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ABSTRACT

We have developed a real-time messaging system for token ring networks. The system is currently
operational in a shipboard environment. The system conforms to the IEEE 802.2 LLC and 802.5 token
ring standards and is consistent with the Navy’s emerging SAFENET specification. We provide a library
of ‘C’ routines which establish and manage sockets, transmit and receive messages, and report network
status. We show a sample user interface for a basic datagram service and another for a reliable virtual
circuit service. We present performance data from our implementation on PCs and PC/ATs, Using our
software, a single transmitting station can generate up to 1.42 Mbits/sec, and we can process 100-byte
messages every 4 ms. We can deliver 100-byte messages with an end-to-end latency of under 10 ms.



SHIPNET: A REAL-TIME LOCAL AREA NETWORK FOR SHIPS

1. BACKGROUND

Historically, electronic communication aboard ships has been accomplished using point-to-point
wiring. Due to the recent rapid increase in the number and type of shipboard electronic devices, wiring a
ship has now become a logistics nightmare. Both shipbuilders and vendors of marine electronics are now

actively trying 1o replace this old-style wiring with modern local area networks,

Sperry Marine Inc, specializes in the design, fabrication, and sale of marine electronics. In 1986
Sperry Marine asked the Computer Networks Laboratory (CNL) at the University of Virginia to help
them design a local area network which would replace all shipboard point-to-point wiring with a local
area network, yet still retain the real-time communications characteristics of direct wiring. After a six
month study, we selected the token ring LAN architecture as being best suited for the purpose and began
building a prototype network (the Navy’s SAFENET committee subsequently adopted a similar token

ring architecture for Navy ships).

Our initial goal was to develop hardware and software which could effectively interconnect the
various systems on a ship’s bridge: autopilot, heading indicator, situation display, gyrocompass, collision
avoidance system, radar, and navigation systems (e.g., Loran). In the future we will extend the network to

include the cargo area, engine room, and officers’ quarters.

Our analysis of the communications patterns aboard a ship suggested that our system needed to
support three distinctly different types of traffic: (1) slow periodic messages (e.g., a latitude/longitude
update once per minute), (2) background file transfer (e.g., moving a program or data file intermittantly),
and (3) real-time control messages (e.g., the gyrocompass can generate up to 72 100-byte messages per
second). The first two traffic types had negligible impact on performance, so our system was designed
around the needs of the real-time control systems. Our resulting performance requirements were that (1)

each network station should be able to process at least one hundred 100-byte messages per second; (2)



once generated, a message should be delivered within 20 ms; (3) the network itself would support a
sustained data rate of at least one megabit/second; and (4) each network station would be based on

‘“‘ordinary’’ microprocessor technology, in the class of an Intel 8086 or Intel 80286.

We acquired a commercial token ring network, the Proteon ProNET-4 [1], and then began the major
task of developing a user-friendly, yet robust, real-time messaging system. This task was equivalent to
rewriting all the communications services within the kernel of a modem operating system. We call the

result SHIPNET.

2. THE USER INTERFACE

One possibility for the user interface would be the full suite of OSI protocols; such a choice would
have provided a messaging service in the application layer such as X.400 or the Manufacturing
Messaging Standard, MMS, But we knew from our previous network performance evaluations {2,3,4] that
the commercially available OSI protocol packages (1) would not meet our performance requirements and
(2) were really overkill for a relatively short, single-segment LAN with a modest number of stations.
Therefore we chose to write our own user interface, provided as a set of library functions which the user
links into his application program. To encourage interoperability, our system adheres to the IEEE 802.2

logical link control (LLC) standard.

SHIPNET provides a basic datagram service, with optional acknowledgements and checksums, to
multiple application processes running on microcomputers. The user interface is a set of ‘C' procedure

calls which create and manage sockets, set options, send and receive messages, and report network status.

The LLC architecture is shown in Figure 1. Communication occurs through sockets, which are
equivalent to IEEE 802.2 LSAPs (link service access points). Programmers use the LLC interface by
linking into their ‘C’ programs as many of the following communications primitives as are needed for the
intended application:

LLCon (socks) initializes the network interface. Table space for socks number of sockets is

aliocated.



LLCoff( ) disables and closes the socket interface.

LLCopen (sock) opens the socket numbered sock. A socket must be opened before use. Sockets

must be even-numbered integers in the range 2 to 254 inclusive.

LLCclose (sock) closes the socket numbered sock. The socket must be idle (no pending transmit or

receive calls).

LLCoption (sock, xsignal, rsignal, xtime, rtime, priority, ack, tries) sets options on socket
number sock. xsignal and rsignal are pointers to functions to be called when a packet has been
transmitted or received, respectively, The variables xtime and rtime are the amount of time allowed for
the operation to complete (a value of zero never times out). The value of priority sets the transmission
priority of the message in the range 0 (lowest) to 7 (highest). The LLC software manages an eight-level
queue, serving the highest priority messages first. The flag ack, if set, requires that the packet be
specifically acknowledged by a reply message. When the token ring’s frame acknowledgement bit shows
that the destination did not receive a packet correctly, tries tells how many times the transmitter should

transparently resend the packet before declaring an error.

LLCxmit (sock, destination, packet, size) delivers the packet pointed to by packet, of length size,

10 socket number sock for delivery to the network entity whose address is pointed to by destination.

LLCrecv (sock, source, packet, size) enables reception of a packet at socket sock. The
programmer provides source (a pointer to a buffer to hold the incoming packet’s source address), packet

(a pointer to a buffer that will hold the incoming packet), and size (the length of the packet buffer).

LLCxmit and LLCrecv move messages between the LL.C entity and the MAC engine in the same
computer (not end-to-end). This frees the CPU to operate in parallel with the network hardware. Using
IEEE 802.2 terminology, the procedure call represents the data request, the return from the call represents

the confirm, and an appropriate change in the status byte provided by the LLCstatus call represents the

indication.
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LLCreset (sock, direction) resets any pending operation on the transmit side (if direction = ‘x’) or
receive side (if direction = ‘r') of the socket and releases the associated buffer. A socket is bidirectional

and so can send and receive simultaneously.

LLCstatus (sock, direction, status) returns the current status of a socket. For socket sock, on the
transmit or receive side as determined by direction, LLCstatus returns status, a pointer to a status
variable, which indicates operation pending, no operation pending, I/O in progress, operation failed, or

operation timed out.

Finally, every operation on a socket returns an operation status: operation accepted, invalid socket,

duplicate socket, too many sockets, socket busy, or packet too large.

We also provide a real-time network monitor which displays color-coded histograms of recent
network traffic, The monitor can trace all network traffic, or selected traffic as defined by a user-épeciﬁed
filter. The monitor displays‘network load in packets/sec and in bits/sec, sampled at a user-defined rate,
and calculates current, average, and maximum data rates. In trace mode the monitor can trap and later

display the last 1,000 network events.

3. EXAMPLE PROGRAMS

To show the simplicity of the user interface, we present two example programs. The first is
extremely simple: a transmitter broadcasts an unacknowledged datagram on the network. The second is
more complex: the sender creates a reliable virual circuit io guarantee in-order delivery with no

duplicates. This requires the use of acknowledgements and sequence numbers.

Services are provided by a software library which consists of several C subroutines, Subroutine calls
implement socket operations through which programs are able to communicate. External names of

subroutines which are important for the user interface to the system begin with ‘LLC’.

When the LLC service is used, operations (LLC calls) must be issued in a certain sequence to obtain

the desired result. The network interface must first be initialized, then one or more sockets may be
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opened for communication and their options set. Only then can receive and transmit operations be
applied. Each socket can be used for both reception and transmission in parailel; receive and transmit
operations are full duplex. To close a connection the socket should first be reset, then closed. To stop all

commumication, each socket should be reset and closed, then the communications disabled.

If communication is 10 be established between two machines, one a receiver and the other a

transmitter, a possible sequence of operations could be as follows.

At the transmitier:

1. LLCon will initialize the network interface and allocate table space for the socket,

2. LLCopen will open the socket.
3. LLCoption will set options on the socket for transmission.
4. Several LLCxmit operations can be issued to send a number of packets through the

socket to another socket on the remote machine.
S. After all information is transmitted, LLCreset will reset the state of the socket.

6. LLCclose will close the socket,
7. LLCoff will disable and deallocate the socket interface.

At the receiver:

1. LLCon will initialize the network interface and allocate table space for the socket,

2. LLCopen will open the socket.
3. LiCoption will set options on the socket for reception.
4. The appropriate number of LLCrecwv operations should be issued to receive all packets

from the remote machine,
5. After all information has been received, LILCreset will reset the state of the socket.

6. LLCclose will close the socket.
7. LLCof££ will disable and deallocate the socket interface.,

3.1 Example 1 - A Broadcast Datagram Service
To illustrate LL.C operations we offer two examples, Both are written in Turbo C 1.5 (as is all the
LLC software). The first program, blast, can be run on any station. It broadcasts MSND messages of

fixed length SIZE to all stations on the network.



/************‘**tt**t#*t***t*t*****ﬁ**t*ti******t**t***tt/
/* Program "blast® will broadcast MSND meassages */
*

/*  of size SIZE to all nodes in the network.
/********Q******t**ti******#************************i****/

#incliude <atdio.h> /* standard 1/0 */
#include <llcioc.h> J* LIC interface */
#define MSND 100 /* number of messages tc send */
#define SIZE lo00 /* size of the message w/
#dafine BROADC 255 /* broadcast address */
int els - o, /* service class */
tout - B /* timeout */
retry = 1, /% ratry limit */
na L 2, /* source socket */
mam;?
unsigned
int status; /* returned status */
char message [SIZE] = { "Megsage..."}; /* broadcast message */
unsigned .
char netadrf2] = { 2, 255 }; /* destination: socket number, node address */
nopl(} { } /* signal function */
down {opn} /* close down */
char opn;

{ switch {opn) {
casa "7 @
while (statua = Ll{reseat(ns, 'x'))}
printf ("*»** Lilreset rejected, status : ¥=\n ", LLCopbits(statua));
case ‘o' @
if (status = LLCclose (ns))
printf ("*** LlCclose rejected, status : %s\n", LLCopbits(status));
case 'o' @
if {status = LLCoff(})
printf (***+ LLCoff redjected, status : %s\n", LLCopbits(status));
default:
axit (1)

}

main () /* transmit MSND messages */
/* initialize the network, open the sockaet and aet the options */

if (status = Lilon(l)} {
printf ("*** LLCon rejscted, status : %s\n", LLCopbits{status));
axit {1);

}

if (status = Lilopen(ns}) {
printf ("*** LICopan rejected, status : %s\n", LlCopbits{status));
dowm{’o’);

}

if {status = LlCoption(ns, nop, nop, tout, tout, cls, retry)) {
printf ("*** LlCoption rejected, status : %s\n", LlCopbits{status));
down{’ec’);

}
/* transmit MSND messages, walt for nonbusy status after each transmisaion */

for {mpum = 1; mnum < MSND; mnumt++) {
if (status = LLCxmit (ne, netadr, message, sizeof (message)))(
printf (#*** LLC:mit rejected, status : %s\n*, LLCopbits (status));
down({'r’);

}
while (LLCstatus{ns, 'x‘, &status), {status&STBUSY))
; /* wait until not busy */
3

down ('r'}; /* close down */



Program blast starts by initializing the network interface and allocating table space for one
socket by calling LLCon.If LLCon is successful, LLCopen is called to open.the socket.

LLCoption is used to set the socket options. If the retumned status indicates unsuccessful
operation, an error message is printed and the program exits with down (’c¢’) which will call
LLCclose and LLCof¢£ before exiting. A successful call to LLCoption in this program will set the

following options for the socket ns=2.

1. The signal routine for transmit and receive is the same — nop {) which does nothing.
2. Timeout for transmit and receive is set to 0, which means that operation will never be timed

out,

3. Class is set 10 0 — connectionless data link service without acknowledgements. Priority is 0
(lowest).

4. Number of transmission attempts is 1; LLC will not try to retransmit the packet if the first at-
tempt fails.

Now the program calls LLCxmit. After each transmission, the return status of the operation is
tested; if it indicates an error, the program exits. Otherwise it waits for the non-busy status of the socket,

indicating that the socket is ready, and then issues the next transmit operation.

3.2 Example 2 - Reliable Virtual Circuit Service

In the second example we present one way to build a reliable virtual circuit service using the basic
datagram service. It consists of two programs running on different stations. Program sendrel will
send messages from a certain socket to the remote machine where program recvrel receives them.
Then it waits for an acknowiedge'mcnt from the receiver at the same socket. If the acknowledgement does
not arrive within the specified timeout, the sender will retransmit the message and again wait for an
acknowledgement. The sender will tag the messages with one bit sequence numbers, 0 or 1. For every
new message transmitted, the receiver will alternate the sequence number. While retransmitting, the

sequence number stays the same.

Program recvrel will receive messages from the sender. On each reception it will test the

sequence number. If it is the same as the previous one, it means the message is being retransmitted by the



sender so the receiver just emits another acknowledgement. If the sequence number is different from the
previous one, the receiver will process the message, send the acknowledgement, and await. another

message.

In this example the communication service is reliable, If either the message or the
acknowledgement is lost it will cause retransmission from the side of the sender. The receiver contcﬂy

handles duplicate messages. The source code of sendrel.

/****t*‘l’t**t***********tt********************t*t***ii*********'k*****/

/* "sandrel’ - transmitter for the raliable communication service =/
/******t*********'k**\I'**********i********t***********i**************’*,

#include <gtdio.h>
#include <llcio.h> ’ /* LILC interface ¥/
fidefine MSND 100 /* number of messages to send */
int cls - 0, /* service class */
toutr = 60, /* timeout unitas */
touts = o,
ratry = o, /* retry limit L7
ns = 2, /* source socket number */
dones = o, /* set when massage sent */
doner = 0, /* set whan acknowlsdgament received */
rpt - 10, J/* retries */
pnum;
struct {
unsigned char seqn; /* smegquence number *f
char maseage [100]; /* massage sent *f
} dout;
unaigned )
int statusl, /* status returned */
statusl;
uneigned
char natadr[2} = § 2, 100 }; /* destination: socket number, node addreas */
charx seqack; /* received acknowledgement */

/* receive signal handler */
sigr() {i1f (LiCstatua{ns, 'r’', &statusl), ! (statusliSTRUSY)) donex++;}

/* transmit signal handlex */
sigsa ()} {if (LLCatatus(ns, ’'x', &status2}, ! {(statua2&STHUSY) ) dones++;}

opstat (s, taqg) /* check the operaticn status and return it */
int »;
char *tag;
{ if (&)
printf(**** LLC%s rejected, status: \n \t %s& \n", tag, LiCopbits(s)}:
return (s);

}
down (opn) /* close down */

char opn; :

{ switch (opn) {
case 'r’ : while {opstat(IdCreset{ns,’'r’'}, "reset”) ) ;
case 'c’ : opstat (LICclose(ns), "open®);
case 'o' : opstat (LICoff(), "off");
default : exit(l});

}
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main{) /* reliable transmitter */

{

/* initialize, open and set options for the scckat */

if ( opstat (LLCon{l), "on") )} exit(l};.

if ( opstat{lLCopen{ns), "open") )} down {to'):

if { opstat (LLCoption(ns, sigs, sigr, touts, toutr, als, retry), "option") } down ('c’};

sprintf {dout .message, °"MESSAGE...."}; /* initialire out message */
dout.seqn = 0; /* inltislize seq nucber */

/* send MSND messages with 10 retries upon failure */

for (mnum = 1; snuam < MSND; moumt+) {
if { rpt w= 0} down('rf); /* if 10 retries -> down! */
Y okt SR . PREPARE THE MESSAGSE HERE......c.0... . %%%/
dout .sagn = (dout.segn == 0) ? 1 : 0 ; /* £lip sequence numbar */
printf{ ¥ Sending %d %8 \n", dout.seqn, dout.message );
¥rpt = 10; /* transmission retries */
do {
doner » dones = 0; /* signal handler indlcators %/
/* receive acknowledgement */f
1f {opstat (LLCreav(ns, netadr, aseqack, sizeof{seqack}), "recv'}) down{('r’};
/*  send message */
if (opstat (LLCandt (ns, netadr, &dout, sizeof(dout)), "uxmit"”)) down('r’);
while { tdones || !doner )} /% wait until done */
1f (statusl&eSTFAIL) { /* transmission failed */
Print£ ("*** hexatat = ¥x\n", statusl};
printf ("*** transmit failed, status: $s\n", LiCsthita (atatusl,’'x’'));
}

alaa
if ( dout.seqn == saegack )
break; /* 0. K. ~> sand next mezsage */
alae
down {'x’ }; /* arror -> down */

} while { {rpt--} , { rpt > 0 });
}

down({'r’);

Program senaxel makes use of signal handlers for both transmit and receive operations. First

LLCstatus is called to get the transmit or receive status of the socket; if it is not busy donex or

dones is incremented to indicate the completion of the operation.

The main module first initializes the network interface, opens the socket, sets options for the socket

and initializes the output message. Then it starts transmission and waits for the acknowledgement, If the

acknowledgement does not arrive within the timeout the message is retransmitted up to 10 times. If the

Sequence number is out of order the program exits, else the next message is transmitted.

recvrel is the reliable receiver for sendxrel. It runs on another station.



/*t***i*******************i****t********#******t***!**ﬁ*************/

/* "recvrel" - receiver for the reliable communication sexvice *f
/****t************t*!w***t**************t*******t******ﬂtﬁ**********/

#include <stdio.h>
#include <lloio.h> /* LLC interface */
#define MRCV 10060 /* nunber of messages to racelve */
int el = 0, /% service olaxs */
toutr = 100, /* timeout units »/
touts = 0,
retry = o, /* retry limit »/
ns - 2, ' /* source socket number */
dones = o, /* set when acknowlsdgement sent */
doner m G, /* set when message received */
fmnm,;
struct  {
unsigned char segqn; /* sequence number */
char mesaage [100]; /* massige received */
} din;
unsigned
int atatusl, /* status geturned */
status2;
unsigned
char netadr{2] = { 2, 5 }; /* remote: socket number, node address */
char sagack = o; /* acknowledgement - sequence number */

/* receive signal handler */
sigr{) {if (tiCstatus{ns, ‘r’, &statusl), ! (Ftatusl&STBUSY)) doner++;}

/* transmit signal handler */
sigs () {if {LLCstatua(ns, 'x’, &status2), !(status2LSTBUSY)) dones++;}

opstat (8, tag) /* check the operation status and return it */
int s
¢har *tag;
{ Lf (=)
printf("*** LIC%s rejected, status: \n \t %& \n", tag, LiCopbita(s}):;
roturn (s8);

}
down {(opn) /* alose down */
char opn;
{ switch {opn) {
case ‘¥’ : while (opatat(LLCreset{ns,’r’), "reset”) ) ;
case ‘o' : opstat(LlCclose(ns), "open");
case ‘o’ i opstat {(LLCoff{}, "off"};
default : exit{l);
1
}
main} /* receiver for reliable communication */
{

/* initialize, open and sat options for the socket */

if ( opstat (LLCon(l), "on") } exit(l);

if ( opstat (LlLCopen(ns), "open®) )} down {'0o’);

3£ ( opstat (LlCoption{ns, sigs, slgr, touts, toutrs, ols, retry), "option”) } down ('c’};
/* post the initial receive buffer for the message to arrive */

if (opstat (IlCrecv(nas, netadr, &din, sizeof(din}},"recv”}} down('r’);

/* receiving messages and sending acknowledgements */

for (munum = 1; moum <= MRCV; moum+s) {
while ( !doner ) ; /* wait until recaive done */
dones = donex = 0; /* algnal handler indicators */
/* post another receive buffer for the message */
if (opstat (LICrecvine, netadr, &din, sizecf(din))},"recv*)) down('r');
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recaive failed or timecut? »/

(statusls (STFAIL|STLATE)) |

printf {"*** hexstat = $x\n", statusl);

printf{"x* transmit falled, status: $a\n", LlCsthits{statuasl, 'x'));
down('z’);

/* is this the next message ? */

if { din.seqn != seqack ) { ‘ )
seqack = din.seqn; /* nat the acknowledgement seq.number */
/* send the acknewledgement */
if{opstat {LLCxmit (ns, netadr, &seqack, alzeof (seqack)), "xmlt”)}} down('x’};
while {!dones) ; /* wait untll done */
JERE L. PROCESS THE MESSAGE ...v.0ne4 Ak f
printf{" recelived: %d %5 \n", din.saeqn, din.message);

alse { /* retransmitted message */

printf (" the same message \n");

/* send the ¢ld acknowledgement */ .

if (opstat (LLCxmit {ns, netadr, &seqack, sizeof (segack)}, "xmit"}) down{'r'};
whilae (!dones} ; /* wait until done */

12

After initializing the network, opening a socket, and setting its options, recvrel starts receiving

messages from sendrel and acknowledges them one at a time by sending back the sequence number

that was received in the message from the transmitter. If the receive operation fails or times out, the

program exits.

guarantee reliable exchange of information.

4. NETWORK COMPONENTS

sendrel and recvrel are wrilten to run in parallel on two different stations. Together they

Our prototype network for this system is the ProNET-4, an IEEE 802.5-compatible local area

network manufactured by Proteon Inc. The experimental environment consists of the following

components:

PCs

IBM Personal Computer or compatible. We used the Leading Edge Model D with Intel 8088

microprocessor operating at 4.77 MHz (hereafter called the PC) and at 7.16 MHz (hereafter

called the LED), and the PC/AT with Intel 80286 microprocessor operating at 8 MHz

(hereafter called the PC/AT).
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ProNET-4 Network Interface Board (p1340) for each station (PC, LED, and PC/AT)
connecting them to the IEEE 802.5 LAN operating at 4 Mbits/sec. The p1340 is built around
an integrated LAN adapter architecture using the Texas Instruments TMS380 chipset
(TMS38030 System Interface, TMSBSOld Communication Processor, TMS38020 Protocol
Handler, and TMS38051-TMS380051 Ring Interface). All the programmable options for the

p1340 were set to the factory defaults.

The ProNET-4 Extended User Interface is a software and firmware product for use with
Proteon’s p1340 PC interface. The firmware portion is installed as an Upgrading Kit; the
software portion is loaded at each station and stays resident in memory. Prod4EUI emulates
IBM’s Adapter Support Interface (TOKREUI) for their token ring adaptér and provides
direct and data link control (DLC) interfaces. Our LLC implementation is built on top of

the direct interface.

The ProNET-4 Multistation Wire Center is the physical interconnect device for the Proteon

ProNET-4 network.
Network cabling connects stations to the Multistation Wire Center.

5. PREDICTION vs. MEASUREMENT

Traditional analytic and simulation models of token rings often focus on network performance

metrics such as throughput and utilization, or on station performance at the level of the station’s

interaction with the communications protocol (typically at the Media Access Control sublayer). While

this approach can give accurate predictions at the MAC interface, it sheds little light on the performance

which an actual user would see because it does not take into account the fact that (a) stations do not inject

messages at the MAC sublayer (there is always some degree of higher layer processing, even if it is just

framing at the LLC), and (b) stations often incur significant overhead in delivering messages to the

communications subsystem.
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Thus we have focused on performance as observed by the user, not the performance of the network
itself. For a given message size, measurements of interest include the maximum message generation rate
at a station, maximum station throughput, and message end-to-end latency. In general, these types of
measurements expose a number of dependencies, including:

(1) the programming language in which the communications system was written,
(2) the proportion of protocol implemented in firmware vs. software,
(3) the efficiency of the user interface,

(4) the overhead of moving messages from user memory o OS memory, and from OS memory
across a backplane to a system packet buffer, and

(5) the speed of the host processor and its DMA channel.

Our measurements give us a very accurate picture of the performance which one of our application

programs can achieve.

6. PERFORMANCE RESULTS

There are three types of stations connected to the experimental network: PC, LED, and PC/AT. The
application program runs on one of those hosts and exchanges messages with a peer application program
on another host. Transmitter metrics refer to how fast the transmitting station can send to its peer;
receiver metrics refer to how fast a receiver can process received messages, end-to-end latency is the
elapsed time from the moment a message is enqueued by the 'sending application process until the

moment the message is delivered to the receiving application process.

6.1 Transmitter Metrics

We show three metrics for the transmitting station:

(1) transmitter load (Kbits/sec) is the offered load which a single station can generate when
sending messages of a certain length

(2) transmitter load (packets/sec) is the number of messages which a single station can generate
per second

(3) transmitting station delay (ms) is the elapsed time between successive LLCxmit calls when
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the transmitter is running in an infinite loop.

Figures 2, 3, and 4 show the relative performance of the PC, LED, and PC/AT machines. From
Figure 2 we see that the transmitter on the PC can generate about 90 short (100-byte) or 35 long (2000-
byte) packets/sec. The LED was about 33% faster than the PC for short packets and 27% faster for long
packets, while the PC/AT was 230% faster than the PC for short packets and 150% faster for long
packets, When compared with the PC, neither the LED nor the PC/AT maintained its speed advantage
over the entire range of packet sizes. This is due to the different amounts of fixed overhead encountered
with each different machine type. This maximum message generation rate will be important for
applications where the concern is not absolute throughput, but rather how frequently a message may be

sent to update some value (¢.g., reading a sensor or commanding an actuator).

For 2000-byte packets, Figure 3 shows that the transmitter throughput was about 567 Kbits/sec for
the PC, 772 Kbits/s for the LED, and 1.42 Mbits/sec for the PC/AT. This metric is important when the
concem is the total amount of information to be transmitted, as in file transfer. Note that a single PC/AT

is able 1o generate a load of 1.42 Mbits/sec, which is over 35% of the channel’s 4 Mbits/sec capacity.

Transmitter latency, Figure 4, was another important metric. With the transmitter operating in an
infinite loop generating messages, we measured the elapsed time between successive messages. The PC
could generate short messages about every 11 ms, or long messages every 28 ms. The LED could
generate short messages every 7.5 ms and long messages every 20 ms, whereas the PC/AT could emit
- short messages every 3.4 ms and long ones every 11 ms. Three important values on this graph are the
station delays for 0 length packets, which are 10.1 ms, 7.0 ms and 3.1 ms for the PC, LED and PC/AT
respectively. This value represents the transmitting station overhead for each packet which includes
LLC, MAC and physical layer services. This is the cost every packet has to pay to be transmitted. From
4thcse numbers we can see how dependent the transmission rate is on the speed of the host processor. If
" we subtract this value from the appropriate curve on Figure 4, it gives us the actual transmitting station

delay for user data alone. The transmitting station delay has three main components: (1) copying the data
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frdm the user buffer to the LLC buffer (2.75 psec/byte in the PC, 1.90 psec sec/byte in the LED, and 0.41
usec/byte in the PC/AT), (2) copying the data from the LLC buffer to the shared RAM (packet bufier) on

the front-end processor (done by firmware), and (3) transmitting the data on the channel (4 Mbits/sec).

6.2 Receiver Metrics

The performance of the receiver was very similar to that of the transmiiter. The receiver could
receive about 6% fewer packets per second than the transmitter could transmit, This occured because the
receiver process involved one more system interrupt than did the transmitier process. This means that if a
transmitter sent a receiver two packets back-to-back, the receiver would occasionaily miss the second

packet. Ideally, the receiver should be faster than the transmitter.

6.3 End-to-end Metrics
For end-to-end measurements we consider throughput and end-to-end delay.

The transmitter process, the network, and the receiver process formed a three-stage pipeline for
messages from one station to another. Of the three, the receiver process was the slowest and thus limited
the speed of the pipeline. Throughput between any pair of user processes was thus about 6% less than the

transmitter load shown in Figures 2 and 3.

End-to-end delay is the elapsed time from the moment that one application program sends a
message (via LILCxmit) until it is received in another application program (via LLCrecv). This
includes moving the message from user memory to the front-end processor, waiting for the token,
transmitting the message, propagation delay, receiving the message, moving the message from the
receiver’s front-end processor 1o user memory, and all associated interrupt handling. This is a true

measure of how long it takes to move messages from one peer process to another.

Figure 5 shows the end-to-end delay as a function of message length. Short (IOO-byte) messages
could be moved in 19 ms, 13 ms, and 9.7 ms for the PC, LED, and PC/AT respectively; long (2000-byte)

messages required 55 ms, 39.5 ms, and 29.5 ms respectively.



17
%

The delay for O length packets was 17 ms, 12 ms and 8.5 ms for the PC, LED, and PC/AT

respectively. As with the transmitting station delay, this is the overhead every packet has to suffer to be

delivered.

6.4 Broadcast Messages

At first glance it would seem that broadcasting a message would have a performance profile similar
to that of sending messages to a specific receiver. Figures 6 and 7 show that this is not the case. Figure 6
compares the load which the PC and PC/AT transmitters can generate when using broadcast messages vs.
normal messages. Figure 7 compares the transmitting station delay under the same circumstancés. These
figures show that broadcasting reduces the transmitter’s generation capacity by as much as 50%, while as
much as doubling the transmitting station delay. The cause, of course, is that a broadcast message is
received by every station, including the transmitter. This means that the transmitter is slowed by the

operation of the receiver which is sharing the same CPU.

6.5 Processor Idle Time

All our experiments have put the transmitter (reéeiver) in an infinite loop transmitting (receiving)
packets, This drives the station’s communications system at full speed. Under these conditions, we
measured the processor’s idle time — time which could otherwise be devoted to other tasks besides
message handli:ig. Figure 8 shows that this measurement ranged from effectively 0% to over 40%,

depending upon configuration.

7. CONCLUSIONS

(1) It is possible to build an effective real-time communications service on modest equipment. The
PCs and ProNET-4 equipment we used are unmodified, factory-standard products. Custom hardware

would have increased our performance, but we could achieve our requirements without it.

(2) Ten LLC primitives are sufficient to define and manage sockets, send and receive messages, and

report network status. With these primitives we can easily implement a basic datagram service or a
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reliable 'Qinual circuit service.

{3) Real-time communication, like a real-time program, works best if it is "lean and mean." Fewer
primitives are better than more primitives if they are the right primitives! Our entire communications
system oc;:upies only 16K of code.

(4) Our requirements were that each station would process at least one hundred 100-byte
messages/sec, with a delivery time of at most 20 ms. Using a PC/AT, a station could send or receive
almost 300 messages/sec, one message every 3.4 ms. We could deliver 100-byte messages with a true

end-to-end latency (i.e., user memory o user memory transfer time) of under 10 ms,

(5) Our receiver was about 6% slower than our transmitter, Ideally this should be reversed to reduce
the probability of receiver overruns when two messages are transmitted back-to-back to the same

destination.
(6) Broadcast messages extract a performance penalty from their transmitter because its receiver
must process (and presumably discard) its own message.

(7) Even when the LLC framing is handled by firmware on a front-end processor, the speed and
capacity of the host CPU markedly affects performance. The 8.0 MHz 80286-based PC/AT consistently
outperformed the 7.16 MHz 8088-based LED which in turn consistently outperformed the 4.77 MHz

8088-based PC.
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