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Abstract

We propose several efficient enhancements to the Tterated 1-Steiner (I1S) heuristic of
Kahng and Robins [17] for the minimum rectilinear Steiner tree problem. For typical nets, our
methods obtain average performance of less than 0.25% from optimal, and produce optimal
solutions up to 90% of the time. We generalize 11S and its variants to three dimensions, as
well as to the case where all the pins lie on k parallel planes, which arises in, e.g., multi-layer
routing. Our algorithms are highly parallelizable, and extend to arbitrary weighted graphs,
and thus, our methods are applicable in practical routing regimes. We prove that given a
pointset in the Manhattan plane, the minimum spanning tree (MST) degree of any specific
point can be made to be 4 or less; similarly, we show that in three dimensions, the MST
degree of any specific point can be made 14 or less. Using a perturbative argument, these
results have been recently extended to show that for every pointset in the Manhattan plane
there exists an MST with maximum degree 4, and for three-dimensional Manhattan space the
maximum MST degree is 14 [28]. Aside from having independent theoretical interest, these
results help reduce the running times of our algorithms.

1 Introduction

Optimal interconnections are a common theme in a number of areas, including VLST layout [24], the
design of buildings [30], and biology [3], where we typically seek a low-cost topology to interconnect

a set of sites. The problem is formulated as follows:

The Steiner Minimum Tree problem: Given a set P of n points, find a set .S of Steiner points

such that the minimum spanning tree (MST) over P U S has minimum cost.

In many applications the cost of an edge connecting two points is the Manhattan distance between

the points (e.g., in wiring pins on a chip, routing water pipes or air-conditioning ducts through
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a building, etc.) We thus obtain the Minimum Rectilinear Steiner Tree (MRST) problem, where
edge costs are given by the L; metric, and the cost of a tree is the sum of its edge costs. Figure 1

shows an MST and an MRST for a fixed pointset.

O—

Figure 1: A minimum spanning tree (left) and MRST (right) for a fixed net.

Research on the MRST problem has been guided by several fundamental results. First, Hanan
[10] has shown that there always exists an MRST with Steiner points chosen from the intersection
of all the horizontal and vertical lines passing through all the points in P (see Figure 2), and this
result indeed generalizes to all higher dimensions [31]. However, a second major result establishes
that despite this restriction on the solution space, the MRST problem remains NP-complete [5],

prompting a large number of heuristics, as surveyed in [16].
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Figure 2: Hanan’s theorem: there always exists an MRST with Steiner points chosen
from the intersection of all the horizontal and vertical lines passing through all the
points.

In solving intractable problems, we often seek provably good heuristics having bounded worst-

case error from optimal. Thus, a third important result establishes that the rectilinear MST is a

fairly good approximation to the MRST, with a worst-case performance ratio of % < %

[14]. This implies that any MST-based strategy which improves upon an initial MST topology will
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5, which has prompted a large number of Steiner tree

also enjoy a performance ratio of at most

heuristics that resemble classic MST construction methods [12] [13] [15] [20] [21], all producing



Steiner trees with average cost 7% to 9% smaller than MST cost [26] [32].

Unfortunately, all MST-based MRST constructions were recently shown to have a worst-case
performance ratio of exactly % [18]. This negative result has motivated research into alternate
schemes for MRST approximation, with the best performing among these being the ITterated 1-
Steiner (T1S) algorithm [17]. T1S always performs strictly better than % times optimal [27], and
achieves almost 11% average improvement over MST cost. Efficient serial and parallel implementa-
tions of T1S were given in [1], enabling the benchmarking of the behavior of T1S on nets containing

up to several hundred pins.

In this paper we propose several performance-improving enhancements to the I1S method. Our
methods rely on a perturbative approach which deviates from pure greed and employs random-
ness to break ties during Steiner point selection. Our methods are highly parallelizable and are
asymptotically no slower than the original 1S variants, yet afford improved average performance;
indeed, extensive simulations indicate that for uniformly distributed nets of up to 8 pins, the
average performance of our algorithms is only 0.25% away from optimal, refining the observation
noted in [29]. Moreover, for 8-pin nets, our method produces the optimal Steiner tree in 90% of all
instances. We also propose a method of improving performance at the expense of running time,

allowing a smooth tradeoff between performance and efficiency.

We generalize T1S and its variants to three dimensions, as well as to the intermediate case where
all the pins lie on k parallel planes. This formulation has several applications, including multi-layer
routing [2] [9] [11], and building design [30]. Empirical testing suggests that this approach is very
effective for three-dimensional Steiner routing, yielding up to 15% average improvement over MST
costs. Our methods extend to arbitrarily weighted graphs, and are thus suitable as the basis of a
practical multi-layer global router, where obstruction and congestion considerations affect routing

[19].

In order to reduce the running time of our algorithms through a dynamic MST-maintenance
scheme [1], we prove the following results under the Manhattan metric: 1) in two dimensions the
maximum MST degree of a newly added point can be made to be at most 4; and 2) in three
dimensions the maximum MST degree of a newly added point can be made to be at most 14.

Using a perturbative argument, these results have been recently extended to show that for every



pointset in the Manhattan plane there exists an MST with maximum degree 4, and for three-
dimensional Manhattan space the maximum MST degree is 14 [28] (the best previously known
bounds for two and three dimensions were 6 and 26, respectively). Aside from having independent
theoretical interest, these results help reduce the running times of our algorithms. The work in
[28] also investigates the maximum MST degree for higher dimensions and other L, norms, and

relates the maximum MST degree to the so-called “Hadwiger” numbers.

In Section 2 we review the I1S method. Section 3 describes our enhanced perturbative approach,
and Section 4 generalizes I1S to three dimensions. Section 5 presents extensive simulation results,

both for two and for three dimensions, and we conclude in Section 6 with some open problems.

2 Overview of the 1-Steiner Method

We begin with a review of the 1-Steiner method [17]. For two pointsets P and S we define the
MST savings of S with respect to P as AMST(P,S) = cost(MST(P)) — cost(MST(P U S)).
We use H(P) to denote the set of Hanan Steiner point candidates (i.e., the intersections of all
horizontal and vertical lines passing through points of P). For a pointset P, a [-Steiner point
2z € H(P) maximizes AMST(P,{z}) > 0. The T1S method repeatedly finds 1-Steiner points and
includes them into S. The cost of the MST over P U .S will decrease with each added point, and
the construction terminates when there is no  with AMST(P U S, {z}) > 0. Although a Steiner
tree may contain at most n — 2 Steiner points [7], I1S may add more than n — 2 Steiner points;
therefore, at each step we eliminate any extraneous Steiner points having degree 2 or less in the

MST. Figure 3 illustrates a sample execution of 1S, and Figure 4 describes the algorithm formally.

Figure 3: Execution of Tterated 1-Steiner (T1S) on a 4-point example. Note that in step
(d) a degree-2 Steiner point is formed and is thus eliminated from the topology (e).

Although a 1-Steiner point may be found in O(n?) time using complicated techniques from



Algorithm Tterated 1-Steiner (I1S)

Input: A set P of n points

Output: A rectilinear Steiner tree over P

S=10

While T = {zx € H(P)|]AMST(PUS,{z})> 0} # 0§ Do
Find z € T with maximum AMST(P U S, {z})
S=8SU{z}
Remove from S points with degree < 2 in MST(P U S)

Output MST(P U S)

Figure 4: The Tterated 1-Steiner algorithm.

computational geometry [6] [17] [25], such methods suffer from large constants in their time com-
plexities, and are notoriously difficult to implement. Thus, a batched variant of I1S is usually
favored, which efficiently adds an entire set of “independent” Steiner points in a single iteration,
thereby affording both practicality and reduced time complexity [1] [17]. An example of the output

of Batched 1-Steiner (B1S) for a random pointset of size 300 is shown in Figure 5.

3 A Perturbative Approach

At each iteration the basic 1S heuristic uses pure greed to select a Steiner point, and this may
unfortunately preclude additional savings in subsequent iterations. A similar phenomenon may
occur due to tie-breaking among 1-Steiner candidates which induce equal savings. For example, in
Figure 6 we observe that an unfortunate choice for a 1-Steiner point can interfere with the savings

of future potential 1-Steiner candidates, resulting in a suboptimal solution.

Empirical tests indicate that ties in MST savings for the various 1-Steiner point candidates
occur very often. Therefore, in order to avoid breaking ties in ways that would preclude possible
future savings, we propose the following scheme: when an MST savings tie occurs among a number
of 1-Steiner candidates, rather than using a deterministic tie-breaking rule, we instead select one
of the 1-Steiner points randomly and proceed with the execution. We then run this randomized
variant of T1S m times on the same input, and select the best solution (i.e., the least costly of the

m solution trees), where m is an input parameter.

In order to further avoid the pitfalls of a purely greedy strategy (i.e., getting trapped in
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Figure 5: An example of the output of Batched 1-Steiner (B1S) on a random 300-point
set (hollow dots). The Steiner points produced by B1S are denoted by dark solid dots.

local minima), we also propose a mechanism that allows small deviations from pure greed: we
allow T1S to select a 1-Steiner point if its MST savings is within § units from that of the best
candidate, where 6 is again an input parameter. This strategy would enable the acceptance of
a slight disimprovement, (with respect to the best possible savings), but could possibly create

opportunities for greater savings in future iterations.

Finally, we note that performance may improve if instead of looking for 1-Steiner points, we
search for pairs of Steiner points (having maximum savings with respect to other pairs): for exam-
ple, such a 2-Steiner algorithm will optimally solve the example pointset of Figure 6. Combining

these three techniques of (i) non-deterministic tie-breaking, (ii) near-greedy search, and (iii) k-
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Figure 6: An unfortunate tie-breaking choice for a 1-Steiner point may interfere with
the savings of other potential 1-Steiner candidates. Tf P1 is selected (b), then the MST
savings of both P2 and P3 become 0 in the next iteration, yielding a suboptimal tree
of cost 7 (¢); on the other hand, if P2 is selected first, then P3 may be selected next,
yielding an optimal tree of cost 6 (d).

Steiner selection, we obtain a new Perturbated Tterated k-Steiner algorithm (PTkS), as shown in

Figure 7.

Algorithm Perturbated Iterated k-Steiner (PIkS)
Input: A set P of n points, parameters § > 0, k> 1, and m > 1
Output: A rectilinear Steiner tree over P
T =MST(P)
Do m times
S=0
While C ={X C H(P) | |X| <k, AMST(PUS,X) >0} # § Do
Find Y € C with maximum AMST(PUS,Y")
Randomly select 7 € C' with AMST(PU S, Z) > AMST(PUS,Y) -6
S=5SuUZz
Remove from S points with degree < 2 in MST(P U S)
If cost(MST(P U S)) < cost(T) Then T'=MST(PUS)
Output T

Figure 7: The Perturbated Tterated k-Steiner (PTkS) method.

Note that the original I1S algorithm of Figure 4 is equivalent to our new PIkS algorithm with £ =1,
m =1, and 6 = 0. Our PIkS scheme can also be extended using a “non-interfering” criterion as in
[1] [17], to yield a Perturbated Batched k-Steiner algorithm (PBKS), where a maximal number of
Steiner points are added during each round. The time complexity of PBkS is O(m-n>*=1).T(n)),

where T(n) is the time complexity of B1S; thus, for fixed m, PBI1S runs asymptotically within



the same time as B1S, namely O(n?®). The PBkS template is a method of improving performance
at the expense of running time, allowing a smooth tradeoff between performance and efficiency.
Although PBKS is guaranteed to always yield optimal solutions for < k—2 pins, its time complexity

increases exponentially with k.

It was observed empirically that only a small fraction of the Hanan candidates have positive
MST savings in a given round of B1S; moreover, only candidates with positive MST savings in
a given round are likely to produce positive MST savings in subsequent rounds. Thus, rather
than to examine the MST savings of all Hanan candidates in a given round, we may only con-
sider the candidates that produced positive savings in the previous round. This strategy would
therefore significantly reduces the time spent during each round, without substantially affecting
the performance. We call this streamlined version of B1S the modified batched 1-Steiner (MBI1S)

algorithm.

4 Steiner Routing in Three Dimensions

Three-dimensional packaging is beginning to emerge as a viable VLST design technology [2] [9]
[11]; unfortunately, most existing CAD tools and techniques implicitly address two dimensions
only. In contrast, the PIkS method readily generalizes to arbitrary dimensions. We distinguish
between the general three-dimensional version of the Steiner problem, and the less general (but
more realistic) version, where the points of P lie on L parallel planes. This formulation corresponds
to a multi-layer design containing I layers. The cost of routing between one layer and another (i.e.,
vias) is likely to be substantially higher than staying on the same single layer, and this may be
modeled by varying the distance between the layers. In Section 5 we present extensive benchmark
data for several combinations of values for I and n. Note that the unrestricted three-dimensional
version of the Steiner problem occurs in the limit when I = oo, and the standard two-dimensional

formulation is the case L = 1.

Our three-dimensional PTkS method may be implemented efficiently by using a generalization
of Hanan’s theorem to higher dimensions [31]. In particular, there always exists an optimal Steiner
tree whose Steiner points are chosen from the O(n?) intersections of all orthogonal planes (i.e.,

planes parallel to the axis) passing through all points in P. The three-dimensional analog of



Hwang’s result suggests that the maximum MST/MRST ratio for three dimensions is at most %,
although there is currently no known proof of this (an example consisting of six points located in
the middles of the faces of a rectilinear cube establishes that % is a lower bound for the performance
ratio in three dimensions). Thus, we expect the average performance of our heuristics, expressed
as percent improvement over MST, to be higher in three dimensions than it is in two dimensions;
this is indeed confirmed by our experimental results (see Section 5). Also as expected, the average

performance improves as the number of layers increases.

In computing the MST savings of each Steiner candidate, a key observation is that once we
have computed an MST over a pointset P, the addition of a single new point p into P can only
induce a small constant number of topological changes between MST(P) and MST(P U {p}).
This follows from the fact that in a fixed dimension, each point can have at most O(1) neighbors
in a rectilinear MST [8]. Thus, MST savings in three dimensions may be efficiently calculated
by partitioning the space with respect to the new point p into O(1) mutually disjoint regions
R;(p), with the property that only the closest point in each region R;(p) may be connected to p
in the MST(P). This implies that linear time suffices to compute the MST savings of a 1-Steiner
candidate [1].

For example, in the Manhattan plane, it is known that to update an MST with a newly added
point p, it suffices to search only for the closest point to p in each of the four regions defined by
the two lines passing through p at 45 and -45 degrees, respectively [13] (Figure 8(a)). This follows

from the fact that each region of such a plane partition has the following uniqueness property:

The Uniqueness Property: Given a point p in d-dimensional space, a space region R has the
uniqueness property with respect to p if for every pair of points u,w € R, either dist(w,u) <

dist(w, p) or dist(u, w) < dist(u, p).

We use dist(u, w) to denote the distance between the two points v and w. We now prove that the

above 4-region partition of the plane has the uniqueness property.

Lemma 4.1 Given a point p = (20,y0) in the Manhattan plane, each region of the partition of

the plane defined by the two lines y—1yg = v — 29 and y—yo = xg— x has the uniqueness property.

Proof: The two diagonal lines through p partition the plane into four disjoint regions Ry through



R4 (see Figure 8(a)). A boundary between two regions may be arbitrarily assigned to either
region. Consider one of the 4 regions, say Ry, and let u,w € Ry (Figure 8(b)). Assume without
loss of generality that dist(u, p) < dist(w, p) (otherwise swap the names of ¥ and v in this proof).
Consider the diamond D in R; with one corner at p, with u on the boundary of D (see Figure
8(c)). Let ¢ be the center of D, and let a ray starting at p and passing through w intersect the
boundary of D at the point b. By the triangle inequality, dist(w,u) < dist(w,b) + dist(b,¢) +
dist(e, u) = dist(w, b) + dist(b, ¢) + dist(c, p) = dist(w, p). Thus, w is not closer to p than it is to

u and the region R; has the uniqueness property. The other three regions are handled similarly.

O
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Figure 8: A partition of space into a number of regions with respect to a point p (a)
has the uniqueness property: if for every two points v and w that lie in the same region
(b), either dist(w, u) < dist(w, p) or else dist(u, w) < dist(u, p) (c).

A partition of a space into regions is said to have the uniqueness property if each region
of the partition has the uniqueness property. Using similar arguments to those of Lemma 4.1,
we can show an analogous result for three dimensions, where we partition space into 14 regions
corresponding to the faces of a truncated cube (Figure 9(a)), i.e., a solid obtained by chopping off
the corners of a cube, yielding 6 square faces and 8 equilateral triangle faces (Figure 9(b)); this
solid is known as a “cuboctahedron” [23]. The 14 regions of this partition correspond to the faces
of the cuboctahedron, namely 6 pyramids with square cross-section (Figure 9(c)) and 8 pyramids
with triangular cross-section (Figure 9(d)). Again, region boundaries may be arbitrarily assigned
to either adjacent region. We call this particular partition the cuboctahedral partition, and refer
to the two types of induced regions as square pyramids and triangular pyramids. We now show

that the cuboctahedral partition has the uniqueness property.

10
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Figure 9: A truncated cube (a-b) induces a three-dimensional cuboctahedral space
partition where each region has the uniqueness property. The 14 regions consist of 6
square pyramids (¢), and 8 triangular pyramids (d). Using the triangle inequality, the
uniqueness property may be shown to hold for each region (e-f).

Theorem 4.2 Given a point p in three-dimensional space under the Manhattan metric, each of

the 14 regions in the cuboctahedral partition of space with respect to p has the uniqueness property.

Proof: This proof is a generalization to three dimensions of the proof of Lemma 4.1. Consider

11



one of the square pyramids R with respect to p (Figure 9(c)), and let u,w € R. Assume without
loss of generality that dist(u, p) < dist(w, p) (otherwise swap the names of u and v in this proof).
Consider the locus of points D C R that are distance dist(u, p) from p. (Figure 9(e)); D is actually
the boundary of an upper half of an octahedron. Let ¢ be the center of the octahedron determined
by D, and let b be the intersection of the surface of D with a ray starting from p and passing
through w. By the triangle inequality, dist(w, u) < dist(w, b) + dist(b, ¢) + dist(c, u) = dist(w,b)
+ dist(b, ¢) + dist(c,p) = dist(w, p). Thus, w is not closer to p than it is to u and the region R

has the uniqueness property. The other square pyramids are handled similarly.

To show the uniqueness property for the triangular pyramids, consider one of the triangular pyra-
mids R with respect to p (Figure 9(d)), and let u,w € R. Assume without loss of generality that
dist(u, p) < dist(w, p) (otherwise swap the names of 4 and v in this proof). Consider the locus of
points D in R that are distance dist(u, p) from p (Figure 9(f)). Let b be the intersection of D with
a ray starting from p and passing through w. By the triangle inequality, dist(w, u) < dist(w, b)+
dist(b, u) < dist(w, b)+ dist(b, p) = dist(w, p). Thus, w is not closer to p than it is to u and the

region R has the uniquenes property. The other triangular pyramids are handled similarly. 0

We thus have the following:

Corollary 4.3 Given a three-dimensional pointset P and an a additional point x, there exists an

MST over PU {z} where x has degree of at most 14 in the MST.

Proof: The cuboctahedral partition of space as described above yields 14 regions, each possessing
the uniqueness property. This implies that for any two points inside a region, one is closer to the
other rather than to the origin; thus only one point inside each region is a viable candidate for an
MST neighbor. Therefore, the degree of any single point in the MST can be forced to be 14 or

less. n

It 1s still an open question whether for three dimensions the cuboctahedral partition has the
least number of regions among all possible partitions possessing the uniqueness property; we

conjecture that it 1s. On the other hand, we observe that 13 is a lower bound:

Theorem 4.4 There are three-dimensional poinisets for which the mazimum degree of any MST

12



15 at least 13.

Proof: Consider the pointset P = {(0,0,0),(+100,0,0), (0,+100, 0),(0, 0, £100), (47, —4,49),
(—6,—49,45), (—49,8,43), (=4, 47, —49), (=49, —6, —45), (8, —49, —43), (49, 49,2)}.

The distance between every point and the origin is exactly 100 units, but the distance between
any two non-origin points is strictly greater than 100 units. Therefore, the MST over P is unique
(i-e., all points must connect to the origin) and thus the origin point has degree 13 in the MST. Tt
is still open whether there exists a three-dimensional pointset where the maximum MST degree is

forced to be as high as 14 [28]. 0

Given that each point can connect to at most 14 neighbors in the MST, we obtain the following
linear-time algorithm for dynamic MST maintenance (DMSTM) in three dimensions: connect the
new point in turn to each of its < 14 potential neighbors, then delete the longest edge on each
resulting cycle. A two-dimensional example of this method is given in Figure 10, while Figure
11 gives a formal description of this algorithm. Note that dynamic MST maintenance may also
be achieved in sub-linear time [4], but such methods appear impractical due to their complexity
and large hidden constants. A similar method was used in [33] to obtain a sub-quadratic MST
algorithm in higher dimensions, but no attempt was made to optimize the number of necessary

regions.

Note that Theorem 4.2 and Corollary 4.3 do not directly imply that the maximum overall
MST degree in three dimensions is 14, since points lying on the boundaries between regions may
be the same distance from the origin as they are from each other (e.g., consider the 18 points
corresponding to the 6 vertices of an octahedron, and the 12 midpoints of the octahedron edges).
It turns out, however, that in all such cases ties for connection during MST construction may be
broken appropriately as to keep the overall MST degree low. In order to handle distance ties with
respect to points that lie on region boundaries, we define a more restrictive, strict version of the

uniqueness property:

The Strict Uniqueness Property: Given a point p in d-dimensional space, a space region R
has the strict uniqueness property with respect to p if for every pair of points u,w € R, either

dist(w, ) < dist(w, p) or dist(u, w) < dist(u, p).

13
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Figure 10: Dynamic MST maintenance: adding a point to an existing MST entails
connecting the point to its closest neighbor in each region, and deleting the longest
edge on each resulting cycle (the Fuclidean metric has been used for clarity in this
illustration).

Dynamic MST Maintenance (DMSTM)
Input: A set P of n points, M.ST(P), a new point x
Output: MST(P U {z})
T = MST(P)
For i=1 to #regions do
Find in region R;(z) the point p € P closest to =
Add to T the edge (p, z)
If T contains a cycle Then remove from 7' the longest edge on the cycle
Output T

Figure 11: Linear-time dynamic MST maintenance.

Note that is a region has the strict uniqueness property it also has the (non-strict) uniqueness
property. Clearly each d-dimensional region satisfying the strict uniqueness property may con-

tribute at most 1 to the maximum MST degree. Using a perturbative argument, Robins and

14



Salowe [28] prove that by breaking ties judiciously, lower-dimensional regions do not increase the

maximum MST degree:

Theorem 4.5 Gliven a partition of d-dimensional Manhattan space into r regions, and given that
only v < r of these regions are d-dimensional and have the strict uniqueness property (the rest
being lower-dimensional, and are not required to have the uniqueness property at all), then the

mazimum MST degree in this space is v’ or less.

Proof Sketch: Given a pointset P, perturb the coordinates of the points by a tiny amount so
that the lower-dimensional regions become empty of points. This is always possible to do, and
yields a new perturbed pointset P’. Clearly, interpoint distances in P’ are not much different, from
the corresponding interpoint distances in P, and therefore the cost of the MSTs over P’ and P
can differ by only a tiny amount which we can make arbitrarily small. This implies that the MSTs
over P and over P’ have the same topology. But the MST over P’ has maximum degree 7/, since
only the 7’ regions are nonempty with respect to the pointset P’. Finally, use the topology of
the MST for P’ to connect the points of P; this would correspond to an MST over P. For more

details, the reader is referred to [28]. 0

Corollary 4.6 FEvery pointset in the Manhattan plane has an MST with mazimum degree 4.

Corollary 4.7 FEvery pointset in three-dimensional Manhattan space has an MST with mazimum

degree 14.

The bound of 4 of the maximum MST degree in the Manhattan plane is tight, since there are
examples which achieve that bound (e.g., the center and vertices of a diamond). While Theorem 4.4
gives an example that illustrates that the maximum MST degree in three-dimensional Manhattan
space can be as large as 13, it is still open whether there exist any examples in three-dimensional

Manhattan space which force an MST degree of 14. We conjecture that none exist.
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5 Experimental Results

We have implemented the PIkS and the PBkS algorithms, as well as several variants, using C in
the SUN TPC workstation environment. Our code is available from the authors upon request. The

following algorithm variants were tested:

e B1S - The batched variant of iterated 1-Steiner [17];

e MBI1S - The B1S variant modified for faster execution;
¢ PBI1S - The perturbated version of B1S;

o I2S - The iterated 2-Steiner algorithm;

e PI2S - The perturbated version of 125;

¢ META(B1S,MB1S) - The metaheuristic over heuristics B1S and MBIS, i.e., the best

solution found by either of these heuristics;

¢ META(PB1S,I12S,PI2S) - The metaheuristic over heuristics PB1S, 12S, and PI2S; i.e.,

the best solution found by any of these heuristics; and

e META(B1S,MB1S,PB1S.I12S,PI2S) - The metaheuristic over heuristics B1S, MBIS,

PBI1S, 12S, and PI2S, i.e., the best solution found by any of these heuristics.
For comparison, we have also tested:

e UKy - The Steiner heuristic of Lewis et al. [22]; and

e OPT - The optimal Steiner tree algorithm of Salowe and Warme [29].

Recall from the end of Section 3 that MB1S is a more efficient version of B1S, since it only examines
a fraction of the Hanan candidates in each round (i.e., only the ones with positive MST savings
in the previous round). UKy has average performance on par with the best existing methods [22],
while OPT is the fastest known optimal rectilinear Steiner tree algorithm [29]. All algorithms

have been extensively benchmarked using various net cardinalities. Up to 10000 instances of each
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cardinality were solved using each algorithm. The instances were generated randomly by choosing
the coordinates of each point from a uniform distribution in a 10000 x 10000 grid; such instances

are statistically similar to the pin locations of actual VLSI nets and are the standard testbed for

Steiner tree heuristics [16] [17].

Figure 12 shows the performance comparison of MB1S, PI2S, UKy, and OPT, while Table 1
in the Appendix gives more detailed performance data. We observe that the average performance
of our method is extremely close to optimal: for n = 8, PI2S is on average only about 0.25% away
from optimal. Moreover, the solutions found by PI2S are optimal about 90% of the time for 8-pin
nets. Table 2 in the Appendix tracks the percentage of cases where the various heuristics find the

optimal solution, and this information is also depicted pictorially in Figure 13.

10.8

10.6

104+

10.2+

Ave Savings (% | mprovement over MST)

T T
10 15 20 25

Number of Terminals

Figure 12: Average performance in two dimensions of several of the heuristics. Note
that PI2S is only 0.25% (or less) away from optimal.

The average running times of the algorithms for various cardinalities are compared in Figures
14 and 15. Table 3 in the Appendix gives the average CPU times, in seconds, for each heuristic
and cardinality. Our most time-efficient algorithm is MB1S, requiring an average of 0.009 CPU
seconds per 8-pin net, and an average of 0.375 seconds per 30-pin net. Note that in the net
cardinality ranges depicted in Figures 14 and 15, the polynomial-time UKy heuristic requires

more time than the exponential-time OPT heuristic! naturally, OPT eventually runs slower than
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Figure 13: The percentage of all cases when the heuristics find the optimal solution.
Note that PI2S yields optimal solutions a large percentage of the time.

UKy, which happens at around 27 points. Using PTkS (or PBkS) with values of k greater than
2 improves the performance, but slows down the algorithm; it is easy to see that for arbitrary k,
PTkS (PBKS) always yields optimal solutions for < k — 2 pins, but has time complexity greater by
a factor of n2(*=1) than that of PT1S (PB1S). This allows a smooth tradeoff between performance
and efficiency. However, the performance of the PBkS algorithm with £ = 2 is already so close to

optimal, that in most applications increasing k further may not justify the incurred time penalty.

In three dimensions, we observed that the average performance of PB1S approaches 15% im-
provement over MST cost, and the performance increases with the number of planes L. Tt is not
surprising that the average savings over MST cost in three dimensions is higher than it is in two
dimensions, since the worst-case performance ratio in three dimensions is higher also (i.e., % vs.
%) Figure 16 shows the performance of our method in three dimensions for various values of the
number of parallel planes L, including the unrestricted three-dimensional case, corresponding to
the limit when L approaches co. Table 4 in the Appendix gives more detailed performance data,
for various values of L. In all cases, the I parallel planes were uniformly spaced in the unit cube

(i-e., there were separated by % units apart, where G = 10000 is the gridsize. Unfortunately, the

OPT algorithm of Salowe and Warme [29] does not easily generalize to higher dimensions; thus,
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Figure 14: Average execution times, in CPU seconds, for 4 through 10 points.
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Figure 15: Average execution times, in CPU seconds, for more than 10 points.

we did not compare our three-dimensional version of PB1S to optimal.

Table 5 gives statistics for three dimensions on the number of Steiner points induced by B1S, as
well as on the number of rounds that occur in B1S before termination. As is the case in two

dimensions [1], the number of rounds for B1S in three dimensions is on average very small.
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Figure 16: Average performance of PB1S in three dimensions for various values of L. =
number of parallel planes.
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Figure 17: Minimum, average, and maximum number of Steiner points added by MB1S
in three dimensions

6 Conclusion

We proposed several enhancements to the Tterated (Batched) 1-Steiner heuristic [17], based on

a perturbative approach. Our methods enjoy the same asymptotic time complexity as Iterated
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(Batched) 1-Steiner, yet offer improved average performance. We also proposed a method of in-
creasing performance at the expense of running time, allowing a smooth tradeoff between perfor-
mance and efficiency. Extensive simulations indicate that for typical nets, the average performance
of our new algorithmsis only a small fraction of a percent away from optimal, and our solutions are
actually optimal for most random uniformly distributed instances. We then generalized T1S and
its variants to three dimensions, as well as to the case where all the pins lie on L parallel planes,
which arises in, e.g., three-dimensional VLSI [11] and multi-layer routing [2] [9]. The perturba-
tive methods are highly parallelizable and generalize to arbitrary weighted graphs; thus, they are
suitable to support a multi-layer global router, where obstruction and congestion considerations

affect routing [19].

We reduced the running time of our algorithms through a dynamic MST-maintenance scheme
[1], and we proved that under the Manhattan metric: 1) in two dimensions the maximum MST
degree of a newly added point can be made to be at most 4; and 2) in three dimensions the
maximum MST degree of a newly added point can be made to be at most 14. These results have
been recently extended [28] to show that for every pointset in the Manhattan plane there exists an
MST with maximum degree 4, and for three-dimensional Manhattan space there exists an MST
with maximum degree 14 (the best previously known bounds for two and three dimensions were
6 and 26, respectively). Aside from having independent theoretical interest, these results help

reduce the running times of our algorithms.

Remaining open research questions include:

1. Finding an MRST heuristic with performance consistently higher than PBI1S (or MBI1S),
but with a significantly better running time (note that it would not suffice to just find a
heuristic with better performance but which runs more slowly, since increasing k& in PBkS

will achieve exactly that);
2. Determining if the maximum MST degree in three dimensional Manhattan space is 13 or 14;

3. Further tightening the bounds of [28] on the maximum MST degree in higher dimensions

and under various L, norms;

4. The exact planar MRST algorithm of Salowe and Warme [29] is by far the fastest currently
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known; unfortunately, it relies heavily on the structure of planar MRSTs, and thus does not
easily generalize to higher dimensions. Generalizing [29] to higher dimensions, or significantly

improving its efficiency in two dimensions remains a major challenge.
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8 Appendix: Performance Data

Average Perormance Results in Two Dimensions
# (1) (2) (3) (4) (5) (6) | Meta Meta Meta Meta

n nets | UKy | B1S MBIS PBI1S | I2S PI2S | (2-3) (4-6) (2-6) (1-6) | OPT

4 |1 10000 | 8.54 | 8.54 8.54 8.54 854 854 | 854 854 854 854 | 8.54

5 | 10000 | 9.44 | 9.34 9.34 9.39 944 945 | 937 946 946  9.47 | 947

6 | 10000 | 9.91 | 9.79 9.78 9.85 990 992 | 982 993 993 9.96 | 9.97

7 | 5000 | 10.15 | 10.04 10.03 10.12 | 10.15 10.19 | 10.08 10.21 10.21 10.25 | 10.27

8 | 5000 | 10.17 | 10.06 10.06 10.15 | 10.17 10.22 | 10.11 10.24 10.24 10.30 | 10.33

9 | 5000 | 10.26 | 10.16 10.14 10.25 | 10.27 10.33 | 10.20 10.34 10.34 10.42 | 10.47

10 | 5000 | 10.27 | 10.19 10.16 10.27 | 10.28 10.34 | 10.22 10.36 10.36 10.45 | 10.52

12 | 5000 | 10.25 | 10.24 10.24 10.34 | 10.33 10.39 | 10.29 10.41 10.41 10.50 | 10.58

14 | 5000 | 10.31 | 10.33 10.33 1042 | 10.40 10.47 | 10.37 10.49 10.49 10.59 | 10.70

16 | 5000 | 10.29 | 10.33 10.32 10.42 | 10.40 1047 | 10.37 10.49 10.49 10.60 | 10.73

18 | 4000 | 10.44 | 10.51 10.51 10.61 | 10.58 10.66 | 10.56 10.67 10.67 10.78 | 10.93

20 | 3000 | 10.39 | 10.51 10.51 10.61 | 10.56 10.64 | 10.55 10.66 10.66 10.76 | 10.92

25 | 2000 | 10.31 | 10.47 10.48 10.57 | 10.53 10.61 | 10.52 10.62 10.62 10.71 | 10.90

30 100 10.23 | 10.45 10.59 10.76 | 10.55 10.62 | 10.51 10.63 10.63 10.70 | 10.89

50 | 500 10.89  10.89 10.99 | 10.93 11.03 | 10.93 11.04 11.05

70 100 10.73  10.77 10.86 | 10.76 10.88 | 10.80 10.91 10.91

Table 1: Performance statistics: the performance figures denote average percent improvement over
MST cost.
Percent of the Time Solution Was Optimal
# (1) (2) (3) (4) (5) (6) Meta  Meta  Meta  Meta

n nets UKy BI1S MBI1S PBIS 128 PI2S (2-3) (4-6) (2-6) (1-6) OPT
4 | 10000 | 100.00 | 100.00 100.00 100.00 | 100.00 100.00 | 100.00 100.00 100.00 100.00 | 100.00
5 | 10000 | 98.43 | 94.29 93.96 96.53 | 98.42  99.04 | 9530 99.26  99.27  99.86 | 100.00
6 | 10000 | 95.52 | 90.34  90.00 93.68 | 94.92 9691 | 91.98 9746  97.46  99.24 | 100.00
7 | 5000 | 90.68 | 85.20 84.75  89.96 | 90.72  93.77 | 87.45  94.75  94.75  98.02 | 100.00
8 | 5000 | 85.00 | 79.62 7877 85.26 | 84.73  89.87 | 82.13  90.94  90.95  96.39 | 100.00
9 | 5000 | 79.96 | 75.80  T4.88  82.23 | 81.70 86.86 | 78.64 87.92 87.92  94.38 | 100.00
10 | 5000 | 73.34 | 72.03 7044 79.12 | 77.01 8292 | 75.09 84.49 84.49  91.88 | 100.00
12 | 5000 | 61.46 | 65.15  63.98 73.01 | 7041 77.17 | 6849 7872 7872 87.12 | 100.00
14 | 5000 | 52.49 | 57.86 5873 66.69 | 62.84 70.73 | 62.31 72.33  72.33  80.86 | 100.00
16 | 5000 | 43.97 | 50.36 4992  60.17 | 54.84 6392 | 54.99 65.73  65.73  75.50 | 100.00
18 | 4000 | 36.30 | 44.90 45.02 55.65 | 49.33 5885 | 4945 61.02 61.02  70.47 | 100.00
20 | 3000 | 30.13 | 42.87  42.00 53.20 | 45.70  55.47 | 47.00  58.23  58.23  66.87 | 100.00
25 | 2000 18.15 | 31.25  31.70  41.45 | 34.15  44.30 | 35.60 4590 4590  52.85 | 100.00
30 100 6.00 27.00  26.00  41.00 | 32.00 45.00 | 31.00  47.00  47.00  50.00 | 100.00

Table 2: Optimality Percentages: the figures denote what percent of the time the various heuristics
found the optimal solution.

25




Average CPU Time Per Net (in Seconds)
(1) (2) (3) (4) (5) (6) | Meta Meta Meta Meta
UKy | BIS MBIS PBIS | 128 PI2S | (23) (4-6) (2-6) (1-6) | OPT
0.005 | 0.002 0.001 0.054 | 0.001 0.072 | 0.003 0.127 0.130 0.135 | 0.006
0.010 | 0.004 0.002 0.107 | 0.003 0.068 | 0.006 0.178 0.184 0.194 | 0.010
0.016 | 0.006 0.004 0.184 | 0.006 0.128 | 0.010 0.318 0.328 0.344 | 0.018
0.025 | 0.009 0.006 0.287 | 0.012 0.231 | 0.015 0.530 0.545 0.570 | 0.031
0.036 | 0.013 0.009 0.432 | 0.019 0.384 | 0.022 0.835 0.857 0.893 | 0.046
0.077 | 0.019 0.012 0.571 | 0.030 0.634 | 0.031 1.235 1.266 1.343 | 0.066
0.122 | 0.025 0.016 0.806 | 0.046 0.951 | 0.041 1.803 1.844 1.966 | 0.090
12 | 0.284 | 0.043 0.026 1.324 | 0.096 1.967 | 0.069 3.387 3.456 3.740 | 0.158
14 | 0.606 | 0.066 0.041 2.127 | 0.180 3.623 | 0.107 5.930 6.037 6.643 | 0.268
16 | 1.415 | 0.096 0.059 3.288 | 0.317 6.372 | 0.155 9.977 10.13 11.55 | 0.405
18 | 3.474 | 0.134 0.081 4.216 | 0.540 9.700 | 0.215 14.46 14.68 18.15 | 0.774
20 | 6.005 | 0.181 0.115 6.440 | 0.833 15.87 | 0.296 23.14 23.44 29.45 | 1.618
25 | 24.71 | 0.341  0.220 11.94 | 2.050 48.09 | 0.561 62.08 62.64 87.35 | 13.88
30 | 66.08 | 0.569 0.375 18.93 | 4.184 86.10 | 0.944 109.2 110.1 176.2 | 495.8
50 | 852.9 | 2.732 1.694 79.78 | 35.91 764.6 | 4.426 880.3 884.7 1738
70 | 3064 | 6.664 4.236 2554 | 150.3 5668 | 10.90 6074 6085 9149

— . .
e B NN =

Table 3: Average execution times, in seconds, for each of the heuristics.

Average Perormance of PB1S in Three Dimensions
n | L=2| L=3 | L=4 | L=5 | L=7 | L=10 | L=14 | L.=20 | L=
3| 801 | 951 | 9.72 | 10.11 | 10.24 | 10.65 | 10.26 | 10.63 | 10.66
4 | 947 | 10.66 | 11.14 | 11.80 | 12.33 | 12.39 | 12.17 | 12.01 | 12.57
5 | 10.42 | 11.46 | 12.46 | 12.48 | 13.12 | 13.26 | 13.48 | 13.45 | 13.61
7 | 10.66 | 12.16 | 13.07 | 13.24 | 13.95 | 13.91 | 14.19 | 14.20 | 14.23
10 | 10.14 | 12.86 | 13.64 | 14.22 | 13.54 | 15.33 | 14.26 | 14.34 | 15.26
14 1 10.53 | 12.20 | 13.25 | 13.77 | 14.38 | 14.70 | 14.27 | 14.77 | 14.84
20 | 10.19 | 12.10 | 13.48 | 13.37 | 14.25 | 14.95 | 14.74 | 14.84 | 14.97
30 | 10.33 | 11.23 | 11.92 | 13.21 | 13.82 | 14.52 | 15.02 | 15.04 | 15.24
50 | 10.28 | 10.20 | 11.31 | 13.01 | 13.49 | 14.49 | 15.14 | 15.08 | 15.16

Table 4: Average percent improvement over MST cost of PB1S in three dimensions for L planes
equally spaced in the unit cube. The unrestricted three-dimensional case occurs when L = oo (last
column).

26



#SPs and #rounds for B1S in 3D
#SPs #rounds
n | mn ave max | min ave max
3 0 0.90 1 1 1.90 2
4 0 1.53 2 1 2.18 3
5 1 2.25 3 2 2.33 4
7 1 3.63 6 2 2.60 5
10 2 5.63 8 2 2.92 7
14 5 8.22 11 2 3.18 6
20 9 12.14 15 2 3.26 5
30| 15 18,99 22 3 3.53 6
50 | 29 3286 35 3 4.14 6

Table 5: Statistics regarding the number of Steiner points induced by B1S in the unrestricted
three-dimensional case (i.e., I = o). Also given are the number of rounds executed by BIS.
Shown are the minimum, average, and maximum values.
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