which has been

used for jog minimization in IC design [8] [16].

Figure 3 illustrates how the topology of the graph models the architecture of the FPGA. When a
net is to be routed, nodes and edges representing the net pins and connection edges are added to the
graph, as represented by the dotted lines in Figure 3(b). When the routing of a net is complete, these
same nodes and edges are removed from the graph, reflecting the fact that they are no longer usable.
Note that in general, the number of nodes corresponding to net pins is typically much smaller than the

number of nodes corresponding to channel-edge and switchbox-edge endpoints.

Figure 4 illustrates how jog-penalty weights in the graph reflect right-angle turns in the FPGA
routing resources. Since all connections between connection edges and channel edges result in right-
angles, jog penalties are unnecessary there. If a switchbox edge connects two channel edges that are

at right angles to each other, a jog penalty is assigned to that switchbox edge; on the other hand, if



a switchbox edge connects channel edges on opposite sides of the switchbox, then no jog penalty is
assigned. This scheme enables our router to prefer straight connections to right-angled ones, and thus

promotes jog-minimization.

(a) )

Figure 3: Construction of a routing graph for modeling symmetrical-array FPGA.
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Figure 4: Portion of a symmetrical-array FPGA and corresponding routing graph, in-
dicating when switch-box edges are assigned a jog penalty.




5 The FPGA Routing Algorithm

Recall from the discussion above that our FPGA routing method aims to combines geometric and
combinatorial techniques. In particular, we would like to hybridize the geometrical Iterated 1-Steiner
routing method of [21], with the graph Steiner approximation scheme of [24], referred to as the KMB

algorithm. Therefore we first review each of these methods in turn.
5.1 Overview of the Iterated 1-Steiner Method

We begin with some terminology. For a given set P of n points in the plane, an edge (i.e., wire)
between two points # € P and y € P is denoted by (z,y). The cost of an edge is the Rectilinear (i.e.,
Manhattan) distance between its endpoints. A spanning tree over P is a set T of n — 1 edges with
endpoints in P such that the induced graph is connected. The cost of a tree T, denoted T, is the
sum of the costs of its edges. A minimum spanning tree (MST) is a spanning tree having least cost.
Thus we denote the minimum spanning tree itself by “MST” and the cost of the minimum spanning
tree by “MST”. A Steiner tree is a spanning tree over the original pointset P and a (possibly empty)
additional pointset S (i.e., the Steiner points). We are now ready to define the minimum rectilinear

steiner tree problem:

The Minimum Rectilinear Steiner Tree (MRST) problem: Given a set P of n points in the
Manhattan plane, find a set .S of Steiner points such that the minimum spanning tree (MST) over

P U S has minimum cost.

O—

Figure 5: A minimum spanning tree (left) and MRST (right) for a fixed net.

Figure 5 shows an MST and an MRST for a fixed pointset. As with the MST, we denote the Steiner
tree itself by MRST and the cost of this tree as MRST. Research on the MRST problem has been

guided by several fundamental results. First, Hanan [13] has shown that there always exists an MRST



with Steiner points chosen from the intersection of all the horizontal and vertical lines passing through
all the points in P (see Figure 6); indeed this result generalizes to all higher dimensions [36]). However,
a second major result establishes that despite this restriction on the solution space, the MRST problem

remains NP-complete [11], prompting a large number of heuristics, as surveyed in [19].
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Figure 6: Hanan’s theorem: there always exists an MRST with Steiner points chosen
from the intersection of all the horizontal and vertical lines passing through all the
points.

In solving intractable problems, we often seek provably good heuristics having bounded worst-case
error from optimal. Thus, a third important result establishes that the rectilinear MST is a fairly
good approximation to the MRST, with a worst-case performance ratio of MST/MRST < % [17]. This

implies that any MST-based strategy which improves upon an initial MST topology will also enjoy

3

a performance ratio of at most 3,

which has prompted a large number of Steiner tree heuristics that
resemble classic MST construction methods [14] [15] [18] [26] [27], all producing Steiner trees with

average cost 7% to 9% smaller than MST cost [31] [40].

Unfortunately, all MST-based MRST constructions were recently shown to have a worst-case per-
formance ratio of exactly % [22]. This negative result has motivated research into alternate schemes
for MRST approximation, with the best performing among these being the Tterated 1-Steiner (T1S)
algorithm [21] [20]. 11S always performs strictly better than £ times optimal [32], and achieves almost
11% average improvement over MST cost. Efficient serial and parallel implementations of T1S were
given in [1], and it was shown in [2] that for typical nets, T1S has average performance of less than
0.25% from optimal, and produce optimal solutions up to 90% of the time. For two pointsets P and

S, define the MST savings of S with respect to P as:

AMST(P, §) = MST(P) — MST(P U S)

We use H(P) to denote the set of Hanan Steiner point candidates (i.e., the intersections of all

10



horizontal and vertical lines passing through points of P). For a pointset P, a 1-Steiner point x € H(P)
maximizes AMST(P, {x}) > 0. The T1S method repeatedly finds 1-Steiner points and includes them
into S. The cost of the MST over P U .S will decrease with each added point, and the construction
terminates when there is no x with AMST(P U S, {x}) > 0. Although a Steiner tree may contain at
most n — 2 Steiner points [12], 1S may add more than n — 2 Steiner points; therefore, at each step
we eliminate any extraneous Steiner points having degree 2 or less in the MST. Figure 7 illustrates a

sample execution of I1S, and Figure 8 describes the algorithm formally.

Figure 7: Execution of Tterated 1-Steiner (T1S) on a 4-point example. Note that in step
(d) a degree-2 Steiner point is formed and is thus eliminated from the topology (e).

Tterated 1-Steiner (I1S) Algorithm

Input: A set P of n points

Output: A rectilinear Steiner tree over P

S=10

While 7 = {z € H(P)|AMST(P U S, {z}) > 0} # § Do
Find z € T with maximum AMST(P U S, {z})
S=85SU{z}
Remove from S points with degree < 2 in MST(P U S)

Output MST(P U S)

Figure 8: The Tterated 1-Steiner (T1S) algorithm.

5.2 Overview of the KMB Method

Often one encounters the graph version of the Steiner problem, where the problem is topological in
nature and is embedded in a given graph G = (V| E), where V is the node set, and F C V x V is a
set of weighted edges. We are asked to span a subset of the nodes, while using the remaining nodes
as Steiner points. Each graph edge e;; has a weight w;;, and edges that are “missing” from the graph
are assumed to have an infinite weight. Our goal is to minimize the spanning tree total cost. Figure 9

shows a graph and an embedded Steiner minimum tree spanning the highlighted subset of the nodes.
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The graph Steiner problem is thus stated as follows:

The Graph Steiner Minimum Tree (GSMT) problem: Given a weighted graph G = (V| F), and
anet of terminals N C V to connect, find a tree T'= (V' E') with N C V' C V and E' C F such that

E w;; 18 minimized.
e ,jEE’
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Figure 9: A graph (left) and a Steiner minimum tree spanning the highlighted nodes.

It is easy to see that the GSMT problem is not any easier to solve than the geometrical MRST
counterpart, since the latter is clearly a special case of the former (i.e., given an instance of the MRST
problem, transform it into an instance of the GSMT problem by setting N = P, collecting all the
points and the induced Hanan candidates V. = P U H(P), and creating the graph G = (V,V x V),
with edge weights being Manhattan distances). Tt follows that the GSMT problem is NP-complete,
and in order to remain computationally efficient, we are thus forced to resort to heuristic solutions to

the GSMT problem.

As discussed above, in solving intractable problems, we ideally seek provably-good heuristics having
bounded worst-case error from optimal. Indeed the algorithm of Kou, Markowsky and Berman [24]
solves the GSMT problem in polynomial time, and is guaranteed to yield solutions never more than
2-(1- %) times optimal, where L is the minimum number of leaves in of any optimal solution. We refer
to this as the KMB algorithm, and describe it as follows: first, construct the complete graph G’ over N
with the weight of each edge e;; equal to distg(N;, N;), the cost of the corresponding shortest path in

G between N; and N;. Second, compute MST(G'), the minimum spanning tree of G/, and expand each

12



edge e;; of MST(G") into the corresponding shortest path, denoted path(N;, N;), yielding a subgraph
G” that spans N. Finally, compute the minimum spanning tree MST(G"), and delete pendant edges
from MST(G") until all leaves are members of N. The resulting tree is an approximation to the GSMT
that has cost no worse than 2 - (1 — %) times optimal, where L is the minimum number of leaves in
any optimal Steiner tree [24]. We denote the resulting tree as KMB and the cost of this tree as KMB.

A formal description of the KMB method is given in Figure 10.

The Kou, Markowsky and Berman (KMB) Algorithm

Input: A graph G = (V, E) with edge weights w;; and anet N CV

Output: A low-cost tree 77 = (V’, E’) spanning N (i.e. NC V' CV and E' C F)
G’ = (N, N x N), with edge weights ng =distg(N;, N;)

Compute T = (N, E"”) = MST(G)

Let the graph G = U, ,eg» pathg(N;, Nj)

Compute 7" = MST(G")

Delete from T” all leaf nodes that are not in N

Output 7"

Figure 10: The KMB heuristic for the GSMT problem.

Note that there exist more recent graph-based Steiner algorithms with even better performance
bounds than that of the KMB method. For example, the Steiner heuristic of [43] has a worst-case per-
formance ratio of 16—1; however, the time complexity of this method, even though it 1s within polynomial
time, 1s still rather excessive in practice. Therefore, we prefer to use the KMB method because of its

efficiency and ease of implementation [41].

5.3 A New Hybrid FPGA Routing Algorithm

Our approach to FPGA routing is based on combining the geometric 11S heuristic with the KMB
graph algorithm. This strategy allows us to model the FPGA architecture in a very natural and
general way (i.e., as a graph), as well as to exploit geometrical information about the physical layout
of the FPGA in order to yield improved routing solutions. Indeed the resulting hybrid method inherits
the excellent average empirical behavior of the 11S algorithm, and it also enjoys the provably-good
theoretical performance of the KMB algorithm. We refer to this hybrid method the Graph Iterated 1-
Steiner (GI1S) algorithm. Note that the present discussion assumes that the graph edges have a single
weight each. In Section 6 below, we explain how to extend our routing methodology to multi-weighted

graphs.
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Our overall GI1S method is basically an adaptation of 1S to graphs; but when we need to span
a subset N of the nodes in a graph, the notion of “MST” is no longer well-defined. In essence, a
“spanning tree” for N is now actually a “Steiner” tree, and can no longer be computed efficiently
(since this is NP-complete and is what we are trying to compute in the first place). The key to this
dilemma 1s to replace the “MST” construction with the KMB construction. In other words, instead
of using an “MST” subroutine to determine the “savings” of a candidate Steiner point/node, we use
the KMB algorithm for this purpose. Thus, given a graph G = (V, F), the net N C V, and a set of

potential Steiner points, we define the following:

AKMBg (N, 5) = KMBg(N) — KMBg(N U S)

The GI1S algorithm starts by computing the KMB tree. Then, at each iteration the GI1S method
repeatedly finds additional Steiner node candidates that reduce the overall KMB cost and includes
them into the growing set of Steiner nodes S. The cost of the KMB tree over N U.S will decrease with
each added node, and the construction terminates when there is no z € V with AKMB(N U S, {z}) >
0. Naturally, there are numerous other details revolving around our method, mostly dealing with
implementation and efficiency issues, and these will be described below. The overall GI1S method is

formally described in Figure 11.

Graph Tterated 1-Steiner (GI1S) Algorithm
Input: A weighted graph G = (V, F) and anet N CV
Output: A low-cost tree 77 = (V’, E’) spanning N (i.e. NC V' CV and E' C F)
S=10
While 7' = {z € V — N|JAKMBg(N U S,{z}) > 0} # 0 Do
Find z € T with maximum AKMBg(N U S, {z})
S=SU{z}
Remove from S Steiner points with degree < 2 in KMB(N U S)
Return KMBg (N U S)

Figure 11: The Graph Tterated 1-Steiner algorithm (GI1S) using the KMB heuristic.

Since an optimal Steiner tree for a 3-pin net in a graph can have at most one Steiner point, our GI1S
algorithm, which selects the best Steiner point candidate, is guaranteed to find the optimal solution
for any 3-pin net. In general, given a weighted graph, and a single arbitrary net, we can show the

following:

14



Theorem 5.1 The GI1S algorithm will find a routing solution with cost less than 2 - (1 — %) times

optimal, where I is the minimum number of leaves in of any optimal solution.

Proof: Given a net, the GI1S algorithm constructs a KMB tree, and then attempts to reduce the
resulting tree cost further by adding new Steiner nodes. This means that the final overall tree cost can
not exceed that of the initial KMB tree, which is known to be no worse than 2- (1 — %) times optimal,

where I is the minimum number of leaves in any optimal Steiner tree [24]. n

Note that [25] have applied the Tterated 1-Steiner method to “escape graphs” in order to perform
routing in the presence of obstacles; they also show a general performance bound of two times optimal,

and note that 1-Steiner performs optimally for 3-pin nets in a graph.

5.4 Time and Space Complexity

We can upper-bound the time complexity of the GI1S method as follows. Assume that the FPGA is
a rectangular array consisting of a total of B switchboxes. Furthermore, assume that each channel is
S edges wide, and that each edge is connected inside a switchbox to a constant number other edges

(i-e., the “connection flexibility”). The induced routing graph therefore contains O(B - .S) vertices and

|G| = O(B - S) edges. Thus |G| = O(B-S5).

During the execution of GI1S over an n-pin net, shortest path trees are computed from each of the
net pins. FEach shortest path computation can be performed in time linear in the size of the graph

using, e.g., Dijkstra’s algorithm [9]. This brings the total time used for this step to O(n - |G]).

To compute the KMB savings of one Steiner candidate with respect to an n-pin net, we first form the
complete graph over the n pins, with edge weights being shortest path lengths in the graph; then we can
invoke any standard MST algorithm (e.g., Prim’s algorithm [30]) which runs within time O(n?logn)
or less. Expanding the resulting MST edges back into their original paths can take up to O(|G]) time.
Therefore, the entire KMB procedure (to compute the AKMB of a single Steiner candidate) can be

done within time O(n?logn + |G]).

Note that in order to select/add a single Steiner point, we may have to test the KMB savings of
most of the nodes in the graph, bringing the computation time for a single Steiner point to O(|G] -
[n?logn + |G]]). Finally, since a Steiner tree over n points can have up to n — 2 Steiner points [12], the

total time to route a single net is bounded above by O(n - |G| - [n?logn + |G]]).
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The space used by the algorithm is dominated by storing the shortest path trees, one per net pin
(and each Steiner node). The total space used by GII1S is therefore O(n - |G|) when routing a net
of size n. Note however, that in practice we are able to reduce both the time and space complexity

dramatically, by using several effective optimizations, as described in the next Subsection.

5.5 Practical Efficiency Considerations

In this section we present several techniques which improve the efficiency of the “pure” GI1S algorithm
formally described in Figure 11. These techniques are complementary: first, we exploit the geometrical
properties of the FPGA in order to examine only the 1-Steiner candidates that correspond to “Hanan”
points; second, by bounding the search region while routing a net, we further reduce the time to
compute shortest paths; third, we use a faster, batched version of the Iterated 1-Steiner algorithm to
add a large set of Steiner points in a single round; forth, we speed up searches by caching shortest path
computations with respect to the net pins, and modify GI1S/GBI1S by substituting a much less costly
computation for AKMBg; and finally, we cut down on the time it takes to route large nets by using a

divide-and-conquer technique.

1. We can reduces the number of Steiner candidates which are explored by exploiting geometrical
information about the physical layout of the FPGA. Note in the description of GI1S in Figure 11
that Steiner candidates are chosen from the set V — N; this set includes, essentially, the nodes
in all of the switchboxes, and is potentially very large. To reduce the size of this set, we use a
second instance of the Iterated 1-Steiner algorithm to select a reduced set of switchbozes; only
nodes inside this reduced set of switchboxes are explored as Steiner candidates. To compute
the reduced set, a complete switchboz graph Gsp = (V, E) is constructed which captures the
physical location of switchboxes on the FPGA. Nodes in V' correspond to the switchboxes which
are closest to the net pins along a routing, and £ = V x V' with edge lengths equal to the physical
rectilinear distance between the switchboxes. As explained in Section 5.1, a set of Hanan Steiner-
point candidates (which in this case are switchboxes) will be induced in Ggp. If AMST in this
graph is positive for a Hanan Steiner-point candidate, then the switchbox corresponding to this
candidate 1s included in the reduced set, otherwise it is not. Clearly the switchboxes in the
reduced set are those switchboxes which are likely to be “branching” points in the net routing.

Figure 12 depicts this process for a 3-pin net; here the set of switchboxes whose nodes are explored
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as Steiner candidates is the single darkly shaded switchbox in Figure 12 (b) and (c), rather than

all sixteen possible switchboxes.

| | | H —a |
IR T
| | | | | |
] []
| | | | |
] il
| | | | | | | | | |
-

(a) (b) (¢)

Figure 12: Computing the reduced set of Steiner switchboxes; (a) determining the
switchboxes (lightly shaded) used to build Gsg; (b) MRST of Gsp showing Steiner
node (filled circle) corresponding to the shaded switchbox in (¢); (¢) Steiner switchbox
(darkly shaded) used to produce optimal routing.

. Another time-saving technique is based on the observation that the logic blocks which a net
connects are often not spread across the entire FPGA, but are rather located relatively close to
each other. We can exploit this situation in order to decrease the run time of our algorithm
by limiting the search space to a designer-specified bounding box, i.e., a rectangular subset of
the FPGA which encloses all of the logic blocks that a net connects (Figure 13). This allows
the designer to control the search area for feasible routes, from as little as the area immediately
surrounding the net, to as much as the entire FPGA. Recall from Section 5.2 that the KMB
algorithm requires shortest path trees be computed for all net-pin nodes. Since only edges
inside the bounding box are considered when, e.g., shortest paths are computed, the execution
time is often dramatically reduced. A second benefit of using bounding boxes is the coarse-
grain parallelism which they expose: nets whose bounding boxes do not overlap can be routed
independently of each other (or indeed in parallel), since the effect of routing a net is usually
confined to the nodes and edges interior to the net’s bounding box. In case that we find no feasible
routing solution within the bounding box, we look again for a routing solution by searching the

entire graph.
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Figure 13: Example of bounding box (dotted line) which encloses the three-pin net.

3. We can speed up the Iterated 1-Steiner computation by efficiently adding an entire set of “inde-
pendent” Steiner points in a single “batch” or “round” [1] [21] [20], as follows: given a pointset
P in the Manhattan plane and a set of Steiner points .S which was already added to P, two new

candidate Steiner points # and y are independent with respect to each other only if:

AMST(PU S, z)+ AMST(PUS,y) < AMST(P U S,{z,y})

Thus, such Steiner candidates with independent MST savings can be added into the pointset
in a single round; we call this version of I1S the Batched 1-Steiner algorithm, and the graph-
based adaptation of this Graph Baiched 1-Steiner (GB1S). We use the GBI1S variant in our

implementation, and describe it formally in Figure 14.

Recall from Section 5.2 that in order to build the complete graph G’ used to compute K M Bg(N),
shortest-path trees in G are computed for all points in N. Note, however, that once these trees
are built, if | S| = 1, computing AMST¢: (N US) can be done very efficiently: since shortest-paths
is a reflexive relationship no new shortest-path tree is needed to build the complete graph G’ over
N U S. This key observation enables the Tterated 1-Steiner algorithm to quickly explore a large

number of Steiner candidates.

We note that computing AKMB¢ will generally take much longer than computing AMSTg,

as the former requires several additional steps which manipulate the underlying (much larger)
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Graph Batched 1-Steiner (GB1S) Algorithm
Input: A graph G = (V, E) with edge weights w;; and anet N CV
Output: A low-cost tree 77 = (V’, E’) spanning N (i.e. NC V' CV and E' C F)
While T = {z € V — NJAKMBg(N U S,{z}) > 0} # § Do

S=10

For z € {T in order of non-increasing AMSTs } Do

If AKMBg(N US,{z}) > AKMBg(N, {z}) Then S = SU {z}

N=NUS

Remove from S Steiner points with degree < 2 in KM B(N U .S)
Return K M Bg(N U S)

Figure 14: The Graph Batched 1-Steiner algorithm using KMB heuristic.

graph G. Also, it seems intuitive that AMSTg will be a good predictor of AKMBg. Thus for

efficiency reasons we replace the If statement in Figure 14 with the following one:

If AMSTgl(N us, {l‘}) > AN[STgl(]V7 {l‘}) Then
If AKMBg(N US, {z}) > AKMBg(N,{z}) Then S = SU{z}

Clearly the AMSTg: computations act as a filter, only invoking the more costly AKMB¢ com-

putation for promising Steiner candidates.

. Finally, we note an additional speedup technique which attempts to reduce the time it takes to
route large nets (i.e., which indeed dominates most of the execution time). Since the time to
route a net is superlinear in the size of the net (indeed, superquadratic even), a simple divide-
and-conquer technique is highly effective here: (1) divide the net pins into several smaller nets
according to geometric proximity; (2) route each of these smaller nets separately; and (3) connect
the resulting separate routings together into a final routing for the original net. This technique

would allow large nets to be routed in time comparable to that of much smaller nets.

The latter practical optimization of breaking a net into m more or less equal-sized fragments
and routing each fragment separately, will also reduce the space requirement of the GI1S/GBI1S
algorithms (by a factor of m). This is true because now the same space can be reused to route each
net fragment in turn. Alternatively, since the processing of large nets dominates the execution
time, we may choose to route several large nets first, and then “fix” their routing in the graph.
When different net routing orders are later tried, these “fixed” large nets need not be routed

from scratch again, since their previously-computed routing is already “embedded” in the graph.
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Recall from Section 5.4 above that the total time to route a single n-pin net is bounded by O(n -
|G| - [n?logn + |F]]), where |G| is the size of the FPGA routing graph. However, using the practical
efficiency enhancements listed above, we can reduce this time complexity substantially. For example,
by not expanding all of the MSTs into their corresponding paths (only the ones which seemed superior
to the rest), we are able to reduce the time complexity to O(n - |G| - n?logn). Another practical
reduction in the time complexity follows from the observation that the number of “rounds” in B1S is
in practice a small constant (less than 3) [21]; this eliminates an additional factor of n off the time
complexity. Finally, by exploiting the underlying geometry of the FPGA in order to only test potential
Steiner points that are near switchboxes corresponding to “Hanan” candidates (i.e., n? << |G]), we
can reduce the time complexity of routing a single net to O(n - |G|+ n*logn) (since the shortest paths

computations still require O(n - |G]) time).

5.6 Routing Multiple Nets

We use the notion of congestion as a measure of resource utilization within a group of routing edges.
Clearly as congestion within a group increases, that group becomes much less “usable” with respect
to the routing of future nets, with routing through a group becoming altogether impossible when its
congestion reaches a high enough value. Therefore, rather than risk concentrated congestion forming
absolute routing blockages, we prefer to “spread” the congestion around different groups, so as to retain

the future feasibility of as many routing paths as possible.

With this in mind, we model congestion in our routing graph as follows. After a net has been
successfully routed, the graph is updated in two ways. First, edges used to route the net are no longer
available to route subsequent nets and must be removed from the graph. In our implementation, rather
than actually removing these edges from the graph, they are marked “unavailable.” Our shortest-path
algorithm treats edges that are “unavailable” as if they were not present in the graph, so such edges are
never explored or used in subsequent routing. Second, the graph is updated to reflect the additional

congestion resulting from the placement of this net on the FPGA.

Recall that every edge belongs to a group consisting of those edges which are related by physical
proximity. Every edge used to route the net updates the graph weights as follows: the congestion
weight for every edge in this edge’s group is increased. This is done to reflect the fact that fewer of

this group’s resources are now available (since one edge was just used). The congestion value in our
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model is the number of edges in the group which have been taken by previous routings (the number
“unavailable”). Thus when the graph has been updated to reflect the successful routing of a net, the
edges used by this routing are no longer available, and the edges “nearby” this routing contain higher

congestion values than before.

Under this strategy, when routing nets, the congestion in the graph will tend to spread over the
FPGA the resources used by the net, increasing the balance of resource utilization and hence the
feasibility of routing subsequent nets. The congestion weights are updated as routing proceeds, to
reflect the current resource usage. We use a move-to-front heuristic when infeasibility is encountered:
after an attempt has been made to route all nets, those nets which could not be routed are given a
higher priority by moving them to the front of the net-routing order. The routing graph is re-initialized

to its initial state and the new routing order is tried.

6 Simultaneous Optimization of Multiple Objectives

Recall that ideally we wish to simultaneously optimize k& multiple (possibly competing) objectives (i.e.,
wirelength, jogs, congestion, etc.). We now show how to accomplish this, by generalizing the GBI1S
heuristic to multi-weighted graphs, where each optimization criterion has a separate set of graph edge
weights. The simultaneous optimization i1s accomplished by transforming these multiple edge weights
into a single weighted average, which is then used in computation by GB1S in the normal way. The

relative magnitudes of the weighing factors (i.e., tradeoff parameters) are completely controlled by the
k

circuit designer, and generally consist of k real numbers dq,ds, - - -, d; where E d; = 1. This scheme
1=1
enables a unified smooth tradeoff among the various competing objectives. We now formalize and

develop a framework of multi-weighted graphs.

6.1 A Theory of Multi-Weighted Graphs

Let V = {v1,va,--,v,} be aset of |[V| = n vertices, and let F C V x V be a set of |F| = m edges.
We define a k-weighted graph G = (V| E) to be a weighted graph with a vector-valued weight function
w: E — R, In other words, associated with each edge e;; € E is a vector of k real-valued weights
Wi; = (Wij1, Wija, - - -, W;ij5). Note that ordinary weighted graph are a special case of k-weighted graphs,

with k = 1.
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Let d = (di,da,---,dr) be a vector of k real-valued tradeoff parameters, where 0 < d; < 1 for
k

0<i<k, and Zdi = 1. ;From the k-weighted graph G' = (V, F) and the tradeoff parameters d we

=1

k
construct a new weighted {radeoff graph (A}(CZ} = (V, F) with weight function w;j = J.wij = Z dpy w55
m=1

Clearly the tradeoff graph G is an ordinary weighted graph having the same topology as G, but whose
single edge weights represent the weighted averages of the multi-weights of G, with respect to the

tradeoff parameters d.

Let @ = (1,1,...,1) be the unit vector, and let #; = (0,0,---,0,v;,0,0,---,0) denote the vector
obtained from the vector ¢ by using v; in the i-th place, and the rest of the places being set to zero.
Thus, #; denotes the vector consisting of zeros everywhere except the ith place, which will contain a
“1”. Now a k-weighted graph G can induce k distinct graphs, each with an identical topology but with
edge weights restricted to only one of the k components of vector-valued weight function ; these k

induced graphs are denoted by G; = (A}(ﬁz)

We define the minimum spanning tree (MST) for a multi-weighted graph G with respect to the
tradeoff parameters d as the “normal” MST over the tradeoff graph (A}(J), and denote it by MST(@(CT))
Similarly, we can compute the MST on each of the &k induced graphs G;, and we denote these MST(G;).

Again, MST denotes the resulting tree and MST denotes the cost of this tree.

To give a concrete application of multi-weighted graphs, let £ = 2 and construct a 2-weighted graph
G over n sites, where w;;; represents the cost of laying down a fiber optic cable between site ¢ and
site j, and where w;;o represents the #ime it would take a team to accomplish that job (see Figure
15). Our goal is to utilize a single construction team to build a fiber optic network that spans the n
sites. Clearly, MST(@((I,O))) denotes the cheapest possible network, while MST(@((O, 1))) denotes
the network that can be built the fastest (in terms of total worker-time). Finally, MST(CA}((%, %)))
represents the network that simultaneously optimizes both the construction time as well as the building

cost, with both objectives being equally important (i.e., dy = ds = %)

Given a k-weighted graph ¢ and a parameter vector J: 1t would be of interest to bound MST(@(CT))
both from above and below in terms of MST(G1) through MST(GY},), cz: and n. Below we show both
upper and a lower bounds for metric graphs (i.e., graphs with weight functions satisfying the triangle

inequality dist(a, b)+ dist(b, ¢) < dist(a, ¢), Ya,b,c € V):

22



(b) (¢) (d)

Figure 15: (a) A 2-weighted graph G, and its two induced graphs (b) ((A}((l7 0))) with
cost 3, and (¢) (G((0,1))) with cost 3; (d) shows the MST over the tradeoff graph:
MST(G((%,1))) with cost 4.

2032

k k
> d; - NST(Gy) < MST(G(d)) < (n—1)->_d; - MST(Gy)

i=1 i=1

We also show that while the above lower bound holds in general, for arbitrary (non-metric) weighted
graphs there exists no upper bound strictly in terms of the MST(G;)’s, J: and n. We will also show

that even for metric graphs, the above lower bound is tight, while the upper bound is not; for example,

k
we will show a tighter upper bound of MST(@(CT)) < % 'Zdi -MST(G;) for metrical graphs over three
i=1
nodes, which is of significance since most nets in typical VLSI designs contain 3 or less pins [25].

We start by showing a general lower bound for the cost of MST(@(CT)) in terms of MST(G;)’s, d,

and n:

k
Theorem 6.1 For any k-weighted graph G over n vertices, and tradeoﬁparameterscz Zdi~MST(Gi) <
i=1

MST(G(d)).

k
Proof: Consider an arbitrary edge €;; in MST(@(CT)) having cost of de “Wijm. If every MST(G ),

m=1
k

1 < m <k, also contains edge ¢;;, then clearly the cost of edge e;; in all k trees is Zwljm, and the

m=1
k

cost of this edge scaled by the tradeoff parameters dis de - W;jm, Which is equal to the cost of this

m=1

edge in MST(G(CZ)) Clearly, if all of the k MST(G,,), 1 < m < k, chose the same edges as MST(@(CT)),
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then equality holds and the theorem is true. On the other hand, if MST(@(CT)) contains an edge that
k

is not in MST(G,), 1 < m < k, then the cost of MST(@(CT)) relative to de -MST(G,,) can only

. m=1
1mcrease. D

Next, we show the non-existence of general upper bounds. Ideally, we would like to bound the
MST cost of arbitrary multi-weighted graphs in terms of only the costs of the MST(G;)’s, J: and n.

Unfortunately, this property does not hold in general:

Theorem 6.2 For any k-weighted graph G over n wvertices, and tradeoff parameters d_: the tradeoff

graph cost MST(@(CT)) can not be bounded from above by any function of only MST(G;) s, d, n, and k.

Proof: Consider the doubly-weighted graph G = (V| E) over n = 3 nodes, where & = 2. Fix cfby
setting 0 < dy,ds < 1. Let M be some very large number, V = {a,b,c}, and £ = V x V. Let
Wapr = 0, Wper = 0, Waer = M and wgpa = M, wiea = 0, waeo = 0 (see Figure 16). Observe
that MST(G1) = MST(G2) = 0, k = 2, n = 3, dy, and dy are all constants. On the other hand,
M—ST(G) = min(dy - M,ds - M), which can be made arbitrarily large for any fixed cfby making M
large enough. Clearly, any expression in terms of a set of constants must also be constant; therefore
M—ST(G) can not be bounded from above by any function purely in terms of only MST(G), MST(G=),

k, n, and d 0

(M,0) (0,M)

00
(a) (b) (¢)

Figure 16: An example showing that MST(@(CT)) can not be bounded from above by
any function strictly in terms of MST(G;)’s, d, n, and k: (a) The 2-weighted graph
G; (b) MST(G((1,0))) has cost 0; (c) MST(G((0,1))) has cost 0. On the other hand,

MST(G((%,4))) has cost %, which can be arbitrarily large.

The negative result of Theorem 6.2 only applies to non-metric graphs. We now give a general upper

bound for metric graphs:
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Theorem 6.3 For any metric k-weighted graph G over n vertices, and tradeoff parameters cz MST(@(CT))
k

is bounded by: MST(G(d)) < (n— 1)y _d; - MST(G;)

1=1

k
Proof: Consider an arbitrary edge e;; in MST(@(CT)) and its cost, de - wjj5. Consider element m/
m=1
in this summation, and the corresponding MST of G,:. MST(G)y,) spans vertices v; and v, but does
not necessarily contain the edge e;;. Rather, a path must exist in MST(G,,/) from v; to v;, denoted

pathyrsra, (%, 7). By metricity, wijn < patharspia, (1, j). Therefore:

cost of edge e;; in MST(@(CT))

k
E dm * Wijm
m=1

k

< de - pathyrgriq, ,y(i,7)  (by metricity)
=1
k

< > dn -MST(G,)
=1

Since e;; is an arbitrary edge of MST(@(CT)), this holds for all n — 1 edges in MST(@(CT)) Thus,
k

MST(@(CT))) <(n- I)de -MST(G,,), and the theorem holds. 0
m=1

|- path MST(Gm,)(i,J')

(a) (b) ()

Figure 17: A general upper bound in the metric case: for MST(@(CT)) in terms of
MST(G;)’s, d, n, and k: (a) depicts MST(Gp,); (b) depicts MST(G(CT)); and (c) shows
how the cost of the m*™ weight component of each e;; can be bounded by d,,, - MST(G,,).

Since many nets in VLSI design contain three pins or less [25], we now derive a tighter upper bound

for three pin nets where metricity holds. But first, we note the following Lemma:

_I_
Lemma 6.4 Ify < z, then y < 3=
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Proof: Adding y to both sides of y < z yields 2y < y + z, and dividing both sides of the latter by 2

~ +
yields y < 3= 0

Theorem 6.5 For 2-weighted metric graphs with three nodes, and any scaling vector d= (d1,ds), the
following holds:

dy - MST(G4) 4 do - MST(G) < MST(G(d)) <

N | Qo

-[dy - MST(G1) + dz - MST(G2)]

Proof: Let G = (V, F) be a 3-node 2-weighted graph, with edge weights (a, z), (b,y), and (¢, z). Let
d = (d1,ds) be an arbitrary constant vector, such that 0 < dy,ds < 1, and dy + d2 = 1 (see Figure

18(a)).

(by) ©2) (by) (by) (c2) (€2

(ax) @x) (@x)
(2) (b) (c) ()

Figure 18: A tighter upper bound for 3-pin nets (a); we assume without loss of generality
that a < b < ¢, and each case shows MST((2) for a different relation between z, y, and
b ze<y<z(c)y<z<z;and (d) z< 2 < y.

Clearly, the lower bound dy -MST(G1)+ds-MST(G2) < MST(@(CT)) holds by Theorem 6.1. Assume
without loss of generality that a < b < ¢, which implies that MST(G1) = a + b. The following three

cases must be considered:

1. Assume 2 < y < z, which implies that MST(G32) = « + y (see Figure 18(b)). Thus,
di-a+dy-x < dy-e+dy-z and

d1~b—|—d2~y < d1~C—|—d2~Z

Now MST(G(d) = dy-a+ds-2+dy-b+ds-y

di(-a+b)+dy-(z+y)

dy - MST(G1) + do - MST(Gl)
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and the theorem holds.

. Assume y < z < 2, which implies that MST(G2) = y + z. (see Figure 18(c)). Note that b < ¢
and y < z,s0dy -b+dy-y < dic+dsz; thus MST(@(CT)) must contain the “b/y” edge. Now, the
other edge of MST(@(CT)) must be either the “a/x” edge e4. or the “c/z” edge; we analyze each

of these cases in turn.

(a) Assume MST(@(CT)) contains the “a/x” edge.

Then MST(G(d)) dy b4dy-y+di-a+ds-x
= di-(a+b)+dy-(x+y)
> di-(a+b)+ds-(z4+y) (since z>z)

= dy - MST(G1) + do - MST(Gs)

Also MST(G(d)) = di-(a+b)+ds-(x+y)
< di-(a+b)+dy-((y+2)+y)  (by metricity)
= dy-MST(G1) +ds - MST(G2) + da - y
< d1'M—ST(G1)+dz~M—ST(G2)+C;—2~M—ST(G2) (by Lemma 6.4)

= d;-MST(G1) + % -da - MST(G2)
(b) Assume MST(@(CT)) contains the “c/z” edge.

Then MST(G(d)) = dy-b+do-y+di-c+dy-z

dy-(b4+e)+da-(y+2)
> di-(b+a)+dy-(z+y) since ¢>a

= dy - MST(G1) + do - MST(G>)

Also  MST(G(d)) d

(b4e)+ds-(y+2)

—

d

INA

b+ (a+b)+da-(y+z) (by metricity)

—

= dy-b+dy - MST(Gy) + do - MST(Gl)

di __ _
< 71 -MST(G1) + dy - MST(G1) + do - MST(G5)  (by Lemma 6.4)

- g -dy - MST(G1) + ds - MST(G)
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In both cases 2a and 2b we have MST(@(CT)) > dy - MST(G1) + d2 - MST(G2). Also, combining

MST(G(d)) < d1~MST(G1)+g~d2~MST(G2) and
MST(G(d)) < ;dl.MST(Gl)erz.MST(Gz)
yieldls  MST(G(d)) < max[d1~MST(G1)+g~d2~MST(G2),

g - dy - NIST(G1) + ds - MST(Ga)]

MST(G(d)) < =-[di-MST(G1)+ dy - MST(Go)]

3. Assume z < 2 < y, which implies that MST(G2) = z + z. (see Figure 18(d)) This is analogous

to case 2; the proof parallels the one for case 2 above.

Clearly the bound MST(@(CT)) < % - [dy - MST(G1) + d2 - MST(G2)] holds in each one of the three

possible cases 1, 2 and 3. n

Although Theorem 6.5 above shows that the upper bound has a constant factor of % for 3-pin nets,
we have been unable to find an example of a 3-pin net with metric weights where the cost of the tradeoff
MST exceeds the lower bound by more than a factor of ;—1. Similarly, for 4-pin nets the general upper
bound of Theorem 6.3 implies that this factor is n — 1 = 3, but despite an extensive computer-aided
search, we have been unable to find an example of a 4-pin net with metric weights where the cost of
the tradeoff MST exceeds the lower bound by more than a factor of % Therefore, we conjecture that

our proven bounds can be made considerably tighter, and leave this as an open problem.

These theoretical results have direct implications for the performance of our router, since we can
bound the cost of the solutions that our router will produce in terms of the optimal routing solutions
over the individual edge weights. In particular, when optimizing multiple metric objectives functions
in the routing of 3-pin nets, our router will produce solutions that are guaranteed to be no worse than

50% more than optimal, etc.

7 Experimental Results

We have implemented a complete FPGA router, based on the GBI1S algorithm, using C++ in the
SUN TPC workstation environment. The code is available from the authors upon request. We have

benchmarked our router on several industrial circuits, including the ones used in [5]. A common criteria
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used to evaluate the quality of FPGA routing solutions is the maximum width of the channels (i.e., how
many edges wide are they) required to successfully route all nets of a circuit [5]; this measure captures
the amount of FPGA routing resources needed to route a design. We have therefore compared the

maximum channel width our router required to that required by CGE [5]

Following the example of [5], we use a “connection flexibility” of 0.6 times the number of edges
per channel (rounding this number to the nearest integer), and a switchbox flexibility of 6; these
parameters are typical for current symmetrical-array FPGAs [42]. The switchbox interconnection
options and connection-edge to logic block connections which we use are identical to those used by
CGE [5]. Note that it is crucial to use identical FPGA interconnection specifications when comparing

FPGA routers, since switchbox and connection flexibility dramatically affects routability [5].

We have tested out router on the five industrial benchmarks used in [5] (see Figure 19). Table 20
gives the comparison results of both CGE and our router for these benchmarks. Note that in three
of the five cases, our router 1s able to successfully route all nets using fewer edges per channel. This
indicates that our router is more thrifty in its utilization of the available resources than other routers,
and can produce feasible routings where others cannot. FPGAs are available in several standard sizes,
each with a fixed number of edges per channel [42]; clearly being able to successfully route system
designs using fewer resources will allow smaller (and cheaper) standard-sized parts to be used, or may
allow a system designs to be implemented using fewer fixed-size FPGAs when the design cannot fit on
a single FPGA chip. Figure 21 shows the solution our router produced for the BUSC circuit with 8

edges per channel, switchbox flexibility of 6, and connection flexibility of 5.

We have noted that our GB1S algorithm produces optimal routings for three-pin nets; Figure 22
shows a simple example of how our router finds the optimal solution for a three-pin net where others
do not. Figure 22(a) shows the routing produced by CGE [5] which uses nearly twice the number of

resources as the optimal routing produced by our GBIS router, shown in (b).

8 Conclusion

We proposed a unified general framework for FPGA routing, allowing the simultaneous optimization of
multiple competing objectives under a smooth designer-controlled tradeoff. Qur approach 1s based on

a new and general multi-weighted graph formulation, which enables a good theoretical characterization
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Breakdown of nets by number of pins
Circuit | #nets | #2-pin | #3-pin | #4-10 | #11-50 | #over 50 | FPGA size
BUSC 151 98 17 28 8 0 12 x 13
DMA 213 105 34 52 22 0 16 x 18
BNRE 352 169 86 70 25 2 21 x 22
DFSM 420 354 7 26 28 5 22 x 23
703 608 321 7 176 29 5 26 x 27

Figure 19: This table shows a breakdown of the nets by size (#2-pin nets, etc.). We
observe that he majority of nets contain 3 pins or less, for which the GBIS router
produces the optimal solution. Also shown are the total number of nets and total
number of pins (summed over all nets) for each circuit, as well as the size of the FPGA
used to route each circuit (the number of rows and columns of FPGA logic blocks).

Maximum channel width
required to route all nets

Circuit | CGE || GBI1S
BUSC 10 8
DMA 10 9
BNRE 12 11
DFSM 10 11
703 13 13

Figure 20: This table shows the maximum channel width required by our GB1S router
to successfully route all nets in each of five industry benchmark circuits; given the
maximum channel widths shown, all nets in each benchmark have been successfully
routed by GB1S. For comparison we also give the analogous maximum channel widths
required by the CGE detailed router.

of our method’s performance. Moreover, our approach is architecture-independent, computationally
efficient, and parallelizable. Finally, our general multi-weighted graph approach may be directly applied
to other areas of CAD, as well as to many other classic combinatorial optimization problems (e.g.,

traveling salesman, matching, partitioning, spanning and Steiner trees, etc.)

Remaining open problems include:

Improved exact upper bounds for multi-weighted metric graphs over 3- and 4-pin nets;

Improved asymptotic upper bounds for multi-weighted metric graphs; and

Application of multi-weighted graphs to other optimization problems.

Find computationally effective methods of combining the FPGA placement phase with the routing
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Figure 21: Solution produced by the GBI1S router for the BUSC circuit with 8 edges
per channel, switchbox flexibility of 6, and connection flexibility of 5.

phase into a unified single place/route step.
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(a) Routing which istwice as bad as optimal. (b) Optimal routing.

Figure 22: Example of a “naive” routing for three-pin “T” net which is twice as bad as
optimal (a), and the optimal routing produced by GBIS (b).
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