19950420 020 S?ﬁiﬁ%

DEPARTMENT
OF

COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA

Software for Advanced Vision Systems

Thomas J. Olson
Frank Z. Brill
Glenn S. Wasson
* Jennifer A. Wong
Ari S. Rapkin

Computer Science Report CS-94-31
April 13, 1995

CHARLOTTESVILLE, VIRGINIA 22903

LT ok

fheidt

School of Engineering and Applied Science

L ILLTTY INEPEC -

Software for Advanced Vision Systems

Thomas J. Olson
Frank Z. Brill
Glenn S. Wasson
Jennifer A. Wong
Ari S. Rapkin

Computer Science Report CS-94-31
April 13, 1995

REPORT DOCUMENTATION PAGE iiahai
OMB8 No. 0704-0188
Public reporting burden for tha <olle<!oon of Information « estimated to average | hour per responsa, inciuding the time 106 reviewing instructions, sesrching existing dsta sources,
gathering and ining the date d, and comp 9 and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of Wt -ndu!mq for Ndwnq this burden. 10 Washington Hesdquarters Services, Directorate for informetion Operatiom and Reports, 1215 Jefterson
Davis Highway, Suite 1204, Arkington, VA 22202-4302, and 10 the Office of Menagement and 8udget. Pesperwork Reduction Project (0704-0188), wWashington, OC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
‘ 4/13/95 final report 20 Jun 9L - 2 Feb 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software for Advanced Vision Systems G NOOOLL-9L-1-0841

PR ¢3Ub020---01

6. AUTHOR(S)
Thomas J. Olson, Frank Z. Brill, Glenn S. Wasson,
Jennifer A. Wong and Ari S. Rapkin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) { 8. PERFORMING ORGANIZATION

. REPORT
University of Virginia NUMBER

Department of Computer Science CS-94-31
Thornton Hall
Charlottesville, VA 22903

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Office of Naval Research

Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

[11. SUPPLEMENTARY NOTES

122, DISTRIBUTIOR / AVAILABILITY STATERERT : 126, DISTEIOUTION CODE

Unlimited

e

13. ABSTRACT (Maximurm 263 worcs))
The goal of the Advanced Vision Systems program is to develop accelerators that

provide a dramatic improvement in performance for applications in image understand-
ing, automatic target recognition, real-time computer vision, and other domains
with similar processing needs. This study -addresses the question of whét types of
software support will be required to make the systems useful. After examining the
needs of users 1n the various domains and reviewing available technology, we
conclude that the following components are necessary:
1) a library of image processing primitives similar to that proposed for the
Image Understanding Environment.
2) compilers and other tools for extending the library. ‘
3) a GUI application builder in the style of KHOROS that allows llbrary routines
to be combined into larger applications interactively.
b) a run-time environment that allows complex sequences of operations to execute
on the accelerator in parallel with host computation.-
The report concludes with a discussion of options for meeting these requirements
and a discussion of problems that may arise.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software tools, image processing, automatic target 76
recognition 16. PRICE CODE
y unclassified
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19.” SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
NSN 7540-01-280-5500 Standard Form 298 (890104 Draft)

Prescribed by ANSI $td. 239-18

29801

Software for Advanced Vision Systems

Thomas J. Olson, Frank Z. Brill, Glenn S. Wasson, Jennifer A. Wong and Ari S. Rapkin

1 Introduction

The goal of the ARPA Advanced Vision Systems program (AVIS) is to develop hardware ac-
celerators that will provide a dramatic improvement in performance for machine vision, image
processing, automatic target recognition, and other problem domains with similar processing
needs. The accelerators will be used in environments ranging from high-end PCs and worksta-
tions to multiprocessors and application-specific embedded systems, and will be capable of taking
input from their host environments or from a variety of sensors. AVIS accelerators should result in
substantial increases in research and development productivity and in the capability of fielded
systems.

In order for the architectures developed under AVIS to be useful in their intended domains, it
is essential that they be supported with appropriate software. Among the types of software that
will be needed are:

 runtime environments that provide flexible communications and control channels between
host and accelerator.

s compilers, debuggers, and performance monitoring tools that allow programmers to cre-
ate applications, library routines and higher-level programming tools.

= software development environments that allow programmers to combine sequences of
primitive operations and use them to build substantial applications.

The goal of this study is to examine the needs of AVIS applications in each of these areas, to
identify possible approaches to meeting those needs, and to suggest ways of reducing those ap-
proaches to practice. It is divided into four main sections. The remainder of this section briefly
describes the motivation and methodology of the study. Section 2 examines the needs of users,
programmers and system designers in the various application domains that the AVIS program is
intended to support. Section 3 reviews available software technology at all three levels and as-
sesses how well available tools meet the needs of AVIS applications. Finally, section 4 makes
recommendations about what types of software support AVIS systems require and how it should
be provided on the proposed architectures.

1.1 Motivation

Although the end product of the AVIS program will consist of hardware and software sys-
tems, system-building is not the goal of the program. Rather, the goal is to have a substantial
impact on research and development in computer vision and related areas, and to enable advanced
military and commercial applications. Thus the success of the program will ultimately be mea-
sured not by the hardware it produces, but by how widely and effectively that hardware is used.

Software has a critical role to play in making AVIS systems usable. In addition to the bare ac-
celerator hardware, a developer who wants to build an accelerated application will need:

* a way for the host computer to launch tasks on the accelerator. This will require pro-
viding software that allows the host computer to communicate with the accelerator and
control its operation. If the accelerator is capable of general-purpose computation, it may
also involve writing an operating system or other executive to handle task dispatching,
communications and other housekeeping chores.

* away to produce executable code for the accelerator. The software needed for this task
will depend, of course, on the architecture of the accelerators. At a minimum, however, it
will include compilers, loaders, and profiling and debugging tools. These tools will make
it possible to describe the primitive operations that programmers need to perform (e.g. li-
brary routines), and will support writing higher level tools and applications.

* a convenient way to build large applications. Although ideally the low-level program-
ming tools should be completely independent of the accelerator architecture, this is
unlikely to be possible in practice. It is thus a fact that for many architectures, working at
the low level will be significantly more painful than programming a conventional comput-
er in a high-level language. Thus developers will need some sort of higher-level
programming environment that minimizes their need to write low-level code. This envi-
ronment should be architecture-independent, so that applications written with it can be
ported to later-generation machines when they become available.

The challenge to AVIS system designers is to provide software tools for each of these roles in
a way that satisfies the needs of users across all of the domains of interest. The goal of this report
is to provide them with the information they need to do that. The report considers the kinds of
computations that users in each domain do, the environment in which they work and the tools
they currently prefer. It also describes the state of the art in software technologies that seem rele-
vant to the program. Finally, it makes recommendations about what sort of tools are most likely to
satisfy user needs, yet can be built without requiring dramatic advances in software technology.

Much of the information presented here is drawn from current literature in computer vision,
software engineering and parallel computation, and is referenced below where appropriate. We
have also spent a great deal of time talking with researchers in the domains of interest, trying to
find out what they need and want from AVIS software tools. We are very grateful to those who
took time to share their experiences and opinions with us. Space does not permit a complete list,
but we would particularly like to thank Tom Bannon (Texas Instruments), Ross Beveridge (U.
Colorado), Chris Brown (U. Rochester), David Coombs (NIST), Larry Davis (UMD), Ray Rimey
(Martin Marietta), Kevin Willey (WP AFB), and Bruce York (Sverdrup Technologies). This work
was supported by ARPA/ONR under grant no. N00014-94-1-0841.

2 User Needs

The fundamental goal of the AVIS program is to accelerate the rate of technological progress
in machine vision, automatic target recognition, image understanding, and related areas. In order
to do this, the program seeks to produce image processing and computing accelerators that allow
people working in these areas to do their jobs more quickly and effectively. This section of the
study is intended to determine what kind of computations the intended users need to do, and to ex-
amine how these needs constrain the kind of software that must be provided with the accelerators
in order to make them useful.

AVIS accelerators are likely to be useful to researchers in a wide variety of disciplines, not
all of which can be foreseen at the present time. For the sake of conciseness, this study focusses
on three specific domains that seem particularly likely to benefit from the AVIS program: image
understanding, real-time machine vision, and automatic target recognition. Other domains will be
mentioned in passing, but their needs will not be allowed to drive the requirements for the
program.

The domains we are focussing on are all active research areas and contain many unsolved
problems. Thus it is difficult to make categorical statements about the sort of computations that
the domains per se require. The recommendations made here are based on the general community
consensus in each area about the kinds of computational primitives that are needed and the kinds
of paradigms that are effective.

The remainder of this section is divided into three subsections. Section 2.1 discusses the gen-
eral character of image computation and raises issues that are common to all of the domains of
interest. Section 2.2 takes up the domains individually and explains how they relate to the general
modei. Section 2.3 presents examples of ‘typical’ computations. We stress that these examples are
not broad enough to serve as benchmarks. They are intended to be representative of domain com-
putations, but do not test all of the capabilities that users in these areas require.

2.1 The Character of Image Computation

Although the general problem of analyzing images with a computer remains unsolved, there
is a general consensus as to the computational steps and levels of representation that are intrinsic
to the problem [5,32]. This consensus has remained stable for more than a decade and is not seri-
ously questioned at present. It provides a useful way of organizing the discussion of the kinds of
computations that AVIS accelerators will need to support. '

The consensus view is that image understanding involves three fundamentally different types
of operations, which we shall here call low, intermediate and high level computations. Each levelr
is concerned with particular types of information and has its own characteristic data structures and o
computational primitives. O

The low level is concerned with computations on images, broadly understood to include two ,
dimensional arrays whose entries or pixels are the projections of properties of the three-dimen-
sional world. In general, any computation that maps an input image to an output image is ___
considered low level. Low level tasks include image operations such as noise removal, filtering, ¢ ..
restoration, local feature extraction and statistics-gathering. They also include the computations - Cednm

required to construct images of intrinsic world properties such as depth, reflectance, or motion .37

M

ool

3

from ordinary camera or video images. They rely heavily on understanding of how images are
formed: how light interacts with surfaces, how sensors work, where noise is introduced and so on.

At the intermediate level the task is to group pixels in some sort of image into extended struc-
tures such as lines, curves, or regions. This segmentation process can be generalized to include
such things as grouping pixels in a depth image into 3D surfaces. It depends heavily on assump-
tions about how the world behaves, e.g. that it is made up of piecewise smooth opaque surfaces.

The highest level is concerned with establishing relations between intermediate level groups
and relating them to general knowledge about the world. For example, a high-level task might be
to take an aerial photograph and identify those subsets of the lines on it that correspond to roads,
vehicles or buildings. Processing at this level requires a tremendous amount of knowledge of the
domain; for example, that vehicles are often found on roads or near buildings, but very rarely on
buildings. In the limit the concerns of high-level image analysis merge with those of general arti-
ficial intelligence.

2.1.1 Low Level Image Computing

Early filtering and image processing operations make up a large fraction of the workload of
many image analysis applications. The primitive computations used are well understood and are
useful in many domains. In addition, many of them are highly regular and exhibit obvious data
parallelism. Thus they are obvious candidates for software standardization and hardware support.

The defining characteristic of computations at this level is that they cperate on image data
and produce as output either modified images or statistical descriptions of images. For the pur-
pose of talking about computation, the image operators can be grouped according to the data
dependencies they exhibit. The major classes of operators are:

« Statistics operators. These take in images and produce descriptions of properties over
the entire image or region of interest. Descriptions may be based on point samples (for
first-order statistics such as mean, variance, or modes (i.e. histogram information)) or
neighborhoods (for higher-order measures such as grey-scale co-occurrence matrices).

* Pixelwise monadic operators produce an image whose pixel values are pure functions
of the corresponding input pixel. Examples include histogram transformations, thresh-
olding, squaring and so on.

» Pixelwise dyadic operators produce images whose pixel values are functions of corre-
sponding pixels in two images. Pixelwise addition and subtraction are very common.
More general examples include such things as converting images of X and Y intensity
derivatives to polar form.

* Monadic neighborhood operators, called ‘stencil algorithms’ in the parallel process-
ing literature, produce images whose pixels are functions of a local neighborhood in the
input image. The convolution operation, in which each output pixel is a weighted sum of
the corresponding input neighborhood, is the largest single consumer of cycles in many
image processing applications. Morphological operators and rank (median) filters also
follow this pattern, as do miscellaneous non-linear computations such as zero crossing
detection. Many relaxation computations (e.g. optimizations based on regularization or
Markov random field models) do so as well, but may require auxiliary images for such
things as line processes.

* Resampling and data movement operators. Image processing programs often spend a
surprising amount of time simply moving pixels around in memory. Trivial examples in-
clude extracting rectangular windows from an image or combining multiple windows to
form a composite image. More sophisticated applications may need to change the reso-
lution of an image by subsampling or interpolation. Important special cases include the
computations that form Gaussian [8], wavelet [31] or other [11] pyramids. Some appli-
cations require the ability to perform affine, polynomial or arbitrary warping.

e Orthogonal transforms such as the Fourier or Walsh-Hadamard transform are critical
to SAR image formation and to many signal restoration and registration algorithms. In
these transforms, each output pixel is a function of every input pixel. Fortunately the
communications patterns required are highly regular, and efficient parallel algorithms
exist.

Because there is wide agreement about the sorts of low-level image computations that are
useful, there are a number of standards describing specific sets of operators. An example is the
PIKS standard, discussed below. Table 2 on page 36 contains a list of the PIKS operators, which
can be compared to the classification given above.

2.1.2 Intermediate Level Computations

Intermediate level image computations generally take images and other information as input
and return a description of the image in terms of extended features such as lines, curves, or re-
gions. These features may be assembled into perceptual groups that are related under some
criterion; for example, a group of lines may form a closed figure. Regions may be organized into a
hierarchy, with each region divided into subregions. Intermediate level computations involve fre-
quent reference to image data, and often involve a substantial amount of search. Thus they may
require a great deal of computation even for relatively simple applications.

Intermediate level computations are less easy to parallelize than low level computations. Be-
cause intermediate level features can extend across the whole image, the algorithms that extract
them require non-local communications. The number of features is typically not known a priori,
and features are often distributed non-uniformly across the image. This means that data partition-
ing and scheduling decisions must typically be made at run time if the hardware is to be used
efficiently. Finally, there is only weak consensus among users as to what computations are impor-
tant. Thus it is unclear what algorithms should be standardized and included in applications
libraries.

Because intermediate level computations are less standardized than low level computations,
it is not possible to give an exhaustive list or taxonomy of the methods in current use. Instead, we
present a sampling:

Line and curve finding seeks to produce chains of image locations corresponding to logical
boundaries in the image. The boundaries may be defined by a parametric model (e.g. lines, circles
or ellipses), may be arbitrary space curves, or may combine characteristics of both (e.g. splines).
Extraction typically begins by identify points that are likely to lie on a boundary. This is done us-
ing low level operations such as gradient or zero crossing detection. The intermediate level
computation consists of grouping boundary points into sets that fit one or more instances of the

model. Grouping methods include the Hough transform, edge following, clustering based on ori-
entation, or iterative relaxation processes (snakes [22]).

Region finding is in some sense the dual of boundary finding; pixels are grouped into sets
based on their fit to a model of region properties. The model may be as simple as an assumption of
uniform brightness, or may involve elaborate models of local statistics (texture) as well as models
of corresponding world surfaces. In the past decade the trend has been toward algorithms that use
three-D models of world surfaces as the driving constraint for grouping pixels together. For exam-
ple, a system might initially group pixels based on proximity and similarity of motion, then
estimate rigid motion parameters for each group, and then refine the grouping by discarding loca-
tions that are poor fits to the solution for their region. The general computational paradigm
remains the same, however; pixels are grouped based on their fit to a dynamically evolving model
of the regions present in the scene.

2.1.3 High Level Computations

High level image computations match extended features extracted from images to relational
models of objects. For example, they might try to match a collection of observed surface patches
and edges to a CAD model of, say, a particular type of airplane. In the general case the problem is
to establish correspondences between a subset of the scene features and a subset of the model fea-
tures. The task is complicated by the geometric degrees of freedom of the problem and by noise
and occlusion, and is expensive because the combinatorics of search are inherently unfavorable.

High level computations are hard to parallelize. This is partly due to the fact that good search
algorithms involve a great deal of constraint propagation and hence require a lot of communica-
tion between tasks. As in the case of intermediate level vision, the computational load shifts
dynamically and makes partitioning and load balancing difficult. Finally, there is little consensus
about what algorithms are best for any given application.

Paradigmatic high level tasks are hard to come by, but the interpretation tree match algorithm
of [16] is typical of the type of computations that most algorithms require. In this algorithm a set
of observed features is matched to a model one feature at a time, using geometric constraints to
prune the search space. In a 2D matching problem, for example, after deciding to associate a mod-
el line segment with a particular scene line segment, the algorithm can infer the scaling and
rotation components of the transformation. This allows it to reject any subsequent feature associa-
tions that would imply different scaling and rotation parameters. This paradigm was originally
designed for matching with precise CAD models, but can be generalized almost indefinitely. For
example, the well-known functional recognition algorithm of [50] is also a tree search with con-
straint propagation. However, their constraints are based on how an object is used rather than on a
geometric model. For example, a chair must have a surface called its seat that is roughly parallel
to the floor, that is neither too close nor too far from the floor, and that has enough clear space
above it to contain a human torso.

2.2 Specific Domain Requirements

The previous section presented a generic discussion of the types of computations that are per-
formed in the domains under study. In this section we turn to the question of how the individual
domains differ in their use of these computations. Our primary conclusion is that the domains dif-

6

fer less than expected in the types of computations they require: all of them perform low,
intermediate and high-level operations and use similar algorithms at each level. There are some
differences in the job mix and in the degree of precision required in the results, but these distinc-
tions are relatively minor. The major differences between domains are in the hardware and
software environments in which the computations are performed, and in the source and form of
the image data they manipulate. In this section we will focus on these differences and discuss their
influence on AVIS software requirements.

2.2.1 Image Understanding

The first domain to be considered is image understanding. This area has been the subject of
an ongoing ARPA research program (see e.g. [1]) covering a very broad range of applications.
Here we will use the term in a more restricted sense, excluding such topics as automatic target
recognition (which will be discussed separately below). By ‘image understanding’ we mean the
problem of analyzing image data for the purpose of extracting as much information as possible
about the scene, in a manner which is as independent as possible of the use to which the informa-
tion will be put. For example, research directed to recovering a 3D model of an object from
multiple uncalibrated camera views of the object would fall into this category. The common
thread in these applications is that they are all concerned with building detailed models of the ob-
jects in the scene. Accuracy of the description is the primary criterion for success, and the primary
activity of people working in this field is designing newer and more accurate algorithms for build-
ing these descriptions. These algorithms may operate at any of the three levels described above,
and emphasize the most elaborate and complex algorithms in each class.

Since image understanding work is highly experimental, the tools and environments used by
people working in this area are designed for the convenience of the researcher. This translates in
practice to support for a) constructing and debugging new algorithms and b) applying the algo-
rithms and analyzing their results. The computational environment is typically a large workstation
with a high-quality display, perhaps with network access to large-scale storage facilities and/or
special computational resources such as supercomputers.

The dominant computational paradigm for researchers in image understanding is the conven-
tional single-threaded program in C, LISP or other standard language. Since speed is a secondary
concern, researchers optimize for ease of development, which dictates the use of familiar lan-
guages and computational paradigms.

Individual image understanding projects tend to be concerned with some small part of the
general image understanding problem, e.g. designing a better early vision operator, feature extrac-
tor or rhatching algorithm. Thus researchers typically maintain collections of separate programs
for the various standard early and intermediate-level processing steps. When they are working on
a new high-level algorithm, for example, they are likely to apply the required early and intermedi-
ate-level preprocessing to a set of test images and save the results. They can then apply various
versions of the algorithm under development to these saved descriptions, avoiding the cost of re-
peating the preprocessing.

2.2.2 Real-time computer vision

The domain of real-time computer vision includes any application in which image process-
ing and computer vision techniques are embedded in a control system. Only recently have
computers and systems become powerful enough to enable significant progress in this area.
Among the driving applications are robot manipulation and navigation, autonomous vehicle guid-
ance, and modelling of human oculomotor behavior.

Real-time vision problems are of interest for more reasons than the potential usefulness of
the applications. Embedding computer vision techniques in a control system turns out to change
the character of the computation in a fundamental way [52]. The real-time constraint means that
systems must balance the usefulness of more information against the cost of extracting it, and
must make intelligent decisions about what aspects of the scene are worthy of attention. Real-time
systems with autonomy also have the option of perturbing the imaging situation (e.g. by moving)
to improve the quality of their input data. In general, real-time systems can take advantage of their
perceptual history and goals to reduce the amount of computation they must perform.

Computational constraints

Real-time computer vision systems must contend with a number of problems not faced by
more general image understanding systems. The most obvious problem is the input data rate. A
single black-and-white video camera produces roughly ten million eight-bit pixels per second. A
stereo system produces two such data streams, and a high-resolution color camera three. High-
resolution cameras, FLIR sensors and so on can produce substantially more. Depending on con-
figuration, then, an autonomous robot may need to process anywhere from ten to a hundred
million pixels per second.

The problem of data rate is compounded by the need to process it with very low latency. De-
lay severely limits the bandwidth of control systems and requires special techniques (e.g.
predictive methods) to maintain stability. Researchers working on optical tracking have found that
processing delays must be kept to the order of a single video frame time in order to achieve any-
thing remotely like human-level performance.

Another problematic aspect of real-time computer vision is the need for predictable running
times. If delay is a problem for control systems, unpredictable delay is a disaster. Experimenters
go to great lengths to make the running time for data acquisition and early processing as free as
possible from data dependencies and other sources of non-determinism. It is worth noting,
though, that researchers recognize that high-level computation inherently involves unpredictable
running times. Finding ways to tolerate this is a focus of current research.

The result of these constraints is a style of computation that is quite different from that found
in more conventional computer vision programs. Vision is no longer seen as a function that maps
input images to some sort of symbolic description. Instead, researchers think of vision systems as
collections of processes, each with their own parameters, internal state, and processing rate. Some
processes may be essential parts of the system that are always present: examples might include
‘looming’ detectors or eye movement controllers. Others may be created to answer specific task-
related questions about the scene, and will be removed when their job is done or the system’s pri-
orities change. For example, a reconnaissance robot might create a task to scan an airstrip and
label things that look enough like helicopters to be worthy of a closer investigation.

Real-time vision systems tend to include a diverse collection of hardware and software that
makes for a very difficult development environment. The overall system might include a UNIX
workstation for planning and reasoning, an attached tolerator for digitization and image process-
ing, and a number of board-level real-time computers to perform inverse kinematics and motor
control computations. Frequently each component of the system has its own operating system and
development environment. Programmers spend a great deal of time trying to get the various parts
of the system to communicate reliably and quickly enough to make the control loops work
properly.

In the past, the need to control latency and the emphasis on low-level tasks such as gaze con-
trol have led real-time vision researchers to emphasize simple, low-level image processing
operations such as filtering and connected component labelling. There is increasing interest, how-
ever, on finding ways to integrate recognition and other high-level tasks into real-time vision
systems. The trend is toward systems containing multiple processes (typically running on multi-
ple CPUS), some of which run tight, fast control loops while others execute less predicable high-
level tasks.

2.2.3 Automatic Target Recognition

Automatic target recognition systems use the technologies of image understanding, signal
processing and related fields to identify image locations corresponding to specific objects or tar-
gets. Input to an ATR systems may include SAR or FLIR images as well as conventional intensity
images, and may be augmented with symbolic encodings of other sensor reports, intelligence,
doctrine of the opposing forces et cetera. Typical ATR applications include finding and classifying
armored vehicles in high-altitude SAR images, or recognizing high-value targets in a naval battle
group.

The methods used by ATR systems fall within the domain of image understanding, but the
very specific nature of the ATR mission results in a slightly different computational paradigm. For
ATR systems, only targets or potential targets are interesting; everything else is clutter. ATR sys-
tems do not need to understand the scene as a whole unless doing so makes it easier to locate
targets. Thus their early processing is often intended to filter out image locations that are not
worth looking at.

Many ATR computations can be divided into phases of preprocessing, detection, and classifi-
cation [6]. Preprocessing operations are intended to remove noise and imaging artifacts that may
be confused with target features. SAR and FLIR sensors in particular are subject to characteristic
artifacts that may create spurious texture or edges in images. Operations used include filtering,
gain correction, and contrast enhancement.

The detection phase of an ATR computation attempts to identify image locations that may
correspond to targets. The general strategy used is to apply global feature extraction operations
(e.g. edge detection, template matching, or non-linear operations such as texture measurement) to
find features that are correlated with target presence. Since detection operations are applied every-
where they are generally fast and simple. They are intended to reduce the search region to which
the more expensive classification operations must be applied.

The classification phase compares detection outputs against models of known targets and ei-
ther labels them with a target type or discards them as not of interest. In early ATR systems this

context information imaging parameters image

Focus of Attention

target models

Predict Features Extract Features

target reports

FIGURE 1. An architecture for model-driven ATR, after [45].

was often done by comparing signatures (feature vectors) using the techniques of statistical pat-
tern recognition. These methods break down when the set of possible appearances of a target
becomes large, because the number of target models that must be stored and compared becomes
intractable. Unfortunately in realistic situations the number of appearances is nearly always large.
For example, the appearance of a vehicle depends on viewing direction, occlusion or camouflage,
configuration (hatches and doors open or closed etc.), presence or absence of shadows, or opera-
tional state (e.g. for FLIR, engine on or off). Thus modern ATR systems are increasingly being
designed around detailed models of target variability and image formation.

A system-level description of a generic model-based ATR system is provided by the report of
the ARPA/SAIC system architecture study group, convened at the request of ARPA/STO in con-
nection with the War Breaker program [45]. The report describes an architecture for analysis of
single high resolution SAR images, but the paradigm is general and should apply to many other
ATR situations. The inputs to the system are assumed to consist of the image, image information
such as imaging parameters, and contextual information (maps, site models, target models, and
any prior information from previous analyses). The output of the system consists of target reports
with confidences, plus useful information such as terrain classification.

Figure 1 (after [45]) shows the general structure of the system. The functions labelled Focus
of Attention and Indexing correspond loosely to the detection phase discussed above, while the
Predict, Extract, Matching and Search functions make up the classification phase. The specific
tasks of the functions are as follows:

Focus of Attention: The FOA function takes images, image parameters and collateral informa-
tion as input. Its output is a list of regions of interest (ROIs). Each ROI is annotated with the
system’s confidence that targets are present, a description of the target and surrounding clutter,

10

and any preliminary feature extraction or segmentation results. In addition the ROI may contain
information that registers it to any available maps or site models.

Operations performed by the FOA function include

» preprocessing: linear and non-linear filtering, morphological filtering

* registration: line and feature extraction, image-to-image or image-to-model registration
« segmentation and labelling: MRF optimization, pixel classification

» target detection: thresholding, CFAR detection, preliminary classification based on shape,
texture etc.

Indexing: The inputs to the Indexing function are the ROIs produced by the FOA function plus a
set of target models processed to extract indexing features. It produces a list of hypothesized tar-
get labels, aspects, states and configurations that might give rise to the observed features. The
intent is to generate all of the possibilities that are worth exploring in more detail. Thus probabili-
ty of detection is favored heavily over probability of false alarm, and mutually exclusive
hypotheses are tolerated.

Components of the indexing task include estimating the target aspect, deciding what specific
target types are likely, and associating confidences with the hypotheses. The methods are typically
based on comparing image features (e.g. by normalized correlation or some sort of non-linear
template match) against a library of signatures that coarsely sample aspect space. Confidences are
essentially measures of match quality, but may take into account contextual information or con-
fusability with other targets or clutter.

The general method used for target classification is a cycle of hypothesizing target parame-
ters, predicting the target appearance that would result, and matching the prediction against
features extracted from the image. The overall classification task is under control of the Search
function. The ARPA/SAIC report identifies rule-based systems embodying heuristics derived
from human experts as the dominant technology for this task. The goal of the Search function is to
perform the relatively expensive classification task in an efficient manner.

Feature Extraction: The feature extraction function examines the image and attempts to locate
image features that match predictions based on the current hypotheses. It is invoked by the search
module and supplied with an ROI to work on and a description of the feature to be sought. It re-
turns numerical values and certainties for the features it was asked to find. For SAR, features
might include bright peaks in a particular region, or areas of texture or shadow of a particular
shape.

Prediction: The prediction function takes a hypothesis consisting of a target model, state infor-
mation, and information about the imaging situation and predicts what features should be visible
given the hypothesis. Features may be as general as shape parameters or as specific as a ray-traced
rendering of the hypothesized target.

The prediction computation depends heavily on the form of the target model base and the
type of features to be predicted. Constructing and validating the model base is a major task in it-
self, though presumably it can be done off-line. Techniques used may include simulating the
image formation process or selecting stored example data from a database.

Matching: The role of the matching function is to provide a numerical estimate of the consisten-
cy between the predicted and extracted image features. Ideally this will be in the form of a

11

likelihood, i.e. probability of the observation given the hypothesis. Performing the task involves
examining possible correspondences between predicted and observed features, making allowance
for the possibility of occlusion. The final step is to generate a probability. The favored technique
at present is evaluation of a Bayesian network.

Development and execution environments

ATR systems vary greatly in their scale and their need for real-time response. ATR systems
for missile target selection may need to be physically small, operate on a tight power budget, and
respond within milliseconds. At the other extreme, systems for analyzing high-resolution SAR
images may be distributed across a heterogeneous collection of MIMD multicomputers, dedicated
image processing engines and workstations, and may run for minutes or hours. In general ATR re-
searchers are more willing to invest effort in coding for unusual hardware configurations than are
most mainstream image understanding researchers. They tend to build complete end-to-end sys-
tems and test them in fairly realistic situations, and therefor must run their systems on hardware
that can meet the throughput requirements of the application.

The ARPA/SAIC system architecture described above is intended in part to serve as a blue-
print for dividing model-based ATR systems into independent processes. The intent is to provide
formal definitions for the interfaces between the modules shown in figure 1, and to let different
contractors implement different parts of the system. The architecture would thus simplify systems
integration, and perhaps allow system builders to experiment with multiple versions of (say) the
indexing module to see how they interact with downstream processing. It would also provide an
immediate avenue for obtaining coarse-grained parallelism in ATR applications.

Many ATR groups have adopted the Khoros image processing toolkit [24] as their standard
development environment, and many ATR research contracts specify Khoros modules and work-
spaces as deliverables. There is thus a great deal of interest among ATR researchers in making
AVIS development tools compatible with Khoros. Khoros will be discussed below in section 3,
and we will return to the question of Khoros support in section 4.

2.3 Sample Tasks

In this section we present a small group of sample tasks that are representative of computa-
tions in the AVIS task domains. Our purpose is to give a more concrete sense of the types of
computations that AVIS programmers need to perform, and to provide a basis for evaluating some
of the development tools to be presented in section 3.

Selecting a set of representative tasks turned out to be remarkably difficult. The first problem
is that there really is no such thing as a “typical” vision application. Although most of the compu-
tations described in the literature fit one standard patterns or another, the number of standard
patterns is very large. It is very rare to find a single program that is representative of more than a
small fraction of the domain. The second problem is that descriptions of algorithms in the litera-
ture are typically sketchy, and are narrowly focussed on the novel aspects of the algorithm under
discussion. It is rare to discuss an end-to-end system in any detail. This is fine for purposes of ac-
ademic publication, but makes it relatively hard to characterize the computational requirements of
the application without a great deal of domain knowledge. Finally, for many ATR applications
there are proprietary and, perhaps, security concerns. ATR contractors are often very reluctant to
provide details of the computations their systems perform.

12

We wish to be very clear about the intended role of the tasks described here. They are in no
sense a benchmark against which software tools can be measured. Although we have tried to
make them broad in scope, they do not exhaust the space of application requirements. They are
simply points in the design space, intended to serve as examples of the style of computing that
AVIS software tools should be able to support.

2.3.1 The Image Understanding Benchmark (IUB)

The DARPA image understanding community has created a series of benchmarks for evalu-
ating image understanding architectures. Our first example task is the 1938 version of the
benchmark [60]. The task in this benchmark is to recognize an object consisting of colored rectan-
gles obeying a particular set of geometric constraints. The input consists of registered (synthetic)
intensity and depth images of an object in a field of distractor rectangles, some of which may oc-
clude parts of the object. The program is also given a database containing ten reference objects.

We were initially reluctant to use the IUB task as an example, simply because it is already
well known to the IU community. However, the IUB has two advantages that are unmatched by
any of the other tasks we considered. First of these is its breadth: the IUB uses a broad set of algo-
rithms at low, intermediate and high levels of the image analysis hierarchy. The algorithms were
defined by experts in the field for the express purpose of spanning the space of image computa-
tions and stressing parallel architectures to their limits. The second major advantage of the IUB is
that it is very well specified. The IUB defines the computations to be performed in great detail,
and provides a complete uniprocessor implementation of the task which can be run on any archi-
tecture that supports the C language and the standard C library. The IUB definition and
uniprocessor implementation are available for anonymous ftp at cax@cs.umass.edu, directory /
pub/IUstatic_benchmark.

The IUB task does have weaknesses as well as strengths. It is unfortunate that the task is de-
fined entirely on synthetic images. Using synthetic images allowed the benchmark designers to
supply programs that generate arbitrary numbers of random test cases. To some extent, however,
it distorts the IU problem by presenting a task which is inherently easier than that of recognizing
real objects in real scenes. The IUB also avoids the problems of registering the depth and intensity
images, correcting for lens distortion (there is none), and dealing with the calibration issues that
plague real-world vision systems. The task does not require any shape or depth estimation from
the intensity image, and simplifies the model-matching problem by limiting the model aspect pa-
rameters to four degrees of freedom (XYZ translation plus rotation about the viewing direction)
instead of six. A final criticism of the TUB is that it is old, and does not include techniques that
have become popular since it was designed.

The IUB task in detail

The IUB task is described in great detail in the paper [60] and in the reference materials sup-
plied with the sequential implementation. Here we will summarize the computation in just enough
detail to serve as a basis for tool evaluations in the next section.

The basic task performed by the IUB programs is recognition of a 2-1/2D object or ‘mobile’
consisting of rectangles of various sizes, brightnesses, two-dimensional orientations and depths.
The rectangles have fixed spatial relationships given by links in the model. A database of ten mo-
biles is provided and any one can be in the image. The goal is to determine which of the models is

13

present, to label image features with the model features to which they correspond, and to update
the model with positional data that has been extracted from the images.

Target models consist of a set of rectangles in three-space, each with nominal depth, size, in-
tensity and x/y orientation. The rectangles are connected by invisible links that form a tree
structure. To generate a test scene, one of the models is translated, rotated and then embedded in a
field of distractor rectangles. Any model rectangle may be partially or fully occluded by a distrac-
tor. The model parameters (including link parameters) are then perturbed with Gaussian noise
truncated at 6 = 3. Since the links form kinematic chains, link perturbations are cumulative.
Thus two rectangles at opposite ends of a long chain impose only loose constraints on each oth-
er’s positions.

Two input images are generated from each test scene. One is a depth image from an idealized
range scanner. It consists of a 512x512 array of 32-bit floating point values, corrupted with addi-
tive Gaussian noise. The other is a 512x512 array of bytes representing intensities. The intensity
image is noiseless and each pixel color is computed by projecting its center to a unique scene
point. Thus rectangle boundaries are subject to aliasing but are clearly defined. Both images are
produced by orthographic projection and are perfectly registered.

Preprocessing

The benchmark description specifies the following preprocessing operations for the intensity
image:

1) Label four-connected sets of homogenous pixels with a unique integer.

2) Traverse the boundaries of the sets and compute their k-curvature for some specified k.
Smooth the k-curvature estimates along the boundary by convolution with a 1x7 Gaussian
mask, and find zero crossings of the first derivative of curvature.

3) Label corner points along each boundary. Corners are points that correspond to zero cross-
ings of the first derivative and have curvature exceeding a specified thresho!d.

For the depth image the specified preprocessing is:
1) Smooth with a 3x3 median filter.

2) Estimate the gradient magnitude using the Euclidean magnitude of responses to the 3x3 So-
bel masks.

3) Apply a supplied threshold to the gradient magnitude to obtain a binary image that encodes
the positions of depth edge pixels.

Hypothesis generation

The next step in the benchmark task is to identify good candidates for rectangles. The re-
quired set of operations is:

1) For each connected component in the intensity image, compute the convex hull of the corner
points.

2) Apply geometric tests to see if the component can be interpreted as a rectangle for which at
least three of the rectangle corners are visible.

3) For componenits which pass the test, create a rectangle hypothesis that records rectangle cen-
ter, lengths of major and minor axes, orientation and intensity.

14

Once likely rectangles have been extracted, the benchmark task looks for approximate
matches between groups of image rectangles and the models. The rectangles recovered from the
images can be thought of as forming a complete graph with a link between each pair of rectangles.
In order to find good interpretation hypotheses, the task seeks isomorphisms between subgraphs
of each model and subgraphs of the scene.

The method used for finding subgraph isomorphisms is essentially similar to interpretation
tree matching. Individual scene rectangles are first matched to model rectangles based on intensi-
ty and size. This process yields all single-node isomorphisms. Each isomorphism is then extended
by making predictions based on the links for the model rectangle, and forming associations be-
tween pairs of scene rectangles that are mutually consistent given the model. Each association
gives rise to a hypothesized pose for that model in the scene. Pairwise links to the same rectangle
that give rise to the same pose are merged to form a single higher-order hypothesis.

The hypotheses resulting from the above step are inherently consistent with the intensity im-
age, but may conflict with the depth image. The next step is to probe the depth image and see if
the relative depths as well as the intensities and relative positions of rectangle sets is consistent.
Inconsistent hypotheses are discarded, while consistent hypotheses are assigned a match strength.

If a hypothesis requires the presence of a rectangle that was not found in the initial candidate
rectangle extraction, the system performs a top-down search for it in the thresholded gradient
magnitude of depth image. The search consists of a Hough transform applied to the window of the
image that is predicted to contain the rectangle. If the Hough transform detects three of the pre-
dicted four depth edges, the rectangle is accepted and added to the hypothesis. If not, a match
strength is computed or the hypothesis is rejected as appropriate.

The final result of the above process is a list of hypothesized instances of models in the imag-
es. Each hypothesis is assigned an overall match strength, which is the average of the match
strengths for its constituent rectangles. The model with the best match strength is returned as the
system’s interpretation of the scene.

2.3.2 Software Library for Appearance Matching (SLAM)

SLAM is an object recognition system created by Shree K. Nayar and others at the University
of Columbia. It is based on the use of principal component analysis to define k basis images that
approximately span the space of possible appearances of an object, given a large training set.
Each training view of an object can then be represented by the k-tuple which is its projection on
the basis set. Interpolating the training set yields a manifold in k-space whose dimensionality is
equal to the number of degrees of freedom in the viewing parameters used to generate the training
set. Recognizing an object then reduces to finding the manifold that it is closest to. The position of
the closest point on the manifold can be used to estimate the viewing parameters, yielding (for ex-
ample) pose as well as identity.

We selected SLAM as an example task for the following reasons. Like the IUB, it performs a
complete end-to-end recognition task, and a complete and portable implementation is available
(send email to slam@cs . columbia. edu for information). Unlike the IUB, SLAM is based on
real images. It relies heavily on techniques that are absent from the IUB, including numerical
methods (i.e. solving eigensystems) and fitting B-splines of one, two or three dimensions. It is
fundamentally a pattern classification system, and as such resembles many older ATR systems.

15

SLAM specifics

SLAM consists a collection of programs that can be run from the command line. Many of the

tools are also available in GUI form. The underlying routines form a C++ library with a clean API
that could be used to implement stand-alone applications, or to replace the supplied implementa-
tions with accelerated versions.

SLAM can be logically divided into two tasks. The visual learning task takes sets of prepro-

cessed training images, computes the basis set, and constructs a manifold for each object. The
appearance matching task takes a new image and identifies it by determining which manifold it is
closest to.

The visual learning task consists of the following steps:

1y

2)

Prepare a set of features vectors that can be used for principal component analysis. In the
simplest case the pixels of an m X n image patch can simply be concatenated into a vector of
length mn . However, recognition becomes easier if obvious sources of variance are removed
from the training set. SLAM provides a GUI image manipulation module that permits inter-
active preprocessing of the training images. Supported include brightness normalization, seg-
mentation, and size normalization. Images may also be smoothed, subjected to first derivative
or Laplacian filtering, or Fourier transformed. The operations required are standard low-level
image processing routines: convolution, windowing, statistics and rescaling.

Compute principal components of the input image set to obtain an orthogonal basis for repre-
sentation of the images, and truncate the basis to obtain the eigenspace. SLAM provides both
GUI and command-line interfaces for this step. The user can specify files in which to store
this information, and also the amount of memory to be used in the computation.

The method used to compute principal components is proprietary. The basic computation is:

* compute the mean of the training set and subtract it from every entry, producing a zero-
mean sequence.

e form the matrix M whose columns are elements of the training set, and compute the cova-
riance matrix C = XX /N, where N is the size of the training set.

* compute eigenvectors of C and sort by eigenvalue. The eigenvectors are the principal
components of the training set. Any standard eigenvector method can be used; see [40] for
examples.

In the case where the training vectors are pixels of an image, the dimensionality N of the
training vectors may be larger than the number M of training images. In that case the method
described above may be hopelessly inefficient, and the following method (from [55]) is pref-
erable:

 form a zero-mean sequence and matrix X as above.

T . o
* formthe M X M matrix X" X/N and compute V, the matrix of its eigenvectors.
¢ form the matrix XV. Its columns are the principal components of the training set.

This method works because if v is an eigenvector of X "X/ N, then X "XvIN = Av. Multi-
plying by X gives (XX)X v/N = AXv.Clearly Xv is an eigenvector of the covariance ma-
trix XX /N and the eigenvalue is unchanged.

16

3)

4)

Project the input images to eigenspace to obtain a set of discrete points. This involves taking
the dot product of each training image with each eigenvector found in the previous step.

Interpolate between these points to obtain a manifold. SLAM uses a quadratic B-spline for
interpolation. It can be resampled at higher frequency to obtain a dense set of discrete points.
If the user has computed manifolds for a number of different vector sets, all in separate
eigenspaces, it may be desirable to combine them into one eigenspace via Gram-Schmidt or-
thogonalization (which constructs an orthogonal basis from a set of independent vectors).
The Gram-Schmidt rotations can be applied to the manifold points to transform them as well,
or the manifolds can be computed after orthogonalization.

The program checks the input set to determine the dimensionality of the B-spline (curve, a
surface, or 3-parameter hypersurface). The B-spline is computed with an open uniform knot
vector duplicated at the ends so that the manifold passes through the endpoints of the point
set.

Interpolation, resampling, and orthogonalization are all possible via SLAM modules. The
xmanifold module allows visualization of the manifolds and projections, and the user can
save the output to disk and/or obtain a postscript copy. :

The appearance matching code accepts the manifolds and eigenvectors computed above, and

performs the following steps:

1)

2)

Project the image to be matched into eigenspace, obtaining a single n-dimensional point.
Again, this involves a series of dot products.

Use a user-selected search strategy to find a point on the manifold closest to the projection of
the image into eigenspace. The index of the manifold is the best matching object, and the po-
sition on that manifold gives the viewing parameters.

Rather than use analytical methods to find the actual closest point, SLAM resamples the man-
ifold to produce a dense set of points, and then searches for the closest point in the set. The
user can provide a search algorithm, or use those offered by SLAM. These are available
through C++ as methods. The provided search methods are:

» Exhaustive search: compute the distance to every point in the resampled set.

» Heuristic search: inspect only those manifold points whose first coordinates are “close” to
that of the input point. Since the points have maximum spread in the first dimension, this
trims the search space considerably. However, success depends on the chosen threshold
for “closeness”.

» Binary search: perform binary search separately in each dimension. Improves perfor-
mance from O (kn) to O (klogn)

2.3.3 Wong’s hierarchical tracker

Our third sample application is a real-time tracking system created by one of us (Jennifer

Wong) at the University of Virginia. The goal of the system is to find and track human faces in
live video input. It is thus an example of a typical real-time vision application. Like many real-
time vision systems, the tracker is implemented on special hardware and is carefully tuned for our
laboratory environment. Portable C versions of the major routines will be available for anony-
mous ftp via http://uvacs.cs.virginia.edu/~vision.

17

The input to the tracker is presumed to be an unbounded sequence of video frames delivered
one frame at a time. The output at any given time is the current estimated (x,y) position of the tar-
get in the image. In our implementation the system displays the live video stream on a monitor,
and overlays a graphical marker on the target. If desired, the target position estimate can also be
used to servo the camera to keep the target centered.

The tracker consists of two logically independent processes. The low-level process searches
the input image near the estimated target position, looking for the best grey-level match to a patch
extracted from the previous image. It uses coarse-to-fine search in a Gaussian pyramid to make
the search efficient. The result of the search is a new estimate of target position. The high-level
process examines a larger neighborhood around the target position, searching for features that fit
its model of a face. If it finds one it reports its position, otherwise it reports failure.

The two tracking processes are intended to be as asynchronous as possible. They communi-
cate only in that both have access to the video stream and can read the estimated target position
atomically. In our implementation the nature of our image processing hardware makes it impossi-
ble to implement the trackers as separate threads. Instead, the high-level process code is
decomposed into six routines of roughly equal running time. The system performs one step of the
low-level process and one of the six high-level routines on each pass through the main loop. The
result is that the high level process runs at one-sixth the frame rate of the low-level process.

Tracker details

The Wong tracker consists of two logically independent tracking processes that communicate
with a control process. Each process has its own model of what constitutes a target, and is capable
of generating control signals without help from the other process. The processes cooperate to take
advantage of their individual strengths and track more robustly than either task can do on its own.

Each of the tracking processes runs a tight loop in which it accesses the current input image,
estimates the target position, and informs the control process of its estimate. The control process
combines the results of the two estimates and updates the global estimate of target position. In our
implementation it also draws a box around the current target position in the overlay plane of our
video display, as an aid in assessing the performance of the system.

The Low Level Tracker: The low-level tracking (LLT) process estimates the tracking error by
extracting a patch from the current image centered on the current estimated target position. It
compares that patch to neighboring patches in the next image, searching for the one that minimiz-
es the sum of squared pixelwise differences (SSD). It reports the difference in position between
the best match and the current target position as its estimate of the error.

At the beginning of the main loop the LLT algorithm has access to a four-level Gaussian pyr-
amid computed from the current image, plus the current estimated target position. Upon arrival of
a new image it performs the following steps:

1) Form a four-level Gaussian pyramid from the new image. Level zero of the pyramid is the
original image. Level i is obtained from level i — I by convolving with a 5 x 5 Gaussian
mask and subsampling by a factor of two in each direction. The computation can be done ef-
ficiently by separating the mask into 5x 1 and 1 X 5 convolutions, and by evaluating the
convolution-only at points that are needed for the subsampled output. The resulting pyramid
consists of four copies of the image at resolutions 512 x 512, 256 x 256, 128 x 128 , and
64 % 64 .

18

2) Extract a four-level target pyramid from the current image pyramid. The target pyramid con-
sists of four images centered on the current estimated target position, each extracted from the
corresponding level of the current image pyramid. The sizes of the target patches are
64 x 60, 32 x20, 16 x 14 and 8 x 6. Note that although the target position at level zero of
the pyramid (i.e. the original image) is given by integer image coordinates, the positions of
the patches at higher levels pyramid levels may not be. For example, if the current target po-
sition estimate is (23, 47) , the target patches will be centered at (23,48), (11.5,24),

(5.75, 12) , and (3.875, 6) in their respective pyramid levels. To account for this, bilinear
interpolation is used to extract the target pyramid from the current image pyramid.

3) Extract a four-level search pyramid from the new image pyramid. The process is analogous
to that used to build the target pyramid in step 2, except that the search pyramid is larger by a
border of width one pixel all the way around: the levels are 66 X 62, 34 x 32, 18 X 16 and
10x8.

4) Find the best match for the target pyramid in the search pyramid by coarse-to-fine search.
The process is follows. Let (e;, €;) be the current error estimate, initially (0, 0) . Starting at
the coarsest level of the pyramid, compute the SSD (sum of squared pixelwise differences)
between the target level and nine possible offsets of the search level, i.e.

SSD(i,j) = > (Target (L,p,q) —Search (Lp+i+e,q+j+e))’

P, ¢ € patch

forall i,j in {-1,0,1} . Let E, be i, j, minimizing SSD (i, j) , the error estimate at level /.
Update the global error E using E < 2E+ E|.

5) Repeat step 4 three more times, letting I take on the values 2, 1, and 0. At this point the global
error vector E is the sum of the errors computed at each level, weighted by the scale at each
level: E = 8E, +4E, + 2E, + E,. Return this value as the LLT estimate of the tracking er-
Ior.

The high-level tracker: Where the low-level tracker follows targets by iterated template match-

ing, the high-level tracker does so by searching the neighborhood of the estimated target position
for a match to an explicit model of a human face. Several face matching algorithms have been
used, the most robust being an implementation of the eigenface method of Turk and Pentland
[55]. Since this method is similar to SLAM, however, we instead describe a faster method based
on feature matching.

The feature matching version of the high-level tracker expects faces to consist of a pair of
roughly symmetric curves (the sides of the face) surrounding a cluster of small high-frequency
features (the eyes, nose and mouth). It extracts features using a series of convolutions and heuris-
tic tests, and then searches for a set of image features that match the model within some tolerance.
If it finds an acceptable match it halts and returns the position of the model center, otherwise it re-
turns failure. The search computation is essentially a graph matching process like that used in the
Image Understanding Benchmark, but is expressed procedurally.

The specific steps of the computation are as follows:

1) convolve the image with 8x8 edge templates extracted from the sides of actual faces, and ap-
ply a threshold to obtain a binary image.

2) label connected components in the binary image and compute area, bounding box et cetera.

19

3)

4)
5)
6)

7

apply heuristic tests to pairs of components based on area, horizontal separation, vertical
alignment, and aspect ratio. The result is a list of pairs of curves that are plausible edges of
faces.

convolve the image with a 7x7 LOG mask and extract zero crossings
label connected components in the zero crossing image

apply heuristic tests to sets of zero crossing components to eliminate those that are too large
or are otherwise implausible as facial features

check to see if any accepted facial feature sets are appropriately positioned within a pair of
accepted face edges. If so report success, and return the location of the center of the circle de-
fined by the two face edge curves. Otherwise report failure.

The control process: The task of the control process is conceptually very simple. The low level
tracking processes always returns a position estimate in the form of an error vector, which is the
difference between the center of the target pyramid in the current image and the best match in the
search pyramid. The control process simply adds this error vector into the running estimate. The
high level tracker may return the absolute location of a face in the image, or it may not return any-
thing at all. If the high level tracker returns a value, the control process records it as the current
target position estimate.

20

3 Available Software Technology

The first two sections of this report dealt with AVIS user needs, describing the kinds of com-
putations they need to perform, the programming paradigms they rely on and the environments in
which their work 1s done. In this section we examine the state of the art in several key software
technologies that appear critical to successful use of AVIS accelerators. There are two reasons for
doing this. The first is simply to provide guidance to AVIS development groups. The second is
that the current state of the art defines what AVIS users are likely to expect in the way of software
support. If AVIS accelerators are delivered without comparable software tools, users will be dis-
appointed and will resist using them.

We have assumed in what follows that the AVIS program will not attempt to leapfrog the
state of the art in software technology, because of the development costs and technological risks
that would be involved. Thus we have restricted the survey to approaches that have either demon-
strated success on significant applications, or have substantial commercial and institutional
momentum and are clearly technically feasible. We have omitted speculative approaches based on
non-traditional or unproven programming paradigms.

The discussion is divided into subsections following the taxonomy of software types outlined
in section one. The first subsection reviews development and end user environments, which pro-
vide the services used by software developers to assemble complete applications. These
environments may include application-specific libraries, GUI-based application builders et cetera.
The second subsection deals with lower level tools such as compilers and debuggers, and the third
discusses operating system interface and control software.

3.1 Development and User Environments

The majority of users in the domains covered by this study are involved in research and de-
velopment of some sort. They spend most of their time devising new ways to perform some image
understanding task, or constructing new systems to address a specific image understanding prob-
lem. Thus their primary interaction with AVIS systems will occur in the course of building and
testing a either a new computational primitive or a complete system. In order to use the accelera-
tors effectively, they need software tools that allow them to perform these activities with a
minimum of effort.

In this section we review tools that support assembling systems from pre-existing compo-
nents. This activity may be sufficient to allow prototyping an application or a new computational
primitive, if the set of available components is rich enough. If new components must be created,
the user may need to resort to lower level tools. Experience has shown that good development en-
vironments are still very useful however, because they make it easy to test and evaluate the new
component once it is built. They also make it easy to reuse the component in hypothetical future
applications.

Development environments for image processiiig have a long history [28] and may provide
take on a variety of forms, depending on the type and level of service they provide. They general-
ly perform one or more of the following functions:

21

» encapsulating primitives. Most image processing environments provide encapsulated
implementations of standard image processing operators such as convolution, point
transforms et cetera. The primitives may be presented via subroutine libraries, as stand-
alone executable programs, or as primitive commands in a textual or graphic shell.

 analysis and display. Most systems provide some facility for examining the results of
image computations, e.g. displaying images on a monitor. Some systems include sophis-
ticated data analysis and plotting tools.

* interactive composition of primitives. In addition to the above, most modern systems
provide the ability to invoke sequences of primitive operations interactively and observe
the results.

+ software engineering. The largest and most complex systems provide support for large
development efforts, and include facilities for version control, image and code database
management, and automatic interface generation.

In the remainder of this section we review several state-of-the-art environments that are either in
widespread use or appear likely to succeed because of widespread support among researchers.
The list is not exhaustive but is intended to cover the range of types of systems that are reasonable
candidates for AVIS delivery environments. Along with each environment we include a discus-
sion of features affecting its suitability for the AVIS program and, where appropriate, an outline of
how it might support some of the sample applications identified in the domain study of section 2.

3.1.1 The Image Understanding Environment (IUE)

The Image Understanding Environment (IUE) is a massive object-oriented software system
designed to provide a common substrate for image understanding research and development. It
will consist primarily of a C++ class library of image objects and geometric primitives, with asso-
ciated algorithms for their manipulation. A user interface and data exchange tools will be built on
top of these core objects. IUE development being managed by Amerinex Artificial Intelligence,
Inc., with ADS, Carnegie-Mellon University, and Colorado State University as major subcontrac-
tors. The system is currently scheduled to be completed in 1996. Current documentation and
status information can be obtained from Amerinex at http: //www.aal.com.

The fundamental goal of the IUE program is to improve the productivity of IU researchers by
allowing them to share and/or reuse code. It also encourages a standard view of what the major
conceptual issues in the design of an IU system are. This shared vocabulary will provide second-
ary benefits to education, and will encourage transfer of IU technology to industry. At present the
IUE is not designed with real-time system building in mind. However, the object-oriented nature
of the system should facilitate use of special hardware, and a group of European researchers is in-
vestigating issues raised by real-time applications.

The main components of the IUE are the class hierarchy, the data exchange facility and the
task facility.

The IUE Class Hierarchy

The IUE class hierarchy is the major intellectual contribution of the IUE to image under-
standing research. It is intended to capture most of the important entities in the IU problem:
objects, sensors, and the image formation process. It is dauntingly complex, with over five hun-

22

dred distinct object types, and it is unclear whether the average researcher will be able to make
use of its power. The design appears to be very sound, however, and IU researchers seem eager to
make use of the system and contribute to its success.

The class hierarchy is documented in an evolving document available from Amerinex [34].
The most important functional classes of the system are:

+ Spatial objects. Conceptually, an IUE spatial object is a point set in an n-dimensional
space. Spatial objects are typically used to represent world objects being imaged. Howev-
er, they are extremely general and can in principle represent abstract mathematical
concepts such as manifolds, hyperspheres, or other useful objects. Important subclasses of
the general spatial object include points, curves, surfaces, and volumes. Spatial objects
can be constructed from other objects by set operations in the manner of constructive solid
geometry. Methods are provided to find the nearest point on an object to a probe point, and
to find the surface normal at a point.

+ Images. IUE images are extremely general; they can include multi-band, volume, and/or
time series data, and can be grouped into complex structures such as pyramids, mosaics
and so on.

* Image features. The IUE feature class is intended to capture the data structures needed
for intermediate-level vision. Typical examples might include line segments, regions, or
parametric curves. Image features are a subclass of spatial object and inherit all of the
methods that apply to the parent class. In addition, they store information that describes
how they relate to the image from which they were extracted.

» Sensors. The IUE distinguishes between sensors considered as physical devices and sen-
sors considered as sources of data. The physical sensor is considered to be a function that
maps a portion of some space containing spatial objects and attributes to a space contain-
ing values, i.e. an image. In its role as data source, the sensor is viewed as a function of
location (i.e. image coordinates) that returns a value, combined with attributes that de-
scribe the state of the sensor when the image was formed.

* Coordinate systems. Most IUE objects are defined in terms of a coordinate system. The
IUE provides classes for defining various types of cartesian and polar coordinate systems
and for mapping objects from one coordinate system to another.

The IUE Data Exchange Facility

The IUE defines a standard format for exchanging IUE objects between dissimilar hosts, stor-
ing them in files and so on. The format relies on a LISP-like syntax expressed in ASCII
characters, so it is extremely portable. Binary data is not permitted, so IUE DEX files are not suit-
able for storing image data except for transport. DEX files can contain references to other files,
however, so it is relatively easy to construct local formats that use efficient binary storage for pix-
el data, and human-readable ASCII storage for structure definitions and higher-level objects.

The IUE Task Facility

The IUE is unusual in that it allows computations themselves to be objects, rather than con-
cealing all computations within methods of the data structures they apply to. The primary
mechanism for this is the Task object class, which encapsulates a single large-grain image pro-
cessing computation. A specialization of the Task is the Data-Generator class, which can serve as

23

a source of data for the computation, and provides for iteration and looping in the dataflow. Col-
lections of Tasks can be interconnected to form a Dataflow-Graph, which can specify a complex
computation as a sequence or network of Task operations. Once connected into a Dataflow-
Graph, a set of tasks can be collapsed into a single Compound-Task, which can itself be inserted
into another Dataflow-Graph.

The class definition for each Task object defines the interface to the computation, such as its
required inputs and the outputs it produces. It thereby provides the information necessary to insert
the task into a dataflow graph, where the outputs of one task can form the inputs for others. The
inputs and outputs are of the Task-Parameter class, and can take on any value. Tasks also have at-
tributes to facilitate user interaction with them, such as a documentation string, a list of keywords
related to the task’s semantics, and an icon for use in a graphical user interface. The status and his-
tory of a computation can be tracked via the use of the task’s Process-Status attribute and by
examining the explicitly represented parameters.

The actual implementation of a Task’s algorithm is not contained within the Task itself, but
rather in its Process-Specification attribute. The process specification contains the executable
code for the algorithm, which may be in Lisp or C/C++, may be a dataflow graph itself, or may
even be an external process that can potentially be executed on a separate processor. Although the
IUE itself will not provide parallel execution of tasks, the Process-Specification mechanism has
the potential to allow users to define parallel implementations themselves. The parallelism can be
internal to the task (by implementing the algorithm on a special- purpose accelerated processor),
or be external to the task (by running multiple tasks in parallel on separate processors). The sepa-
ration of the interface (the Task class) from the implementation (the Process-Specification class),
enables the definition of different implementations of a given task, depending on the available
hardware.

Related tasks can be organized into Task-Groups. A proposed list of IUE defined Task-
Groups includes

» Display, browsing, and editing tools that allow the user to explore IUE objects or the IUE
class hierarchy.

» Image processing routines that perform low-level image computation
» Segmentation and grouping operators for intermediate-level computations
* Model fitting tasks that fit parametric models to data

* Matching tasks that perform search to find mappings between collections of image fea-
tures and object models

* Modelers that aid the user in constructing object descriptions for testing or modelling
purposes.

Users will be able to define additional task groups as necessary.
Image Operators

A major question that remains open as of this writing is what low-level image processing op-
erations will be available in the Image Processing task group or as methods of [UE Image objects.
The original plan was to implement the Programmers Imaging Kernel standard (PIKS, see be-
low), but there are problems with the PIKS data format and with the amount of work required to

24

implement the PIKS standard. The possibility of adopting the low-level methods from Khoros
(see above) is being explored.

For intermediate-level computations, table 3 shows a set of algorithms that have been pro-

Table 1: Proposed intermediate-level primitives for IUE

task task implementations

Edge detection and linking | Roberts, Hueckel, Sobel, Nevatia-Babu, Burns, Canny

Corner detection Binford-Horn, Kitchen, Moravec, Plesey, Noble

Region growing Brice-Fennema, Price-Ohlander, Feldman-Yakimovsky, Horow-
itz-Pavlidis, Hanson-Riseman

Curve/segment construction | Roberts, iterative endpoint, Ramer, Horowitz-Pavlidis, Hough,
Brady-Asada, B-spline, Bookstein, Porril

posed for inclusion as Tasks. This portion of the IUE specification is particularly unstable,
however, so this list may change radically in the final implementation.

IUE and the sample tasks

The IUE is by far the most ambitious of the software environments discussed in this report.
Thus it is not surprising that it offers quite good support for the sample tasks identified in section
2. Tt should be noted that the IUE has not actually been implemented, however, so discussions of
its usefulness are necessarily speculative. Here we outline strategies for implementing each of the
sample tasks using IUE tools, and discuss how well the IUE supports each task. The discussion 1s -
based on the IUE Class Definitions (IUE-CD) document [34], version of October 1994.

Image Understanding Benchmark (IUB). The IUB tasks includes subtasks in early vision, in-
termediate vision, and high-level vision. All of these are addressed by the IUE class library. The
low-level operations are suited for implementation as IUE Tasks (IUE-CD Chapter 15). The inter-
mediate level operations can be based on IUE Image Feature methods (IUE-CD Chapter 5). The
high-level processing can be done by instantiating IUE Spatial Objects (IUE-CD Chapter 4) and
writing the necessary C++ code to reason about these spatial objects.

In the IUB, initial processing is done over both a depth image and an intensity image. Both of
these images can be instantiated as TUE-2d-scalar-images (IUE-CD p.93). Using the TUE task
mechanism, the depth image will be fed through a median filter, and then a gradient magnitude
image is created by convolving the median filtered image with Sobel kernels in both the X and Y
directions. The gradient magnitude image is then thresholded to obtain an edge image. The
JUE_dataflow_graph (IUE-CD p.554) that produces the edge image from the raw depth image is
depicted in figure 2a).

The initial processing on the intensity image consists of labeling the connected components
in the image, and computing the k-curvature of the component boundaries. Labeling the connect-
ed components can be done by an IUE Task implementing a 4-connected component algorithm. It
it not yet known whether the IUE will provide such a task, or whether the IUB implementors will

25

raw intensity image

y

connected
raw depth image components

Y Y

median filter k-curvature
3 v
Gaussian
Sobel X Sobel Y smoothing
[* * | * I
magnitude derivative
* Zero-crossings threshold
threshold L v I
) logical AND
edge image
corners
a) depth image preprocessing b) intensity image

preprocessing

FIGURE 2. TUE task networks for Image Understanding Benchmark preprocessing

need to write it themselves. The regions themselves can be represented as IUE _2d_image_regions
(IUE-CD p.370). The boundaries of the components are processed to determine the k-curvature at
each boundary point by using a table look-up to estimate the angle that the boundary forms at that
point. The IUE_2d_image_region class has methods that return both the inner and outer bound-
aries of an image region, which can be used in this task. The raw k-curvature values are then
smoothed by a 1x7 Gaussian mask. Then one takes the first derivative of the result by convolving
with a mask of {-1,1}, and zero-crossings in the derivatives are found. Corners are taken to be
zero-crossing points whose smoothed curvature exceeds a given threshold. The
IUE_dataflow_graph implementing these operations is depicted in figure 2b. The output of this
graph is a set of corners, which are objects subclassed from an IUE image feature class such as the
IUE_image_vertex class (IUE-CD p.378). Note that IUE tasks are not restricted to having images
as their inputs and outputs.

The IUB’s intermediate level operations use the corners found above to determine the loca-
tions of rectangles in the image. The Graham scan algorithm is to be used on the corner point sets,
and additional processing is done to see if the corners-can be grouped into a rectangle. The IUE
does not have direct support for these algorithms, which would need to be implemented as user
code. The rectangles can be instantiated as IUE_2d_rectangles (IUE-CD p-302). Once the rectan-
gle 1s found, its intensity and other statistics are extracted from the image. A subgraph match
between the resulting set of rectangles and a set of candidate models is performed. The IUE does
not support subgraph matching directly, and this step must be implemented by user code.

26

Confirmation of the model selected is performed using a top down search incorporating a
spatially local Hough-transforms. Using the hypothesized rectangle locations, a region of the
depth image is selected for application of a hough transform for lines. The edge points found in
the region of the depth image can be added to an IUE_2d_pointset (IUE-CD p.268), which has a
hough_transform_lines method that returns a set of lines. These lines can be checked against the
hypothesized model and the results are then printed.

It is still unclear to what the extent the still evolving IUE will implement the IUB algorithms.
However, the necessary data structures enabling one to implement the IUB within the IUE frame-
work will be available.

Software Library for Appearance Matching (SLAM). The IUE class library will not provide
direct support for the high-dimensionality space manipulations needed for SLAM. Most of the
IUE spatial object classes have a single abstract superclass, which cannot instantiate members di-
rectly. The IUE will then implement two instantiable subclasses, a two-dimensional version, and a
three-dimensional version. An example of this is the IUE_vector class (IUE-CD p.261), which is
abstract, and the classes IUE_2d_vector and IUE_3D_vector, which are instantiable. Most of
SLAM deals with arbitrary dimensional spaces. Although the IUE_vector class can be subclassed,
most operations on SLAM vectors will not be supported directly by the IUE. Hence, using the
IUE would require that most of the SLAM application be written as C++ code. However, the IUE
model is very general, so the SLAM application can be written with the IUE framework.

The first step in the SLAM application is to prepare an image database as feature vectors. The
images can be instantiated as members of the IUE class IUE_2d_scalar_image (IUE-CD p.93).
Each image is preprocessed if necessary (probably via IUE Tasks, IUE-CD Chapt.15), and then
converted into a vector for further processing. The IUE has an abstract class IUE_vector (IUE-CD
p.261) which can be subclassed to provide the data structure needed to contain the feature vectors.
We will call this arbitrary length vector subclass the SLAM_vector. The SLAM_vector should
have a constructor that takes as input a IUE_2d_scalar_image and produces the corresponding
vector.

Next one would use the collection of SLAM_vectors to construct the eigenspace. The eigens-
pace can be thought of as a coordinate system, so it is appropriate to use the IUE coordinate
system object (specifically, the IUE_nd_cartesian_coordinate_system class (IUE-CD p.487)) as a
superclass for this eigenspace. The current version of the [UE-CD document does not specify
whether this class is abstract or instantiable, and only specifies one attribute, an integer represent-
ing the dimensionality of the coordinate system. We assume that one could create a
SLAM_coordinate_system as a subclass of IUE_nd_cartesian_coordinate_system. One construc-
tor for the SLAM_coordinate_system class would take as input a collection of feature vectors,
and an indication of how much to truncate the basis of the eigenspace to form the
SLAM_coordinate_system.

Once the SLAM_coordinate_system object is instantiated, feature vectors can be projected
onto it, using a transform() method of the SLAM_coordinate_system class. Sequences of project-
ed points can be joined to form B-spline interpolated manifolds. These are n-dimensional
manifolds in m-space, with m > n. The IUE object hierarchy only has one- and two-dimensional
manifolds in two-"and three-space. Examples of these are curves (1-D manifolds, IUE-CD p.270)
in 2 and 3-space, and surfaces (2-D manifolds, JUE-CD p.307) in 3-space. Curves and surfaces
both have instantiable b-spline IUE subclasses, but the fixed dimensionality of these objects

27

makes them inapplicable to SLAM. Creating arbitrary dimensional manifolds within the IUE re-
quires subclassing the superclass of curve and surface, i.e., the abstract class IUE_spatial_object
(IUE-CD p.232) to create a SLAM_bspline class. This class contains the attribute coordsys,
which in our case would be a pointer to the SLAM_coordinate_system constructed in the previous
step. The IUE_spatial_object class contains several methods which are useful for SLAM, but are
of course unimplemented, since the IUE_spatial_object class is abstract. Of particular interest is
the nearest_point method, which accepts a point as input, and returns the point on the spatial ob-
ject closest to the input point, and the nearest_distance method which returns the distance to the
nearest point to the input point.

Given the classes described above, an IUE version of the SLAM application written in pseu-
do C++ might look as follows:

// Learning step

SLAM_coordinate_éyétem eigenspace [MODEL_NUM]; // eigenspaces for each object
SLAM_bspline manifold[MODEL_NUM] ; // the manifolds for each object

for (i = 0; 1 < MODEL_NUM; 1i++) {

// Convert the images to feature vectors

list<SLAM _vector> full_dimensional_vect_seq;

for (all IUE_2d_scalar_images IMG of model[i])
full_dimensional_vect_seg->insert (SLAM_ vector (IMG));

// Construct the eigenspace
eigenspace[i] = SLAM coordinate_system
(full_dimensional_vect_seq, truncation_amount) ;

// Project images into eigenspace

list<SLAM vector> reduced_dimensional_vect_seq;

for (all vectors V in full_dimensional_vect_seq)
reduced_dimensional_vect_seg->insert (eigenspace.transform(V));

// Construct the manifold

manifold[i] = SLAM bspline(reduced_dimensional_vect_seq);

// Recognition step

int nearest_model; // index of the nearest model
SLAM vector nearest_point; // location of nearest point on nearest model
double min_distance; // distance to nearest point on nearest model

for (all images IMG to be recognized) ({

min_distance = MAX_DOUBLE; // initialize min_distance
SLAM_vector feature_vect (IMG); // construct feature vector
for (i = 0; i < MODEL_NUM; i++) { // for all models:

// project the feature vector into the eigenspace
SLAM_vector projected_vect = eigenspacel[i]->transform(feature_vect):

28

// find the distance to this model
double distance = manifold[i].nearest_distance(projected_vect):

// Save the best match so far
1if (distance < min_distance) ({
min_distance = distance;
nearest_model = 1;
nearest_point = manifold[nearest_model] .nearest_point (projected_vect);
}
}
// output best match
print_answer (nearest_model, nearest_point, min_distance);

}
A good implementation of SLAM using the IUE would be generally useful to the IUE com-

munity, since it would require implementing n-dimensional versions of the abstract classes vector,
curve, etc.

Hierarchical Tracker

As is the case with the other sample applications, the JUE has data structures that can be used
in the tracking application, but most of the algorithms will need to be coded by the application
programmer. The tracker is a two-stage algorithm, with low and high-level processes. The low
level performs a coarse-to-fine search in a Gaussian pyramid. The IUE has an abstract class
IUE_pyramid_image (IUE-CD p.88) that can be subclassed to serve as the data structure that
holds the Gaussian pyramid. Constructing the pyramid itself will probably be a method of the IUE
image class. If not it can be accomplished via a IUE Task graph consisting of repeated Gaussian
convolution followed by subsampling. The IUE_pyramid_image class supports get and set opera-
tions on pixels and windows, through which the remainder of the low-level tracking algorithm
(SSD, bilinear interpolation, etc.) can be implemented. It is also likely that the IUE image class
will contain operators to perform these operations directly; however, the IUE image operator set
has not been defined as of this writing.

The high level algorithm is a feature-based approach based on matching image features
against a model. The image features can be represented using the IUE image feature data types
(IUE-CD Chapter 5). Extracting the features requires convolutions and connected component al-
gorithms that can be done as IUE Tasks. The output of the connected component algorithm can be
instantiated as JUE_2d_image_regions (IUE-CD p. 370). The IUE_2d_image_regions can be fil-
tered on the necessary criteria. The high level process looks for appropriate spatial relationships
between image features. These relationships can be instantiated as ITUE_2d_perceptual_groups
(IUE-CD p.374), which maintain such information as the orientation of the group and its bound-
ing box.

The methods described above will allow the tracking computations to be performed using
IUE data structures and methods. However, the IUE is explicitly not intended for real-time appli-
cations, and hence has no facilities for expressing the idea that the two tracking algorithms
prescribed in the task description are to be executed concurrently, or for bounding their running
time. An IUE-based implementation of the tracker would have to rely on operating system facili-
ties for these aspects of the task. It is also worth noting that the IUE objects and methods are
designed to favor generality and reusability over execution speed. Thus they may impose a per-
formance penalty that is unacceptable for real-time tasks. Given the relative immaturity of the

29

IUE, it is difficult to determine the extent to which this will be a problem, or to determine whether
the task computation will be supported directly by IUE methods. However, it is clear that the nec-
essary data structures needed for the computation will be available.

3.1.2 Khoros

Khoros [41,42,24] is an environment for developing image and signal processing applica-
tions, and for examining and visualizing data. It was developed at the University of New Mexico
under Prof. John Rasure, and is now distributed by Khoral Research Incorporated. It is available
under a variety of licensing plans that vary in cost and in the rights that they confer; however, a
basic license to use the software is free.

Khoros consists of a complex hierarchy of software tools and libraries. It provides facilities
for rapid prototyping of image processing applications, for displaying images or plotting data, and
for creating new image processing algorithms and integrating them into the Khoros environment.
It also provides support for building distributed interactive tools (groupware), and CASE facilities
such as automatic generation of graphical user interfaces and documentation.

Khoros has achieved tremendous success in several communities of interest to the AVIS pro-
gram. In particular, it has been adopted by many ATR groups, and is now required in many ATR
contracts. In part because of this, Khoros continues to evolve rapidly. As of this writing KRI is in
the early stages of releasing Khoros 2.0, which is a redesign and reimplementation of almost the
entire system. The discussion presented here is based on Khoros 2.0. We caution that the docu-
mentation for 2.0 is incomplete and that some of the observations made here are based on our
inferences about how the final system will work. More up-to-date information is available from
the Khoros Web site, http://www.khoros.unm.edu, and via the internet newsgroup
comp.soft-sys.khoros.

Existing Khoros documentation proposes a variety of ways of partitioning the system into
components. In our view the primary features of the system are:

+ The Cantata visual language. Cantata is a sophisticated graphical shell that allows users
to construct complex networks of image processing programs interactively. It also serves
as a launch point for other Khoros tools

» The program library. The programs that Cantata users manipulate are drawn from a huge
library of programs for image processing, signal processing and matrix computation.

» Display and visualization tools. Results of Khoros computations can be viewed using a
variety of image display, image editing, and 2D or 3D plotting tools.

* Code generators. The Khoros library can be extended with user-supplied programs that
are kept in user-controlled file storage. Khoros provides several tools for generating the
various hooks, command-line options and descriptor files that are needed to make the pro-
grams accessible within Cantata. The tools.include programs for generating graphical user
interfaces that are compatible with the look and feel of the rest of Khoros.

* Programming services. Programmers writing under Khoros have access to libraries of
low-level routines that support structured /O and that provide host-independent access to
operating system services. In most cases they can also call library routines from C code
that implement the functionality of the Khoros program library.

30

Cantata

Cantata is by far the best known and most visible component of the Khoros system. It is a vi-
sual programming language based on coarse-grained dataflow, with extensions for iteration,
conditional execution and procedural abstraction.

The Cantata interface contains a workspace canvas and a top-level menu. A Cantata program
is defined by a directed graph, where each node represents an operator (a library function) and
each arc represents the flow of the data. After a given operator processes its data, the result is
passed out along its output arc to the next node for processing. Execution continues until all of the
operators have been fired. Cantata can instantiate any of the library functions into its workspace,
although not all of them are included in the top-level menu.

Each node is initially displayed on the workspace as a block with various icons on it. At this
point, the operator is in its glyph state. A glyph is the iconic representation of an operator. Be-
cause operators may have a large amount of information associated with them (e.g. control
parameters), they may be displayed as forms at any time by clicking on one of the glyph icons.
Forms contain all the detailed information about a given operator in an editable pop-up work-
sheet. Using glyphs yields a more compact representation of the application, yet forms are
necessary to edit operator information. The glyph/form representation addresses the need for both
simplicity in the graphical representation and detailed information for each of the routines. It pro-
vides an effective method for maintaining a lot of information in a small space and accessing it
relatively quickly.

In Khoros versions prior to 2.0, the decision about when to execute the programs making up
a Cantata graph was made by a scheduler built into Cantata. When the user enabled execution of
the graph, the scheduler traversed the list of ready nodes, spawning processes by local or remote
fork/exec. The scheduler was responsible for insuring that no node ran before its inputs were
available, and for interpreting the action of control nodes such as IF and LOOP. In version 2.0 the
mechanism has been changed to move decision-making closer to the individual nodes. This is in-
tended to facilitate distributed execution of Cantata graphs. As of this writing, flow of control
operators are not supported in version 2.0.

The Program Library

Part of the motivation for Khoros was to encourage creation of a set of reusable programs -or
common image processing tasks. It has succeeded to such an extent that Khoros now partitions its
libraries into ‘toolboxes’ of related programs. This allows code that is specialized for e.g. GIS ap-
plications to be kept separate from more general-purpose programs. The complete list of routines
is too large to reproduce here, but includes all of the standard image processing primitives (see
discussion of PIKS below) as well as matrix operations and test image generation routines.

Routines in the program library consist of stand-alone UNIX executables that follow particu-
lar input/output conventions. In general the program consists of a main program that interprets the
arguments and then calls a library routine to do the actual computation. In most cases the library
routine can also be called from any C program. In our conversations with Khoros users we found
some who never use Cantata, preferring to access the system exclusively via the library APIL.

Display and Visualization tools

Khoros supports interactive exploration of image and matrix data via the editimage image ed-
itor and the xprism2 and xprism3 plotting tools. Editimage accepts image files in Khoros

31

Visualization/Image File Format (VIFF) format. It can display images using a variety of color ta-
bles, and allows the color table to be modified interactively. It also provides display functions
such as panning over large images, zooming, and thresholding.

Xprism2 is a two dimensional plotting package which features 2D, discrete, bar, polymeric,
and linemarker plots. There are several acceptable forms of input data: image files, files with
functions or data points, and functions entered from the keyboard. The data may be entered as
(X,y) pairs or just y points. Xprism2 provides an interface for scaling, rotating, and translating
graphs. It also allows the user to change fonts, colors, axes, marker, line, and plot types, and titles.
Plots may be saved in Image File Format and output may be sent to various printer types.

Xprism3 is a three dimensional plotting tool which features 3D, scatter, impulse, mesh, hori-
zon, surface, contour and color mesh plots. The input data forms are the same as Xprism2.
Xprism3 accepts (X, y, z) triplets or just z data. It allows the same modifications as Xprism?2
through a GUI. In addition, it provides a way to change the perspective along the three axes. This
feature is impressive because of its speed.

Code Generators

Khoros provides several programs to help automate the task of creating a Khoros-compatible
application and putting it into the Khoros library (or more properly, into a toolbox). Such pro-
grams may make use of Khoros facilities to provide a graphical user interface with menus,
buttons et cetera. A GUI created in this way can be laid out interactively using yet another tool.
Although each tool is a stand-alone program, they are typically launched from within Cantata or
another tool.

The code generators provided with Khoros include:

* craftsman - a tool for managing toolboxes. Craftsman allows the programmer to create,
copy and destroy toolboxes, and to invoke Composer on their contents.

e composer - a tool for editing toolbox contents. Composer’s primary task is to insure that
the various files associated with a Khoros program (including source code, documenta-
tion, and user interface specification) are kept consistent and are stored in the right places.
It also checks library dependencies in the manner of Unix make.

* guise - a tool for designing Khoros-compatible GUIs. Guise allows the programmer to
place graphical widgets on a pad, lay them out as desired, and connect their functionality
to the parameters of a Khoros library program.

Programming services

Khoros provides abstraction layers that conceal basic operating system services behind a sys-
tem-independent API. This eases porting Khoros applications to new architectures. Version 2.0
extends the idea by providing a Khoros-aware I/O subsystem that allows user programs to read or
write Khoros objects without having to understand the associated data types. Among other things,
the I/O system allows programs to communicate via temporary files, shared memory objects, or
sockets without any explicit knowledge of the communication mechanism being used. It also al-
lows automatic coercion of data into the type and size needed for the application. For example, a
program that computes Fourier transforms of images can assume that its input is an image of type
Complex, and that the row and column dimension is a power of two. The I/O system will auto-

32

matically coerce the pixel type to complex during loading, and will resize the image by padding
or interpolation if needed.

Khoros 2s a development environment

Because Khoros is part of the working environment of many potential AVIS users, we have
been at pains to work with the system and to ask current users what facilities they find especially
useful. The most commonly cited virtue of the system is the large library of image processing
primitives. The fact that implementations of most standard operators a) exist and b) are cleanly in-
teroperable is tremendously useful. The second most popular feature of Khoros is the Cantata
visual programming environment. Users find Cantata very effective as a means of assembling
Khoros and user programs into larger applications.

The Khoros users with whom we spoke were less enthusiastic about the code generation tools
and programming support. They felt that the learning curve was excessively long, that the large
number of tools was confusing, and that the functions of many of the tools overlaps or is unclear.

It is perhaps unfair to criticize the documentation for Khoros 2.0, since the system is early in
its release cycle and will doubtless improve in later releases. At present, however, the printed doc-
uments are remarkably frustrating to use. There are over two thousand pages of documents in the
current release, but the documents are unindexed and highly repetitive, and their organization is
unclear. In general they consist of functional descriptions of pieces of software, and are of little
use in answering questions of the form “how do I do X?”. There is a desperate need for more code
examples and tutorials that will help users find the information they need.

Khoros and the sample tasks

Like most of the systems reviewed in this section, Khoros is fundamentally oriented toward
Jow-level image processing. Thus it only contains primitives for parts of the sample tasks de-
scribed in section 2. In evaluating Khoros (and the other systems) as implementation
environments for these tasks, the important questions would seem to be

+ what portions of the task are supported?
» how much work is involved in expressing the supported subtasks? and

« how will any new code that is required fit into the computational model(s) that the sys-
tem provides?

There are three basic approaches that can be taken to implement the sample tasks under
Khoros. The first is to work within Cantata as much as possible, and to write additional Cantata-
callable routines to handle the unsupported parts of the task. The problem likely to arise here is
that although Cantata does provide some control flow capability, it is far less flexible than a con-
ventional procedural language. The second option is to work in C or C++, making use of Khoros
services via the Programming Services API and implementing the required new code as Khoros-
compatible library routines. This approach gives up the advantages of an interactive rapid proto-
typing environment, but provides much more flexible flow of control. Problems may still arise
due to the lack of a rich set of high-level data structures in Khoros. The third option is to imple-
ment the new code in more or less raw C/C++. This solves the data structure problem but is least
likely to result in code that can be reused for other applications.

It is unfortunate that there is apparently no way to combine straight-line C code with image
computations defined using Cantata. There is a facility for converting a Cantata workspace to an

33

encapsulated form which can be run from the UNIX command line, but it does not appear possi-
ble to call a Cantata workspace from an arbitrary C program. This means that programmers must
choose between the interactivity of Cantata and the flexibility of C code. They cannot have both
in the same program.

The Image Understanding Benchmark

Khoros provides relatively little direct support for the IUB task. For the depth image prepro-
cessing step (see figure 2), the vgmed, igradient and kthreshabove operators can
perform the required median filter, Sobel gradient estimator and gradient threshold on floating
point data. For the intensity image, connected component labelling can be performed using via-
bel; note however that vlabel is intended to use a very general notion of region uniformity,
and that it may be very inefficient for the IUB task. In addition, it will not produce exactly the
same set of integer labels as the algorithm described in the benchmark.

The rest of the preprocessing and hypothesis formation subtasks will require new code. If the
implementation plan involves breaking the tasks down into multiple Khoros-compatible routines,
the Khoros data services will provide some support for passing geometric primitives (e.g. lists of
vertices or convex hulls) between different sections of the program. In particular, the Khoros Ge-
ometry model (see Data Services in the Khoros documentation) would provide a convenient way
to represent object models, chain codes, and convex hulls.

The higher level portions of the task mostly involve graph manipulations and will need to be
written from scratch, using data structures defined by the programmer. However, some of the
higher level steps involve probing the image to test the reasonableness of hypotheses, and these
operations can benefit from Khoros routines. The first probing step searches a window around the
expected location of a rectangle in the depth image, and counts pixels that are too near, far enough
and too far to be part of the rectangle being sought. The counts form the basis of a match strength
for the rectangle. The windows can be extracted with vextract, kelip can be used to classify
pixels into the desired classes, and kstats can be used to count the pixels. The second probing
step involves performing a Hough transform on local regions of the thresholded depth gradient
image. Khoros provides no direct support for this step, but adding a Hough transform routine to
the library would obviously be useful.

SLAM

The SLAM task involves considerably more image manipulation than is required by the IUB.
Consequently, Khoros does a much better job of supporting it. SLAM offers the option of prepro-
cessing training or input images using a variety of normalization, smoothing, derivative and
transform operators. All of the desired operators are available as Khoros primitives. The SLAM
GUI could be implemented fairly straightforwardly using the Khoros GUI-building tools.

In addition to its image and geometry operators, Khoros provides a small library of numeric
routines. These can be used to implement the training step of the algorithm. The average image
could be formed and subtracted from the training image using pixelwise arithmetic operators. A
new routine would need to be written to construct the training vectors from the input images. The
basis set could then be determined using mmul (matrix multiply) and meigen (eigenvectors and
values). Note -however that meigen is a very general routine, and that code that takes advantage
of the symmetry of the training matrix would be much faster. A routine would have to be written

34

to extract the k eigenvectors with maximal eigenvalues. Mmul could then be used to project the
training images onto the set of eigenvectors.

Khoros provides no explicit support for building the manifolds representing the projections
of each training set on the eigenspace(s). The Geometry data types could be used to represent the
resampled manifolds, however. New routines would have to be written to perform the matching
step in which the projections of new images are compared to each manifold.

Hierarchical tracker

Implementing the hierarchical tracker under Khoros raises efficiency issues that were not as
important in the other two tasks. In earlier versions of Khoros each operator was explicitly identi-
fied with a distinct UNIX process, and all communications were mediated by the UNIX file
system. The evolution toward version 2.0 has relaxed this, so that communications are now ab-
stract and can be implemented by (e.g.) shared memory objects. Khoros operators are now less
clearly tied to processes, and can in any case be called from C code in their library versions. Still,
the default assumption in the design of Khoros has been that the operators are large, heavy-weight
constructs, and that the data objects they manipulate are large. These assumptions have led the
Khoros designers to stress abstraction, for example by arranging for Khoros data objects to be ac-
cessed by what amount to database operations. This helps users write code that works for a wide
variety of inputs; however, it imposes overhead that may be disastrous for time-critical applica-
tions that manipulate small images or regions of interest. In the discussion that follows we ignore
these issues, but caution that they may preclude using Khoros for any real-time application.

The tracker is divided into separate low-level and high-level tasks, which run asynchronous-
ly. Although the mechanism is not yet clear, it appears that Khoros 2.0 will be able to support
asynchronous execution. The low-level task begins by constructing a Gaussian pyramid. This can
be done in Khoros by using vconvolve and kshrink to repeatedly blur and subsample the image.
Separable convolutions can be used to make the computation efficient. The next step of the low-
level task is to extract target and search pyramids from the current and new image pyramids, using
bilinear interpolation for subpixel accuracy. Eventually the Khoros kresample routine will be
able to do this, but at present it does not support interpolation. Finally, the low-level task performs
coarse-to-fine search for the offset between target and search pyramids that minimizes the pixel-
wise sum of squared differences. SSD computation could theoretically be done using vextract
{o extract windows, karith?2 to subtract them, ksqr to square the result, and kstats to com-
pute the sum of squares. In practice this would be hopelessly inefficient, and a new routine will be
needed.

The high-level tracking task looks for groups of features that match its model of a face. The
task begins with several convolutions, which can be performed using vconvolve. Zero crossing
detection can be performed by a combination of convolution and thresholding, or a new routine
can be written. The remainder of the high-level task consists of connected component [abelling
and search, and would have to be done in user code.

3.1.3 The Programmer’s Imaging Kernel System

The Programmer’s Imaging Kernel System (PIKS) is an API (applications programming in-
terface) and a set of associated data types for computing on images and image-derived data
structures. It provides operators for image analysis, manipulation, enhancement, and filtering,

35

plus a small number of functions for pixel classification and grouping. It includes most of the op-
erators used in low-level computer vision computations, and hence is a good source of
information about what sort of operations AVIS users need to perform.

PIKS is part of an emerging ISO standard called the Common Architecture for Imaging
(CAI). The full CAI standard is divided into three volumes. The first (ISO/IEC 10287-1) defines
an abstract model of image computing and a set of data structures for representing images and im-
age-related information. The second volume (ISO/IEC 10287-2) defines the PIKS APIL The
definition is in terms of abstractions defined in volume one and does not include specific language
bindings. Volume three (ISO/IEC 10287-3) defines an interchange format (IIF) that allows CAI
data to be stored or shared between applications. As of this writing, volume 2 (the PIKS API) has
been formally accepted as an ISO standard. The other two volumes are still open for comment.

The PIKS API can be logically broken down into data type definitions, fools, operators, and
execution control facilities.

Data types include images, arrays, lists, histograms, lookup tables, region-of-interest (ROI) de-
scriptors. CAI images are logically five-dimensional arrays, with the indices conventionally
interpreted as (X,y,z,t,b), i.e. volume, time, and spectral band.

Tools are routines that perform utility operations such as generating test images, filter kernels and
SO on.

Operators perform transformations between the various PIKS data types. They include a wide
selection of standard image-to-image operators, plus statistics-gathering routines and a limited set
of intermediate-level operators. Most operators allow images to be associated with a region of in-
terest (ROI) and an index tuple called a match point. The ROI specifies the locations at which the
operator is to be applied, while the match point specifies the logical origin of the image.

Execution control facilities are designed to allow PIKS operators to be executed efficiently on
multiprocessor systems. They allow applications to request asynchronous execution of multiple
PIKS operators, or to group sequences of PIKS operators into named collections which can be in-
voked in the same manner as primitive operators.

The PIKS operator set is comprehensive, including most of the important image operators in
common usage today. We believe that it provides a useful guide to the sort of low-level computa-
tions AVIS users need to perform. The standards document (ISO/IEC standard 12087-2: 1994(E))
provides formal mathematical definitions for each operator. Table 2 contains a summary of the op-

Table 2: PIKS Image Operators

operator name description
global or region statistics:
accumulate sum pixel values over region
histogram 1D compute ﬁistogram of pixel values
histogram 2D compute co-occurrence matrix for specified offset
difference measures sum of squared differences over region
36

-
|

Table 2: PIKS Image Operators

operator name

description

cross-correlation

normalized cross-correlation at a point

moments

mean and standard deviation of pixel values

extrema

max and min pixel values

pixelwise monadic operators:

shift

logical, arithmetic or circular shifts on pixel values

LUT

map pixel values through a lookup table, with optional interpola-
tion

monadic arithmetic

sum, product, difference, quotient, max or min of pixel values
with a supplied constant pixel value

logical

bitwise AND, NAND, OR, NOR, XOR with supplied constant

scaling transformations

remap pixel values according to various laws: negate, square,
cube, absolute value, threshold, clipping, gamma correct, erf,
power law, rubber band, contrast stretch, histogram specification

color conversion

between standard color spaces or by user-supplied color transfor-
mation matrix or non-linear operator

display

false or pseudo color, ordered dither, Floyd-Steinberg dither

conversions

between integer, real, cartesian complex, and polar complex

pixelwise dyadic operators

dyadic arithmetic

pixelwise sum, difference, product, quotient, max or min

dyadic logical

pixelwise/bitwise AND, NAND, OR, NOR, XOR

dyadic predicate

arithmetic relational operators

alpha blend

with constant or pixelwise variable alpha (e.g. chroma key)

pixelwise operators on mul

tiple images:

KL transform

pixelwise Karhunen-Loeve transform of multiband image

average

pixelwise average over any dimension: time, band etc.

Z-buffer merge

select one of two source pixels based on associated depth values

Neighborhood operators:

convolution

2D or general 5D

template match

normalized correlation function

37

Table 2: PIKS Image Operators

operator name

description

median

median or rank filter

gradient

orthogonal or template-based with optional combination rule and
thresholding

Zero crossings

zero crossings of second derivative

morphological operators

boolean or grey-scale open, close, erode, dilate

hit-or-miss replace pixels in a boolean image with any logical function of a
3x3 neighborhood

texture - Laws texture features

equalization adaptive histogram equalization, Wallis statistical difference

pixel classification and labelling:

Bayes or nearest neighbor

classify pixels in a multispectral image

slice

select pixels in some range of values

label

assign unique integer labels to connected components

Resampling and data movement:

copy window

from subregion of one image to arbitrary position in another

zoom expand with pixel replication
resize expand or shrink with resampling
rotate by an arbitrary angle about an arbitrary point, with resampling

simple rotate

flip, rotate by multiples of 90 degrees, transpose

polar

convert between cartesian and polar pixel indices

Region Operators:

Note: most PIKS operators can take a region of interest as a control parameter, specified in any
of several ways including via a bit mask. Thus most operators can be applied on a per-region

basis.

flood flood-fill a region enclosed by an eight-connected boundary

perimeter construct a crack code (analogous to chain code for four-con-
nected images) for an eight-connected region

shape given a region, computed standard shape metrics: perimeter,

area, area inside perimeter, area of any holes, Euler number, cir-
cularity, bounding box, area ratio

38

~

Table 2: PIKS Image Operators

operator name description

moments given a region, compute Hu’s invariant spatial moments

Global Operators:

orthogonal transforms Fourier, Hartley, Cosine, Hadamard

Hough transform Using Duda and Hart angle/distance parameterization

linear filter frequency-domain convolution. Note: kernel generators are pro-
vided for standard kernels, e.g. Butterworth, Gaussian etc.

homomorphic filter frequency-domain convolution applied to log pixel values.

erator set. Tools, execution control facilities and housekeeping routines have been omitted for
clarity. The PIKS execution control facilities are also of great interest. They are discussed in more
detail in section 3.3, which deals with run-time system software.

3.14 VEIL

VEIL is a programming library for real-time image processing on heterogeneous pipelined
image processors. It provides C++ class definitions that allow applications running on the host to
describe image processing computations in terms of coarse-grained dataflow graphs. It translates
these graphs to appropriate accelerator command sequences during program initialization, and al-
lows the application to dispatch command sequences as coroutines.

The computational mode! that VEIL supports is a form of homogeneous synchronous data
flow (HSDF) [30]. In this paradigm, each node of the dataflow graph produces exactly one token
per arc per invocation. VEIL adds the restriction that all data sources are synchronous and fire si-
multaneously. Under this restriction the flow of tokens through the graph does not depend on the
data, 50 a valid execution schedule can be computed statically.

The fundamental activity that VEIL supports is construction and execution of datafiow
graphs. It provides the C++ programmer with two new object classes (data types): graphs and op-
erators. Graphs correspond to single HSDF computations, each consisting of a set of operators

graph nodes) corresponding to image processing primitives. Each operator has some number of

input and/or output ports, which are connected by links to form a graph. Operators also have at-
tributes that specify details of their computation. Some attributes are common to all operators. For
example, every input port on an operator has an attribute that specifies the size and relative posi-
tion of the pixel array that the port processes. Most attributes are specific to individual operator
types, however. These include such things as the masks for convolution or morphological opera-
tions, the contents of lookup tables, and the output scaling for arithmetic operations.

A VEIL application typically begins by creating a graph object and some number of opera-
tors. Next, the operators are inserted into the graph, their attributes are set and their inputs and
outputs are connected to complete the graph. At this point the graph is ready for execution, and
the program may proceed to create other graphs or perform any other initialization it requires. The
program then invokes the VEIL scheduler, which verifies topological correctness and builds an

39

execution schedule for each graph. The scheduler arranges for the graphs to share hardware re-
sources such as memory buffers, lookup table banks and kernel table entries whenever possible.
Finally, the application executes the graph(s) by invoking VEIL’s execution control methods.

The VEIL library supports rapid prototyping via an application called Nimue. Nimue is a
dataflow graphical user interface that allows users to construct, run and modify VEIL graphs in-
teractively. Graphs built with Nimue can be saved to files and later loaded into arbitrary C++
programs. The graph file remains accessible to Nimue. This allows programmers to modify the
image processing that an application does without recompiling.

VEIL differs from most other dataflow rapid prototyping systems in its focus on developing
efficient applications, as opposed to supporting interactive image processing and visualization.
The Nimue graphical user interface is completely separate from the VEIL library, and has no
more access to VEIL internals than any other user-level application. The advantage of this archi-
tecture is that it has encouraged the implementors to address the needs of general applications,
rather than just those of the graphical user interface.

VEIL is also unusual in the way it integrates dataflow descriptions of computations into a
conventional imperative language. From the point of view of the C++ programmer, VEIL graphs
are completely ordinary objects, which can be stored in variables, copied, passed to procedures, or
specialized by subclassing. In this respect they resemble the PIKS chain construct, which also en-
capsulates a (potentially) accelerated dataflow computation. PIKS chains and VEIL graphs differ
in that the latter make the data dependencies explicit, and that VEIL’s synchronization primitives
operate at a higher level than PIKS’ virtual registers.

VEIL and the sample tasks

VEIL differs from the other tools described here in that (at present at least) it 1is targeted at a
specific hardware device: the Datacube MaxVideo system, which is a reconfigurable pipeline-
based image processor. Thus VEIL can only perform those operations that the Max Video system
supports. In general these are limited to simple image processing operations on eight- or sixteen-
bit images. Its repertoire of operations is fairly limited, in part because the underlying hardware is
extremely difficult to program.

For the Image Understanding Benchmark, the only operation that VEIL supports directly is
connected component labelling of the intensity image. The depth image processing cannot be
done in VEIL because the MV200 does not support floating point data. If byte data were used,
VEIL could perform the required median filter, Sobel gradient and thresholding operations. All
other operations would have to be done on the host.

For SLAM, VEIL is well suited to the image projection operations that dominate the recogni-
tion phase of the computation, since the MV200 can perform pixelwise multiplication and
summing. New VEIL operators would have to be written to provide sixteen bit accumulation, but
this presents no conceptual problem. VEIL would be of no help in finding eigenvectors or in the
manifold computations, however.

VEIL'’s strengths are in real-time image processing, so it is not surprising that it is most useful
for the hierarchical tracking task. In the actual implementation of the task, the Gaussian pyramids
are formed using 'VEIL convolution and subsampling operations. The low-level coarse-to-fine
search task is performed by the host, which loads the requisite image patches from VEIL output

40

graph nodes. VEIL is also used to perform all feature extraction and connected component label-
ling for the higher level tracking task.

3.1.5 VISTA

VISTA [39] is a software environment for computer vision research, created by Art Pope and
David Lowe at the University of British Columbia. It is the latest in a series of University-devel-
oped vision toolkits that have been released via the Internet; previous examples include HIPS [27]
and Improc [61]. VISTA is typical of the genre in that it is relatively small and limited in function-
ality, at least compared with commercial systems. On the other hand, its small size makes it easy
to manage and gives it a short learning curve. VISTA is noteworthy for its clean design, excellent
documentation, and focus on extensibility and higher-level data types.

The key design features and emphases of VISTA are:

an extensible file format. Many computer vision toolkits are restricted to low-level image pro-
cessing on fixed image types. VISTA includes file types for edgels and line segments as well as
the usual images. The file format is based on nested attribute/value pairs and is easily extensible,
so that things such as camera matrices and history can be readily included.

a set of filter programs. VISTA provides a set of image processing programs encapsulated as
UNIX filters, following the model of HIPS [27] and other image processing systems. This allows
users to perform image computations interactively, or to construct programs quickly via shell
scripts. Table 3 contains a list of the routines available in the current release of VISTA.

a C language API. Most of the VISTA filters are available as library routines callable from ANSI
C. The library includes data type definitions, file I/O routines and access functions. The access
functions have been carefully thought out and are quite efficient, reducing the temptation to write
messy code that accesses the data structures directly.

support for X applications. The VISTA library includes a small set of routines for building inter-
active programs that run under XWindows. User programs can display images in windows, create
dialog boxes, and attach callback functions to widgets or to mouse operations on images.

VISTA is quite small compared to some of the other systems described in this report, and its
functionality is somewhat limited. In particular, the use of UNIX pipes for communication be-
tween programs is too restrictive for serious interactive programming. Systems that allow
multiple inputs and outputs (e.g. Khoros) are significantly easier to use.

On the plus side, VISTA has a number of very attractive features. The file format and API are
superior to those found in many older systems. Its focus on extensibility and higher-level data
types are features that are badly needed. To date only KBVision [2] and the forthcoming IUE are
superior to VISTA in this area. Finally, programs based on VISTA can be freely distributed and
shared with other members of the vision community. This contrasts with systems such as Khoros,
whose licensing restrictions make it difficult to distribute code that uses Khoros data types or
facilities.

3.1.6 Ptolemy-

Ptolemy is a software environment for simulating and prototyping heterogeneous systems,
developed at the University of California at Berkeley. Like Khoros and VEIL (see above), it al-

41

Table 3: VISTA routines

routine description
adjust gamma correction and linear scaling of pixel values
convert coerce pixel types with specified scaling/mapping behavior
crop extract rectangular region
flip flip image horizontally or vertically
invert invert image intensities
istat min, max, average and standard deviation
negate negate pixel values
op large collection of monadic and dyadic operators
rotate, scale resampling with various interpolation strategies
transpose image transpose
Zeroc Zero crossings
convolve space domain convolution
grad gradient by central difference
gauss separable convolution with gaussian or first derivative of gaussian
mag, phase magnitude or phase of a complex image
complex construct a complex image from real and imaginary components
fft fast Fourier transform
(composition) | various routines for combining and separating image bands
(export/import) | various routines for convert to/from portable bit-map (PBM) format
(display) X display and PostScript rendering
Canny Canny edge detector (detection only)
link Link Canny (or other) edges into chains with hysteresis
segedges break edge chains into line segments by recursive splitting
calibrate calibrate a camera by Tsai’s method

lows users to build block diagrams whose blocks are computational entities and whose arcs are
communications.channels. It differs from them in having a much more flexible and general notion
of block diagram semantics. As distributed, the environment is geared toward signal processing
and communication systems, but it can also generate DSP code for hardware/software co-design.

42

The basic unit of computation in a Ptolemy simulation is the Block. Blocks play the role of
procedures in conventional languages: they present a clean interface to a software abstraction
which may be very complex internally. Typical blocks might represent an integrator in a signal
processing simulation, or a service with associated queue in a queueing simulation. Blocks con-
nect to the rest of the simulation through PortHoles, which are typed, buffered input/output ports.

In a running simulation, the execution of blocks is controlled by a scheduler. The scheduler is
responsible for determining order of execution and invoking each block at the appropriate time.
On invocation, each block typically consumes input, runs its internal computation to completion
and produces output. Order of execution is generally based on the topology of block interconnec-
tions and on the state of the communications channels; however, the rules may be different in
different schedulers. Schedulers may require particular behavior from the Blocks that they man-
age, such as a guarantee that the Block produces exactly one output message per outgoing
PortHole. Thus Blocks and Schedulers cannot be freely interchanged.

A Scheduler plus the set of Blocks that it can manage constitutes a Ptolemy domain. Domains
are an important and powerful concept, and are the primary difference between Ptolemy and other
data flow programming systems. Within a domain, communications semantics and scheduler be-
havior are uniform and obey a single computational model. Domains supplied with Ptolemy
include synchronous data flow, dynamic data flow, discrete event and queueing. Multiple domains
can coexist inside a single simulation, as described below. This allows each subsystem in a com-
plex simulation to be built using the most appropriate simulation model for the problem.

Structure of a Ptolemy Simulation

Ptolemy Blocks are specialized into types whose names follow a cosmological metaphor.
Atomic or primitive Blocks are called Stars, and are implemented in native code (C++ for the sup-
plied domains) for the target machine. A Galaxy is a block consisting of a set of interconnected
blocks. It can be thought of as a macro that expands to a network at simulation time. Blocks with-
in a Galaxy must all share a common domain, which is inherited by the Galaxy as a whole.
Finally, a block may be a Universe, which consists of a set of blocks plus a Scheduler implement-
ing some domain.

Multiple domains may be included in a simulation by means of the Wormhole construct. A
Wormbhole is a subclass of Star and is managed as such by the Universe it occupies; thus it must
obey the communications semantics of the associated scheduler. Internally, however, the Worm-
hole may contain an entire Universe implementing a different domain and hence a different
computational model. The Wormbhole code is responsible for making sure that each domain sees
consistent communications behavior at its inputs and outputs.

Ptolemy schedulers are aware of the architecture on which they run. Scheduling itself is ab-
stracted into an initialization phase and a run-time phase. This provides a tremendous opportunity
for exploiting special hardware. For example, in restrictive domains such as synchronous data
flow a legal order of Block execution can be determined statically. A scheduler for such a domain
can determine the order during initialization, perhaps distributing tasks over multiple processors
and generating a static executable to perform the computation. The run time component of the
scheduler simply invokes the compiled code. Scheduling for synchronous data flow is explored in
[29], and is also implemented in VEIL (see above).

43

Ptolemy is fundamentally a C++ library and is less dependent on a graphical user interface
than are systems like AVS [56]. It does provide a Tcl/Tk based interface called Pigi, which com-
municates with the design database Oct through the Ptolemy kernel. Pigi follows the
manipulation conventions of an earlier generation of CAD tools, and is frustrating to use for pro-
grammers trained on direct manipulation systems such as Khoros, AVS, VEIL and so on.

Ptolemy and the Sample Tasks

Ptolemy is not an image processing system per se, and does not support the sample tasks to
the extent that the IUE or Khoros do. Ptolemy does offer interesting possibilities as a way of
structuring large computations such as the Image Understanding Benchmark. The messages that
pass between Ptolemy blocks are instances of the abstract class Particle. Thus although Ptolemy
does not provide any vision-related data structures beyond basic images, there is no conceptual
barrier to building blocks that pass around (for example) IUE Spatial Objects. This would allow it
to handle descriptions of the form shown in figure 2. In the IUB task, early image processing
could be handled by the synchronous data flow domain, while processing of chain codes and re-
gions could be handled by dynamic data flow. Dynamic data flow could also handle the iteration
over sets of images that is required for SLAM. The real-time character of the hierarchical tracker
would be well suited to a synchronous data flow domain. The current implementation of the track-
er is in fact implemented using VEIL, which supports a special case of synchronous data flow.

3.2 Low-level Development Tools

The previous section reviewed tools that allow users to construct applications by combining
existing computational primitives (e.g. subroutines or programs). In this section we turn to the
tools needed to develop primitives, and more generally to build the systems support necessary for
higher-level development environments. In general these tools will consist of compilers, debug-
gers and profilers, but will likely include features and/or runtime support not usually found in
compilers for conventional architectures. In the discussion that follows we assume that conven-
tional compiler technology is available, and focus on the extensions or support libraries needed to
support accelerators of various types.

We believe that the higher-level tools discussed in the previous section can and should con-
ceal as much as possible of the underlying hardware. By definition, a library routine is meant to be
called in many different contexts on many different arguments. If it is tailored to a particular ma-
chine configuration or calling environment, it loses its generality and much of its usefulness.

In contrast to development environments and libraries, we expect that tools at the lower level
will probably have to expose the hardware to a considerable extent. This will be most true for
highly specialized architectures in which much of the work is done by dedicated functional units.
More conventional and general devices (e.g. MIMD machines) will be able to provide multiple
levels of software abstraction, so that programmers building library routines can code in terms of
an idealized parallel machine.

Because we expect low-level tools will work intimately with the hardware, solutions at this
level will be different for different architectures. In the remainder of this section we discuss avail-
able technology and approaches for MIMD architectures, SIMD machines and configurable
pipelines.

44

3.2.1 MIMD and SPMD architectures

MIMD architectures consist of computing nodes (typically a conventional CPU with some
amount of local memory) connected via some sort of high-speed communications network. The
network may provide the illusion of shared memory, but more often supports a messaging system
that transmits packets between processes. The latter type of MIMD architecture has come to dom-
inate the market for large-scale multiprocessors and is widely considered to offer the only
practical way to build very high-performance, general purpose, scalable machines.

There are currently three dominant approaches to providing low-level tools for MIMD mes-
sage-passing architectures. The simplest is to provide access to the hardware messaging system
and process creation via operating system and library calls. This exposes the hardware more than
one would like, but is low cost and provides access to the full power of the machine. An alterna-
tive is to provide some level of language support that allows the programmer to express ‘natural’
partitions of the task in a graceful manner, and let these tasks be distributed automatically by the
language’s runtime system. Here we will refer to systems that take this approach as distributed
object systems. Finally, the third option is to emulate an SIMD architecture and use the program-
ming tools (e.g. data-parallel languages) designed for those machines. Automatic compilation of
arbitrary codes to MIMD machines is an open problem with no practical solution in sight.

Message Passing Systems

Message passing systems [33] are currently the most widely used method of programming
large-scale parallel processors. They have been particularly successful in scientific computing ap-
plications. Most MIMD vendors provide proprietary packages for their machines, and there are
several portable systems available as well. Because the functionality they provide is conceptually
very simple, they require no language or compiler support, and typically take the form of C- or
Fortran-callable library routines.

The range of semantics that a message passing system can have is limited, so all message
passing systems present similar-looking interfaces. The most widely distributed message passing
system is the Parallel Virtual Machine (PVM) [51], which is typical of the genre. PVM was de-
signed to support applications distributed across heterogeneous local area networks, but is
extremely portable and has been used on more tightly coupled parallel machines as well. The
PVM library allows programs to create tasks and associate them into groups. Processes communi-
cate by single or multicast non-blocking Send and blocking or non-blocking Receive. Receive
calls can filter the incoming message by requesting only messages from specific source tasks and/
or messages bearing specific user-defined tags.

One problem with PVM-like systems is that they make it difficult to write safe library rou-
tines. Programmers are permitted to use ‘wildcard’ descriptions for the source and tag fields of
Receive calls, so it is easy for a library routine to accidentally receive a message intended for its
caller. Avoiding wildcards helps, but tag fields are user-defined and form a global name space, so
tag name clashes are always a possibility.

In order to improve the portability of applications between multiprocessors, a consortium of
vendors and academic researchers have agreed to develop a standard message passing interface
called MPI [57].. MPI is designed to exploit the features of a variety of MIMD architectures, and
includes extensions (derived from the experimental ZipCode system [49]) intended to support
creation of safe parallel libraries. MPI’s key features include:

45

* Messages may be sent in any of several modes, which provide various restrictions which
the receiving process must meet for the send to succeed. This allows messages to provide
various degrees of light-weight synchronization.

* Processes are static; it is not possible to create a process during program execution. How-
ever, processes may associate in groups which can be altered dynamically.

* Library routines can declare a context, which is a dynamically created and guaranteed
unique tag associated with each message sent by a context member. Messages cannot pass
from one process to another unless both parties are in the same context, so name conflicts
and unintended message interceptions can be prevented.

* Groups of processes are organized into topologies such as grids or arbitrary graphs, and
can address their neighbors using the appropriate topological identifier. Thus it is never
necessary for a process to refer to a physical processor or process ID number.

* A small number of specialized services are provided: large data objects may be distributed
across process groups using broadcast and scatter-gather messages, and transformed using
parallel reduce and scan operations.

The MPT specification has not been finalized, and it is likely that details will change. It is sta-
bilizing rapidly, however, and is likely to become a standard well before the end of the AVIS
program.

One feature of message-passing systems that has not made its way into MPI is the idea of ac-
tive messages [14]. Active messages are designed for use in a single-program, multiple-data
(SPMD) context. In an SPMD program each processing node has a copy of the same executable,
so global objects (notably procedures) can be referred to by their addresses. An active message
consists of a pointer to a procedure followed by the arguments that are to be passed to it. They can
be used as a substrate for implementing higher-level communications protocols, or can be used di-
rectly by applications programmers as a way to distribute tasks. They were used very effectively
on the CM-5 [54] to provide extremely low-overhead messaging between user processes.

Shared Objects

Message-passing systems have proven to be an effective way to program MIMD machines,
particularly for large scientific applications. Their main drawback is that they provide very low-
level access to parallelism, requiring the programmer to handle data distribution and synchroniza-
tion explicitly. The result is that building parallel applications is painful and error-prone. As an
alternative, a number of programming systems provide parallelism via operations on distributed
data structures. Synchronization is hidden (to varying degrees) in accesses to these data struc-
tures, or in operations on them.

The Linda programming system [10] is one of the best-known distributed object program-
ming systems. Linda provides processes with access to a shared associative memory called tuple
space. Library calls allow tuples containing data to be stored or retrieved based on partial specifi-
cation (i.e. by providing values for some of the tuple entries). In many cases parallel programs can
be written without any need for explicit process ids - the associative tags associated with data ob-
jects provide all of the identification necessary. Linda can support a number of programming
paradigms (such as agenda-based parallelism) that are hard to express in message-passing sys-
tems. Commercial C and Fortran-based implementations of Linda are available.

46

The principal difficulty in implementing Linda lies in providing efficient implementations of
the tuple space operations. Carriero and Gelernter [10] describe methods of detecting many tuple
matches at compile time, so that expensive run-time associative searches can be avoided. Repeti-
tive communication patterns can also be detected at run-time and used to dynamically optimize
the processing of tuple space transactions, so that the number of interprocessor messages is no
worse than would be expected in a conventional message-passing implementation.

Mentat [15] is an object-oriented programming language for MIMD architectures. It is an ex-
tension of C++ and differs only slightly in syntax from the base language. It does not support any
notion of explicit processes. Instead, programmers can declare mentat classes whose methods are
implicitly called in parallel. The Mentat compiler analyzes the graph of data dependencies involv-
ing mentat class instances and inserts appropriate synchronization. For example, in the simplest
case the invocation of a method on a mentat object is transformed into a non-blocking remote pro-
cedure call to a compute server on some remote CPU. The compiler detects the first use of the
result in the caller and inserts a blocking receive at that point. If the result of the invocation is
passed as an argument to another implicitly parallel operation, the runtime system will arrange for
the result to be forwarded to the CPU responsible for the second operation, so that the data does
not have to be transmitted twice. In effect, the run-time system dynamically constructs a dataflow
graph representing the computation, and does not block the calling process until the result of the
graph computation is used locally.

3.2.2 SIMD architectures and Data Parallelism

In many programming problems the obvious unit of parallelism is the individual data element
in a larger structure. For example, in image convolution each output pixel is a weighted sum of
pixels in the corresponding neighborhood in the input image. Convolution can be parallelized by
assigning a virtual processor to each output pixel, and instructing the processors to fetch their
neighborhoods, compute their results and store them, all in parallel.

Data parallel languages are designed to make it easy to express computations involving paral-
lel operations on each element of a data structure. The term ‘data parallelism’ was introduced in
the context of programming a SIMD architecture [19], but the underlying ideas have a long histo-
ry [48]. Data parallel constructs provide a very natural way to express low-level vision
algorithms, but they have also been shown to be surprisingly well suited to more general compu-
tations [20]. Programs based on data parallelism are often much easier to understand and maintain
than programs based on communicating processes. For this reason there has been considerable in-
terest in supporting data parallel languages on non-SIMD architectures.

The basic capability provided by data parallel languages is the ability to perform operations
in parallel on every element of a data structure. For example, a language might allow the pro-
grammer to multiply an array of numbers by a scalar, and might implement the operation by
performing all of the multiplications in parallel. Sipelstein and Blelloch [48] review issues in the
design of data parallel languages, which include:

what structures can be operated on in parallel? Arrays and vectors are supported by most lan-
guages; lists, sets, and other structures (e.g. paralations) may also be useful. A major question is
whether the structures may contain arbitrary data types, be heterogeneous, and/or include nested
parallel structures. Allowing for these possibilities makes the language more general but raises
subtle issues of interpretation.

47

what operations can be performed on the structures? Operations may be limited to arithmetic
primitives, or may allow calling arbitrary user functions. If operations can be arbitrary and nested
parallel structures are allowed, the language effectively becomes control-parallel.

what domain is supported? Although many data parallel languages are intended to be complete-
ly general, others designed for specific classes of problems. Some are explicitly designed for
particular domains, including image processing.

Array-oriented languages

Scientific computation is a major target of parallel language designers, so many data parallel
languages are optimized for parallel array operations. Fortran 90 [48] is a typical example. It al-
lows the programmer to declare parallel arrays of varying dimension. Arrays may contain only
numbers; nesting 1s not allowed. The language allows primitive monadic and dyadic operations
on arrays and between arrays and scalars, as well as reduction operations such as Max, Min, Sum
et cetera. An array can be used to index another array, resulting in a parallel permutation.

The array is also the basic unit of parallelism in C* [43] and its descendant, Dataparallel C
[18]. These languages are significantly less restrictive than Fortran 90. They permit arrays of user-
defined types, and allow users to define functions that are applied to array elements in parallel.
They do not support nested parallelism, however, so code that is applied in parallel cannot itself
invoke parallel operations.

General languages

A number of experimental languages have been developed to explore the limits of parallel
data structures. The language SETL [47] allows parallel operations on ordered and unordered
sets, where set contents are arbitrary, nested sets are allowed and parallel operations can invoke
other parallel operations. Paralation LISP [46] defines a data type called a paralation, which can
be thought of as a relational database. Both languages allow operations to be applied across all el-
ements of a set or paralation, or to be applied only to those elements satisfying some test.

Higher level data parallel languages such as paralation LISP raise interesting issues in lan-
guage design and compiler technology. At present however they are fairly experimental and it iz
not clear whether AVIS applications programmers would find them usable.

Languages for Image Processing: APPLY and ADAPT

APPLY [17] and ADAPT [59] are a pair of languages designed specifically to support low-
level and intermediate-level computer vision algorithms. They were originally developed as tools
for programming the Warp [3] series of systolic computers. However, the computational model
they support is quite general, and compilers have been designed for a variety of architectures in-
cluding shared-memory machines and hypercubes.

APPLY and ADAPT are each designed to support a single, highly specific programming style
where data dependencies follow a particular pattern. This allows them to be translated in a
straightforward way into a stereotyped pattern of data distribution and computation steps. The
compiler’s task is to analyze the program description and determine values for any free parame-
ters in the pattern.

APPLY supports operations in which every output pixel in an image is a function of a corre-
sponding neighborhood in one or more input images. The programmer expresses the computation
by writing a procedure in an ADA-like language. The procedure header declares the input neigh-

48

borhood size, output data type and any auxiliary parameters or local storage required. The
procedure body consists of a block of code that describes the computation for a single output pix-
el, assuming an output coordinate of (0,0). The neighborhood-to-output address mapping can be
modified so that the neighborhood operator is applied only at points of an integer sampling grid,
or so that multiple output pixels are generated for each neighborhood. This allows the up- and
down-sampling operations needed for pyramid construction.

ADAPT supports operations in which the output is a data structure which in some way cap-
tures properties of the entire image. It allows a degree of data dependence, in that neighborhood
operations can make use of values computed during the previous neighborhood along the same
row. It provides for user-supplied code that combines partial results of image subregions to form a
result for the union of the regions. The paradigmatic example of such a computation is the image
histogram: a histogram can be computed by partitioning the image, computing the histogram of
each partition, and then returning the elementwise sum of the partial results.

ADAPT syntax is similar to that of APPLY, with additional keywords and parameters to sup-
port its somewhat different semantics. ADAPT procedures consist of an APPLY-like header
followed by four blocks of code labelled FIRST, NEXT, COMBINE, and LAST. The FIRST code
is executed before any pixels have been processed. It is used to initialize any storage, e.g. to zero
out an array of histogram accumulators. The NEXT code is executed once for each pixel in the
image, implicitly in raster-scan order. At each invocation, the NEXT code can refer to any local
variables, which will have the values they were assigned during the FIRST code or the previous
invocation. The COMBINE code is called to merge results computed by the NEXT code for two
subregions of the image. It can refer to the values of 10cal variables for either subregion. Finally,
the LAST code is called to take the combined results for the entire image and store them in the
procedure output parameters.

APPLY and ADAPT are not full-fledged programming languages. They do not allow pro-
grammers to define anything corresponding to the main program of a conventional application.
Their function is restricted to defining procedures which follow one of the two computational
models defined above. These procedures are meant to be linked with and called by an application
written in a conventional language (e.g. Common LISP). This is a natural programming model for
accelerators which depend on a host computer for sequencing and control, such as the WARP.

Although the computational models underlying APPLY and adapt are quite restrictive, they
can handle almost all of the standard low-level image operators defined in the PIKS standard, as
well as many of the other computations discussed in sections 2 and 3.

3.2.3 Configurable pipeline architectures

There are a number of image processing accelerators on the market that do not fit the conven-
tional SISD/SIMD/MIMD characterization. These systems are typically programmed by having
the host computer dynamically configure the hardware to form a circuit that performs the desired
computation. We refer to these systems generically as configurable pipelines; examples include
the ASPEX Pipe [23] and the Datacube MaxVideo series [13].

Configurable pipeline architectures are programmed by having the host computer store ap-
propriate values into registers. For DataCube products, the ImageFlow library [12] automates
some of the register computations, for example by automatically computing pipeline delays. The

49

state of the art in low-level tools, however, is represented by graphical microcode assemblers.
These are programs that present the user with a graphical representation of the data paths and
computational elements of the machine. The user specifies the flow of data through the system by
clicking on datapath elements with the mouse. The first interface of this type was ASPIPE, a
graphical assembler for the Pipe. Datacube now markets a tool called WitFlow that appears to of-
fer similar functionality.

Graphical assemblers are a tremendous improvement over text-based interfaces to architec-
tures of this type, because they free the programmer from having to look up the names of the
datapath elements in manuals. They are still low level tools, however, because they require the
programmer to describe the computation in terms of what the components of the machine should
be doing at each particular moment, rather than describing what should happen to the data.

3.3 Runtime environments

Runtime environment software provides the interface between the raw hardware and user
code generated by low-level tools. The hardware and runtime environment software together con-
stitute a virtual machine that automates such low-level functions as downloading code to the
accelerator, controlling its execution, and managing communication between accelerator and
host.

Because it is so close to the hardware, runtime environment software depends critically on
details of the accelerator it is designed for. In general it may consist of one body of code that runs
on the host and another that runs on the accelerator, and may be divided into layers providing dif-
ferent levels of service.

All types of architectures will require some sort of host-side device driver to control access to
the accelerator. The driver must at a minimum allow host programs to transfer data to or from ac-
celerator memory, download accelerator executables, and run, halt or synchronize with processes
running on the accelerator. Accelerators that have substantial general-purpose computing power
on board (e.g. MIMD machines or machines with an embedded processor for control and se-
quencing) will need additional runtime software for the on-board processor(s). In simple cases
this may consist of no more than is necessary to accept executables from the host and run them.
More complex systems may require a full-blown operating system.

The technological problems posed by AVIS accelerators are relatively modest at this level.
Addressing them should be well within the state of the art. On the other hand, few if any existing
products will meet the needs of the AVIS program without modification. In this subsection we re-
view systems that appear to be good models for AVIS runtime systems.

3.3.1 DSP Operating Systems and APIs

A number of vendors have developed operating environments for DSP microprocessors. The
goal of these systems is generally to allow programmers coding for conventional workstations or
PCs to make use of attached DSP-based accelerators in an easy, natural and portable manner. Al-
though these systems are unlikely to be useful to the AVIS program in their current form, they
provide a useful guide to the sort of capabilities that AVIS applications programmers might need.

50

Visible Caching Operating System (VCOS)

VCOS™ is an operating system and DSP toolkit written by AT&T for use with the DSP3210
microprocessor. It consists of a set of OS routines that run on the DSP chip, a library of modules
that perform standard multimedia functions (such as implementing a V.32 modem), and a well-de-
fined API that permits the host programmer to create and control DSP computations.

VCOS permits host applications to instantiate one or more tasks consisting of multiple mod-
ules communicating through buffers. It allocates resources (including CPU time) among the tasks
and declines to create tasks whose resource requirements can’t be met. Each module performs a
single transformation on a data stream, such as compressing a stream of speech. Modules may de-
clare themselves to be real-time, in which case they will be guaranteed a fixed portion of each 10
millisecond time slice. The remainder of each time slice will be devoted to non-real-time tasks.
Buffers may be any of several functional types with differing semantics, such as FIFO buffers for
time series data, or parameter buffers for module control information. The buffer mechanism is
used both for communication between modules and for communication with the outside world.
For example, a FIFO buffer may be used to send audio data to an amplifier and speaker for play-
back, or to allow an application running on the host to send image data to a DSP-based image
filtering module.

SPOX

SPOX™ is a proprietary DSP development and delivery environment distributed by Spec-
tron Microsystems, Inc. Unlike VCOS, it is intended to be portable and runs on most of the
currently popular DSP microprocessors. SPOX consists of three separate components. SPOX-
DSP consists of development tools (compilers and linkers) and an optimized library of matrix,
vector and filtering operations. Its purpose 1s to allow programmers to create DSP routines that
run on the target processor. SPOX-RTK is a real-time operating system kernel that provides the
execution environment for SPOX-DSP programs. It includes facilities for multitasking on the
DSP processor, and for interrupt-driven communications with external devices such as sensors
and displays. Finally, SPOX-LINK allows DSP devices that are attached to PCs or workstations
to communicate with their hosts and perform system operations such as file I/O. It also allows
RPC-like invocation of DSP operations by applications running on the host.

3.3.2 PIKS Execution Control Facilities

The Programmers Imaging Kernel System (PIKS) [21] is an API for computations on images
and image-related data structures. The basic architecture of the system and the image operator set
were presented in section 3.1.3.

PIKS is specifically designed to be supported efficiently on symmetric multiprocessors, dis-
tributed systems, and computers with attached accelerators. It does so by defining a model of
execution and execution control that makes coarse-grained parallelism readily visible, and allows
the application to request parallel asynchronous execution.

PIKS does not suggest implementation mechanisms, so it is not ‘available technology’ in the
strict sense. It is however a very well-designed and eminently supportable standard. We believe
that it provides an excellent model for AVIS run-time software.

51

The PIKS programming model

All PIKS programs manipulate PIKS data objects, which are created by calls to the PIKS
APIL The simplest possible sort of PIKS program would be one which creates a few image ob-
jects, loads data into them, invokes a series of image processing operators on them, and finally
reads back the results. By default, all of these operations are performed in synchronous mode. In
this mode each operator has the semantics of a procedure call; execution of the operator is guaran-
teed to be complete when control returns to the calling process.

A simple form of parallelism can be obtained by setting the global execution model to asyn-
chronous mode. In this mode, operator invocations are allowed to return before the requested
operation has completed. Instead of blocking, each API call that requests an operation has the ef-
fect of enqueuing the request inside the PIKS runtime system. The runtime system will then
execute the requests in FIFO order. The application may perform other computations in (logical)
parallel with the PIKS computation. Operations which return a result to the caller will block the
application until the queue is empty, enforcing synchronization. An explicit Synchronize() opera-
tion is also available.

More sophisticated synchronization capability is provided by means of virtual registers
(vregs). Vregs are typed dynamic variables capable of holding one PIKS data object. They can be
used just like other PIKS data objects, but in addition have the semantics of semaphores. An at-
tempt to read a vreg that is in a CLEARED state has the effect of blocking the reader until the
vreg has been set. This is true regardless of whether the reader is the application or an operator.
For example, suppose that the application requests asynchronous execution of some operator P
that takes an integer parameter. If the request supplies an integer vreg as the parameter value, the
runtime system will execute everything preceding P in the queue and then block waiting for the
vreg. When the application supplies a value for the vreg, operator P will be released and execution
will continue. Similarly, the application can block on vregs that serve as operator outputs.

The most powerful opportunity for exploiting parallelism in PIKS is provided by the chain
mechanism. To create a chain, the application calls ChainOpen() and then makes operator calls as
usual. Instead of executing or enqueuing the operators, however, the runtime system simply adds
them to the chain. When the chain is closed, it becomes executable; calls to ChainExecute() ini-
tiate asynchronous execution of the operators in the chain.

The PIK standard specifies that the result of executing a chain shall be the same as if the op-
erators were executed in the order in which they were entered into the chain. However, since PIK
operators are side-effect free, all data dependencies between operators are implicit in their input
and output parameter lists. This allows the PIK system to find the data dependencies and construct
a dataflow graph corresponding to the operator sequence. If hardware support is available, it can
then exploit any opportunities for operator-level parallelism that the dataflow graph contains. An-
other benefit of the chain mechanism is that it allows implementations to optimize sequences of
operations. For example, an implementation that represents large images in a tiled format might
choose to pipeline the operators so that the each tile is read from disk only once, rather than being
written out and read back in again between each pair of operators.

The vreg mechanism interacts with the chaining facility to provide additional opportunities
for synchronization and parallelism. A trivial example would be the use of vregs to pass an inter-
mediate result from a running chain to the application, or to allow the application to supply new
parameters to a running chain. The chain control functions allow a chain to be executed inside an-

52

other chain, optionally conditioned on the value of a vreg. An operator is also provided that can
increment the value of a scalar-type vreg. Together, these mechanisms allow chains to contain the
equivalent of FOR loops, WHILE loops, and conditional and CASE statements.

The PIKS execution control facility does have shortcomings. Most important of these is the
fact that there is no explicit provision for interacting with external devices such as cameras. Real-
time vision applications will need some such mechanism in order to allow computation to be trig-
gered by the arrival of a new video frame. The simplest method would be to provide an additional
operator that reads from a hardware digitizer and stores the result in a vreg.

Another problem with the PIKS model concerns the treatment of time. In many applications
it is useful to think of the operators as long-lived objects with internal state, which perform com-
putations on a potentially infinite series of inputs. For example, a temporal FIR filter might be
conceptualized as a procedure that maintains a static ring buffer containing the k most recent im-
ages. On each invocation it accepts a new input image and produces a pixelwise weighted sum of
the images in the ring buffer. PIKS operators do not have internal state and hence cannot be used
in this manner. It appears possible to implement the same functionality using virtual registers: in
particular, the CopyWindow() operator could be used to store successive inputs into successive
subarrays of an image of temporal dimensionality k. Both the image and the temporal index
would be implemented with virtual registers. However, the mechanism is clumsy and it is not
clear whether the standard is explicitly intended to support this ‘systolic’ style of computation.

3.3.3 The ImageFlow Device Driver

ImageFlow is the collective name given to a set of software development tools for image pro-
cessing boards manufactured by DataCube Inc. of Peabody, Massachusetts. ImageFlow consists
of a set of libraries that can instruct the hardware to perform computations, accompanied by a de-
vice driver that controls the way in which those computations are executed. The device driver is
extremely sophisticated and demonstrates an interesting and potentially useful way of controlling
high-performance image processors.

In order to understand the device driver it is necessary to know a bit about the computational
capabilities of the hardware it supports. At the hardware level, DataCube systems can be thought
of as consisting of a heterogeneous collection of processing elements and memory buffers con-
nected by an irregular network of dedicated communications channels. The memory buffers are
dual-ported and contain programmable address generators, which allow them to read or write
two-dimensional arrays of pixels in raster-scan order with programmable array size and stride.
The processing elements include ALUs, hardware convolvers, look-up tables and so on, and are
designed to work on data presented in raster-scan order. The communications channels include
multiplexers and crosspoint switches, allowing data to be routed to different functional units un-
der program control.

DataCube systems do not contain conventional CPUs. To perform a computation, the host
computer (a Sun or SGI workstation) loads a series of control registers that define the access pat-
tern for the address generators, the connectivity of the communications channels, and the
operations to be performed by the processing elements. It then ‘fires’ the computation, causing the
address generators to begin transferring pixels to or from the processing network. If the hardware
configuration includes a video digitizer, the computation can be synchronized to the video input

53

and can be repeated indefinitely without further intervention by the host. Typically, however, the
host waits for the end of the computation and then steps in to reconfigure and restart the device.

The ImageFlow device driver plays several roles in the process described above. These in-
clude the traditional ones of controlling access to the device and providing safe transfers between
the virtual address space of the application and the physical one of the device. Its most interesting
function, however, is to allow sequences of ImageFlow computations to execute without interven-
tion by the host application, with synchronization when the application requires it. In essence, the
driver allows the application to upload descriptions of multiple computations, and to create a fi-
nite state machine that controls their execution. State changes can be triggered by the completion
of a single computational step, by the results of computations on the hardware, or by events post-
ed by the host application. The state machine can also generate events that the application can
receive, allowing synchronization when it is needed.

The net effect of all of this mechanism is to provide functionality similar to that of the PIKS

-execution control facility (see above). Host applications can create multiple computational pro-

cesses that communicate with each other and the host through buffers. The host can trigger a
series of computations by storing data into a buffer itself, or by attaching a buffer to an external
data source such as a video digitizer. The host can alter the parameters of a running computation,
and can synchronize with the computation as needed using a semaphore-like event mechanism.

54

4 Recommendations

The goal of the AVIS program is to produce hardware accelerators that provide an order-of-
magnitude improvement in productivity for engineers and scientists working on problems involv-
ing imaging. This report is intended to provide guidance on the question of what sort of software
should be provided with AVIS systems, with particular attention to the needs of researchers in im-
age understanding, automatic target recognition and real-time computer vision. Previous sections
of the report surveyed the computational and practical needs of the intended users, and examined
the software technologies available for addressing those needs. In this section we draw conclu-
sions from these surveys and make specific recommendations about the types of software that
AVIS system designers should supply.

The recommendations presented here were arrived at by balancing a number of concerns.
The primary driver was our analysis of what the intended users need in order to be productive.
These needs are defined by the types of computations users perform, by their working environ-
ment, and by the goals of their research projects. Another consideration was the state of the art in
software tools for conventional computers. Users are unlikely to adopt AVIS systems as develop-
ment tools if the environment they provide is dramatically worse than what is available on their
workstations. Finally, our recommendations were influenced by practical considerations of cost
and technological risk. Providing a software suite that is at good enough to be useful will require
a substantial development effort, and will stretch current software technology to its limits. We
have done our best to identify a solution that is capable enough to be useful, but simple enough to
be implementable at reasonable cost and without going too far beyond the state of the art in soft-
ware technology.

Although this section draws heavily on material presented in previous sections of the report,
it is self-contained and does not assume familiarity with the rest of the document. It begins with
an executive summary of the domain needs survey of section two. We then restate user needs in
terms of a set of abstract goals to be met and functionality to be provided. This is followed by spe-
cific recommendations about how to achieve those goals. Finally, we discuss areas of
technological risk and their implications for the development process.

4.1 Domain requirements

AVIS accelerators are expected to be useful in a wide variety of application areas. For the
sake of concreteness, however, this study is limited to the domains of image understanding, real-
time computer vision and automatic target recognition. Section two of this report examined the
needs of researchers in these areas in detail. Here we briefly summarize the results of that inquiry.

The domains in question are all areas of active research. Many unsolved problems remain,
but in all three domains applications are beginning to move out of the laboratory and into fielded
systems. In certain niche applications they are likely to have substantial commercial and military
impact within the next few years. At the moment, however, all three domains are highly experi-
mental, and the primary activity of users in the domains is research and development. It is this
activity that AVIS accelerators must be designed to support; they should not be conceived of pri-
marily as application delivery vehicles. Software development tools must be an integral part of
AVIS systems.

55

To first order, all three domains perform the same types of computations and rely on the same
basic computational paradigm. Their computations can be divided into three basic categories.
Low level operations are those that map images to other images, or to statistical descriptions of
images. They include noise removal, filtering, and certain types of feature extraction and recon-
struction operations. Intermediate level operations construct a description of the image in terms
of extended structures such as lines, regions, surfaces, or geometric primitives. Finally, high level
operations examine the relations between groups of intermediate level descriptions for purposes
of recognition and/or geometric reasoning. Examples of important computations of each type are
given in sections two and three of the report.

Within the general paradigm presented above, there are significant differences of emphasis.
Automatic target recognition systems must often make decisions based on low-resolution images
with relatively few pixels on target. This has historically led them to stress low-level computa-
tions and use recognition algorithms based on statistical pattern classification. The recent trend,
however, is toward model-based approaches, which use a broader range of computer vision tech-
niques. Researchers in real-time computer vision appear to be following a similar path for
different reasons. Older real-time vision systems emphasized low-level computations because of
their generally deterministic running time, and because the need for real-time response left no
time for anything else. Progress in the design of agent architectures (together with faster comput-
ers) has begun to permit much more high-level processing, and the question of how to integrate
processing at different levels is now of great interest.

Where the domains of interest differ most is in the environment in which the computations
are performed, and in the data rate and size of the images they must process. Some image under-
standing systems (e.g. for medical or aerial image analysis) must handle enormous images with
tens or hundreds of millions of pixels. Generally in such systems the images cannot be memory-
resident, so processing must be performed on a block basis. Running times and latencies are de-
termined by database and I/O performance and are typically long. At the other extreme, real-time
computer vision and tactical ATR systems process relatively small images (e.g. 512x512 for a
typical video camera), but must handle thirty to sixty frames per second with latencies on the or-
der of a frame time.

The primary working environment for most researchers in the domains of interest is the net-
worked UNIX workstation, with PCs beginning to play a role on the commercial side and as
delivery environments. The dominant programming language is C/C++, with a significant LISP/
CLOS community. On top of the low-level languages most researchers use some type of higher-
level development and execution environment. The best known of these is Khoros [24], which has
become standard and is now required for many ATR contracts.

4.2 Software Goals

In the course of the domain survey summarized above we talked to a large number of poten-
tial AVIS users and looked at many applications. These experiences led us to a number of broad
general conclusions about the type of functionality that AVIS software must provide. The most
basic of these is simply that the application developer is the most important customer for AVIS
systems, and that serving the developer’s needs is the most important function of AVIS software.
This principle follows from the fact that research and development is still the primary activity of

56

F-----

potential AVIS customers. It 1s of course to be hoped that AVIS systems will enable interesting
applications and eventually be sold to application users as well as developers. We believe, howev-
er, that there is absolutely no chance that this will happen unless the development tools are of very
high quality.

The goal of making developers happy is too broad to serve as a useful guide in designing de-
velopment environments for AVIS systems. We have identified four critical characteristics that we
believe AVIS development tools must have in order to achieve the higher goal:

Supporting Code Reuse

Code reuse is a topic of great interest in software engineering circles [26]. It is generally ac-
cepted that designing for reuse can lead to both improved programmer productivity and increased
reliability of the resulting code. If code reuse is important for software development on conven-
tional architectures, it will be doubly so for AVIS systems. It is a trivial observation that writing
code for AVIS systems will be at least as hard as coding for conventional computers. For many ar-
chitectures it will certainly be harder. Thus, the fewer lines of new code AVIS developers have to
write, the happier they will be.

Supporting Rapid Prototyping

We claim that AVIS application developers are for the most part engaged in research and de-
velopment. This means that they spend a relatively large fraction of their time building new
applications and studying their behavior, compared to the time they spend actually running the ap-
plications they have built. This being the case, it is important to provide rapid prototyping tools
that make it easy to put together a new application and experiment with it under different condi-
tions. Systems of this type already exist for conventional workstations (e.g. Khoros, see section
3). Applications developers will expect tools of comparable quality for AVIS systems, and will re-
sist using the systems if the tools are not there.

Supporting System Integration

Most standard ways of supporting code reuse and rapid prototyping place restrictions on the
forms that code modules and programs can take. For example, visual languages like Cantata (the
Khoros GUI) generally take over the flow of control from the application, and specify the form an
image processing operator must have in order to be usable via the visual programming interface.
The danger is that these restrictions may make it difficult to embed code developed with the rapid
prototyping system into a larger application. In the case of Khoros, for example, it is quite diffi-
cult to embed a Cantata computation in a larger program written in C or LISP.

AVIS development tools must provide the programmer with more flexibility than is available
in most workstation-based rapid prototyping systems. Real-time computer vision applications in
particular will need to be able to interleave computations running on the AVIS accelerator with
control and communications activities performed by the host computer. The rapid prototyping
tools must not be so rigid as to preclude this.

Making efficient use of the hardware

Speed of computation is of extreme importance to many AVIS users. All of the domains of
interest require high throughput, and some (notably real-time vision and ATR) also have severe
latency requirements. In these cases speed may be as important as more traditional performance
measures (precision, receiver operating characteristic etc.) in evaluating the suitability of a given

57

algorithm. It is critical that AVIS development and rapid prototyping tools provide users with a re-
alistic idea of how quickly their algorithms are likely to run in the context of an application. The
development tools should also provide a smooth path for incremental performance enhancement.
Users should never have to recode an entire prototype application from scratch in order to speed it
up. Instead, they should be encouraged to profile the application and recode just enough of it to
achieve the required level of performance.

One disadvantage of many software development environments is that they achieve ease of
use at the cost of substantial overhead for task creation and dispatching. For workstation-based
systems the cost is bearable because it is dwarfed by the cost of performing the image computa-
tions. For AVIS systems this will no longer be the case. AVIS development tools must be
carefully designed to ensure that the speed gained on the image computations is not lost again at
the control and sequencing level.

4.3 Achieving the Goals

Achieving the general goals of code reuse, rapid prototyping, support for system integration,
and efficiency will require a substantial amount of work. Exactly how the goals should be
achieved depends on several factors. The first consideration is the accelerator and system archi-
tecture. Designers will need to consider what the hardware does well or poorly, how general-
purpose the architecture is, and what kind of host support the hardware requires. The second con-
sideration is the programming model that the hardware supports. Some architectures (e.g. SIMD
machines) may severely limit the programming models that are practical. More general-purpose
architectures will be able to support a wide variety of models, although system designers may
choose to limit programmer freedom for the sake of simplicity. Other considerations include is-
sues of program strategy, such as available expertise and the needs of planned technology
demonstrations.

Although the methods used to achieve the stated goals depend on the architecture in question,
we believe that the general form of the solution will be the same in all cases. We claim that any
reasonable software suite for an AVIS architecture should have the following components:

* alibrary of image processing operators

* compilers and other tools for extending the library
* a GUI application builder

* ahighly efficient runtime system and host interface

In the remainder of this section we explain what each component is, why it is needed, and
what is involved in implementing it.

4.3.1 A library of image processing operators

An obvious first step toward supporting code reuse is to provide a library of reusable modules
that perform commonly used operations. Our domain study suggests that (at least for low-level vi-
sion) all of the domains of interest rely on the same basic set of primitive operations. We have also
found that potential AVIS users are very interested in what the systems will be able to do “out of
the box”, without significant programming. Khoros users whom we interviewed consistently cited

58

the Khoros system’s large library of image and matrix operators as its most attractive feature.
Thus our first recommendation is that every AVIS system be supplied with a good library of
primitives.

The idea of providing a library of reusable routines is intuitively appealing and does not
sound difficult. In fact it involves a number of subtle design issues, and is likely to require a great
deal of work. The problems arise due to the nature of the hardware and the programming tools
used to write the library routines, so we will defer discussion of these issues to the section on in-
termediate-level programming tools.

Library Contents

The first question to ask is what the primitive library should contain. The answer depends in
part on the architecture; different designs will be suited to different types of computations, and li-
brary contents will naturally favor the things the architecture does well. All accelerators, however,
should be able to handle the local, regular computations that characterize low-level vision and im-
age processing.

Unfortunately there is no obvious comprehensive standard for image operators in any AVIS
domain. The Khoros library is currently in flux owing to the release of Khoros 2.0, and is likely to
emerge in a different form and with different contents from the previous version. The Image Un-
derstanding Environment (IUE) operator set has not yet been defined. Other commercial or freely
available operator sets (e.g. PIKS, VISTA) lack some essential operators or facilities.

Given the lack of an obvious standard and the rapid rate of change in emerging standards and
currently popular tools, we recommend the following strategy for the low-level image operator
library:

1) Monitor developments in the IUE program closely. Barring unforeseen eventualities, we ex-
pect that the IUE will achieve wide acceptance in the IU and ATR communities. As soon as a
specific operator set and API is chosen, consider how to achieve a reasonable level of com-
patibility with it.

2) In the interim, prepare to support the basic functionality described in the PIKS API (see table
2). PIKS was at one time the leading candidate for the IUE image library, and is likely to
have a significant influence on the final specification. Some of the PIKS functionality (e.g.
the ability for any image operator to perform subpixel shifts with resampling on any input
image) is non-essential, and might be omitted on architectures for which it would restrict per-
formance excessively.

3) In addition to PIKS functions, provide some of the missing functions identified in section 3:
pyramid operators , the Canny and Wang-Binford [58] edge detectors, Moravec and other in-
terest operators, and so on.

4) Provide a basic library of operators on non-sparse matrices and vectors. This should include
(at least) vector and matrix multiplication. Routines for solving linear systems, SVD decom-
position, and finding eigenvectors would be extremely useful. We recognize that some of
these operations involve subtle numerical issues, and that providing a comprehensive library
of matrix routines may be impractical. However, even a minimal set of matrix operators will
be useful, both because of their functionality and because they will serve as examples of how
to implement matrix operations efficiently.

Once we move beyond low-level image processing and mathematical operators it becomes
less clear what sort of functionality the library should provide. At the intermediate level, certainly
the PIKS region operators should be supported. Simple grouping operators should also be provid-
ed, including four-connected chain code extraction, the Burns and Nevatia-Babu line finders, the
Hough transform, and routines that decompose curves into chains of line segments. In general,
however, we do not think that there is enough consensus on what higher-level operators are useful
to warrant expending a great deal of effort implementing them. Instead, system developers should
focus on providing tools that will allow users to build their own intermediate and high level
operators.

General-purpose architectures (e.g. MIMD machines) should be able to provide substantial
support for high level vision computations via support for IUE, which defines data types and op-
crators for a wide variety of high-level constructs. The IUE standard is very large, and producing
parallelized implementations of IUE classes and methods is likely to be more work than can be
accomplished under the AVIS program. However, given a good C++ compiler, MIMD architec-
tures should be able to achieve significant parallelism even if the IUE operators consist entirely of
sequential code. Many IU programs spend a lot of time iterating over sets: applying the same op-
erator to multiple images, matching a set of image features to every model in a model base, and so
on. Thus there are likely to be many opportunities for coarse-grained parallelism, which can be
exploited fairly simply using a conventional language extended to support parallel iteration.

4.3.2 Tools for extending the library

Itis clearly impossible to anticipate every image processing operator that domain users might
need. It is also the case that many AVIS users are in the business of creating new image process-
ing operators, and hence cannot be expected to be satisfied with a fixed image processing API. In
addition to a library of basic image processing primitives, therefore, AVIS system developers will
need to provide programming tools that allow users to create new library routines.

Both the nature and the role of the intermediate level programming tools depend heavily on
the architecture and programming model they are intended to support. This is in contrast to the li-
brary and rapid prototyping tools, which should be relatively architecture-independent. For very
general architectures such as coarse-grained MIMD machines, the same intermediate level tool
set may be used both to write library routines and to build the applications that use them. Systems
of this type have the advantage of allowing hierarchies of abstraction, with successive layers of
software functionality being built on top of more primitive layers. This is the programming model
found on conventional computers, and the one most familiar to applications programmers. For
less conventional architectures, however, a hierarchical model may not be practical. Consider a
system designed to support something like the PIKS API (see section 3). Here library routines
would be written in a language designed specifically to take advantage of the special capabilities
of the hardware. Applications would be written using the host C compiler, and would invoke li-
brary routines by sending appropriate messages to the PIKS run-time system. Hierarchical
structure might exist within the library, but would not be visible to applications programs.

It is difficult to give detailed advice about what sort of intermediate-level tools AVIS system
designers should provide. The decision will often hinge on subtle details of the architecture, and
should be made by people who are intimately familiar with the machine in question. There is also
some scope for preference, since for most architectures there are several possible solutions, each

60

with its own strengths and weaknesses. The basic options were described in section three. Briefly,
they are:

data parallel languages These include image-specific systems such as Apply[17], as well as
more general-purpose languages like Dataparallel C [18]. Most of them can be implemented effi-
ciently on either SIMD or MIMD architectures. Some of these systems can also support MIMD-
style computations via parallel iterators.

shared object systems These systems use object encapsulation to help make opportunities for
parallelism visible to the run-time system and/or compiler. Parallelism is obtained by operating on
multiple objects in parallel. Examples include Mentat [15] and Linda [10].

message passing systems Message passing systems such as PVM [51] and MPI [57] support a
concurrent programming paradigm in which independent sequential processes communicate by
sending each other messages. They are widely used for scientific computing on MIMD machines
and can be very efficient in the hands of a skilled programmer. However, they are very low-level
and hence are relatively difficult to use.

architecture-specific systems Truly exotic architectures may need to be programmed with tools
that do not fit any standard programming paradigm. For example, configurable pipelines such as
the Datacube MaxVideo system [13] or the ASPEX PIPE [23] are programmed by configuring
their hardware at run time to form a sequential circuit that performs the appropriate computation.
Devices based on FPGAs would be programmed similarly, perhaps with the aid of a logic
assembler.

We consider the problem of designing appropriate intermediate-level tools to be the most dif-
ficult challenge facing AVIS software designers. The central question is how to provide tools that
generate efficient code, are easy to use, and support code reuse. The ability to write efficient, reus-
able code is essential, since without it the library of primitives recommended above cannot be
written or extended. Many current parallel programming systems have focussed exclusively on
generating efficient code, and have adopted features that pose serious obstacles to code reuse. In
the remainder of this section we discuss some of the issues involved and the reasons that writing
reusable library code may be difficult.

Writing reusable libraries

Designing library routines for any architecture involves deciding what the fundamental ab-
stractions should be, what functionality to provide, how to handle domain violations and
exceptions and so on. These issues are not specific to parallel or exotic hardware, and we do not
address them here. We are instead concerned with what makes a library routine reusable, and how
implementation on a parallel machine may affect reusability.

One of the most important characteristics of reusable software is modularity or context-inde-
pendence. Library routines should work correctly and efficiently regardless of the context in
which they are invoked. They should neither depend on nor alter the global state of the calling
program. The programmer should be able to combine and compose library routines without hav-
ing to consider unintended interactions between them, and has the right to expect that the
performance of each operator in isolation will be a reasonable predictor of how they will perform
when used together.

For conventional machines it is not terribly difficult to write a library with these attributes.
The guiding principles are well known and are now considered standard programming practice.

61

(

Functions should be ‘pure’ (side-effect-free). Memory and other resources should be dynamically
allocated and freed when no longer needed. Function domains should be well-specified and rea-
sonably broad, and parameters should be checked at run time. Above all, reusable library routines
must avoid making assumptions about their calling context, the parameters that will be passed to
them and so on, unless those assumptions are clearly spelled out in the documentation. By obey-
ing these guidelines a good programmer can produce routines that are highly context-independent
and perform well in almost any situation.

Producing reusable libraries for nonstandard architectures is far more difficult. The funda-
mental problem is that current methods of programming parallel architectures make it difficult to
write context-independent code. Problems contributing to this situation include:

The need for tuning: Many parallel programming environments require the programmer to ex-
press decisions about data layout and granularity of parallelism in the code, either via pragmas or
by means of explicit directives. The efficiency of the resulting program often depends critically on
how well these decisions are made, so programmers are highly motivated to do it carefully. Un-

_fortunately the required compiler directives have the effect of tuning the code to a particular

context, making it inefficient (or even incorrect) for other arguments or in other circumstances.
What is right for one situation may be wrong for another, but the library routine must work well in
both.

Overhead: Many of the most common image processing operators do relatively little computa-
tion. For example, operations such as image addition or thresholding may require only a few
machine instructions per pixel. On a parallel machine the cost of these operations may be domi-
nated by the time needed to dispatch the routine. This gives the applications programmer (who
probably wants to perform a whole series of image operations) a powerful motivation to abandon
the library and hand-code a special-purpose routine that does the whole computation and only
pays the dispatch penalty once. At this point the opportunity for code reuse has been lost and the
library has failed in its purpose.

Side effects: On many parallel architectures it is impossible to write side-effect-free code. In
many MIMD message-passing systems, for example, process identifiers and message tags form a
global name space. Any routine that uses the messaging system risks having its messages inter-
cepted by unrelated procedures, and may unintentionally receive messages intended for someone
else. Some data-parallel languages require parallel data objects to be declared as static global
variables, again creating an opportunity for name conflicts.

A particularly pernicious type of side effect arises when a library routine requires non-shar-
able resources. A routine that dynamically allocates temporary memory may fail if the calling
program has already exhausted the heap. This can happen on sequential machines as well, but is
more of a problem on parallel machines, which often lack virtual memory and tend to have small
physical memories. Another example is the finite set of zero-overhead loop counters found in
many DSP microprocessors. A library routine that uses a loop counter will fail when called from
a program that is already using all of the loop counters.

Dedicated functional units: Some AVIS architectures may have special-purpose hardware such
as convolvers, look-up tables and warping engines. These devices are generally non-sharable re-
sources, compounding the side-effect problems described above. In addition, the operation of
these devices typically depends on their internal state: the contents of their convolution kernels,
LUT banks, warp function tables and so on. This is not a problem if the library routines that use

62

the devices establishes the appropriate state at call time. Doing so, however, may greatly increase
the overhead associated with calling the routines. Using these devices efficiently may require
compile-time or run-time reasoning and planning, so that (e.g.) lookup-table banks are shared
whenever possible, and operations are ordered so as to minimize the number of times device state
must be reloaded.

All of the problems described above were encountered in the design of the VEIL image pro-
cessing system (see section 3). We found the following design principles to be useful in
addressing them:

+ Manage resources internally. Applications programmers cannot be expected to keep
track of the resource requirements of library routines and call the routines only when those
resources are available. Exposing resource usage in the library API creates harmful inter-
actions between routines, destroying context-independence. It places an intolerable
planning burden on the programmer, and leads to programs that are intimately tied to the
architecture they were written for. In general, interactions between library routines must
be concealed inside the library.

 Allow for global optimization. Making good decisions about resource allocation, sched-
uling and so on inherently requires a global view of the computation. The reason is that
library routines for parallel machines do interact; the context-independent API presented
to the applications programmer is an illusion. This implies that these decisions cannot be
hard-coded into library routines, and in fact cannot even be made when the library is com-
piled. Instead they must be deferred until the application has been coded and all of its
potential resource requirements are known.

In the case of VEIL, all library routines appear to be independent, although in fact they are
implemented using a shared pool of memory buffers and compute engines. VEIL applications are
required to declare all sequences of library operations that they might need before using any of
them. The VEIL scheduler optimizes each sequence internally, so that independent operations are
performed in parallel whenever possible. It also allocates resources in common across all of the
sequences, arranging for lookup-table banks, memory buffers and so on to be shared appropriate-
ly. This explicit run-time scheduling step allows the system to take interactions between library
routines into account, and results in executables that are tuned to run efficiently in the context of
the application.

4.3.3 Support for Rapid Prototyping -+~

Much of the work done by AVIS users in the domains covered by our study is exploratory in
nature. Users need tools that allow them to experiment with different image processing and analy-
sis strategies quickly, and to try different parameters, filter kernels and so on with minimal delay.
Tools of this type are also useful as testing and debugging aids, since they make it easy for pro-
grammers to monitor and analyze intermediate stages of a computation.

Rapid prototyping tools for image processing have become extremely popular over the past
few years. The most striking development in this area has been the emergence and triumph of the
dataflow GUI, which is now the dominant paradigm not only in image processing, but also for sci-
entific visualization, data acquisition, and (to a lesser extent) signal processing. Tools of this type
have become a standard part of the working environment for many potential AVIS users, and are

63

being included as a matter of course in large-scale workstation environments such as KB Vision
and IUE. They should be part of the AVIS tool set as well.

All dataflow visual programming systems for image processing rely on the same basic com-
puting paradigm, although they may differ in the details of graph semantics. Computations are
represented by directed graphs whose nodes are image processing operators. Image data flows
from the sources of the graph to the sinks by way of the operators, being transformed appropriate-
ly along the way. Graphs are constructed interactively using standard direct manipulation
techniques, and can often be executed even before construction is complete. Section 3 of this re-
port describes several of these environments and discusses the functionality they provide in more
detail.

Although all current dataflow systems look more or less alike, we have found that they vary
considerably in their usefulness as system-building tools. Many of the systems in current use
evolved from scientific visualization packages such as AVS, and inherited from it a presumption
that interactive exploration and visualization is the primary purpose of the tool. In some cases
program graphs can be executed only in the context of the graphical environment. This severely
limits the usefulness of the system. It allows programmers to prototype an image processing sys-
tem, but provides no easy way for the prototype to evolve into a non-interactive application.

We suggest that interactive programming tools for AVIS accelerators be thought of as appli-
cation builders rather than as tools for exploratory programming and visualization. There should
be a clearly identified mechanism for incorporating a computation built using the GUI into an ar-
bitrary application program in C, C++, or other conventional language. This capability is
particularly important for researchers in real-time computer vision. They often need to write pro-
grams that perform computations on images as part of a real-time control system. In order to
evaluate their image processing algorithms they must test them in the context of the control loop,
so they need a rapid prototyping system that lets them move freely back and forth between the
GUI and the application.

Building a dataflow rapid prototyping system

Dataflow visual programming systems can be logically divided into three main components.
The most visible part of the system is the graphical user interface (GUI), which allows users to
build a dataflow graph and interact with the computation it represents. The bulk of the computa-
tion is done by the operator library, a collection of programs or procedures that correspond to the
nodes of the graph. Each library routine is designed to perform some primitive image processing
function, or perhaps a utility function such as loading data from a file. Finally, the run-time execu-
tive establishes communications channels and controls the order of execution of the nodes so that
the system performs the desired computation. Some systems include other components to aid with
documentation, code generation and system management, but these are relatively independent of
the three core subsystems.

Writing the graphical user interface for a dataflow system is not terribly difficult. For our own
efforts we have found that embeddable interpreted languages such as Python [44] or tcl/tk [38]
produce interfaces with acceptable performance, and allow very rapid development. In particular,
the interface for Nimue, a graphical interface to VEIL [37], was written in about three weeks by a
single skilled programmer.

64

Il B T AN BN B B BN BN B TR BN B B BE B Bl B e

An alternative to writing a GUI from scratch is to adopt an existing one. Khoros [24] pro-
vides explicit entry points that are intended to allow system builders to merge their own visual
programming constructs into the Cantata visual language. By providing appropriate object meth-
ods, programmers can arrange for Cantata to store arbitrary information in its workspace files,
along with the usual description of the graph. This would seem to offer an elegant way to integrate
the functionality of AVIS accelerators and library routines into a well-known and popular devel-
opment environment. This possibility will be discussed in more detail below.

Writing the code that implements the operator library should not present challenges, assum-
ing that a good library of reusable code exists. Integrating the library into the rapid prototyping
system should require no more than providing descriptions of the library routines in the form that
the prototyping system requires. This information will include name, number and types of inputs
and outputs, and whatever information that the executive needs in order to schedule and execute
the operator.

Designing the runtime executive and execution control system is the most challenging task
involved in building a dataflow visual programming system. It is also the part of the problem that
depends most heavily on the architecture and intermediate-level programming model. Existing
systems differ in the extent to which they attempt to determine the order of node execution by
static analysis. In many cases all decision-making happens at run time. In Khoros 1.5, for exam-
ple, a centralized scheduler traverses the dataflow graph at run time, using the flow of tokens
along arcs of the graph to determine which nodes are eligible to be executed. Other systems com-
pile the dataflow graph into a program for some other (possibly virtual) machine, and then hand it
over to a that machine to execute. The VEIL scheduler uses this approach. In general, late deci-
sion-making allows more powerful and flexible graph semantics, while early decision-making
(compilation) may result in faster programs. The Ptolemy system [7] is nearly unique in allowing
users to define multiple schedulers occupying different points along the interpretation/compila-
tion continuum.

We expect that AVIS rapid prototyping systems will make heavy use of static analysis and
will compile execution schedules whenever possible, for two reasons. First, the explicit compila-
tion step gives the system an opportunity to optimize the graph computation for the target
hardware. Second, the existence of a compiled version of the dataflow graph provides an obvious
path for integrating the prototype computation into a full-scale application. The challenge is to
keep the compilation process fast enough to preserve a good interactive ‘feel’ and rapid response
to user commands. .

The VEIL system (see section 3) provides an example of how compiled graphs can be manip-
ulated in an embedded application. In VEIL, dataflow graphs are ordinary C++ objects, and as
such can be stored in variables, passed as parameters et cetera. Graphs can be created either pro-
cedurally (by allocating a Graph object and calling procedures that insert Operator and Link
objects into the graph), or by loading them from a file. Graph files are generally created by using a
GUI to construct and test the graph interactively. Once a graph has been created or loaded, the
C++ program can invoke methods to

* set attributes. These methods allow the program to change operator parameters such as
thresholds, window sizes and so on.

» schedule the graph. This operation traverses the graph, constructs an execution schedule,
and prepares any long-lived state such as lookup tables, convolution kernels etc.

65

* specify synchronization. The program can attach host-side callback procedures to certain
nodes, so that its own processing can be triggered by the state of the dataflow graph.

* execute the graph. The program can arrange for the graph to run once, to run continuously,
or to run in alternation with other graphs.

The advantage of having applications do their image processing primarily by manipulating
graphs loaded from files is that the graphs remain accessible to the GUL If the programmer de-
cides to change the image processing that the program is doing, he or she can halt the program,
modify the graph using the GUI, and re-run the program without compiling. The program will
load the modified graph and the changes will take effect immediately.

Khoros as an AVIS rapid prototyping environment

One final consideration in designing a rapid prototyping environment for AVIS systems is the
social role and institutional momentum behind the Khoros system. Many ATR groups have com-
mitted to Khoros as their primary development environment, and many ATR contracts specify
Khoros workspaces or modules as deliverables. The IUE committee is investigating the possibili-
ty of using Khoros as the basis of its image operator set. These facts provide a strong practical
motivation for trying to use Khoros and Cantata as the rapid prototyping environment for AVIS
systems.

The main obstacle that we see to building an AVIS rapid prototyping system around Khoros
concerns the implementation of the runtime executive. The Khoros executive has been redesigned
for version 2.0 and at present does not appear to be well localized or well documented. It does
provide hooks for user-supplied execution control, but as of this writing we are unsure that there
is enough flexibility to support the kind of global scheduling that AVIS systems are likely to
require.

A second potential problem with using Khoros and Cantata for rapid prototyping is the lack
of a good mechanism for embedding Cantata graphs into larger applications. In the current imple-
mentation of Khoros each node of a Cantata graph represents a separate UNIX executable.
Provision has been made for building a shell program that executes the graph outside the context
of Cantata, but the mechanism is still cumbersome and imposes tremendous overhead on the com-
putation. AVIS application developers will need something substantially more efficient if they are
to use Cantata to design image processing routines for real-time applications.

We consider integration of AVIS rapid prototyping tools into Khoros highly desirable, and
probably feasible at some level. Further study is needed to determine what would be involved in
providing various levels of integration, and what approach is appropriate for AVIS systems.

4.3.4 An efficient runtime system

So far we have been discussing software that will be used by programmers to build image
processing applications. AVIS accelerators will also need low-level system software that provides
an interface between the application and the hardware. In general this run-time software may be
split between a host-side driver and an executive or operating system residing on the accelerator
processor(s). The functions it provides will vary depending on the capabilities of the accelerator.

66

At a minimum, it will allow the host to launch operations or applications on the accelerator, send
them data to be processed and retrieve the results.

Run-time software is one area where the needs of the three domains considered in this study
differ considerably. The tightest constraints are those imposed by real-time computer vision. Re-
searchers in this area use computer vision methods for tasks such as robot control and
autonomous vehicle guidance. Throughput requirements for these tasks are not necessarily greater
than those for general image understanding, but their latency requirements are very severe. Con-
sider the problem of braking an autonomous vehicle to avoid a collision. In order to provide
human-like competence at this task, the guidance system must be able to capture an image, ana-
lyze it, make a decision and issue a motor command in three to five hundred milliseconds. Lower
level tasks such as controlling eye movements may require sampling rates of 30 to 60 frames per
second, with latencies on the order of a frame time.

In order to satisfy the needs of real-time computer vision systems, run-time software for
AVIS systems will need the following capabilities and attributes:

task dispatching on external events. For visual servoing applications, the accelerator will be
connected directly to one or more cameras. The run-time system must allow computation to be
synchronized to the video frame rate, so that computation begins as soon as the new image has
been received.

low latency dispatching. Real-time vision applications need to be able to launch an accelerator
computation and have it begin executing within a few hundred microseconds. For most accelera-
tor architectures this implies that the operation of launching a computation must be kept separate
from that of downloading code and large data objects (e.g. LUT contents) for the computation.

fine-grained synchronization. We assume that the host will play a significant role in most AVIS
applications, even for real-time computer vision applications. The need for this is self-evident in
the case of highly specialized architectures such as SIMD machines. It will also be necessary for
more general-purpose architectures, if only because the application may need to talk to hardware
(e.g. ethernet cards, motor controllers, file system and so on) for which the accelerator lacks de-
wice drivers. Given this assumption, it is critical that the host and accelerator be able to
communicate with each other and synchronize their computations with very low overhead. Thus
the run-time system should provide some mechanism for computations on either host or accelera-
tor to issue events that can be used to synchronize access to shared resources, et cetera.

The methods used to provide and present the functionality described above depend on several
factors: the intended host and host operating system, the accelerator architecture, and the model of
parallelism supported by the intermediate-level programming environment. Thus it is hard to
make specific recommendations about how the functionality should be provided. Fortunately the
technical challenges are not severe, and in most cases there are several strategies that will work
well. In the absence of other constraints we suggest supplying a dataflow runtime system, which
we define and describe below.

Dataflow runtime systems

For the specific problem of controlling image and signal processing accelerators, there ap-
pears to be an emerging consensus about the kind of run-time system that is appropriate. The
consensus is represented by the execution control facilities of the PIKS image processing API, the
AT&T VCOS multimedia API, the VEIL executive, and Datacube’s ImageFlow device driver. For

67

lack of an accepted technical term, we will refer to these as dataflow runtime systems. A system of
this type would appear to meet all of the domain requirements identified above. In addition to im-
age and signal processing, it would provide good support for scientific visualization, vector/
matrix operations, and evaluation and training of large neural networks, assuming appropriate
primitive operators were provided. It would not provide any special support for higher level com-
putations, but neither would it interfere with them.

Dataflow runtime systems are designed to allow host applications to take advantage of at-
tached accelerators without requiring the application programmer to write native code for them. It
is implicitly assumed that the host will be responsible for most of the control flow of the applica-
tion, thought there is generally some provision for decision-making on the accelerator. The
primary contribution of a dataflow runtime system is to allow the application to describe complex
sequences of processing steps, which the accelerator will then perform autonomously without fur-
ther intervention from the application. This allows host and accelerator to run in parallel,
synchronizing only when necessary.

From the applications programmer’s point of view, the fundamental unit of computation is
the operator (our term), which performs a computation on the contents of one or more memory
buffers and deposits the result in other memory buffers. Operators can be grouped into tasks, each
of which is a set of operators communicating via buffers. The runtime system allows host pro-
grams to

create buffers. This has the effect of reserving memory or other resources needed to support
communications between operators, tasks and the host application.

create tasks. Tasks consist of sets of operators whose execution order may be constrained by data
dependencies. Thus a task implicitly or explicitly defines a coarse-grained dataflow computation
graph. For example, a task might specify that a file I/O operator should synchronize with the host
to obtain images from a host-side database and deposit them in a buffer on the accelerator. The act
of storing into the buffer might enable the execution of several operators that read from that buff-

er. Their results might be deposited in buffers read by an output operator that displays them on a
monitor.

Different systems provide different mechanisms for describing tasks. In VCOS and VEIL
tasks are built by creating operators and linking them into an explicit graph structure. In Image-
Flow and PIKS, tasks are created by entering a special task definition mode and then issuing
operator commands as if immediate execution was desired. Instead of executing the commands,
the runtime system simply records them contents in the task description. The dataflow graph is
defined implicitly by the use of memory buffers as input or output parameters of the commands.
After exiting task definition mode, the application can dispatch the task as if it were a primitive
operator, or may create other tasks.

execute a task. This has the effect of allowing the run-time system to begin executing the opera-
tors associated with the process, in the order dictated by the data dependencies and
synchronization commands. In the case of PIKS, VCOS and VEIL the run-time system also takes
into account the resource requirements of the tasks. ImageFlow requires the calling program to
keep track of resources and avoid executing tasks with conflicting requirements in parallel.

68

PIKS and Imageflow allow task dispatching commands to be embedded in a task definition,
so that tasks can invoke other tasks. They also support a form of conditional execution that is
powerful enough to allow arbitrary conditional expressions, looping and recursion.

set operator parameters. The host application can modify an operator’s behavior by sending it
control information such as thresholds, gains and so on. In ImageFlow and VEIL this can be done
asynchronously. In PIKS and VCOS parameter changes are entered by storing into shared buffers,
and have no effect until the next invocation of an operator that reads from the buffer in question.

read or write task data. All of the systems allow the application to transfer data to or from a pro-
cess by reading or writing the appropriate buffer.

synchronize with a task. All of the systems provide a mechanism that allows the application to

synchronize its execution with tasks running on the accelerator. This allows the application to per-

form atomic updates of multiple operator parameters, implement mutual exclusion, wait for task

completion, and so on. In ImageFlow synchronization is by means of events or semaphores.

VCOS and PIKS provide the same facilities via blocking reads or writes to shared variables (buff-

ers or vregs). VEIL supports both ImageFlow events and a PIKS-like buffering mechanism, and -
also allows host programs to supply callback procedures that are called automatically when the

accelerator reaches a specified point in its computation.

The PIKS runtime system

The PIKS runtime system has a number of attributes that make it a good candidate for an
AVIS runtime environment. PIKS is an ISO standard with a well-defined API. Based on a prelim-
Inary investigation, it appears that a number of popular systems (including both Cantata and the
VEIL scheduler) could be ported to a PIKS runtime environment without much difficulty. The
PIKS asynchronous execution facility also appears to be compatible with the virtual machine that
underlies the Mentat distributed-object programming system [15].

Unfortunately PIKS has problems that prevent it from being adopted as is. First, it has no
support for triggering on external events. It is not hard to imagine extensions that would allow a
digitization operator to capture a frame from a video camera and store it in a virtual register or
vreg. This would allow the arrival of the frame to trigger an arbitrary PIKS computation. At
present, however, PIKS does not support this. A second problem is that PIKS operators cannot
have internal state: all state information must be passed explicitly from one invocation to the next
via memory buffers or vregs. This may lead to very awkward constructs for operations such as
temporal FIR filtering. Finally, PIKS provides little opportunity for high level optimization and
scheduling. The ISO standards document suggests performing optimizations when a task (or
chain in PIKS terminology) is defined. However, making good decisions about how to schedule a
given chain may require knowing what other chains the application requires and how it plans to
use them. Without this information it may not be possible to produce good execution schedules
for all applications.

At present we cannot recommend adopting PIKS as the runtime system API for AVIS accel-
erators. We do recommend that developers look closely at the PIKS chain and vreg mechanisms
and consider providing something similar for their machines. The mechanisms are quite expres-
sive as they stand; if they can be supported efficiently on AVIS architectures, they will be a very
attractive candidate for an AVIS runtime system.

69

4.4 Risks and Risk Management

Software represents an area of substantial risk to the AVIS program. It will not matter how
capable the hardware is if software developers cannot program it, or if the development environ-
ment is too painful to be used for exploratory programming, or if the run-time system imposes
unacceptable overhead on programs. If either of the first two conditions holds, the cost of devel-
oping software for the accelerators will make them nearly useless to the communities considered
in this report. If the latter condition applies, the accelerators will have difficulty competing with

the rapidly advancing performance available from conventional workstations, and will be unable
to meet the needs of real-time system builders.

Understanding the risks posed by software issues is the key to minimizing them. Some of the
software components discussed above pose much more serious problems than others. Looking at
how risks are distributed makes it possible to plan a development strategy that minimizes the
chance of failure and permits design effort to be applied where it is most needed.

4.4.1 Where the risks are

By far the most serious problem posed by AVIS software requirements is that of providing
good intermediate level programming tools (compilers et cetera). All of the architectures being
considered for the AVIS program are complex, involving MIMD or SIMD parallelism, unusual
bus structures, and/or exotic processor architectures. Automatic compilation to machines of this
type is far beyond the current state of the art. Programming environments for multiprocessors are
improving, but remain difficult to use and often produce very inefficient code.

The difficulty of writing programs for exotic architectures is one of the motivations for our
emphasis on code reuse. If programmers can construct programs primarily by invoking reusable
modules, their programs will consist mostly of flow-of-control statements and will rarely have to
deal with the problems of expressing parallelism, partitioning data or allocating resources. The re-
quirement for code reuse brings problems of its own, however. It is non-trivially harder to write a
reusable convolution procedure, for example, than to write a stand-alone program for the same
task. A stand-alone program can assume that it owns the entire machine, and can be carefully
tuned for the image size and architecture that it is intended to run on. A reusable routine must run
correctly and efficiently in any context and on any data that the programmer happens to choose.

Assuming that the intermediate-level tool problem can be solved, writing the rest of the soft-
ware that AVIS systems need should be far easier. Creating a library of standard image processing
operators involves no serious design issues. It will provide a good test of the intermediate-level
tools, and will give developers the experience needed to create appropriate documentation and tu-
torials for outside programmers. At the runtime system level, the central issues relate to what
constitutes a program, what role the host should play in an application, and how the host and ac-
celerator should interact. The approach suggested above assumes a relatively active role for the
host, but other solutions are possible. In all cases we believe that although this type of software is
difficult to write, the technical problems are well understood and have known solutions.

Creating an environment for rapid prototyping and application building is relatively straight-
forward, given the excellent models provided by workstation-based environments such as
Khoros. The most important design issue here is the need for a way to incorporate code built with
the prototyping tools into a full-blown application. How difficult this is will depend on the archi-

70

tecture and on design decisions made at the run-time and intermediate levels. We claim that for
heterogeneous pipelined architectures, our own VEIL system solves the problem. A similar ap-
proach should work for other architectures, although in some cases it may be necessary to provide
separate tools for scheduling and resource allocation.

4.4.2 Minimizing the risks

Designing any large and complex system involves dozens of design decisions that may inter-
act and conflict in unpredictable ways. A well-known principle of artificial intelligence states that
in solving constraint satisfaction problems, the most difficult decisions should be made first. The
rationale is that hard problems are less likely to have multiple solutions than easy problems, so it
is better to find some solution to the hard problem and let it constrain the rest of the search. We be-
lieve that this principle applies to the problem of designing software for AVIS accelerators, and
should be used to guide the development process. We recommend the following general strategy:

1) "Choose an intermediate-level programming model. This is the most difficult problem and
hence the most powerful source of constraints on subsequent design decisions. Making the
choice will likely involve some prototyping of the intermediate-level tools.

2) Decide how the accelerator should look to its host and how it will interact with host pro-
grams. Making a good decision here requires bearing in mind the needs of the rapid prototyp-
ing system as well as those of more general applications programs. Part of the decision
involves specifying what constitutes a ‘program’ for the accelerator. At one extreme, the ac-
celerator might load a single executable file that is intended to work with (and is logically
part of) a corresponding host executable. At the other end of the spectrum, the accelerator
might contain a large collection of small programs, each corresponding to one or perhaps a
few image processing operators. In this scenario the accelerator might act as a compute serv-
er performing remote procedure calls, perhaps from more than one host process.

3) Sketch the rest of the system: the rapid prototyping tools, intermediate-level debugger and
profiler, and the rest of the run-time system. At this point standard spiral-model development
can begin, with iterative refinement of the design alternating with phases of implementation
and testing.

4.5 Conclusion

AVIS accelerators have the potential to transform the way research is done in the domains for
which they are intended. The ability to experiment with new algorithms and to prototype applica-
tions on high-speed hardware will allow researchers to explore design space far more rapidly than
in the past. This in turn should accelerate the process of applying image understanding and related
technologies to problems of military and commercial interest.

Realizing the potential of AVIS systems depends as much on software as it does on hardware.
If the time saved through using AVIS hardware is exceeded by the time lost due to a more difficult
programming environment, researchers will stick to their familiar workstation-based tools and the
accelerators will sit idle. ‘

Providing adequate software tools for AVIS accelerators is a substantial technical challenge.
The problems are tractable, however, provided that they are taken seriously and that the amount of

71

effort devoted to them is adequate. We hope that the information and ideas presented in this report
will be of assistance to AVIS system developers, and will speed the development and distribution
of advanced vision systems.

72

5 Bibliography

[1] ARPA. Proc. 1994 Image Understanding Workshop, Monterey, November 1994.

[2] Amerinex Atrtificial Intelligence, Inc., KBVision Programmers Manual, Amerinex Artificial
Intelligence, Amherst, Massachusetts, 1987.

[3] M. Annaratone et al. The Warp computer: architecture, implementation and performance.
IEEE Transactions on Computers v. C-36 no. 12, pp. 1523-1538, December 1987.

[4] K. Augustyn. A New Approach to Automatic Target Recognition, IEEE Trans. on Aerospace
and Electronic Systems v. 28 no. 1, pp 105-114, January 1992.

[5] D. Ballard and C. Brown. Computer vision. Englewood Cliffs: Prentice-Hall, 1982.

[6] Bhanu, Bir. Automatic Target Recognition: State of the Art Survey. IEEE Transactions on
Aerospace and Electronic Systems v. 22 no. 4, pp 364-379, July 1986.

[7] Buck, Joseph, Soonhoi Ha, Edward A. Lee and David G. Messerschmitt, Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems, Int. Journal of Computer
Simulation (in press).

[8] Burt, Peter, and Edward H. Adelson. The Laplacian pyramid as a compact image code. IEEE
Trans. on Communications v. 31 no. 4, pp. 532-540, 1983.

[9] N. Carriero and David Gelernter. How to write parallel programs: a guide for the perplexed.
Computing Surveys v. 21 no. 3, pp 323-357, September 1989.

[10] N. Carriero, D. Gelernter, T.G. Mattson and A.H. Sherman. The Linda alternative to mes-
sage-passing systems. Parallel Computing v. 20 no. 4, pp. 633-655, April 1994.

[11]1J.L. Crowley and R.M. Stern. Fast computation for the difference of low-pass transform.
IEEE Trans. Pattern Analysis and Machine Intelligence v. 6 no. 2, pp. 212-221, March 1934.

[12] Datacube, Inc., ImageFlow Reference Manual, Datacube, Inc., Danvers, Massachusetts,
1991.

[13] Datacube, Inc. MaxVideo 20 Hardware Reference Manual, Datacube, Inc., Dar:2rs, Massa-
chusetts, 1991.

[14] T. Eicken, D. Culler, S. Goldstein and K. Schauser. Active messages: A mechanism for inte-
grated computation and communication. In Proc. 19th Int. Symp. on Computer Architecture.
New York: ACM press, 1992.

[15] Grimshaw, Andrew S., Timothy W. Strayer, and Padmini Narayan. Dynamic, object-oriented
parallel processing. IEEE Parallel and Distributed Technology v. 1 no. 2, pp. 33-47, May
1993.

[16] E. Grimson and T. Lozano-Perez. Model-based recognition and localization from sparse
range or tactile data. Int. J. Robotics Research v. 3 no. 3, 1984.

[17] Leonard G. C. Hamey, John L. Webb and I-Chen Wu, Low-level vision on WARP and the
APPLY programming model, in Parallel Computation and Computers for Artificial Intelli-
gence (Janusz S. Kowalik, ed.), pp. 185-199, Kluwer Academic Publishers, Boston, 1988.

73

[18] Hatcher, Philip J.,Michael J. Quinn, Anthony J. Lapadula, Bradley K. Seevers, Ray J. Ander-
son and Robert R. Jones. Data-parallel programming on MIMD computers. IEEE
Transactions on Parallel and Distributed Computing v. 3 no. 2, pp 377-381, July 1991.

[19] W.D. Hillis. The Connection Machine. Cambridge: MIT Press, 1985.

[20] Hillis, W.Daniel, and Guy L. Steele. Data parallel algorithms. Communcations of the ACM,
v. 29 no. 12, pp 1170-1183, Dec. 1986.

[21] ISO. Programmer’s imaging kernel system application program interface. ISO/IEC standard
12087-2:1994(E) part 2. Hackensack: ANSI, 1994.

[22] M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active contour models. Int. J. Computer Vi-
sion v. 1 no. 4, pp. 321-331, Dec. 1987.

[23] E. W. Kent, M. O. Shneier, R. Lumia, PIPE - pipelined image processing engine, Journal of
Parallel and Distributed Computing 2, 1985, pp 50-78.

‘ [24] Khoral Research, Inc. KHOROS. software: available via http://www.khoros.unm.edu.

[25] Charles Kohl and Joe Mundy, The development of the Image Understanding Environ ment,
in Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, Seattle, 1994,
pp. 443-447.

[26] Krueger, Charles W. Software Reuse. ACM Computing Surveys v. 24 no. 2, pp 131-184,
June 1992.

[27] Michael S. Landy, Yoav Cohen and George Sperling. HIPS: A Unix-based image processing
system. Computer Graphics and Image Processing v. 25, pp. 331-347, 1984.

[28] Darryl T. Lawton and Christopher C. McConnell, Image understanding environments, Pro-
ceedings of the IEEE, 76(8), August 1988, pp. 1036-1050.

[29] Edward A. Lee and David G. Messerschmitt, Static scheduling of synchronous data flow pro-
grams for digital signal processing, IEEE Transactions on Computers, v. C-36 no. 1, January
1987, pp. 24-35.

{30] Edward A. Lee and David G. Messerschmitt, Synchronous data flow, in Proceedings of the
IEEE, v. 75 no. 9, September 1987, pp. 1235-1245.

[31] S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Trans. Pattern Analysis and Machine Intelligence v. 11 no. 7, pp. 674-693, July 1989.

[32] D. Marr. Vision. San Francisco: W.H. Freeman, 1980.

[33] O.A. McBryan. An overview of message passing environments. Parallel Computing v. 20 no.
4, pp. 417-445, April 1994. SN

[34] J. Mundy, T. Binford, T. Boult, A. Hanson, R. Haralick, V. Ramesh, T. Strat, C. Kohl, D.
Lawton, D. Morgan, R. Beveridge, and K. Price. The Image Understanding Environment Pro-
gram: IUE Class Definitions. Technical Report of the IUE committee, periodically updated,
available at ftp.aai.com. October 1994.

[35] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. SLAM: Software Library for Appear-
ance Matching. Technical Report CUCS-019-94, Columbia University Department of
Computer Science, Sept. 1994.

74

[36] Ramakent Nevatia and K. Ramesh Babu. Linear feature extraction and description. Comput-
er Graphics and Image Processing v. 13 no. 3, pp. 257-269, 1980.

[37] Thomas J. Olson, Robert J. Lockwood and John R. Taylor. Programming a pipelined image
processor. In Proceedings of the IEEE Workshop on Computer Architectures for Machine Per-
ception (CAMP93), pp 93-100, New Orleans, 1993.

[38] J. K. Ousterhout, Tcl and the Tk toolkit, Addison-Wesley Publishing Co., Reading, Massa-
chusetts, 1994.

[39] Arthur R. Pope and David G. Lowe, Vista: A software environment for computer vision re-
search, in Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, Seattle,
1994, pp. 768-772.

[40] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C.
Cambridge: Cambridge University Press, 1988.

[41] John R. Rasure and Carla S. Williams, An integrated data flow visual language and software
development environment, Journal of Visual Languages and Computing, v. 2, 1991, pp. 217-
246.

[42] John Rasure and Steven Kubica. The Khoros application evelopment environment. In Exper-
imental Environments for Computer Vision and Image Processing, ed. H. Christensen and J.
Crowley, pp 1-32, World Scientific Press, Singapore, 1994.

[43] J. Rose and G. Steele. C*: An extended C language for data parallel programming. Tech Rep
PL 87-5, Thinking Machines Corp., Cambridge, 1987.

[44] Guido van Rossum, “Interactively Testing Remote Servers Using the Python Programming
Language”. This paper and the Python programming language are available via anonymous
ftp from ftp.cwi.nl.

[45] SAIC. Model-Driven Automatic Target Recogntion: Report of the ARPA/SAIC System Ar-
chitecture Study Group. (presentation slides). October 1994.

[46] G.W. Sabot. The Paralation Model. Cambridge: The MIT Press, 1988.

[47] Schwartz, J.T., R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with sets: An
introduction to SETL. New York: Springer-Verlag, 1986.

[48] Sipelstein, Jay M. and Guy. E. Blelloch. Collection-Oriented Languages. Proc. IEEE v. 79
no. 4, pp 504-523, April 1991.

[49] A. Skjellum, S.G. Smith, N.E. Doss, A.P. Leung and M. Morari. The design and evolution of
ZipCode. Parallel Computing v. 20 no. 4, pp. 531-546, April 1994.

[50] L. Stark and K. Bowyer. Achieving generalized object recognition through reasoning about
association of function to structure. IEEE Trans. Pattern Analysis and Machine Intelligence v.
13 no. 10, 1991.

[51] Sunderam, V.S. PVM: A framework for parallel distributed computing. J. Concurrency:
Practice and Experience v. 2 no. 4, pp. 315-339, December 1990.

[52] M. Swain and M. Stricker, ed. Promising directions in active vision. Report of the NSF Ac-
tive Vision Workshop, August 1991. Univ. of Chicago Tech Rep CS 91-27, November 1991.

75

[53] Tichy, Walter F., Michael Philippsen and Philip Hatcher. A Critique of the Programming
Language C*. University of Karlsruhe School of Informatics Tech. Rep. 17/91, October 1991.

[54] Tucker, L.W., and A. Mainwaring. CMMD: Active messages on the CM-5. Parallel Comput-
ing v. 20 no. 4, pp. 481-496, April 1994.

[55] Matthew Turk and Alex Pentland. Eigenfaces for Recognition. J. Cognitive Neuroscience v.
3 no. 1, 1991.

[56] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and A.
van Dam, The Application Visualization System: A computational environment for scientific
visualization, IEEE Computer Graphics and Applications, July 1989, pp. 30-42.

[57] D.W. Walker. The design of a standard message passing interface for distributed memory
concurrent computers. Parallel Computing v. 20 no. 4, pp. 657-673, April 1994,

[58] Wang, Sheng-Jjh, and Thomas O. Binford. Generic, model-based estimation and detection of

discontinuities in image surfaces. In Proc. 1994 Image Understanding Workshop, pp. 1443-
1449, Monterey, Morgan-Kaufmann Inc., November 1994,

[59] Webb, Jon A. Steps toward architecture-independent image processing. IEEE Computer v. 25
no. 2, pp. 21-31, February 1992.

[60] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The DARPA image understanding

benchmark for parallel computers. J. Parallel and Distributed Computing v. 11 no. 1, pp. 1-24,
Jan. 1991.

[61] G. Wolberg. IMPROC: An interactive image processing software package. Tech Rep CUCS-
330-88, Columbia University Department of Computer Science, 1988.

76

