Shallow Interdistance Selection
and Interdistance Enumeration

I. S. Salowe

Computer Science Report No, TR-91-01
January 11, 1991

Shallow Interdistance Selection and Interdistance Enumeration
by

J.S. Salowe

Depaﬁment of Computer Science
University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

Shallow interdistance selection refers to the problem of selecting the k™ smallest interdistance,

k <n, from among the g interdistances determined by a set of » points in R Shallow

interdistance selection has a concrete application — it is a crucial component in the design of a
data structure that dynamically maintains the minimum interdistance in O(\/;f logn) time per
operation (Smid [6]). In addition, the study of shallow interdistance selection may provide
insight into developing more efficient algorithms for the problem of selecting Euclidean
distances (Agarwal et al. [1]). We give a shallow inierdistance selection algorithm which takes
optimal O(nlogn) time and works in any L, metric. To do this, we prove two interesting
related results. The first is a combinatorial result refating the rank of x to the rank of 2x. The
second is an algorithm which enumerates all pairs of points within interdistance x in fime
proportional to the rank of x (plus O(n log n)).

1. Introduction

We consider the problem of selecting the k" smallest interdistance, £ < n, from among the [g } determined by a set

P of n points in R? This problem is in part motivated by recent progress by Smid [6] in the design of an efficient,
linear-sized data structure supporting the following three operations:

insert (x,P): form pointset P u {x),xe RY;
delete (x,P); form point set P ~ {x};
minimum (P): return a pair of points having minimum interdistance with respect to a given metric.

Smid’s data structure supports these three operations in O (n¥*logn) time if the interpoint distance is given by an L,
metric. Smid’s algorithm depends on an algorithm for “‘shallow’” interdistance selection. Specifically, Smid
showed how to find the ordered sequence of the O (n¥'?) smallest distances determined by P in O (n log #) time, and
he noted that the update times for his data structure could be improved to O (Nn logn) time if the ordered seguence
of n smallest interdistances could be found in O(n log n) time. (We note that Smid has recently developed a second
dynamic algorithm which has polylogarithmic update times but uses O(n log® ¥'r) storage {5}, so the actual impact
of shallow interdistance selection on closest point problems is primarily&of theoretical interest.)

-1-

A second motivation to study this problem is to determine the true complexity of interdistance selection.
Salowe [4] presented an O{n Iogdn) time algorithm to select L., interdistances in d-dimensional space. L,
interdistances in the plane may be selected in O(n log®n) time. Recently, Agarwal, Aronov, Sharif and Suri [1]
gave an O(n*?log*?n) time algorithm for L, interdistances in the plane. The best result for points in d-
dimensional space (with respect to the Euclidean metric) is due 1o Chazelie [2], who devised a nearly-quadratic
algorithm based on Yao's technique [8] for constructing minimum spanning trees in d-dimensional space. What are
the true bounds? What is the relationship between the apparently easy selection in the L.. metric to the seemingly
harder selection in the L ; metric?

In this paper, we de\;ise an O (n logn) time algorithm to select the £ smallest interdistance determined by P,
where & n. This algorithm works for any L, metric and is optimal; it relies on an interesting combinatorial result
and an algorithm which enumerates interdistances less than or equal to x in time proportional to the rank of x (plus
O(n logn)). The organization is the following. In Section 2, we state and prove the combinatorial result. Section 3
contains the interdistance selection algorithm. The first subsection describes an algorithm for ‘‘interdistance
enumeration,”” the second subsection presents an optimal shallow interdistance selection algorithm for the L.
metric, the third subsection presents an optimal algorithm for L, metrics. Some remarks are made in Section 4.

2. Combinatorial Results

We begin with a question involving interdistance ranks. Given point set P with distances measured in the L, metric,
the rank r,(x) of distance x is #{(u,v) : d,(u,v) <x, u,ve P ,u #v }. Here, (u,v) is considered to be an unordered
pair so that (i,v) and (v, are not double-counted. Note that the set of points within distance x of point « in the L,
metric are contained in a Aypercube centered at u of dimension {or side length) 2x. Suppose that distance x has rank
k. What is the rank of distance 2x? It is easy to describe a point set in the plane where distance x is the smallest
interdistance, but distance 2x has rank Q(rn) (See Figure 1). In general, however, the ranks of x and 2x do not differ

Qe 3 30y © o)
o o o) o)
Q o o) o
o} O O 0O
Figure 1

significantly,

Theorem 1: Lot P be a set of n points in RY; then if r..(x) =k, k <r..(2x) < c(d)(k + n), where c (d) = 5%,

Proof: The lower bound is obvious. For the upper bound, divide up R¢ into hypercubes of side x. Note that
any two points inside a given hypercube are within distance x of each other, Label the non-empty hypercubes
arbitrarily with integers 1, 2,.... Let »; be the number of points of P inside the i hypercube. Then

kz;;[’é"].

Now consider distance 2x. With respect to hypercube i, the points within distance 2x of hypercube { are
contained in a larger hypercube C; of side Sx centered at the same point as the center of hypercube /. There are at
most 57 original hypercubes intersecting C;, and an upper bound on the number of interdistances less than or equal
to 2x involving points in C; is: '

B‘- = Z n;n,-
inG

Among these hypercubes having non-empty intersection with C;, charge 5%n} to the hypercube & comtaining the
most points. Note that B; < 5%n3. '

Summing up all charges, no hypercube can be charged more than 57 1imes, so
$B; < 54 ¥nl.
i i

However,

};ﬂ?ﬂn+2§:[fg}.

Recalling that distances are double-counted, we have

1 1
ra@0< 5 Shi< o 5”2‘}1?

1 ﬂ;
= —2-524(;: + 22‘_;[2 })

< 5%(n + k).

Recall that the L, metrics are related by constant factors; that is if u and v are points in R,
do(t,v) Sdy{u,v) sd do(uv).

Corollary 1:

C(dffgi}%vi —¢{d)
cef{dy~1

roy<c @ r.(x}+n

£

where { 21 and ¢ (d) = 5%.

Proof: We first note that r..(zx)< r,,.,{2“3 ‘}x) since ranks are monotonically nondecreasing. We now show by

induction on { that

@ —cd)
c{d}1

ro{2x)Scldyf ro(n)+n

for i > 1. Theorem 1 proves the basis. In general,
Fo(2%) € c(@)ro(21x) + n).

Applying the inductive hypothesis,

ro 20y cld)e @t ra(x)+n M) +n).

c{d)~1
Therefore,
i i C(d)£+i*0(d)
rol2x)sceldy ro(x}+n mc(d)—l ,
as asserted. 1

Corollary 2: Let y = x/d. Then

c (@ — o (d)
cdy-1

ra(y)Sr,x)<c e (y) +n

Proof: Recall that r,(x} = #{(u,v) : d,(u,v) £x}. Since d..(u,v) Sd(u,v), 7p(x) = #(uv) 1 d () < x), 50
rp(x) < r.(x). Since dy(u,v)y<d - do.(u,v) and roleldy=#{u,v) 1 d.(uv)y<x/d}, implying
ro(eld) =#{(uv):d d.(v)<x}and ro (e/dy <#{(u,v):d,(u,v) $x}. Asaconsequence, r.(x/d) S7p(x).

Now let y =x/d. We now have r(y) <r,(x) £ r.(d+y), and we get the stated result by applying Corollary 1.
O

Corollary 2 states that if y is the n'* smallest interdistance with respect to the L., metric, d*y has rank &(n)
with respect to any L, metric. '

3. Shallow Selection Algorithms

Using Corollary 2, we give an efficient shallow selection algorithm based on Salowe’s L.. interdistance selection

algorithm [4]. The algorithm is the following:

SELECT,(P k)
[P is the input set, k < n is the rank, p indicates the metric. }

1. Preprocess P for orthogonal range queries using the layered range tree {3]
2. y=S8SELECT .(P.,n)
3. L=0
ForeachueP
L =1L w Range —query—report(P,u,d-y)
{ Range—query—report returns those points inside the orthogonal
hypercube of dimension 2d-y centered at u. }

4, Select 2k* smallest element in L

{ Noie that interdistances are double counted. }

Step 1 takes O (5 log?~'n) time [3], and step 2 takes O (n log®n) time [4]. Step 3 takes O (n log®"'n + n) time,
since Corollary 2 states that ®(n) points are reported. Step 4 takes O (r) time by the linear-time selection algorithm.
Therefore, the algorithm takes O (n log®n) time. Note that the actual k smallest interdistances al} appear on L.

We now show how to speed up this algorithm to obtain an optimal O(n logn) time algorithm for shallow
selection, Optimality is justified by the observation that the time required to find the smallest interdistance is
Q(n log n) in the algebraic decision tree model [3].

The improvement is based on an efficient algorithm which, given x, reporté all pairs of points within L.,
distance x of each other. After O(n logn) preprocessing, the algorithm returns all pairs whose interdistance is at
most x in O (r + r.(x)) time. In fact, we can modify the élgorithm to do a bit more — after préprocessing, the
algorithm can report in Q(n) time that r.(x) > ¢'n for some constant c. This algorithm, the interdistance

enumeration algorithm, is used to speed up steps 1, 2, and 3 above.

3.1. The Interdistance Enumeration Algorithm

The interdistance enumeration algorithm is inspired by Vaidya's optimal all-nearest-neighbors algorithm; we
assume the reader is familiar with Vaidya’s paper {7], though we briefly sketch the relevant results to be self-
contained. (Terminology is adapted from Vaidya’s paper.)

Given a set.P of n points in R, Vaidya’s algorithm finds a nearest neighbor to each point in P. The algorithm
makes use of hypercubes called "boxes.” During the course of the algorithm, P is partitioned by a set of disjoint
boxes B called a box list. Iniially, B consists of a single box by which is a smallest box containing . During a
stage, a largest box in B, say b, is subdivided by ¢ mutually orthogonal hyperplanes passing through its center. The
resulting 24 boxes b,,....b, make up the sel immediate ~successors(b). Discarding the empty immediate
successors and shrinking the remaining boxes as much as possible without changing the cbntents,_ one arrives at a st
of boxes by, . .., b; called successors(b). B then becomes B \ successors(b) — {b}. This process stops when each
box in B containg exactly one point from P. Vaidya associates two sets with each box; these sets are irrelevant for
the application considered here.

The interdistance enumeration algorithm consists of three steps. Step 1, the box-subdivision step described
above, takes O(n log n) time {7]. The result is a *‘tree-of-boxes’” containing at most 2n — 1 boxes rooted at by with
the property that the children of box b are precisely successors(b). Constructing this tree-of-boxes is the
preprocessing step for the enumeration algorithm. Along with each box b in the tree, we associate the quantities
Bmax{®)=max { d.(u,v):u,v € b} and n(by=# b nP. The boxes are also labeled in the order they were
subdivided. The points b n P can be found in time proportional to n(b) by traversing the subtree rooted at & (points
are contained in 0-volume boxes which are leaves in the tree-of-boxes).

Step 2 finds a specific partition of the boxes and determines pairs of these boxes within interdistance x of each
other, where x is the input distance. Specifically, the tree-of-boxes obtained from step 1 is traversed in the order the
boxes were subdivided, and the sequence of box lists is re-created. Let d,(b,0")=min [d.(u,v):u € b,v € V).
Let B be the box list just before b, the largest box in B, is subdivided. With each box & on the box list B, the set of
boxes B'(b) < B for which d,;,(b,b") $x, b € B'(b), is maintained. After b is subdivided to created successors(h),
the set B’(b) is examined to update the remaining sets B’(b) to reflect B = B U successors(b) — {b}. Specifically, a
new list B(b;) is créated for each b; & successors(h), and & is replaced by an appropriate subset of successors(b}
for each b such that b € B’(b). This process stops the first time a box to be subdivided has side length less than or
equal to x. (Implementation details are left to the reader.) We show below that at most a constant number of
changes are made to B and all the B(b), so step 2 takes O (n) time.

Step 3 uses the output from step 2 to actually compute the pairs of points ha'ving interdistance x or less. Atthe
end of step 2, there is a box list B consisting solely of boxes of side length less than or equal to x, and, for each box
b & B, there is 2 list B’(b) containing all of the boxes in B within distance x of a point in b. The L .. rank of x is

) [”(zb)] +12F ¥ #luv:iue bnPyvebnP, d.(uv)<x)
beB beB beB(b) :

It is clear that the rank and the pairs of points within x of each other can be computed from B and the B'(b) in time

5 [”(b)J + ¥ % ndn@).

bed 2 beB KeB'(H)
‘We show that this term is O {n + r..(x)); this is the cost of séep 3.

We first prove that step 2 takes O(n) time. The proof of the following lemma appears in Vaidya [7] where it
is asserted for any L, metric, so the statement is a bit weaker than one specific to the L., metric,

Lemma i: [Paraphfased from Vaidya, Packing Lenifna 1] Let r be a positive integer. Let b be a largest box in
B. Then the number of boxes b’ in B such that 4, (5,8} < rd .. (b) is at most 2%(2rd +3)%.

A corcllary to Lemma 1 is the following:

Corollary 3: Let & be a largest box in B which is to be subdivided in step 2. The number of boxes 6" in B such
that d,, (6,87 < x is at most 24(2d +3)%. :

Proof: Let r = 1 and recall that d,.,(b) > x.

In step 2, since O (n) boxes are subdivided and there is a bound on the number of changes made to the B'(b) sets,
the O (n) time bound follows. '

The time bound for step 3 is a consequence of Corollary 1. All boxes in B have side length at most x, so if
b € B’(b), then any point in " must be within distance 3x from any point in b. This is because d,,,(b) <x,
Amax (B S x, and d i (0,67} S x. Therefore,
¥ [’zgﬂ] +3 X n®)n®)

beB beB VeB'(b)

is bounded by 2 r..(3x), and Corollary 1 implies r..(3x)is O{n + r..(x)).

Theorem 2:'Let P be a set of n points in R¥, and let x be positive. The the L. interdistances of length at most x
can be found in O¢n log n + r..{x)} time.

Using Corollary 2, we can easily generalize Theorem 2 to L, metrics.

How do we use the interdistance enumeration algorithm for shallow selection? Suppose the preprocessing
step, step 1, has already been done. If 7..(x) is O(n), then the rest of the interdistance enumeration algorithm takes
O (n) time. However, if f.,,(x) is large, say greater than c-n for some ¢, we can force the interdistance enumeration
algorithm to stop in O (n) time and report “‘too large” once the bound on 2 r..(3x) is exceeded in step 3.

3.2. Shallow L-Infinity Interdistances

Salowe's L., interdistance selection algorithm uses a technique called parametric search [4]. The reader is referred
to that paper for details. In Salowe’s algorithm, a sequentialized paralle! sorting algorithm determines O (logn)
distances to be ranked, each in O(n Iog"'1 n) time. In fact, the actual rank of a distance is not needed. Instead, one
needs the relationship between distance x and the unknown distance x” witﬁ_ rank k. (Isx <x',isx=x", oris
x > x"7) For shallow selection, we can therefore make use of the “‘too large’” feature explained above.

Specifically, after O(nlogn) preprocessing, we can select a shallow interdistance in O(nlogn) time using
parametric search and the interdistance enumeration algorithm. Suppose we seek an interdistance with rank & < n.
O(log n) distances x; are ranked. If r..(x;) > n, then the interdistance enumeration algorithm stops in O(n) time and
reports “‘too large.”” If r.(x;) < n, then the interdistance enumeration algorithm computes and counts the pairs of
points within interdistance x, giving the exact rank. The total time expended is therefore O(n log n), and we have:

Lemma 2: Given a set P of » points in R, the k* smallest L .. interdistance can be selected in O(n log n) time,
k<n. :

3.3. Shallow L-p Interdistances

An efficient algorithm to select shallow L, interdistances is the following.

SELECT,(P.k) _
{ P is the input set, n is the rank, p indicates the metric. }

1. Perform Step 1 of the Interdistance Enumeration Algorithim
2. y=8SELECT .(P.n) —
3. Perform Steps 2 and 3 of the Interdistance Enumeration Algorithm for
distance d+y. Call the reported pairs L.
4. Select £™ smallest interdistance in L

Vaidya’'s analysis and Lemma 2 imply that steps 1 and'2 take O(n) time. Corollary 2 and Theorem 2 imply that step
3 takes O(n) time and the size of L is O(n). The linear-time selection algorithm proves the rest, giving:

Theorem 3: Given a set P of n points in R?, the k™ smallest L, interdistance can be selected in O (n log n) time,

k<n,

As an immediate corollary, we improve on Smid’s result:

Corollary 4: There is a linear-sized data structure for point sets which supports insert, delete, and minimum in
O (n log) time per update.

4. Remarks

We have presented an'algorithm which, given » points in R?, selects the k™ smallest interdistance, £ < n, in optimal
O(n log n) time. The algorithm works in any L, metric. To obtain the algorithm, we proved a combinatorial result
interrelating distances and ranks. We also described a nontrivial algorithm for the problem of enumerating all
interdistances less than or equal to x in time proportional to the rank of x (including an O (n log) term). |

There are several interesting questions. First, what is the complexity of selecting the median? Second, can a
result analogous to the one above be obtained when selecting the k™ largest interdistance?

5, References

1. P.K. Agarwal, B, Aronov, M., Sharir and S. Suri, Selecting Distances in the Plane, Sixth ACM Symposium on
Computational Geometry, 1990, pp. 321-331.

B. Chazelle, New Technigues for Computing Order Statistics in Euclidean Space, First ACM Symposium on
Computational Geometry, 1985, pp. 125-134. '

F. P, Preparata and M. L. Shamos, Computational Geometry: An Introduction, Springer Verlag, New York,
NY, 1985. '

1. 8. Salowe, L-Infinity Interdistance Selection by Parametric Search, Inf. Proc. Letters, 30, 1989, pp. 9-14.

M. Smid, Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time, Universitat des
Saarlandes 13190, 1990,

M. Smid, Maintaining the Minimal Distance of a Point Set in Less Than Linear Time, Universitat des
Saarlandes 06/90, 1990,

P. M. Vaidya, An O (n logn) Algorithm for the All-Nearest-Neighbors Problem, Discrete Comput. Geom., 4,
1989, pp. 101-115.

A. C. Yao, On Constructing Minimum Spanning Trees in k-Dimensional Sbaces and Related Problems, Siam
J. on Computing, 11, 1982, pp. 721-736.

