Heuristics For Backplane Ordering

James P, Cohoon
Department of Computer Science
University of Virginia
Sartaj Sahni
Department of Computer Science
University of Minnesota

Computer Science Report No. TR-85-16
August 7, 1985

Heuristics For Backplane ()rci&arimgfr

James P. Cohoon
Department of Computer Science
University of Virginia

Sartaj Sahni
Department of Computer Science
University of Minnesota

Abstract: The Board Permutation Problem, a backplane ordering problem., has been
previously shown to be NP-hard. We develop here several heuristics for the Board
Permutation Problem. These heuristics produce solutions that are locally optimal with
respect 10 some nontrivial transforms. The heuristics are analytically shown to be m/3-
approximate, where m is the number of nets in a problem instance. The heuristics have
been shown experimentally to have quite acceptable bebavior. Several of the heuristics
make use of a Statistical Mechanics technique (simulated annealing) for thermal equilibrium
analysis in producing their solution.

Keywords and Phrases: board permutation, backplane wiring, design automation, heuristics,
iocal optimality, transforms, statistical mechanics and thermal equilibrium.

% - This research was supported in part by NSF grant MCS 80-005856.

1. INTRODUCTION

Complex digital systems are often decomposed into functional wunits that are
individually designed and implemented. The result is a collection of boards that when
properly interconnected serve as the desired digital system. Prior to wiring the
interconnections, the boards are arranged in some linear arrangement or permutation.
Besides the interconnections required to directly implement the nets, other interconnections
are then introduced. For example, if a connection must cross a board or boards that are
not involved in the net then a terminal must be placed on each of these intermediary

boards to allow the signal to pass through.

The permutation of boards together with all their interconnections is a backplane. The
size of the backplane is é function of both the size of the individual boards and the
interconnections between the boards. If the boards themselves have been constructed to
minimize their size then the backplane area may be minimized by minimizing the space
required for the interconnections. The goal of the Board Permutation problem or BP is 1o
determine a permutation of the boards that minimizes the backplane area. The input to the
BP problem is a hypergraph (B.L), where B is set of n boards {by,...,b,} and L is a
set of m nets L={N;,...,N,} on B. In Figure 1.a a BP instance is given. There are
eight boards and five nets in the example. In Figure 1.b a permutation 7w of B is given.

The arcs in the figure are graphic representations of the nets in L.

There are several methods for minimizing the backplane area. One method is to find a
permutation that minimizes the maximum number of interconnections among the boards.
The premise for this method is that each interconnection reguires space, and by minimizing
the total number of interconnections, the backplane area is minimized

[ADOLT72, RUTM64, SANGTS, STEI6T 1.

Another method of minimizing the backplane area is explored here. Before proceeding

a definition must be given. The density (), where 7 is a permutation of B, is

N U s,

=i+l

i
max Sa.
1<i<n—1 {/91 i

where S;=lala €L b;€a}, 1<i<n. Informally, the density(#) is the maximum number of
interconnections between any two adjacent boards in 7. Cederbaum [CEDE74] showed that

minimizing the interconnection density is eguivalent to minimizing the backplane area.

B ={b1babrbabsbebrbs)
L =4N1NwN3N4N}
Ny =lb,
N, ={b, b }
N3 “{5153}
Ny ={b3be)
Ns ={bsbg}
(e) ~ BP Instance
| |
N Ny N

by b, b, ba bs b by by
(&) - Permutation For Above BP Instance

Figure 1

Therefore, to minimize the backplane area it suffices to choose a permutation # from II
whose density is minimal (II is the set of all permutations of B) This method of
minimizing the backplane area has also been previously examined by Goto et al [GoTo77]

and it is the subject of further exploration here.
_Given the above terminology and remarks, the BP problem may be formally expressed:
Input: A set of boards B={b;,...,b,}: a set of nets L={N,,... ,N,} on B such that

mn
N;EB, 1€i€<m and |JN;=8B
=1

Output: A permutation 7w of B such that density (’n’)xn:éi% [density (m)}
@
In Figure 1.b the permutation bas density 2. The density of 2 occurs in several places in

the permutation, for example between boards b, and bs; An examination of the problem

ingtance shows that this permutation has optimal density.

The algorithms that are developed here and elsewhere to minimize the backplane area
by minimizing the maximum density of interconnection, have a variety of other
épplicaticns. One application is in the Gate Array Layout problem or GAL [TopD82]. In the
GAL problem the input is a set of cells, where & cell is some basic electrical and logical
unit. The cells are to be laid out and interconnected in a regular fashion, typically in a
matrix-like form. This structure, a gate array, may be built both economically and with
fast turnarcund. The gate array has both interconnections among the columns of celis and
intraconnections within a column of cells. A part of the output solution is a gate array
whose gize is minimal. Algorithms for the BP problem may be applied to each individual
column to order the column's cells in a manner that minimizes the impact of intra-column
connections. The BP algorithms can then be applied on a higher hierarchical level to order

the columns themselves in a manner that minimizes the impact of inter-column connections.

The BP problem is a generalization of the NP-Hard Minimum Cwt Linear Arrangement
problem or MCLA [GARE79]. MCLA restricts the size of the N;'s in L such that IN;i=2,
1<i<n. Such a restriction reduces the input from a hypergraph to a graph. As any
algorithm for BP is also an algorithm for MCLA, BP is NP-bhard. Contemporary analysis
strongly suggests that there is no deierministic, polynomial-time algorithm for any NP-hard
problem. So, alternative methods of dealing with BP must then be explored. One
alternative is 1o develop low-order, polynomial-time algorithms for special cases of BP
problem. For example, we have developed two algorithms Bpdl and Bpd2, that determine
whether the optimal density is 1 or 2 respectively [CoHO83]. Another special case that can
be considered is the reduced BP problem, MCLA. Though MCLA as stated earlier is NP-
hard, Gurari and Sudburough have developed a dynamic programming algorithm for MCLA
that determines whether there is a permutation with density k¥ in O{n*) time [GURAS1]. It
is an open qQuestion whether their algorithm can be modified to produce solutions for the

general BP problem in O(n%) time, where ¢ is some constant.

The alternative explored here for the BP problem is a relaxation of the optimization
criterion of the problem to accept a feasible solution whose value is reasonably close to the
optimal solution’s value. Algorithms that produce reasonably close solutions are called
heuristics. An heuristic is fin)approximate if for all problem instances J
F'(I)-F'I)

_—

Fo |

where F'(I) is the value of an optimal solution for I, F'(J) is the value of the solution

-3-

4

generated by the heuristic, and n is a measure of the size of 7. With the incorporation of
m.
3

density 1 and 2 are found by Bpdl and Bpd2, a lower limit for F (/) not equal to F'(I)

Bpdl and Bpd2, every algorithm for BP is trivially approximate. Since solutions with

is 3. An upper limit for |F (I)~F'(I)| is m. Therefore, %1-— is an upper-bound for the

ratio.

The first heuristic (Figure 2) we consider below is an O(n°m) heuristic developed by
Goto et al. [GOT077]. The heuristic, Heuristic., produces solutions that are locally optimal

with respect to the transform

o 7?'1,...,7?5,_1,7?'_;,77',',...,Wj-;,?fj+3,...,17n) 1£i<]$n
slmi j)=in otherwise
(f i is 1 then my,...,m;_y is pull Similarly, if j is n then w4y, ..., 7, is null)

Informally, a solution 7 produced by Hewristic.I has the property that if a board & has
been assigned to the j¥ position then bringing b forward to the i* position, does not

decrease the density.

Besides analyzing Heuristic.l, several new heuristics are proposed below to solve the
general BP problem. These same heuristics are combined to produce several other. heuristics.
These new heuristics are named Heuristic.2 through Heuwristic.13. The new heuristics all
require low-order, polynomial-time to execute. In addition, the heuristics, like Heuristic.l,

generate solutions that are locally optimal with respect to some nontrivial transform. It is

1. Algorithm Heuristic.I(m)}

2. T «B

3. R~

4, fori «~ ltondo

5. choose & from T such that & achieves
min { Us U s n[U s,')l]
te€r i€R P € T—ie)

6 w; o b

7. T « T-1{b}

8. R « R+ {b}

9 end for

10. end

Figure 2 - Heuristic.l

also shown for the heuristics that, like Hewristic.l, the ratio % can be achieved for

arbitrarily large problem instances when Bpdl and Bpd2 are used in conjunction with the
heuristics. Although the heuristics do not achieve a worst case performance improvement
over Heuristic.I, experimental results indicate that several of the heuristics perform in a
superior fashion to Hewristic.l. In addition, we interpret the experimental results to produce

a combined heuristic, Heuristic 14.

Several of our heuristics have roots in Statistical Mechanics. The BP problem is
interpreted as a system with n degrees of freedom in low temperature thermal equilibrium.
We then adapt the Metropolis algorithm [METRS3] for approximate numerical solution of
thermal systems to run with the heuristics. This technique has been similarly used by
Kirkpatrick et al. [KIRK83] to achieve impressive resulis for the Traveling Salesperson

Problem and several NP-hard design automation problems.

In comparing our heuristics, we only consider the quality of their solutions and their
run-times. All of our heuristics use at most O{n) space in addition to the space required
for the input. This additional space is mnot considered significant in evaluating the

heuristics.
2. HEURISTICS

Heuristic.1

We show below that there exist arbitrarily large problem instances for Heuristic.]

where it produces a permutation with density m when there exists an optimal permutation

with density 3. Such a demonstration is sufficient to show that the heuristic is %1——
m-—3 <™

approximate as — 5

In Figure 3.a, an instance is given that bhas the property that Hewristic.] may produce
a permutation with density m. Suck a permutation 7 is given in Figure 3.b. A
permutation ¢ with density 3 exists, and is given in Figure 3.c. The permutation ¢ is

optimal for the instance. For this instance n is a multiple of 3.

A demonstration that 7 is a valid output for the instance by Heuristic.l is straight-
_forwafd. As all boards appear in at least 2 nets, the first board in 7w can be any board &

where 1S;!=2, therefore 7, can be assigned b;. As the size of each net in S, is greater

than 2, and as all remaining boards must introduce at least one new net, any board that

-5-

t
t
e,
o
=
o
=

L ‘_{NO; r n }

N, ={b, ,...,b}

by b; boz bujstr brmiz bpivibpivz bo1 by
- N,

- Ny
(&) - Permutation With Worst Case Density For Above. BP Instance

N1 Nz‘ NnIS
n—2i+1 Pnzitz bnjz . Bupar bn,/3+2 N,

-« Ny
(¢} - Permutation With Optimal Density For Above BP Instance

Figure 3

would introduce only one new net is valid for ws.

Therefore, 7, can be assigned bo.

A

similar examination for the remaining boards shows that they can be assigned as in Figure

3.b.
Heuristic.2

Heuristic.2 constructs its solution 7 from the outside towards the middle (i.e. the boards
are assigned in the order w17, T2Tn—i., ... ,Trn). The assignment is performed in a

z

B m{b]_,...,bn}

L x{Ng,...,N%+1}

NO m{bl"--rbn}
N; ={b; by i 1) 1€ €2

2
Nn z{bi,,..,bn}

{a) - BP Instance For Heuristic.2

bl b; bnlz by, [2+1 bn—-—i +1 by

ww—— Ny

B — n/2+1

(6} - Permutation With Worst Case Density For Above BP Instance
N 1 N nf2

N;
b 1 bn bi bn—i+1 brz/2 bnlz-f-l

- N

~—— Ny 1241
(¢} - Permutation With Optimal Density For Above BP Instance

Figure 4

manner that ensures 7 is locally optimal with respect to the transform

("ﬂ"i, N ,7?'5._1,17_; [T ,Wj_I,TTj+1, . ,'ﬂ'n) 1‘{:!‘ <] $[7]

t(mi jd=my, T Tt T T i, -, Ty) [mj—]ﬁj <ign

(s otherwise

Informally, a solution 7 produced by Heuristic.2 has the property that if a board in the
first half is moved forward or a board in the second half is moved backward then the
density does not decrease. A straight-forward implementation allows the beuristic to run in

O(n*m) time.

Figure 4.2 provides an instance that has the property that Hewristic.2 may produce a
permutation with density m as its solution. Such a permutation % is given in Figure 4.b.

However, a permutation ¢ with optimal density 3 exists is given in Figure 4.c. Therefore,
m

Hewristic.2 is 3

approximate.

Heuristic.3

Heuristic.3 constructs a solution #r that is locally optimal with respect to the order 7
that the boards are considered. The heuristic operates by placing the i* board being
considered in a position optimal with respect 1o the sub-solution generated by the i—1

previously placed boards. The heuristic is given in Figure 5. By calculating the density of

(7,7, ...,7i—1) and saving its i—1 individual densities at step 4 and then using the
1. Algorithm Heuristic.3(w,7)
2 fori « 1tondo
3 A o« (7',‘,17'1, e awi-—l}
4 cost + density(A)
5 for j « i—1 downto 1do
6 [('ﬂ'l,...,Wj,f;,?]'j+1,...,'ﬂ'i._1)
7 if cost > density(p)then
8. Aep
9. cost + density{\)
10 end if
11 end for
12 oA
13. end for
14. end

Figure 5 - Heuristic.3

results for the next iteration of step 5, the time spent in determining the density of p at
step 6 may be reduced to O(m). Therefore, the total time required by Heuristic.3 is
O (n®m).

. o=lby, .. b, 1K<
.Z-H 2
n { 1 ybn}

{a) - BP Instance for Heuristic.3
N, N; Ny

I

bl bi bn.’Z bn/2+1 bn/2+r’ bn.
B NO
- Nn/2+1
(6) - Permutation With Worst Case Density For Above BP Instance
f\i 1 Ai i Nnirz '
by ba 241 b; bujzti bap by
3 NQ

e N 241
{¢) - Permutation With Optimal Case Density For Above BP Instance

Figure 6

To specify a worst case instance for Heuwristic.3, the definition of density must be
augmented to include partial solutions. Below, a net { is not considered in calculating the

density of a partial solution of size k if |N;{my, ..., m}|S1.

The instance in Figure 6 demonstrates that Hewristic.3 has arbitrarily large instances

where a valid output 7 with density m may be produced when there exists an optimal

permutation ¢ with density 3. If v=(b,,...,b,) then a valid output of Heuristic.3 is =T
as in Figure 6.b. As for any boards & and b;, i#j, we have SiﬂS_;—T{NO,NRH b,
z
158, jS%, (By,...,B,) is a valid partial solution for Hewristic3. No matter where board
> .
an is placed the density after its assignment will be 3. Thus By, ... ,Bnﬂ) is a valid
3 Z

partial solution for Heuristic.3. A similar examination shows that the remaining boards can
be assigned as in Figure 6.b. Therefore, Heuristic.3 has an arbitrarily large instance where
it can produce a permutation with density m when there is an permutation o, as in Figure

6.c, that has density 3.

Heuristic.4

Heuristic4 examines its input permutation 7 to see if it is possible to achieve a
reduction in density by interchanging two boards in the permutation. The heuristic then
repeats this process to see if two more boards can be interchanged to produce another
density improvement. This pairwise interchanging is continued until no interchange of
boards would result in a density improvement. By its method of operation Heuristic4's

solutions are locally optimal with respect to the transform

(11, ... PP T R PR (B DU L 25 PRI) 154 <j$n
u('n‘,i ,j):: {17'1, R T T S TS P s Wi W igy, - ,Wn) 1";..j<1. <n
o otherwise

A straight-forward implementation of Heuristic4 allows its solution to be calculated in

O(n3m?) time.

In Figure 7.a, an instance is given that has the property that Heuristic4 can produce a
permutation with density m. Such a permutation 7 is given in Figure 7.b. If # of Figure
7.b is also the permutation 7 that is given to Hewristic4 to examine, then no improvement
is possible with a single pairwise interchange. This follows as the maximal density in 7

occurs between boards b, and an. Hence, if an improvement is to be made it must be

4 2

-10-

B :{bls LRI :bn}

N ={N,y,...,N }
%ﬁ+1

No={by, ... b}
© Ny=Np={bsieabi-2bair.a). 181 S"}

Nn+1={bl, [:bn}

(@) - BP Instance For Heuristic4 And Heuristic9

(b) ~ Permutation With Worst Case Density For Above Permutation
Ny N; Ny 14

/TN <N <N
2alaNelnla¥alnla

bl 52 b3 bd bdin 643-—2 b4i-—1 bdi bn—S bn s bnwl bn

?NG Nn13+1 ¢

{¢) - Permutation With Optimal Density For Above Permutation

Figure 7

done with a board b; and a board b;, where ISiS% and -gi+1 L£j<€n. But as all boards

in each half of the permutation are part of a net with another board in the same half,
moving a board to the other half of the permutation does not reduce the density.

However, a permutation o with optimal density 3 exists, and is given in Figure 7.c.

-11 -

Therefore, Heuristic4 has an arbitrarily large instance where it may produce a solution with

density‘ m when the optimal solution has density 3.

Heuristic.5

Metropolis, et al. [METR53] developed a statistical mechanics algorithm that can be
adapted to produce a heuristic for the BP problem. The Metropolis algorithm simulates the
behavior of a thermal system in low temperature equilibrium. The behavior of such
thermal systems is determined by the displacement of atoms over time. Through the use
of random variates and a probabilistic model, the Metropelis algorithm successfully
simulated the displacement of atoms. Their probabilistic model determines whether to
accept as valid, a random variate that represents a change in the thermal energy. A
random variate that represenis a decrease in thermal energy is accepted with probability 1;
a probability function p(-) is used to decide whether to accept a variate that represents an
increase in thermal enmergy. The exact nature of the function p is dependent upon the
thermal system being simulated. The Metropolis algorithm suggests a way that we might
modify Heuristic4 to produce a better heuristic - Heuristic.5. Heuristic.5 will use a
probability model for board interchanges in the same way the Metropolis algorithm uses a
probability model for the displacement of atoms. I we allow the possibility of an
interchange even though it may increase the density then we may be able to avoid a local

optimum that is not & global optimum.

Heuristic.5 iz formally presented in Figure 8. Its function reject is a boolean function
that determines whether to perform a board interchange that would increase the density.

The function reject operates in the following manner: draw a variate v from the uniform

density{r)
(m+5)

interchange otherwise no more board interchanges are to be performed. The intuition behind

distribution on the interval (0,1}, # v€min J0.9! then perform some board

reject is to favor continued board interchanges when the density is high with the greater
expectation that there is a permutation with less density. Analysis of the relative merits

of the function reject is deferred to the experimental analysis section.

As Heuristic.5 always chooses a local optimum, it is locally optimal with respect to
transform . And as there is nonzero probability that a board interchange that would

result in increased density is rejected, worst case BP instances for Heuristic4 are also worst

case instances for Heuristic.5. Therefore, Heuristic.5 is also —r;l—approximate.

~12-

1. Algorithm Heuristic.5(w 7}
2. o T
3 repeat
4. cost « density(7)
5. repeat
6. o« T
7. i~ 0
8. min + cost
9. repeat
10. A A I |
11. joe—i
12. while (j < n)and (cost 2 min}do
13. je i+ 1
14. 7 « interchange(o i,j)
15. cost + density{r)
16. end while
17. until (i = n }or (cost < min)
18. until cost 2 min
19. if density(o} < density() then
20. k(4
21. end if
22. if reject then
23. return
24. else
25. Arbitrarily interchange the position of two boards in ¢
26. T~ C
27. end if
28. forever

29. end

Figure 8 - Heuristic.5

Heuristic.6, Heuristic.7, and Heuristic.8

Heuristic6, Heuristic.7, and Heuristic.§ are each two-phase heuristics. The heuristics use
respectively Heuristic.J, Heuristic.2, and Hewristic.3 in their first phase to construct an initial
solution. Their second phase uses Heuristic.5 as a post-processor to improve the solution (if
possible). As the solutions of Heuristic6 through Heuristicd are last examined by
Heuristic.5, the solutions are locally optimal with respect to transform u. The decision to
use Heuristic.5 in Heuristic6 through Heuristic.8 instead of Hewristic4 is based on

experimental analysis that is presented in a subseguent section.

-13 -

Heuristic.9

Heuristic.9 operates in a manner somewhat similar to Heuwristic4. Whereas Heuristic4
attempted to interchange two boards to improve the density, Heuristic.9 attempts to move

one board to improve the density. Its solution is locally optimal with respect to the

transform
(‘rr;, I SR FRSENE (P Py S PR ,'n'n) 1€ <]S_n
V(TT,I: ,])z (’?Tl, . ,’Tl'jm1,'f?'j+1, R ,1':'{,77'},7':'54.1, e ,'ﬂ'n) 1$j<z-<~.n
T otherwise

Informally, a solution w produced by Heuwristic.9 has the property that if 5 and ¢ are
boards in B, moving s so it is adjacent to ¢ does not decrease the density. A straight-

forward implementation of Heuristic.9 allows it solution to be calculated in O(n?m?) time.

The instance in Figure 7 also serves to demonstrate that Hewristic.9 has arbitrarily
large instances where a valid output m with density m may be produced when there exists

an optimal permutation ¢ with density 3.

Heuristic.10

Heuristic 10 (Figure 9) is an adaptation of Heuristic9 using the statistical mechanics
techniques presented in conjunction with Heuristic.5. Like Heuristic.5, Heuristic.I0 chooses a
locally optimum solution. However, Heuristic.I0 is locally optimal with respect to
transform v. Also, as there in nonzero probability that no board is moved that would

increase the density, the worst case BP instances for Heuwristic.9 are also worst case instances

m

f oi" Heuristic. 10, Therefore, Heuristic 10 is 3

approximate.

Heuristic.11, Heuristic.12, and Heuristic.13

Heuristic 11, Heuristic.12, and Heuristic.I3 are each two-phase heuristics. The heuristics
use respectively Heuristic.l, Heuristic.2, and Heuristic.3 in their first phase to construct an
initial solution. Their second phase uses Hewristic.I0 as a post-processor ito improve the
solution (if possible). As the solutions of Heuristic.ll through Heuristic.I3 are last
examined by Heuristic.]0 the solutions are locally optimal with respect to transform v.
The decision to use Heuristic.10 in Heuristic.Jl through Heuristic.I3 instead of Hewristic9 is

based on experimental analysis that is presented in the next section.

-14 -

1. Algorithm Heuristic.I0{7 1)

2. w7

3. repeat

4. cost « density(t)

5. repeat

7. o~ 7

8. min ¢ cost

9. P~ 0

10. repeat

11. i —i+1

12. je 0

13. repeat

14. i+

15. T+ insert(oi,j)
16. cost « density{t)
17. until (j = n)or (cost < min)
18. until G = n) or (cost < min)
19. until cost 2 min

20. if density{o) < density(w) then
21. ¢
22. end if

23. if reject then

24. return

25. else

26. Arbitrarily move a board within o
27 T e g

28. end if

29. forever

30. end

Figure 9 -~ Heuristic.10

3. EXPERIMENTAL TESTING AND ANALYSIS

The experimental analysis and testing had several phases. The results of a given phase
directed the testing of successive phases. The first phase was concerned with the placement
of the function rejecr in Heuristic.5 and Hewristic.10. The second phase measured the
relative efficiency of function reject. The third phase compared Heuwristic4 with Heuristic.5
and Heuristic.9 with Heuristic.10. From the test results of this phase, it was decided to use
Heuristic.5 in Heuristic6 through Heuristic8 and Heuristic.l0 in Heuristic.]l through
Heuristic.J3. The fourth phase was a general comparison of all thirteen beuristics. The
principal result of this phase was Hewristic.14. Heuristic.I4 is a combined heuristic that
makes use of both Heuristic.1l and Heuristic.I2. The fifth and final phase of testing

compared Heuristic.14's solutions to the optimal solutions for a set of a problem instances.

- 15 -

We note that all of the testing performed for this section was consistent with the testing

performed by Goto et al. [GoTo77].

Placement Of The Function Reject

The use of the function reject (Figure 10) in Heuwristic.5 need not be limited to only
after a local optimum has been found. Rather, reject may be used after any applicaiion
of the function interchange. In Figure 11, such a placement is shown with Heuristic.5a.
Testing was conducted on Heuwristic.5 and Heuristic.5a. As a result of this experiment, the
further use of Heuristic.5¢ was considered too expensive for our purposes. The testing
consisted of several small BP instances, where n ranged from 5 to 8 and m was beld
constant at 10. The solutions for Heuwristic.5 were all computed in less than a second,
while Heuristic.5a for the same instances required up to several hours. Though there was a
slight improvement in one of the Heuristic.5a’s solutions over Heuristic.5's solution, the time
cost was deemed too expensive for furtber use. A similar examination of Heuristic.I0 with
the application of reject after each board insertion showed a slight improvement in one of

the trials, but again the time cost was deemed prohibitive.

Relative Efficiency of Function Reject

In the second phase of testing the relative efficiency of the function reject was
measured. 'Two alternatives, reject.] and reject.2, were considered and they are given in
Figure 12. The two alternatives introduced approximately a 20% increase and decrease,
respectively, in the likelihood of accepting a board interchange that would increase the
density. Let Heuristic.5b be the use of Heuristic.5 with function reject.l. Let Heuristic.5¢ be

the use of Heuristic.5 with function reject.2.

1. Function reject({r)

2. if random € min M,OB
m+5

3. then true

4. else false

5 end if

6. end

Figure 10 - Function re ject

- 16 -

1. Algorithm Heuristic.5a(m,7)
2 w e T
3 cost+— density(t)
4, mincost + cost
5. repeat
6. o - T
7 i~ 0
8 min +« cost
9. repeat
10. P~ i + 1
11. joe—i
12. interchanges < false
13. while (j < n)and (not interchanges) do
14. je o+
15. T « interchange{oi,j)
16. cost « density(7)
17. if (cost < min)or (not reject) then
18. interchanges + true
19. if cost < mincost then
20. mincost + cost
21. T
22. end if
23. end if
24. end while
25. until (i = n} or (interchanges)
26. until not interchanges

27. end

Figure 11 - Hewristic.5a

-17 -

1. Function reject.l{w)
2. if random € min M,OB
m+5
3. then true
4. else false
5. end if
6. end
1. Function reject.2(m)
2. if random < min M,O.Q
m+5
3. then true
4, else false
5. end if
6. end
Figure 12
Comparison of Heuristic.S to Heuristic.5b and Heuristic.5¢c
Heuristic 5b Heuristic 5c
Number Percentage Percentage Percentage Percentage
of of Cases Time Decrease of Cases ™ 71 Time Increase
Boards with Increased with Reduced
Dengity Density
10 8§ 36 12 54
15 8 30 16 63
20 20 28 20 52
25 8 25 16 48
30 8 25 4 38
Figure 13

The results of this experiment are summarized in the table of Figure 13.
25 BP instances randomly generated for each n in the table.
used for each n.

whether it was assigned to a particular net.

For a given BP instance each board had a constant probability p of

Several wvalues of m were

Several values of p were used for each n.

There were

The approximate 20% decrease in probability of acceptance with reject.] had a
minimum percentage decrease of 8% and a maximum percentage decrease of 20% in solution
performance. Overall, 10% of Heuristic.5b’s solutions showed an increase in density over

Heuristic.5's solutions. The approximate 20% increase in probability of acceptance with

- 18 -

reject.2 had a minimum percentage increase of 4% at n = 30 in the number of instances
with improved density when compared to Heuristic.5 with function reject. The maximum
percentage increase for reject.2 was 20% and occurred at a = 20. Overall, 14% of

Heuristic.5¢’s solutions showed a decrease in density over Heuristic.5¢’s solutions.

The table in Figure 13 also indicates the relative cost in time the two functions
reject.] and reject.2 bave with respect to reject. The use of function reject.] with Heuristic.5
had a minimum percentage time decrease of 25% at n = 25 and n = 30 when compared to
Heuristic.5 with reject. The maximum percentage time decrease with the use of reject./ was
36% at n = 10. Overall, Heuristic.5b used 26% less time to solve the set of BP instances
than Heuristic.5. The use of function reject.2 with Heuristic.5 had a minimum percentage
time increase of 38% at n = 30 when compared to Hewristic.5 with reject. The maximum
percentage time increase with the use of reject.2 was 54% at n = 10. Overall, Heuristic.5c

used 45% more time to solve the set of BP instances than Heuristic.5.

The results of the experiment with respect to the relative efficiency of reject to reject.]
and reject.2 indicate it is somewhat sensitive to scaling. Further experiments may be in
order to determine whether reject.2 or a reject function with an even greater scaling of
reject should be considered. In successive testing of Hewristic.5 with the other heuristics it
was deemed that the use of the function reject was suitable as its solution quality and
run-time characteristics were both good. However, arguments can be made for the use of

either reject.l or reject.2.

Preliminary Heuristic Comparison

In this phase of testing Heuwristic4's performance was compared to Heuristic.5's
performance and Heuristic.9's performance was compared to Heuristic.I0’s performance. The
testing was performed in a similar manner to the testing of the previous phase. Several
values of n were used and for each value of n, 25 BP instances were run. The BP
instances were randomly generated with several values of m wused for each n and the same
instances were given to all of the heuristics. The results of this testing are summarized

for Heuristic4 and Heuristic.5 in the table of Figure 14.

An examination of Figure 14 shows that for most of the instances there was a
significant improvement with respect to density in the performance of Heuristic.5 over
Heuristic4. The minimum improvement was found for n = 10 and n = 25 where in 16%

of the instances the density of the output permutation of Heuristic.5 was an improvement

- 19 -

Comparison of Heuristic.4 and Heuristic.5
Number of Percentage of Heuristic.5's Percentage Increase In
Boards Solutions with Density Improvement | Running Time of Heuristic.5

over Heuristic4 s Solutions over Heuristic 4

10 16 178

15 24 118

20 28 122

25 16 : 91

30 24 87

Figure 14

over the density of the output permutation of Hewristic4. The maximum improvement was
found with n = 20 where in 28% of the instances the density of the output permutation
of Heuristic.5 was an improvement over the density of the output permutation of
Heuristic4. Overall, 22% of Heuristic.5’s solutions were an improvement over Heuristic4's

solutions. This represents a significant performance increase.

The cost of these performance increases is also presented in Figure 14. The table
shoWs that for » = 10 the run-time of Hewristic.5 was almost triple that of Hewristic4.
However, for n = 30 there was approximately z doubling of run-time with Hewristic.5.
Overall, the average run-time for a solution by Hewristic.5 required 95% more time than the

solution calculated by Heuristic4.

Though the run-time costs are significant, in the interest of developing effective tools
for the BP problem it was determined to use Heuristic.5 as the post-processor in Heuristic.6
through Heuristic.& rather than Heuristic4. The testing of Hewristic.9 and Heuristic.I0 was
comparable to the testing of Heuristic4 and Heuristic5. And in a similar manner it was

decided to use Hewristic.0 as a post-processor in Heuristic.Il through Heuristic.13.

General Comparison of the Heuristics

In this phase of testing, Heuristic.] through Heuristic.]3 were extensively tested on &
set of problem instances. From this testing we were able to select two heuristics to
combine to produce a new heuristic, Heuristic.l4. The testing was performed in a manner
similar to previous phases. Several values of n were again used. For each value of n, 25

BP instances were randomly generated. Several values of m were used for each n. The

- 20 -

instances were constructed suck that a board & had a comstant probability p in a given
instance of whether it was assigned to a net. Several values of p were used for each n.
For the purposes of this experiment, Heuristic.3, Heuristic4, Heuristic.5, Heuristic.8, and
Heuristic9 were each given 5 starting permutations per instance. For each starting
permutation there was an associated output permutation. The heuristic returned the output

solution with minimal density.

The table in Figure 15 displays the number of times a heuristic produces a solution
that is minimal with respect to the solutions produced by the other heuristics. An
examination of the table shows that except for n = 5, Heuristic.Il consistently
outperformed the other heuristics. At n = 5, Heuristic.]] still had 22 of its solutions being
minimal. Overall, Heuristic.Jl had 66% of its solutions being minimal. If because of
limited resources one must choose a single heuristic for a BP instance then Heuwristic.ll

appears to be a reasonable choice.

The table in Figure 16 displays for Hewristic.] through Heuristic.I3 both their
maximum and average difference in density from the solution withk the minimal density.
The table gives further evidence of Heuwristic.ll's superiority. Heuwristic.lI's maximum

difference in density from the minimal solution was minimal with respect to the other

Number Of Times In 25 trials A Heuristic Produced
A Solution With Minimal Density With Respect To Other Heuristics

Heuristic n=_23 n_= 10 n=15 n= 20 n_= 25 n = 30 Total
1 21 15 7 7 7 4 61

2 21 1 5 1 0 1 29

3 23 7 0 0 Q 0 32

4 24 14 11 4 3 2 58

5 25 16 12 7 4 6 70

6 23 16 10 10 5 5 72

7 23 7 7 3 7 3 50

8 25 7 2 5 0 1 40

9 25 i6 6 3 6 0 56

10 235 17 6 3 6 2 59

11 22 20 13 17 16 11 99

12 24 6 13 5 5 5 58

13 25 11 4 2 1 1 44

Figure 15

-21-

Density Differences

Maximum Difference | Average Difference

Heuristic In Density From In Density From

Minimal Solution Minimal Solution
1 8 1.26
2 9 2.69
3 12 3.73
4 5 1.41
5 o 1.00
6 3 0.99
7 6 1.53
8 7 1.94
9 6 1.48
10 3 1.30
11 S5 0.65
12 6 1.33
13 10 2.22

Figure 16

heuristics. Its average difference in density was also minimal. The table also shows 3 of
the beuristics were on average within 1 of the minimal solution and 9 of the heuristics
were on average within 2 of the minimal solution. Thus, the other heuristics, though not
as effective as Hewristic.1I, do produce solutions whose density on average is quite close to

the density produced by Heuristic.ll.

Let Heuristicij be a combined heuristic that when given a BP instance it applies both
Heuristici and Heuristic.j to the instance and returns the solution with minimal density.
1<i,j<13. The table in Figure 17 displays the number of minimal solutions these
combined heuristics achieved with the BP instances generated for the general comparison
table of Figure 15. The combining of Hewristic.ll and Heuristic.12 had the most minimal
solutions — 121. The combining of Heuwristic.5, Heuristic.9, or Heuristic 10 with Heuristic.1l
would have come within 5 of the number of minimal solutions the combining of
Heuristic.11 and Heuristic.J2 would have achieved. As the combining of Hewristic.ll and
Heuristic,12 did achieve the greatest number of minimal solutions for combined heuristics,
this combination was selected for further testing. Let this combined heuristic be called

Heuristic, 14

-922 -

Number Of Times in 150 Trials A Combined Heuristic Produced
A Solution With Minimal Density With Respect to Other Combined Heuristics

Combining 1 2 3 4 5 6 7 8 9 10 11 12 13
Heuristics

1 61 69 67 84 94 72 81 73 84 86 99 87 74

2 69 29 39 65 75 80 50 47 62 65 | 105 58 51

3 67 39 32 60 71 76 54 40 58 61 | 103 62 44

4 84 63 60 58 70 91 77 65 77 79 | 112 84 65

5 94 75 71 70 70 98 86 76 86 88 | 120 94 75

6 72 80 76 91 98 72 88 82 92 94 | 105 95 82

7 81 50 54 77 86 88 S0 61 71 74 | 115 68 65

8 73 47 40 65 76 82 61 40 64 67 108 70 48

9 84 62 58 77 86 92 71 64 56 59 | 116 78 66

10 86 65 61 79 88 94 74 67 59 59 | 118 81 68

11 99 105 | 103 f 112 ¢ 120 | 105 | 115 | 108 f 116 | 118 99 | 121 | 109

12 87 58 62 84 a4 95 68 70 78 81 121 58 74

13 74 51 44 635 75 82 65 48 66 68 | 109 74 44
Figure 17

Heuristic.14

As Heuristic.J4 is a combination of Heuristic.]I and Heuwristic.12 and as both Heuristic 1l
and Heuristic.12 are locally optimal with respect to transform v, so is Hewristicl4. The
testing of Heuristic.14 was similar to the previous testing. Thirty BP instances were
randomly generated with several values of n and m. The assignment of boards to nets

was performed in & manner as above.

Heuristic.14’s Solution Among 30 Trials
Compared To Optimal Density
Difference In Frequency
Density
0 20
1 9
2 . 1

Figure 18

-23-

For the 30 generated instances, both the optimal density and the density of the
solution constructed by Heuristic.l4 were determined. The table in Figure 18 summarizes
the differences in the densities for these instances. In two thirds of the generated BP
instances, Heuristic.l4's solutions were optimal. In the remainirig instances, the difference in
density from the optimal solution was no more than 2. These results indicate that
Heuristic.]4 is an effective heuristic in practice. If because of limited resources ome must
choose a single combined beuristic for a BP instance then Hewristic.I4 appears to be a

reasonable choice.

4. CONCLUSIONS

The Board Permutation problem is an important problem in the design automation of
digital systems. As the Board Permutation problem has been previously shown to be NP-

hard. it is unlikely that there are fast algorithms that always return an optimal

permutation. We have shown however, that there are fast beuristics that are %-

approximate. We have also shown that these heuristics are locally optimal with respect to
some nontrivial transforms. Finally, we have experimentally shown that several of the
heuristics typically perform quite well. In fact, one of the heuristics generated an optimal

solution 66% of the time during testing.

5. BIBLIOGRAPHY

[ApoL72] D. Adolphson and T. C. Hu, Optimal Linear Ordering, SIAM Journal of Applied
Mathematics, 25(3), November 1972, pp. 403-423.

[CEDE74] 1. Cederbaum, Optimal Backboard Ordering through the Shortest Path Algorithm,
IEEE Transactions on Circuits and Systems, CAS-ZI(S%, September 1974, pp. 626-632.

[Cono83)} J. P. Cohoon and S. Sahni, Exact Algorithms for Special Cases of the Board
Permutation Problem, 2Ist Allerton Conference on Comrmunication, Control, and
Computing, 1983, pp. 246-255.

[GARET9] M. R. Garey and D. S. Johnson, Computers And Intractability - A Guide To The
Theory Of NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[GoTo77] S. Goto, 1. Cederbaum and B. S. Ting, Suboptimum Solution of the Back-Board
Ordering with Channel Capacity Constraint, [EEE ITransactions on Circuits and
Systems, CAS-24(11), November 1977, pp. 645-652.

[Gura81] E. M. Gurari and 1. H. Sudborough, Cutwidth Problems in Graphs, 19tk Allerton
Conference on Communication, Control, and Computing, 1981, pp. 752-761.

[Kirk83] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated
Annealing, Science, 220{4598), May 13, 1983, pp. 671-680.

[METR53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of
State Calculation by Fast Computing Machines, Journal of Chemical Physics, 21(6),
June 1953, pp. 1087-1092.

[RuTM64] R. A. Rutman, An Algorithm for Placement of Interconnected FElements Based on

[SaNG75]
[sTRI61]

[Topp8&2]

Minimum Wire Length, Proceedings of Proc. IFIFPS Spring Joint Computer Conference,
1964, pp. 477-491. :

A. Sangiovanni-Vincentelli and M. Santomauro, A Heuristic Guided Algorithm for
Optimal Backboard Wiring, 13th Allerton Conference on Circuits and Systems, 1975.

. Steinberg, The Back Board Wiring Problem: A Placement Algorithm, SIAM
Review, 3(1), January 1961, pp. 37-50.

L. F. Todd, D. J. Gilbert, J. M. Hangsen, R. J. Anderson, S. V. Pantula, A. K.
Biyani and J. L. Barron, CGAL - A Multi Technology Gate Array Layout System,
19th Design Automation Conference Proceedings, Las Vegas, Nevada, 1982, pp. 792-
799,

-25 .

