
A Relational Interface to an Object Based System
or

Translating SQL to ADAMS

Thomas P. Cleary

IPC-TR-91009

August 8, 1991

Institute for Parallel Computation

School of Engineering and Applied Science

University of Virginia

Charlottesville, VA 22901

This research was supported in part by JPL Constract

#957721 and DOE Grant #DE-FG05-88ER25063.

i

Abstract

The evolution of database technology has resulted in the widespread use of three

major database models. These three most popular models are: the hierarchical model, the

network model and the relational model. The existence of numerous databases and database

applications has given rise to a strong desire for the ability to use the data and applications

created using one database model by other database systems.

The project that this report documents demonstrates that a relational database

system can be mapped onto an object based system. In particular, a lex-yacc based

translator was developed to convert the Structured Query Language (SQL) into the

Advanced Data Management System (ADAMS) language. The basic relational SQL data

definition, manipulation and query statements are shown to be translatable into equivalent

ADAMS statements. The translated code can then be executed to emulate the actions SQL

would have performed. This demonstrates that ADAMS can provide low-level

implementation support to the relational database model

Acknowledgments

I would like to thank my advisor, Prof. J. L. Pfaltz, and Prof. J. French for their help

with this project.

Table of Contents

1. Introduction ..1

2. Introduction to the Relational Database Model ...2
2.1. The Relational Model ...2
2.2. The Structured Query Language ...3

3. Introduction to ADAMS ..5
3.1. ADAMS Syntax ..6

3.1.1. Codomains ...7
3.1.2. Attributes ...7
3.1.3. Classes ...8
3.1.4. Sets ...9
3.1.5. ADAMS Variables ...10

3.2. The ADAMS dictionary ..10

4. The Model ..12

5. The Translation of SQL’s Data Manipulation Language ...17
5.1. The Insert Statement ...17
5.2. The Delete Statement ..18
5.3. The Update Statement ...18
5.4. The Dump Statement ..19

6. Translation of SQL’s Select Statement ..20
6.1. Simple Select Statements ..20
6.2. Selects Retrieving All Fields or All Rows ...23
6.3. Nested Queries ..24

6.3.1. The In Function ..24
6.3.2. The Exists Function ...25
6.4. Differences Between Tables and Sets ...27

6.5. Select Options Not Implemented ..27

7. Conclusion ...29

8. Refrences ...30

Appendix ...31
 A. BNF Grammar for SQL Syntax as Implemented ..31

B. YACC version of SQL Grammar as Implemented..34

1

1 Intr oduction

The evolution of database technology has resulted in widespread use of three ma-

jor database models. These three most popular models are: the hierarchical model, the

network model and the relational model. New database models such as object-oriented da-

tabases continue to emerge. The existence of numerous databases and database

applications using the different models has given rise to a strong desire for the ability to

use the data and applications created using one database model by other database systems.

The designers of the object based Advanced Data Management System (ADAMS)

assert that ADAMS is sufficiently flexible and powerful enough to support the most popu-

lar database models. Although, it is the least complex of the major database models, the

relational model is the dominant database model; therefore it was selected as the target

model for investigation into this claim.

This project demonstrates that a relational database system can be mapped onto an

object based database system. In particular, a translator was developed to convert the

Structured Query Language (SQL) into the Advanced Data Management System (AD-

AMS) language. The BNF grammar as implemented SQL syntax is given in appendix A.

The yacc version of the grammar is included in appendix B. The basic relational SQL data

definition, manipulation and query languages are shown to be translatable into the object-

oriented ADAMS language. The translated code can then be executed to emulate the ac-

tions SQL would have performed. This conclusively demonstrates that ADAMS can

support the relational database model.

This document provides an overview of both SQL and ADAMS, presents the mod-

el used to map a relational database onto an object oriented database, details the

translation of SQL statements into executable ADAMS code, and provides an example of

a working translated database.

2

2 Intr oduction to the Relational Database Model

Since its introduction in 1970 the Relational database model has enjoyed consider-

able success. This is the result of both its simplicity and its theoretical foundations which

facilitate analysis of formal relational database theory.

2.1 The Relational Model

A relational database collects the data into relations. Informally, a relation is a ta-

ble consisting of rows and columns of related data. The columns, called attributes, are

named and contain data values which are all of the same type. The type, or range of values

that a particular attribute can assume is its domain. The rows, called tuples, are collections

of attribute values.

A table or relation has the following properties:

• Each row is an n-tuple of the n attributes of the relation.

• The relation is a set of rows. Therefore ordering of the rows is unimportant.

• A row is an ordered list of values, order is significant. However this is only to
correspond the values with the attribute name. If the values are linked to the at-
tribute in some other way, order is immaterial.

A great appeal of the relational database model is that is does have a formal math-

ematical foundation. A relation in a relational database is a relation in the mathematical

sense. Codd [Cod70] originally defined a relation by: given sets D1, D2,...,Dn, R is a rela-

tion on these n sets if it is a subset of the Cartesian product . The set

Dj is the jth domain of R.

Thus a relation is a set of n-tuples over the domains Sj. The n-tuples themselves

may be viewed as sets of n objects, one from each of the n domains. This is important for

the translation into ADAMS as will be seen.

The set of attributes in a relation is the relation schema. The relation schema can be

regarded as a template for a relation. These definitions correspond to the ADAMS lan-

guage constructions and are given here for convenience.

D1 D2 … Dn×××()

3

2.2 The Structured Query Language

There are several commercially available languages which are based on the rela-

tional database model. Some of the most popular are the Structured Query Language

(SQL), Query-By-Example (QBE) and Quel. SQL seems to be the most prevalent; there-

fore it was the language chosen to be implemented over ADAMS.

SQL previously SEQUEL, structured english query language is a descriptive rath-

er than a procedural language1. It includes features to define a database, update the

database and to query the database. Thus it is both a data definition and data manipulation

language as well as a query language. It is a fairly simple, user friendly interface to a rela-

tional database.

In SQL the attributes, tuples and relations are called fields, rows and tables respec-

tively. The equivalent terms will be used interchangeably in this document. An SQL

database consists of one or more tables.

The basic data definition construct is the create table statement This statement

specifies the name of the table and the fields and types for each field. An example is:

create table table_name

(

f ield 1 type 1,

f ield 2 type 2,

...

f ield n type n

);

Data manipulation occurs through the use of the insert, delete and dump state-

ments. Chapter 5 on translating SQL’s data manipulation language will present these

statements in detail.

Queries consist of three clauses, the select clause, the from clause and the where

clause. The select clause indicates which fields should be selected and, unless it is clear

1. SQL is roughly based on a formal query language, the tuple calculus.

4

from the context, from which relation the field is to be selected. The from clause lists all of

the relations that are used in the query. The where clause establishes selection criteria for

the rows. It is the true “query”. Actually it is optional and may be omitted to permit a pro-

jection in the relational algebra sense or to perform the Cartesian product of relations.

Summarizing, a select statement has the form:

select f ield_list

from relation_list

where expression

The syntax of the select statement will be described in more detail in Chapter 6 and

many examples of select statements will be presented throughout this document.

SQL supports many more statements than have been presented but the statements

discussed are sufficient to support a relational database. Appendix A is a complete BNF

grammar of the SQL syntax which has been implemented in the SQL to ADAMS transla-

tor.

5

3 Intr oduction to ADAMS2

ADAMS, the Advanced Data Management System is not a database system in the

traditional sense. Rather it provides a clean interface to a large virtual persistent memory

which users may access much as current programming languages allow access of data in

volatile memory. The ADAMS language is a tool for defining, naming and accessing the

persistent database structures. User programs are written in an existing language, such as

C or Fortran (the host language), with ADAMS language statements embedded within the

host language much as SQL in often embedded in a host language. Again much as in SQL

systems, e.g. DB2, there exists a preprocessor which translates the embedded ADAMS

statements into the host language with function calls to the ADAMS run time system.

These functions provide access to the ADAMS dictionary which is the mechanism that

references the persistent name space, and access to the storage manager which manages

the actual data stored by the system.

The user of the ADAMS system creates a database which is structured as the user

desires from the basic ADAMS constructs. These basic constructs mirror the object orient-

ed ideas of classes and inheritance among classes.The definition of object oriented is not

concrete, but ADAMS is an object oriented or at least an object based system. In ADAMS

methods acting on objects are not provided. By the criteria of [Weg87] then, ADAMS

would be called object based.

There are only a few primitive ADAMS constructs but they are sufficient to sup-

port most database models. The primitive constructs with a brief explanation are:

Element: An element is an identifiable entity. Elements may be regarded as the

objects which make up the database. This is not actually a construct, but rather a concept

necessary for the definitions which follow.

Codomain: A regular set of permissible values is a codomain. For example the in-

tegers may be defined as a codomain. All data values in an ADAMS database must belong

2. This project was developed using ADAMS, version 2. In places the syntax will differ from the more re-
cent version 3; but other than minor syntax there are no significant differences between the versions.

6

to some defined codomain. An ADAMS codomain is analogous to a domain in the rela-

tional model.

Attribute : An attribute is a function taking an element to a codomain. It may be

viewed as a field in a traditional database, and is used in this manner in the model for

translating relational databases to ADAMS. All data values are obtained by applying at-

tributes to ADAMS elements.

Map: A map is also a function, however it maps elements to other elements. Al-

though obviously powerful, this construct is not needed to implement a relational database

in ADAMS; and indeed, is regarded as an anathema in relational orthodoxy. It can be used

to provide links such as are used in the network database model.

Class: A class is a type definition. It is a template describing the properties which

instances of this type have. All ADAMS elements must belong to a class; they are instan-

tiated members of the class. Typically a class definition lists the attributes and maps which

may be applied to the class to obtain or store data values and other elements.

Set: Sets are the fundamental database structures in ADAMS.They are proper

mathematical sets. The elements must all be of the same class and are unordered.

All of the above primitive constructs are given user defined names and are persis-

tent (or not, if so desired). In addition there are pre-defined types corresponding to most of

the primitive constructs, namely, 1) SET, 2) ATTRIBUTE and 3) MAP. These types may

then be used to create other sets. For example a user can create a set of ATTRIBUTE ele-

ments. Such a set will just be an aggregation of various attributes as opposed to numerous

instantiations of the same attribute. This raises an important point; all of the above con-

structs are definitions or templates from which ADAMS elements can be constructed. To

create an ADAMS element, the user must create an instance of the class desired. This ele-

ment may or may not be given a persistent name.

7

3.1 ADAMS Syntax

A brief description of the syntax of the language is provided here to ease the un-

derstanding of the translation system by providing some background into and samples of

the actual ADAMS statements. Only the syntax needed to implement the relational data-

base mode is discussed for more on the ADAMS language and its capabilities refer to

[PFG89a]

3.1.1 Codomains

Codomains are defined and entered into the ADAMS dictionary by the codomain

declaration statement. The definition currently specifies the form of legal values in the

codomain and specifies the scope (discussed later in Section 3.2). A sample codomain

declaration statement is:

CHAR isa CODOMAIN consisting of #[a-zA-Z 0-9$.-]+# .

This statement creates a codomain named CHAR with the values belonging to

CHAR all consisting of one or more characters in a-z and A-Z or are digits or certain other

characters. The codomain CHAR is persistent and available to other programs without re-

declaration.

3.1.2 Attributes

There are several attribute statements which are pertinent to the discussion. First

an attribute must be defined by an attribute declaration statement. As previously stated an

attribute is a function from elements to codomain values. This statement assigns an image

codomain to the attribute. Thus any values returned from the attribute will belong the

codomain designated in the declaration. A typical attribute declaration statement is:

CHAR_ATTR isa ATTRIBUTE, with image CHAR.

This statement is a definition only. It adds the name and definition of the attribute

to the dictionary but no memory is allocated for its use. The instantiation statement actual-

ly creates an instance of the attribute which can then be used to store and retrieve data A

typical attribute instantiation looks like:

8

surname instantiates_a CHAR_ATTR.

It is often necessary to assign database values to host language variables or copy

values from one ADAMS element to another. This is accomplished through the use of two

assignment statements. The fetch statement is used to retrieve values from persistent stor-

age into host language variables. A typical fetch statement is:

fetch into host_name from chairman.surname

where host_name is a variable of the host language, and chairman.surname is of the form

<tuple.attribute> or more generally <element.attribute>. This is an application of the in-

stantiated attribute surname to the instantiated element chairman and will return a value of

the type of the image codomain for the attribute.

Another assignment statement used in the ADAMS code generated in the transla-

tion from SQL is the attribute assignment statement. This assigns the value from one

<element.attrubute> to another. The syntax is that of a conventional assignment statement:

chairman.surname = assist_chairman.surname .

3.1.3 Classes

The class declaration provides a description of the properties of objects of the

class. In particular, the declaration lists the attributes, maps, sets and other classes which

are to be associated with the class. These associations are made by the having construct.

Consider the following ADAMS statements.

f irst_name instantiates_a CHAR_ATTR

PERSON isa CLASS, having {f irst_name, surname}

chairman instantiates_a PERSON

These statements, including the preceeding surname instantiation and CHAR_AT-

TR declaration create an ADAMS element called chairman. This element has two

attributes which may be applied to the element in order to store or retrieve data. As seen

before in the attribute section, the attributes may be applied to the element with the period

operator, e.g. chairman.first_name, to access the storage associated with the attribute and

element

9

Classes may also be sets. This is the manner in which classes are used in the SQL

to ADAMS translator. An example will be shown after sets are presented.

Finally, inheritance is supported among classes. That is, a class may be the type of

another class and inherit the various attributes, maps, etc. that the parent class has. The

parent attributes could then be applied to objects of the child class just as if those attributes

were declared in the child classes declaration. This feature is not required for the imple-

mentation of a relational database but can make the creation of other databases more

natural.

3.1.4 Sets

An ADAMS set is a set of instantiated elements belonging to the same class. This

is fundamental ADAMS structure and is the primary construct in the relational emulation

model.

As with attributes and classes, the use of sets requires both a declaration and an in-

stantiation. A set is normally instantiated to be empty. Once instantiated, elements may be

inserted or removed and set operations, such as union and intersection, may be performed

on the set. Most important for mapping SQL to ADAMS is the ability to loop over all the

members of a set using the for_each statement. This allows some action, any block of host

and/or ADAMS statements, to be executed for every element in a set.

A set declaration specifies the type of elements belonging to sets of that class. An

instantiation only names a particular set of that class. An example set declaration and in-

stantiation are:

FACULTY isa SET of PERSON elements

cs_faculty instantiates_a FACULTY

A set may also have elements of the pre-defined types. The following example will

occur again later when the relation definition in ADAMS is presented.

SCHEMA isa SET of ATTRIBUTE elements

10

An instantiated set may also be used in a class definition statement, as will be

needed later. An example is:

SCHOOL isa CLASS, having {cs_faculty, ee_faculty}

This creates a class definition which has two sets cs_faculty and ee_faculty associ-

ated with it.

3.1.5 ADAMS Variables

ADAMS variables denote ADAMS elements. They are not declared to be of a par-

ticular type since the type can be determined by context. In fact, an adams variable can be

used as any element type. An adams variable is declared by:

ADAMS_var variable_name

The variable may then be used to take on the value of an element. An example is

the use of an adams variable in the for_each statement, as follows:

ADAMS_var professor

for_each professor in cs_faculty do

some host and or ADAMS statements.

3.2 The ADAMS dictionary

Unlike the traditional database approach to persistent storage of database, file,

record, and attribute, ADAMS provides a persistent name space. Names are used to identi-

fy specific elements just as if they were variables in a normal programming language. The

ADAMS dictionary maintains information about the persistent names and provides a link

between the names and the identifiers used for storage.

All codomains, attributes, maps, classes and sets are named. Actual instances may

or may not be named as desired. All of the names in the examples provided so far would

be placed in the dictionary had the example statements been actually executed.

11

Names are placed into the dictionary in a hierarchy. The level of an element is its

scope and is set at declaration and instantiation. The levels of the hierarchy are:

SYSTEM

TASK

USER

LOCAL

The LOCAL level contains names which will only be used during the execution of

a single program. These names will be removed from the dictionary at the termination of

the program. Each user has a dictionary for their own private use. This is the USER level.

Any name declaration without an explicit scope, such as in preceeding examples, are as-

sumed to have USER scope by default. The TASK level provides names to be shared

among users who form a group. And finally the SYSTEM level provides names to be

shared among all users of the system. For example, the CHAR domain type is so universal

that a declaration

CHAR isa CODOMAIN consisting of #[a-zA-Z0-9 -.$]+#, scope is SYSTEM

would define this term once and for all, so individual users need not repeat the def-

inition. A more detailed presentation of the ADAMS dictionary may be found in

[PFG89b].

In a persistent name space, particularly one with names of both types and instanc-

es, great care should be taken to create consistent and clear names. The name choices used

in the next section reflect a desire to maintain clarity amidst a possibly confusing jumble

of names.

12

4 The Model

The fundamental problem in mapping one database model onto another is the cre-

ation of corresponding data structures. As we have seen, ADAMS provides little in terms

of the usual database structures. For example, the are no tuple constructs. In fact the only

aggregation construct is the generic “set”. ADAMS does provide primitives which can be

used to create data structures. This gives the flexibility to emulate other database models

and is exactly the approach taken to map SQL to ADAMS.

In order to represent a relational database in the ADAMS language it is necessary

to have ADAMS structures which correspond to relational domains, attributes, tuples and

relations. Domains and attributes are simple data types and have corresponding ADAMS

primitives. Relational schema, the resulting tuples and relations are complex data types

which must be constructed. Fortunately both relational schema and relations are sets. AD-

AMS sets can be constructed which will represent the schema and relations. Tuples will be

represented not by sets directly but by instances of a class which is associated with the set

representing the schema. This allows the creation of multiple tuples as instances of the

class.

Consider the SQL declaration for the parts relation in the familiar parts, suppliers,

supplies database.

create table parts

(

p_nbr integer,

description char,

price real

);

This relation will be used as an example to explain the translation. Domains and at-

tributes are related and are building blocks for tuples so they will be studied first.

A relational domain is a set of data values. This has a clear correspondence with

codomains in ADAMS and translates directly. A relational attribute contains a data value

13

belonging to the domain with which the attribute is associated. The ADAMS attribute is

similar and so is used to represent the relational attribute. Now the ADAMS statements:

INTEGER isa CODOMAIN consisting of #[-+][0-9]+#, scope is SYSTEM

INTEGER_ATTRisa ATTRIBUTE, with image INTEGER, scope is SYSTEM

p_nbr instantiates_a INTEGER_ATTR

represent the SQL fragment: p_nbr integer. SQL uses standard domains such as integer,

real and character whereas ADAMS requires their declaration. It is expected that such

“standard” codomains will be supplied at the SYSTEM dictionary level for any existing

ADAMS systems.

Next, it is necessary to create ADAMS structures representing the relational sche-

ma and the relation itself. These are both just definitions. The tuples will just be

instantiations of the schema and a relational instance will be an instance of the relation. As

noted earlier a schema is just a set of attributes. Thus we will define a general schema to

be:

SCHEMA isa SET of ATTRIBUTE elements, scope is SYSTEM

The SCHEMA definition is also expected to be widely used therefore the definti-

tion is given SYSTEM scope. This definition uses the pre-defined class ATTRIBUTE to

describe its elements. Any attribute instance may be inserted into a set which is of type

SCHEMA. Such a definition gives a standard and very flexibility definition of a relational

schema. To create a particular relational schema one only needs to instantiate the pertinent

attributes, instantiate the schema and insert the attributes.

Consider the relational schema for the parts relation parts(p_nbr, description,

price) where the domain of p_nbr, description and price are integer, char, and real respec-

tively as in the definition. The ADAMS code to create this schema, assuming standard

domains (codomains) is:

INTEGER_ATTR isa ATTRIBUTE, with image INTEGER

CHAR_ATTR isa ATTRIBUTE, with image CHARACTER

REAl_ATTR isa ATTRIBUTE, with image REAL

p_nbr instantiates_a INTEGER_ATTR

14

description instantiates_a CHAR_ATTR

price instantiates_a REAL_ATTR

SCHEMA isa SET of ATTRIBUTE elements

parts_SCHEMA instantiates_a SCHEMA

insert p_nbr into parts_SCHEMA

insert description into parts_SCHEMA

insert price into parts_SCHEMA

The code shown creates the relational schema from scratch. This needs only to be

done once. Any codomain, attribute (definition or instance), or set which has already been

entered into the dictionary is part of the persistent name space and can be used without ad-

ditional declarations. Thus a second relational instance, say the supplies relation from our

example, with the schema supplies(s_nbr, p_nbr) could be created after the previous ex-

ample by just the following four statements:

s_nbr instantiates_a INTEGER_ATTR

supplies_SCHEMA instantiates_a SCHEMA

insert s_nbr into supplies_SCHEMA

insert p_nbr into supplies_SCHEMA

Next we can define a tuple using the schema definition and then define the relation

and relation instance from the tuple definition. A class having the schema is declared. This

gives a template from which tuples can be instantiated. The following statement illustrates

a tuple definition from the previous parts_SCHEMA:

PARTS_TUPLE isa CLASS, having parts_SCHEMA

A relation is a set of tuples. Using the ADAMS set construct we can now create a

relation and an instance of the relation by:

parts_RELATION isa SET of PARTS_TUPLE elements

parts instantiates_a parts_RELATION.

We have now created a relation instance from start to finish. The ADAMS code

was interspersed with comments so the example is repeated to present the complete code

to create a new relation in both SQL and in ADAMS. Again the SQL code for the create

table statement for the parts relation is:

15

create table parts

(

p_nbr integer,

description char,

price real

);

The code to create the equivalent relation in ADAMS, assuming the standard

codomains exist, is:

INTEGER_ATTR isa ATTRIBUTE, with image INTEGER

CHAR_ATTR isa ATTRIBUTE, with image CHAR

REAL_ATTR isa ATTRIBUTE, with image REAL

p_nbr instantiates_a INTEGER_ATTR

description instantiates_a CHAR_ATTR

price instantiates_a REAL_ATTR

SCHEMA isa SET of ATTRIBUTE elements

parts_SCHEMA instantiates_a SCHEMA

insert p_nbr into parts_SCHEMA

insert description into parts_SCHEMA

insert unit_price into parts_SCHEMA

PARTS_TUPLE isa CLASS, having parts_SCHEMA

PARTS_RELATION isa SET of PARTS_TUPLE elements

parts instantiates_a PARTS_RELATION

Although the ADAMS code to create a relation is much longer than the SQL code,

it should be pointed out that nearly half of the ADAMS code shown only needs to be exe-

cuted once, then the names may be used freely. In addition, ADAMS is a mid-level

language which only provides the primitives to allow users the flexibility to create a de-

sired database, unlike SQL which operates solely in the relational model. Part of the

purpose of the SQL to ADAMS translator is to permit the creation and use of relational

databases by using a language dedicated to that model.

By viewing a relation as a set of tuples and a tuple as a set of attributes it is rela-

tively straight forward to create relations using the ADAMS language. Relations are the

fundamental structure in the relational model so it has now been shown that the fundamen-

tal structure in the relational model can be emulated in ADAMS.

16

Now that it has been demonstrated that relations can be emulated in ADAMS is re-

mains to show that the relations created can actually be used in a reasonable fashion. The

next two chapters detail the data manipulation and query portion of SQL to demonstrate

that the relations created by the method described are actually useful.

17

5 The Translation of SQL’s Data Manipulation Language

Once a relation has been created it is essential to be able to put tuples into the rela-

tion, remove tuples and find out what tuples exist in a relation. The SQL statements for

update operations on relations are: insert, delete and modify. The dump statement allows

inspection of all of the data in a relation. These data manipulation statements and their

translations are discussed in this chapter.

5.1 The Insert Statement

Obviously it is necessary to put data into a database. In SQL this is accomplished

with the insert statement. An insert statement specifies the table to be updated and the field

names and values or just a list of values. An insert statement of the first type is:

insert into parts (p_nbr, description, price) values (101, bolt,.10);

The translation into ADAMS is straight forward. A new row is to be inserted into

the relation so a new row can be created as follows:

ADAMS_var row

row instantiates_a PARTS_TUPLE

First, an ADAMS variable is declared and then the variable is used to represent an

element of type PARTS_TUPLE. This creates an unnamed ADAMS element, one that is

not inserted into the dictionary. Since the row is of type PARTS_TUPLE it has a set con-

taining the attributes in the relational schema. The data values listed are to be assigned to

the appropriate attribute and then the new row should be inserted into the relation. This is

accomplished by the following:

strcpy(host_var, “101”);

store from host_var into row.p_nbr

strcpy(host_var, “bolt”);

store from host_var into row.description

...

insert row into parts

18

Notice that host language statements are interspersed with ADAMS statements

this is typical of ADAMS applications. The variable host_var is assumed to be a char ar-

ray. The <element.attribute> notation, as in row.p_nbr, is used to access the actual data

storage associated with the attributes.

The field names in the insert statement are optional. Without them the code gener-

ated would merely require a loop over the attributes in parts_SCHEMA. An example is not

presented here but a similar situation arises in the dump statement and will be presented in

that section.

5.2 The Delete Statement

Another important update function is the ability to remove tuples from relations.

SQL’s delete statement performs this duty.

The delete statement specifies the table name from which rows are to be removed

and has a where clause specifying the condition for removing a row. Where clauses will be

discussed in detail in Chapter 6 on the select statement. For now just note that deletion is

made very flexible by this clause. A single row may be selected by equating all of the field

values or selection may be far more complicated.

Deletion of rows is very similar to selection. The difference is of course the action

taken when the appropriate rows have been identified. The ADAMS remove statement is

employed to delete the selected rows.

5.3 The Update Statement

The update statement is a modification of existing rows. As with deletion, the up-

date statement is primarily a select statement. The selected row the has the new values

specified in the set clause stored into the appropriate attribute just as in the insert statement

translation.

19

5.4 The Dump Statement

It may be necessary to view all of the data in a particular relation. The dump state-

ment does precisely that, it dumps out all of the data values in a relation. The translation of

this statement is of interest primarily because it demonstrates looping over the elements in

the ADAMS sets and it suggests that the approach taken, that is to represent both tuples

and relations as sets, was a good one.

The form of a dump statement is simple. It gives the name of the table to be

dumped and an optional destination filename. For example:

dump table parts;

This simple statement requires two loops in the ADAMS implementation. One to

obtain each row in the table and the other, a nested loop, to iterate over each field in the

schema. The statement above translates into:

<<ADAMS_var row, attr >>

<<for_each row in parts do

<< for_each attr in parts_SCHEMA do

<< fetch into host_var from row.attr >>

printf(“%s”, host_var);

>>

printf(“\n”);

>>

This program fragment will dump all of the data values in the parts table.

In this ADAMS fragment we have included the ADAMS statement delimiters

<<...>>, which we have previously omitted for clarity. Their primary purpose is to sepa-

rate ADAMS statements from host language statements during preprocessing. But they

also serve as loop end delimiters, as in the case of the last two >> delimiters. In following

examples we will again elide these delimiters, and let indentation delimit the scope of AD-

AMS loops.

20

6 Translation of SQL’s Select Statement

The query portion of SQL is the select statement. As the name implies selection is

the central issue in the language. Unfortunately selection in SQL corresponds more close-

ly to projection than to selection in the relational algebra, although it may be used to

accomplish the relational algebra selection. That is, in general, the SQL selection state-

ment retrieves fields rather than rows from the tables designated.

Three clauses comprise the select statement: the select clause, the from clause and

the where clause. The select clause lists the fields that are to be selected. The from clause

indicates all of the tables involved in the query. And the where clause, which is optional,

specifies any condition on the retrieval of the fields in the select clause.

Examples of various select statements and their translation into ADAMS follow.

The queries will be based on the Parts, Suppliers, Supplies database where these relations

have the schema: Parts(p_nbr, description, price), Suppliers(s_name, s_nbr, city, zip) and

Supplies(s_nbr, p_nbr).

6.1 Simple Select Statements

To demonstrate the basic select structure consider the query “Retrieve the descrip-

tions of all parts that cost $1.00”. In SQL the query is:

select description

from parts

where price = 1.00;.

This is a very simple query, only one table is involved and the where condition is

also basic. The translation to ADAMS is also fairly simple.

The result of any select statement is a new relation. SQL implementations vary in

their handling of the resulting relation. Some treat the relation as temporary and have a

save statement, others have a to clause in the select statement to specify the file to which

the resulting relation is saved. In the current implementation of the translator from SQL to

ADAMS the result of a select statement is temporary. This is done by setting the scope of

21

the new relation to be LOCAL. To make the result persistent the user need only to add a

rescope statement to the code generated.

Since the result of any select statement is a new table the first step in translation is

the creation of a new table. This is very similar to the translation for the create statement

except the field names are taken from the select clause. The relation created for the above

query is:

result_SCHEMA instantiates_a SCHEMA, scope is LOCAL

insert description into result_SCHEMA

result_TUPLE isa CLASS, having result_SCHEMA, scope is LOCAL

result_RELATION isa SET of result_TUPLE elements, scope is LOCAL

result instantiates_a result_RELATION, scope is LOCAL.

In this translation, all select statements result in a relation with a well know name, namely

result. So all queries will have generate a section of code similar to the code above with, of

course, different attributes inserted into the schema. Note also that we have made all dec-

larations LOCAL in scope. Like SQL, results are not persisten and vanish with the

termination of the process.

Next the query itself must be translated. SQL is a descriptive language and must be

translated into procedural code. To process the query, a loop is set up to inspect each row

of the table to see if the where condition is met. If so, the field specified in the select clause

is copied from the row into the resulting table. The ADAMS code for the query is:

ADAMS_var row, new_row

char temp[50];

for_each row in parts do

fetch into temp from row.price

if((strcmp(temp, “1.00”) == 0)

{

new_row instantiates_a result_TUPLE

new_row.description = row.description

insert new_row into result

}

22

There are several things to note here. First all comparisons are done in the host language

and all values are character arrays. This is purely a restriction of the version 2 implementa-

tion of the ADAMS language that was used for this project. In version 3, this would be

coded:

ADAMS_var row, new_row

for_each row in { x in parts | x.price = ‘1.00’ } do

new_row instantiates_a result_TUPLE

new_row.description<-row.description

insert new_row into result

This yields a much better implementation; however, the current implementation is suffi-

cient to emulate SQL with the method shown.

A second, and slightly more complex example will use two tables and a conjunc-

tive where clause. Retrieve the suppliers_ids, s_nbr, and part’s description for all suppliers

who supply parts that cost $1. In SQL this is:

select supplies.s_nbr, parts.description

from supplies, parts

where supplies.p_nbr = parts.p_nbr AND parts.price = $1;

SQL does not require the table names for the fields in the select clause unless it is ambigu-

ous. For convenience of translation, table names are required by the current SQL to

ADAMS translator, if there are two or more table used in the query.

Translation of this query is very similar to the previous example. A new result rela-

tion is created just as before, except the two attributes s_nbr and description are inserted

into its schema. Then the query is processed. Since two relations are involved two loops

are set up to provide all possible combinations of rows from each relation. This is actually

a cartesian product. The testing is done as the combinations occur rather than after the car-

tesian product has been formed to collapse the steps. Once again if the test conditions are

met the s_nbr and description fields are copied to the result table. The ADAMS code for

the query is:

23

ADAMS_var new_row, row0, row1

char temp0[50], temp1[50], temp2[50]

for_each row0 in supplies do

for_each row1 in parts do

fetch into temp0 from row0.p_nbr

fetch into temp1 from row1.p_nbr

fetch into temp2 from row1.price

if((strcmp(temp0, temp1) == 0)

 && (strcmp(temp2, “1.00”) == 0))

{

new_row instantiates_a result_TUPLE

new_row.s_nbr = row0.s_nbr

new_row.description = row1.description

insert new_row into result

}

This technique of creating the cartesian product and testing the condition as it is

created is used for any number of relations involved in the query. Obviously this is not an

optimal or even efficient method, but it does work. The goal of this project was to produce

a working emulation of a relational database, not to focus on query optimization.

We should also note that this query is, in relational algebra terms, a join followed

by a projection. The SQL condition supplies.p_nbr = parts.p_nbr will create the

natural join of the two relations. The projection is then just the condition part.price =

1.00 .

6.2 Selects Retrieving All Fields or All Rows

SQL supports selection of all fields from a table or tables and all rows from a table

or tables. Selection of all fields, or equivalently selection of rows, is specified by using ‘*’

in the select clause, select *. This indicates that all fields in the tables listed in the from

clause are to be selected. This is easily accomplished in translation. First the result schema

is created by inserting all the attributes in the tables listed in the from clause and then once

a row has met the where condition a new loop is added which iterates over all the at-

tributes in the result schema, assigning the values to the attributes of the row which will be

inserted into the result. There is a restriction not present in SQL. That is, two tables having

24

fields with the same name can be duplicated in SQL; however in ADAMS the same name

indicates a single attribute which can give only a single value when applied to an ele-

ment3. This restriction can be overcome by creating a new attribute for one of the

duplicates.

To select all rows from a table or tables the where statement is eliminated. This is

equivalent to where true. And in fact this is the exact translation into ADAMS. That is,

the if statement is still generated but the selection expression is just a ‘1’(i.e. if(1)).

6.3 Nested Queries

Two types of nested queries in SQL have been implemented in the translator. The

first is the in condition and the second is the exists condition. Both of these create a new

“sub relation” which is then used to test for inclusion or to test for emptiness respectively.

6.3.1 The In Function

The select in permits the use of the same attribute in different manners. For in-

stance as the field to be selected and a field in the condition. An example will help to

clarify the situation.

Retrieve the id numbers of all suppliers who sell the same parts as Jack’s store.
select s_nbr

from supplies

where p_nbr in (select supplies.p_nbr

 from supplies, suppliers

 where supplies.p_nbr = suppliers.p_nbr AND

suppliers.s_name = ‘Jacks’);

In this query the field s_nbr is used both as the field to be retrieved and a field to

restrict the rows returned. This provides more flexible and more powerful queries.

The translation of the in construct reflects the nested structure of the query. The

query is translated from the inside out. First the nested sub-query is translated and creates

3. It is worth noting, that in this respect, the ADAMS interpretation is closer to the original relational model
proposed by Codd than is the SQL interpretation. This is a true natural join.

25

a temporary relation. The outside sub-query then uses to the rows in the temporary relation

to check against the rows in the relations in its from list to test if the field is the same.

Once again, an example should clarify matters. The nested sub-query translates as the pre-

vious examples except the resulting relation is called result1. Ignoring the creation of the

table result, which is as in all the previous examples, the translation for the outside sub-

query is:

ADAMS_var row0, row_in, new_row

...

for_each row0 in supplies do

for_each row_in in result1 do

fetch into temp0 from row0.p_nbr

fetch into temp1 from row_in.p_nbr

if((strcmp(temp0, temp1)) == 0)

{

new_row i nstantiates_a result_TUPLE

new_row.s_nbr = row0.s_nbr

insert new_row into result

}

As clearly reflected in the translation, the in condition is an implicit equality test

for the field in the where clause of the outer sub-query and the field selected in the inner

sub-query. It is more though. It separates the two queries so that the s_nbr field can be

used twice in the same query. In SQL this can also be accomplished by using aliases.

Aliases provide a mechanism for using two copies of tables and so their same fields can be

used in different ways. This can be accomplished in ADAMS by creating a new relation

which is just a copy of the relation which has aliases.

6.3.2 The Exists Function

The exists expression is the set existential quantifier. In SQL exists checks the re-

sult of a nested query to see if any rows where selected, if so then the where clause is

equivalent to where true and the selection occurs, otherwise no fields are selected. The test

occurs for each row in the table in the from clause. The not exists expression can be used

as the universal quantifier which is not actually present in SQL.

26

The translation of a query using exists is similar to the translation of a query using

in. However, the nested sub-query must be evaluated for every iteration of the outer sub-

query test. Thus the sub-query will actually be nested in the translation and not just occur

once before the outer sub-query. Unlike the in function the temporary relation need not be

created. It is sufficient merely to set a flag if the nested query evaluates true. This flag can

then be tested.

As an example consider the english question: retrieve the supplier ids for all sup-

pliers who sell at least one part which cost $1. The phrase “at least” indicates that this is an

existence query. The SQL query is:

select s_nbr

from supplies

where exists (select parts.p_nbr

 from parts, supplies

 where parts.price = 1.00);

The translation will have the normal creation of the result table, then the loop over

all the rows in the supplies table. Nested in this loop will be the sub-query which selects

the rows which have prices that are $1 and the test for the existence of any of them. The

translation after the creation of the result table is:

ADAMS_var row0, row1, new_row

for_each row0 in supplies do

exists = 0;

for_each row1 in parts do

fetch into temp0 from row0.p_nbr

fetch into temp1 from row1.p_nbr

fetch into temp2 from row2.price

if((strcmp(temp0, temp1) == 0) &&

 (strcmp(temp2, “1.00”)) == 0))

exists++;

if(exists)

{

new_row instantiates_a result_TUPLE

new_row.s_nbr = row0.s_nbr

insert new_row into result

27

}

As with the in function, exists has a tacit equality test which is made explicit in

translation, namely the comparison between the attribute parts.p_nbr and supplies.p_nbr.

This is the connective between the sub-queries. The not exists qualifier is simply imple-

mented by negating the test of exists.

6.4 Differences Between Tables and Sets

It was stated earlier that a relation was a set. This is the fundamental axiom of rela-

tional theory, leading to such results as “every relational schema is a superkey of the

relation” [Mai83]. But set property of strictly distinct elements is seldom enforced in prac-

tical implementations. An SQL relation may contain more than one of the same tuple. This

often occurs as a result of a query when two tuples are selected but the attribute which

makes the tuples distinct is not selected. Usually duplicate tuples are not desired. SQL has

a qualifier which may be used in the select statement to remove tuples that are identical.

The keyword distinct may be inserted just after the keyword select in the statement to

cause the removal of identical tuples. In some systems distinct is replaced with unique.

To provide clarification there is an additional qualifier, all, to indicate that duplicate tuples

will not be removed

Since removal of duplicate tuples is an expensive task in terms of computation

time, it is typically done only if the qualifier is used. In the ADAMS translation the dis-

tinct qualifier is just a filter at the end of the query. Since the translation is obvious and is

not of particular interest, no examples are provided.

6.5 Select Options Not Implemented

There are a number of options which SQL provides for use with the select state-

ment that have not been implemented in the SQL to ADAMS translator. The major options

not implemented are aggregation, ordering and explicit nulls.

Aggregation, for example: count, minimum, maximum, and average functions ex-

ist in SQL. These functions have not been implemented in the translator since they are just

28

processing the data. Clearly once the data has been retrieved, functions to operate on the

data can be easily be implemented. That is a benefit of used a data management language

embedded in a general purpose host language.

SQL is used as a commercial language and therefore has functions which are pri-

marily for convenience. One of these is the order by function. This function sorts the

tuples which result from a query by some field. Clearly this also could easily be accom-

plished once the data is obtained, by a host language filter.

In some instances it may be desirable to introduce null values into a database. This

may be intentional or be the result of an update through a view. SQL allows the optional

use of explicit null values. Each null value is distinct from the other but all belong the

symbol NULL. It is felt that for our limited purpose null values are not necessary and have

not been included in the current translator.

There are a variety of options, for example comparison functions which have not

been implemented, many of which are system dependent. However, enough options have

been implemented to fulfill our goal of building a working relational database in ADAMS.

29

7 Conclusion

ADAMS provides a small but flexible language for database management. It has

been claimed that the language is powerful enough to support the three major database

models. To support this claim a project was initiated to investigate the implementation of

the relational model in ADAMS.

The goal of this project was to show that the relational database model could be

emulated in ADAMS. To this end a lex-yacc based translator was constructed to convert

the relational database language SQL into the ADAMS language. The language transla-

tion that occurs has been described in detail in this document. Although not every bell and

whistle of SQL has been implemented in a corresponding ADAMS program, the core lan-

guage has been successfully translated. Using the translation scheme described a working

relational database can be, and in fact has been implemented in ADAMS. Thus demon-

strating that the ADAMS language is sufficiently powerful to support the relational model.

30

8 Refrences

[Cod70] E. F. Codd, A Relational Model of Data for Large Shared Data Banks, Comm.
of the ACM 13, 6 (June 1970), 377-387.

[Mai83] D. Maier, The Theory of Relational Databases, Computer Science Press,
Rockville, MD, 1983.

[PFG89a] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, A. Kim,
C. Klump, Y. Lin, L. Loyd, The ADAMS Database Language, IPC TR-89-
002, Institute for Parallel Computation,Univ.of Virginia, Feb. 1989.

[PFG89b] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, Y. Lin,
L. Loyd, R. McElrath, Implementation of the ADAMS Database System, IPC
TR-89-010, Institute for Parallel Computation,Univ.of Virginia, Feb. 1989.

[Weg87] P. Wegner, Dimensions of Object-Based Language Design, Proc. OOPSLA
‘87, Oct. 1987, 168-182.

31

 Appendix A.

BNF Grammar for SQL Syntax as Implemented

<SQL_stmt> ::= <stmts>;

<stmts> ::= <stmt>

| <stmts> ; <stmt.

<stmt> ::= <create__stmt>

| <delete_stmt>

| <dump_stmt>

| <insert_stmt>

| <select_stmt>

<create_stmt> ::= create table <table_name> (<field_list>)

<field_list> ::= <field_domain>

| <field_list> , <field_domain>

<field_domain> ::= <field> <domain>

<delete_stmt> ::= delete from <table_name> <where_clause>

<dump_stmt> ::= dump table <table_name>

| dump table <table_name> to <file_name>

<insert_stmt> ::= insert into <table_name> (<field_list>) <i_cond>

| insert into <table_name> <i_cond>

<i_cond> ::= fr om <file_name>

| values (<const_list>)

<select_stmt> ::= <select_clause> <from_clause> <where_clause>

<select_clause> ::= select <distinct> <select_list>

| select <distinct> ‘*’

32

<distinct> ::=

| distinct

| unique

| all

<select_list> ::= <select_element>

| <select_list> , <select_element>

<select_element> ::= <path>

<from_clause> ::= fr om <table_name>

| fr om <from_list> , <table_name>

<where_clause> ::=

| where <predicate>

<predicate> ::= <condition>

| <condition> and <predicate>

| <condition> or <predicate>

| (<predicate>)

<condition> ::= <expr>

| <expr> in (<select_stmt>)

| exists (<select_stmt>)

<expr> ::= <expr> != <expr>

| <expr> == <expr>

| (<expr>)

| <const>

| <path>

<path> ::= <field>

| <table_name> . <field>

33

<const_list> ::= <const>

| <const_list> , <const>

<table_name> ::= identifier

<field> ::= identifier

<domain> ::= identifier

<file_name> ::= identifier

<const> ::= number

34

 Appendix B.

 YACC version of the SQL grammar implemented

The following grammar is the grammar which is used by yacc to develop the pars-

er for the translator. There are some differences between the BNF grammar and the yacc

grammar. This is due to parsing difficulties and to allow the easy expansion of the gram-

mar to include more options.

sql: {
SetUpDictionary();
OutputInit();

 }
stats ‘;’

 {
OutputEnd();
ShutDownAdams();

 }
 ;

stats:
 { nest_level = 0; } statement
 | stats ‘;’

{ nest_level = 0; } statement
 ;

statement:
 create
 | delete
 | dump
 | insert

| select
 ;

/*
Data Manipulation
*/

delete:
 DELETE FROM rec_alias where_clause
 {

 printAvars($3);
 delete_stmt($3, $4);
 }

 ;

insert:
 INSERT INTO table_name {strcpy(t_name,$3);} ‘(‘ field_list ‘)’ icond

35

 {
 printf(“<<\tADAMS_var row\t>>\n”);
 printf(“<<\trow instantiates_a %s_TUPLE\t>>\n\n”,t_name);

 if(!((const_token *)$8)->from_file)
constList_to_insertValList($8);

 list_insert_to_store($6,$8);
 printf(“\n<<\tinsert row into %s\t>>\n”,t_name);

 }
 | INSERT INTO table_name {strcpy(t_name,$3);} icond

{
if(!((const_token *)$5)->from_file)

 {
 printf(“\tconst_token\t*const_list,\n\t*const_ptr;\n\n”);

 constList_to_insertValLinkedList($5);
 }
 printf(“<<\tADAMS_var row, attr\t>>\n”);
 printf(“<<\trow instantiates_a %s_TUPLE\t>>\n\n”,t_name);

 loop_insert_to_store(t_name, $5);
 printf(“\n<<\tinsert row into %s\t>>\n”,t_name);

 }
 ;

rec_alias:
 path
 | path alias
 ;

icond:
 FROM filename
 {
 $$ = (char *)insertVal_fromFile($2);

}
 | VALUES ‘(‘ const_list ‘)’
 {

 $$ = $3;
 }

 ;

/*
Query Langauge
*/

select:
 select_expr into_clause
 ;

select_expr:
 select_statement
 | select_expr UNION any select_statement
 | select_expr MINUS select_statement
 | select_expr DIVIDEBY select_statement

36

 | select_expr INTERSECT select_statement
 | ‘(‘ select_expr ‘)’
 ;

into_clause:
 | INTO filename
 ;

select_statement:
 select_clause FROM from_item_list select_options
 {

 if(nest_level > 1)
 sprintf(table, “result%d”, nest_level-1);
 else
 strcpy(table, “result”);
 create_table(table, $1, $3);
 printAvars($3);
 select_stmt(table, $1, $3, $4);
 if(distinct_flag)
 {

distinct(table);
 }
 nest_level--;
 $$ = expr_create(table);
 }

 ;

select_clause:
 SELECT unique sellist
 {
 $$ = $3;

 nest_level++;
 }

 | SELECT unique ‘*’
 {

 $$ = NULL;
 nest_level++;
 }

 ;

from_item_list:
 from_item

{
if(!exists($1))
 {
 strcpy(err_str, ((list_item *)$1)->name);
 strcat(err_str, “ not found in dictionary”);
 yyerror(err_str);

 }
$$ = $1;
}

 | from_item_list ‘,’ from_item

37

 {
 if(!exists($3))

{
 strcpy(err_str, ((list_item *)$3)->name);
 strcat(err_str, “ not found in dictionary”);
 yyerror(err_str);

 }
$$ = (char *)append_list_item($1, $3);

 }
 ;

from_item:
 rec_alias
 ;

select_options:
 { $$ = NULL; }
 | WHERE predicate
 {

 $$ = $2;
 }

 ;

unique:
 | ALL { distinct_flag = 0; }
 | DISTINCT { distinct_flag = 1; }
 | UNIQUE { distinct_flag = 1; }
 ;

sellist:
 selelement
 {

 if(!exists($1))
 {

 strcpy(err_str, ((list_item *)$1)->name);
 strcat(err_str, “ not found in dictionary”);
 yyerror(err_str);

 }
 }

 | sellist ‘,’ selelement
 {

 if(!exists($3))
{

 strcpy(err_str, ((list_item *)$1)->name);
 strcat(err_str, “ not found in dictionary”);
 yyerror(err_str);

 }
$$ = (char *)append_list_item($1, $3);
}

 ;

selelement:

38

 path
 ;

predicate:
 condition
 | condition AND predicate
 {

 $$ = exprs_merge($1, “ && “, $3);
 }
| condition OR predicate

{
 $$ = exprs_merge($1, “ || “, $3);

 }
 | ‘(‘ predicate ‘)’
 {
 $$ = $2;

 }
 ;

condition:
 expr
 | expr not IN in_sel_expr
 {

 if (strcmp($1, “not”) == 0)
change_item_info($4, “in_not”);

 else
change_item_info($4, “in”);

 $$ = $4;
 }
 | EXISTS ‘(‘ select_statement ‘)’
 {

 change_item_info($3, “exists”);
 $$ = $3;
 }

 ;

not:
{

 $$ = ““;
 }

 |NOT
 {

 $$ = “not”;
 }

 ;

any:
 |ALL
 |ANY
 ;

in_sel_expr:

39

 ‘(‘ select_statement ‘)’
 {
 $$ = $2;

}
 ;

cond_sel_expr:
 expr
 | ‘(‘ select_statement ‘)’
 ;

const_recs:
 ‘(‘ const_list ‘)’
 | ‘[‘ const_rec_list ‘]’
 ;

const_rec_list:
 ‘(‘ const_list ‘)’
 | const_rec_list ‘,’ ‘(‘ const_list ‘)’
 ;

path_list:
 path
 | path_list ‘,’ path
 ;

field_list:
 field
 | field_list ‘,’ field
 {

 append_attr_to_list($1,$3);
 }

 ;

path:
path_e_list

 ;

path_e_list:
 path_element
 {

$$ = (char *)create_list_item(strange);
}

 | path_element
 {

 tmp = (char *)malloc(strlen($1) + 1);
 strcpy(tmp, $1);
 }

 ‘.’ path_e_list
 {
 change_item_info($4, tmp);

 $$ = $4;

40

 }
 ;

const_list:
 const
 | const_list ‘,’ const
 {
 append_to_const_list($1,$3);

 }
 ;

expr:
 expr LT any cond_sel_expr
 {

$$ = exprs_merge($1, “ < “, $4);
}

 | expr GT any cond_sel_expr
 {

$$ = exprs_merge($1, “ > “, $4);
}

 | expr EQ any cond_sel_expr
 {

$$ = exprs_cmp($1, “ == “, $4);
}

 | expr GE cond_sel_expr
 {

$$ = exprs_merge($1, “ >= “, $3);
}

| expr LE cond_sel_expr
 {

$$ = exprs_merge($1, “ <= “, $3);
}

 | expr NE any cond_sel_expr
 {

$$ = exprs_cmp($1, “ != “, $4);
}

 | ‘(‘ expr ‘)’ /* parenthesis */
 {
 $$ = $2;

 }
 | const {

 $$ = expr_create(((const_token *)$1)->val);
 }

 | path {
add_rel($1);
$$ = $1;

 }
 ;

const:
 STRING
 {

41

 $$ = (char *)create_const(yytext);
 }

 ;

expr_list:
 expr
 | expr_list ‘,’ expr
 ;

/*
Data Definition Language
*/
create:
 CREATE TABLE table_name {strcpy(t_name,$3);} tfd_list
 {

 create_table(t_name, $5);
 $$ = 0;
 }

 ;

tfd_list:
 field_dis {$$ = $1;}
 ;

field_dis:
 ‘(‘ tfd_fields ‘)’
 {
 $$ = $2;

}
 ;

tfd_fields:
 tfd
 {
 $$ = $1;

 }
 | tfd_fields ‘,’ tfd
 {
 append_attr_to_list($1,$3);
 }
 ;

tfd:
 field o_domain_name
 {

 a_field_create($1,$2);
 }

 ;

o_domain_name:
 domain_name

 ;

42

type_name:
 IDENTIFIER
 ;

dump:
 DUMP TABLE table_name {strcpy(t_name, $3);} to_clause
 {
 dump_table(t_name,$5);
 }
 ;

to_clause:
 {
 $$ = NULL;

 }
 | TO filename
 {
 $$ = $2;
 }
 ;

rfrom_clause:
 | FROM filename
 ;

where_clause:
 {

 $$ = NULL;
 }

 | WHERE predicate
 {

 $$ = $2;
 }

 ;

from_clause:
 | FROM path_list
 ;

/*
IDENTIFIERS
*/
alias: IDENTIFIER ;
domain_name: IDENTIFIER ;
field: IDENTIFIER
 {

 $$ = (char *)lookup_create($1);
 };
filename: IDENTIFIER ;
path_element: IDENTIFIER

{ strange = (char *)malloc(strlen($1) + 1);

43

 strcpy(strange, $1);
}
;

record: IDENTIFIER;
table_name: IDENTIFIER ;

