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A Stream Memory Controller, when added to a conventional
memory hierarchy, routes vector-like accesses around the
data cache. A memory system was simulated under these
conditions and the data cache performance increased dra-
matically. The gain in performance was a result of the
increased temporal locality of the access pattern. The

access pattern also showed a decrease in spatial locality,
making smaller cache lines nearly as effective as long ones.

1.0 Introduction

This research attempts to quantify the effect on the data cache when vector-like
accesses are handled outside the cache system. We hypothesized that vector-like accesses
took up large amounts of space in the cache, had poor temporal locality, and, therefore,
would cause cache pollution. In the primary experiments, we removed the vector-like
accesses from the cache system and saw cache performance increase. Additional experi-
ments, which examined the causes of the increase in cache performance, provided evi-
dence to support our hypothesis

We wanted to examine a memory system where vector-like accesses bypass the
cache because our research group has designed a piece of hardware called the Stream
Memory Controller (SMC) [7,9] which can increase the speed of vector-like memory
accesses which go directly to DRAM. Since previous research [8] had studied the effect

of the SMC on the vector-like data, we needed to simulate the memory system where the
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vectorlike accesses bypass the data cache in order to understanertilesystem per-
formance.

To measure memory system performance, we simulated the data cache using mem-
ory address traces which were acquired from Brighaomy Unversity’s Performance
Evaluation Laboratory [2,3lJsing two different methods, the accesses handled by the
SMC were remeed from the traces, resulting innmnéraces that represented the accesses
to the data cache in a system with an SMC. Cache performance of such a memory system
was measured by running these traces through a simulated memory system modeled after
that of the DEC Alpha 21264.

After measuring the increase in cache performance, we analyzed the traces with a
variety of methods to determine the causes of the change in performance. The SMC did
remove a lage percentage of the addresses withtemporal locality from the trace,
increasing theeerall temporal locality and producing a higher hit rate in the cache. The
SMC also remeed accesses with a high spatial localiycreasing theverall spatial
locality of the access pattern. This means that a smaller line ci#d not cause as e
a drop in performance on a system with an SMC as on system without an SMC.

Section 2 of this paper describes the SMC and the architecture of a system incor-
porating an SMC. Section 3 describes the methodology and tools used indbigan
tion. Section 4 ndews hav streams for the SMC were identified by recognizing patterns
in the traces. Section 5 discusses an alternate method to identify streams. Section 6 con-
tains the results of cache simulation ardlans the causes of the increase in cache per-

formance. Section 7 is a conclusion of all the results.
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2.0 The Stream Memory Controller

The SMC is a hardare deice that is placed in parallel with the firstd¢ data
cache in a memory system. The SMC increases the performaragtadiik e loads and
stores by dynamically reordering when the accesses are issued to the nB=vaunge
this special purpose hardve is in parallel with the first\el data cache, theeetorlike

accesses ner enter the data cache.

CPU

Instr, Data Data

| Cache D Cache SMC

Memory Controller

FIGURE 1. Layout of an SMC Memory System

Streams, theectorlike accesses handled by the SMC, are entire arrays that are
accessed sequentially by a eentional scalar processer.g. a[0], a[1], a[2]... The CPU in
an SMC system is a scalar processorit still xecutes an instruction fovery load,
store, and calculation. The loads and stores to elements in a stream are handled by the
SMC, which reorders them and performs them at a higher bandwidth than a cache could.
SMC systems are often compared to systems witdttrprocessorVector pro-
cessors wrk by loading fied length sections of arrays intector rgisters and perform-
ing operations on theeetor rgisters. Eachector instruction performs multiple

operations on the elements inector rgister Each of these operations must be indepen-
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dent of the results ofvery other operation; this alis the operations to be performed at a
very high rate.

Because the processor in an SMC system is net@wprocesspoperations on
elements in a stream can be dependent on the resultyvioiysrgems in the stream. This
makes stream operations a superseteafter operations. Also, the processor in an SMC
system can perform dé@rent operations on each element in a stream. Thigsatlee
SMC aid in operations such as sorting, where asctov processor could not.

From the programmes’perspectie, the SMC is a number of FIFO queues, each
holding a stream. A queue is initialized by sending to the SMC the properties defining the
sequential array access: the address at which to start (the base address), the distance
between each item (the stride), whether the item is a bgtel, wr double wrd (the data
size), and, optionallythe number of items to be accessed (the length). Once the queue is
initialized, a program can simply pop thexnelement of the stream from a read queue or

push it into a write queue.

SMC Queue 1 (ead)
B[4] || BI3]|| B[]

-— CPU

Queue 2 (write)

A[0] |[A[1]

FIGURE 2. Programmer’s Representation of the SMC as FIFO Queues
The SMC is able to handle sequential array accesses with more bandwidth than the
cache system by dynamically reordering the loads and stores to the arrays. When the CPU
is using a read FIFO, the SMC can read ahead in the array gealack, using the mem-

ory system more @tiently. The SMC holds the data in internal memory until the CPU
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pops the data bthe queue. & write FIFOs, the SMC can use its internal memory to
gueue up the writtenalues and write them out to main memory togettfesmall state
machine in the SMC decides when it is moftieint to read ahead on a read queue or
flush the lnffer of a write queue.
The SMC gets higher bandwidth for thegarblock transfers byxploiting the
internal structure of a DRAM, whiclafors some accessegen others. By grouping
together reads and writes that go to the same DRAM page, the SMC lessens the number of
reads or writes that cause the DRAM to switch pages. Reads and writes which do not

cause page switches are 3 to 10 tinasselr than ones that cause page switches.

~8 word 1 word
transfers Cache transfers
ey ey
Memory CPU
1 to 256 vord 1 word
transfers SM C transfers
ey -

FIGURE 3. Relative Sizes of Memory Transfers
The SMC can queue writes and read ahead wieeritgs eficient to do so, group-
ing together mansingle word transactions which go to the same DRAM page. These
group transfers drastically reduce the number of page switches in the DRAM, and utilize
nearly 100% of thewailable bandwidth from the DRAM. These results are documented

in [7,8,9].
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3.0 Toolsand M ethodology

We receved a number of traces from BYd&JPerformance Euation Lab The
one we used for thesgperiments s SPEG 061.kenhus1 multi-user benchmark which
had been run on a BRC processor The Kenlus benchmark is a collection of 80 UNIX
command shells representing users. Commands are typed into the shells at 3 characters a
second. The commands are common UNIX utilities including cc, grep, cp, edyked, a
and a number of file manipulation tools such as cp, rm, and chmod. eheskbench-
mark was chosen because it represents a common load on a multi-user system. The appli-
cations in the benchmark are not scientific computations, apdté@ot ector intensie.

BYU supplies its traces brek into blocks of 500,000 accesses. From taehis
trace, the first 10 blocks and 10 conse@ublocks from the middle of the trace were cho-
sen to be processed. Byaining the strings processed by the codeag determined
that the first 10 blocks of theeikhus trace include a trace of the C preprocessut that
the other 10 blocks tested include a trace of theetink

Since we did not generate these traces owesgWwe needed to identify which
accesses in the traceswid be handled by the SMC and not run through the cache system.
Identification of stream accessesuld normally be done by the compiler [1], which must
insert instructions to initialize the FIFOs into the object code.

We used tw methods to identify stream accesses. The pattern recognition method
identifies loops and stream accesses within the loops. These stream accesses are then
removed from the trace, because the accesseddwe handled by the SMC and not pass
through the data cache. The second method ofviagnstream accesses matches data
reads and writes to the load and store instructions that caused them. Tke&tyahttiad

and store instructions are identified as sequentially accessing areaddlye data reads
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or writes caused by those instructions are eliminated. This second method is called the
disassembly method because it is hecessary to disassemble instructions to identify which
are loads and stores. The disassembly method al so produces a second trace without
stream or quasi-stream accesses. Quasi-streams are atype of access patternsthat might be
converted to streams by compiler optimizations. These methods of making traces without
stream accesses will be discussed in more detail in sections 4 and 5.

Because neither of these methods used the source code, neither of these methods
could be guaranteed to accurately identify only those streams that would be known at
compiletime. Both methods of stream identification were susceptible to false positives,
incorrectly identifying accesses as parts of a stream, and to fal se negatives, not identifying
accesses that are parts of astream. Having two methods of removing streams allowed us
to compare the results of both methods. At the end of sections 4 and 5 are summaries of
the limitations of each method.

Once the stream and instruction accesses have been removed, the resultant traces
are composed of all the accesses going to the data cache in an SMC system. A fourth
trace, representing the accesses to the data cache of a conventional system, was also cre-
ated. All of these traces were then run through avariety of cache simulators, including the
one for the Alpha 21264 memory hierarchy. This produced four different categories of
results: streams not removed, streams removed by the pattern recognition method, streams
removed by the disassembly method, and streams and quasi-streams removed by the disas-
sembly method (labeled as disassembly*.) Figure 4 illustrates this methodology. The

results of all simulations are presented in section 6.
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FIGURE 4. Flow of Original Traceinto Results

4.0 Pattern Recognition

The pattern recognition method is one method of identifying streamsin atrace. It
works by finding repeated patterns of accesses that might represent the execution of a
loop. The stream accesses within the loop are then identified and removed. The agorithm
islimited by the fact that it only detects |oops that have the same number of accessesin
every iteration. This prevents loops containing intermittently taken branches from being

identified.
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The loop recognizing algorithm looks for the beginning of aloop within adliding
window. The beginning of aloop isfound by searching for an access that is repeated 3
times with an equal number of accesses between each access. Once the beginning of the
loop isrecognized, apotential template for theloop is constructed. Thetemplate identifies
which accesses in the loop are constants, which are streams, and which are neither. This
last type are called wildcards. The template is then considered; if it istoo small, has too
few repetitions, or has too many wildcards, the loop can be rgjected. If it is accepted, the

stream accesses are removed from the loop.
/l Pseudo Code for Pattern Recognition Algorithm

TraceFile file_in(* filenane”),
window_end = 0; // the lower end of the window

/l'iis the upper end of the window.
for (i=0;;i++) {
/I search window - j is the window length
for (j =0;j>i-window_end && j < WIN_MAX; j++)
if (file_in[i] == file_in[i-]] &&
file_in[i] == file_in[i+]] ){
template = create_template(i-j, j);
if (accept(j], template) ) {
Il replace and advance window.
i = replace(i-j, j, template);
window_end = i+1;

}
}
}
The TaceHle class allows the accesses in a file to bexeddile an
array and compad using ==. The sliding window starts at

“I+WIN_MAX" and goes down to “window_end” or “i-WIN_MAX".
FIGURE 5. Pseudo Code for the Pattern Recognition Algorithm

A dlight modification of the algorithm allowed the final version to find nested
loops. When aloop isfound, the iterations of the loop are removed from the trace and

replaced with amarker. The pattern recognition algorithm could then make more passes
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and identify nested loops, i.e. loops containing a marker. When every identifiable loop
had been found, the markers were replaced and all streams eliminated.

The pattern recognition algorithm identifies possible loops, confirms that they are
loops, and then removes streams from the loop. It isasimple agorithm that only identi-
fies loops containing a fixed number of accesses and is susceptible to afew problems that
areoutlined in section 4.1. Despite its simplicity, it performswell and is able to find

nested loops.

4.1 Limitations
Because the pattern recognition method uses only run-time information, it incor-

rectly identifies some accesses as compiler-recognizable streams. These accesses would
not be identified by the compiler as streams, and therefore the SMC would not have been
used to fetch them. These accesses are fal se positives; accesses that are identified as being
handled by the SMC when they would not be in an actual implementation.

A linked list if agood example of a source of arun-time stream that is not com-
piler-recognizable. If all the nodes of alinked list were allocated at onetime, it islikely
they would be allocated sequentially in memory. When thelist is traversed from the first
node to the last, the accesses to the nodes would be sequential and evenly spaced. This
would be identified by the pattern recognition program as a stream, producing fal se posi-
tives.

The pattern recognition method is also susceptible to false negatives, i.e. failing to
identify streams that would have been recognized by the compiler. The current method of
pattern recognition can only identify loops containing a constant number of accessesin

each iteration. Therefore, it will not identify any loop containing an intermittently taken
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branch. Streamsin these loopswould produce false negatives. However, streamsin aloop
that consistently took one direction of abranch, if even for a short time, can still be identi-
fied since the sequence of memory accesses |ooks like that of a fixed-length loop.

Another source of false negatives is misalignment of the template by the pattern
recognition program. Occasionally, the template selected by the algorithm is not the ideal
template; the template contains the second half of the loop body followed by thefirst half.
This offset copy matches the second half of one iteration and the first half of the next.
Thisworks well, except at the first and last iteration of the loop. If part of either of those
iterations matches enough of the template, it is considered another iteration of the loop,
and datathat is not actually part of the loop causes the template to be modified. This may
change a stream in the template to awildcard. The accesses that should have been part of
astream and marked for the SMC are |eft in the final trace.

The pattern recognition method has one more limitation; if separate parts of the
same stream are identified in two different loops, the stream would appear to have two ini-
tializations, rather than just one. In this case, the pattern recognition algorithm would cor-
rectly identify most of the accesses as parts of a stream, but would overstate the number of
FIFO initiaizations required by the SMC to service this stream.

Based on limited examinations, we believe that more accesses are identified as
false positives than are overlooked as false negatives. This suggests the pattern recogni-
tion method provides an upper bound on the number of accessesthat are parts of streams.
Unfortunately, it cannot serve as an upper bound on cache performance since the number
of false negatives is significant and cache performance is determined by which accesses

are excluded, not the number that are excluded.
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5.0 Disassembly

The disassembly method is an alternative way to identify and remove stream
accesses in atrace. Each dataread or write access in the trace is matched with the load or
storeinstruction that generated it. If thelist of reads or writesfor an individual instruction
appears to match the pattern of astream, the reads or writes caused by it are removed from
the trace. Thisidentifies and removes streams in which the stream elements are accessed
by a singleinstruction in aloop body, the most common case.

Theload or store instruction for a given read or write isidentified by searching
backwards from the data access to find an appropriate memory instruction in an instruc-
tion access. A list of associated reads or writesis built up for each load or store instruc-
tion. Load and store instructions are uniquely identified by their address, which is part of
theinstruction load access. When all the reads and writes have been placed into the list for
the appropriate address, each list is processed to determineif it is able to be handled by the
SMC. If thelist of loads or storesisjudged to be able to be handled by the SMC, the loads
or stores are eliminated from the trace. This method isillustrated in Figure 6.

A listisconsidered able to be handled by the SMC if it contains at least 10 reads or
writes and over 90% of thelist is composed of sequences of more than 3 accesses that fit
the pattern of astream. The 90% isto prevent ignoring some loads or stores that might
access streams of length lessthan 3. Otherwise, aload in strcmp() would not be identified
if it ever works on a string less than 3 characters long.

While studying the access patterns of individual instructions that were identified
by the disassembly method, we found another type of pattern besides streams. Some loads
and stores accessed very long sequences of increasing addresses, but the stride between

the addresses was not uniform, so they could not be considered streams. Other authors [6]
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Disassembly Method to Remiag Stream Accesses

Original Kenlus Trace

Instr.
LD Word

0x1F04

Addresses loadeX 1. The read of address OxOAO@swyenerated
by instr at 0x1F04 by the load instruction at address 0x1F04.
O0x0A00 2. The address 0xOAOC is added to the end of
1 the sequence of addresses read by the load
O0x0A04 | instruction at address Ox1F04.
/
Ox0A08
/ 3. At the end of the first pass through the trace, the seqt
0X0AOC of addresses loaded by the instruction at address Ox1}
is judged to be able to be handled by the SMC.

Kenhus Trace without Stream Accesses

Jump LE| Ox(&D1

4. The second pass deletes all reads and writes that were caused by
instructions that wuld be handled by the SMC.

FIGURE 6. Overview of Disassembly Method of Removing Stream Accesses )
have called these “quasi-streams”. Quasi-streams might be made into streams by compiler

optimizations. Anample of this is quicksort, which contains store instructions which

step sequentially through an arrayt Bkips @er some elements. Quicksort can be trans-
formed so that all its loads and stores are able to be handled by the SMC. Because quasi-
stream accesses might bewentible into streams, the program which implemented the

disassembly methodas modified to produced another trace without streams or quasi-
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streams. @ differentiate it from the disassembly method when only streams arggemo

this method is referred to as “Disassembly*”.

5.1 Limitations
In the disassembly method, all loads and stores are matched up with an instruction,

which in an SMC system could be changed to a FIFO pop or push. Thes thak
method resilient todise posittes. A load or store ould have to be 90% streams to gen-
erate adlse positie, and that seemgny unlikely.

The disassembly method is susceptibleatsd ngatives, havever. If a stream is
loaded by tw different instructions, the disassembly method may not identify either
instruction as the source of a stream.

Since the disassembly method is ualykto return adlse positie, it makes a good
conserative estimate of the amount of streams present in a trace. It also suggests that the

disassembly method is a gooavier bound on cache performance.

6.0 Results

This section is dided into 3 subsections. The first subsection contains all the
results of stream identification. The second subsection contains a description of the simu-
lated memory system and the results of the cache performance in the system. The third

subsectionglains the causes for the increased cache performance.

6.1 Results of Steam Identification
Table 1 presents the number of streams and the number of SMC accesses for the

different methods of stream identification.
The disassembly method, which does not msrguasi-streams, represents a good

lower bound and had 8.4% of its data routed through the SMC. The disassembly* method,
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TABLE 1. Number of Streams Found and Number of Accessestothe SMC

Accessesto # of # of
SMC Removed | Cache # of SMC
Trace by Accesses | Streams accesses
Kenbus (1) NOT Removed 715062 0 0
Pattern Recog 516712 17639 198350
Disassembly 664961 1124 50101
Disassembly* 589864 3199 125198
Kenbus (2) NOT Removed 661596 0 0
Pattern Recog 437454 22294 224142
Disassembly 596659 1582 64937
Disassembly* 542952 2711 118644
Total NOT Removed 1376658 0 0
Pattern Recog 954166 39933 422492
Disassembly 1261620 2706 115038
Disassembly* 1132816 5910 243842

which does remove gquasi-streams, had 17.7% of 1tS data going through the SMC. The pat-
tern recognition method, the upper bound on stream accesses, had 30.7% of its data going
to the SMC, more than 3 times as much as the lower bound.

These numbers are very encouraging. The C preprocessor and the linker are not
array intensive applications, but they do contain alarge amount of string manipulation.
For comparison, when the pattern recognition method was run on blocks from traces of 3
SPEC Int benchmarks (Compress, Egntott, Espresso) it identified 24.4% of the accesses as
parts of streams, which is close to the amount identified in the Kenbus benchmark. Hen-
nessy and Patterson’s survey of scientific benchmarks range from 41% to 1% vector oper-
ations, with the median around 16% [5]. However, streams are a superset of vector
operations because operations on a stream can be dependent on preceding operations on
the stream, unlike vector operations, and streams allow more compiler optimizations such
as the one that changes quicksort to use streams.

The pattern recognition method is obviously identifying much shorter streams than

the other methods when the number of accesses per stream is compared. The pattern rec-
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ognition method erages 10 accesses per stream, while the other metlevdgeaver
40 accesses per stream. This is not surprising, since the pattern recognition method is
identifying maiy short dynamically produced streams, and can identify a single stream in

pieces, werstating the number of streams.

6.2 Results of Memory System Simulation
The simulated memory system hadatisvels of data cache. The firsvé cache

is 64kB, with a 32B line size, and Zawset associatty. The second \el cache is 4MB,
with a 64B line size and 2ay set associaiity. For both caches, random replacement
was used.

To male simulation easiethe second 1l cache \as not a unified instruction-
data cache. The lgest data wrking set is 273kB and occupies only a small portion of the
4MB L2 cache. This, along with assocrdi of the cache, leads us to bekehat adding
the instructions to the secondd cache wuld not cause a significant number of addi-
tional L2 misses.

The properties of the caches were selected to mimic the design of the memory
hierarcly for the Alpha 21264 as described in Microprocessor Répsitt Although we
are coing mary of the properties of the 21264, we are notyougit exactly. The 21264
has maw other features, such as data coalescing, tbhatdibe dificult for us to model.

To account for artdcts from cache initialization, a.k.a. “cold cache” problems, the
cache miss dataag not measured for the first half of the traces. About 0.3 million refer-
ences were allwed to initialize the L1 and L2 caches before measuremegas b& his
point was chosen because the rate of compulsory misses per avetess deit after about

0.2 million references.
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TABLE 2. Pattern Recog vs. Disassembly Cache Miss Data for 2nd Half of Trace

Accessesto SMC #of Cache | #of L1 #of L2 #of SMC

Trace Removed by Accesses Misses Misses Accesses
Kenbus (1) NOT Removed 343730 6671 937 0
Pattern Recog 271535 2656 521 72195
Disassembly 335326 5974 848 8404
Disassembly* 302274 3127 561 41456
Kenbus (2) NOT Removed 320742 24938 3685 0
Pattern Recog 213046 14276 3311 107696
Disassembly 293179 17178 3429 27563
Disassembly* 271299 15413 3442 49443
Tota NOT Removed 664472 31609 4622 0
Pattern Recog 484581 16982 3832 179891
Disassembly 628505 23152 4277 35967
Disassembly* 573573 18539 4003 90899
T The number of L1 cache misses was cut by 27% Tor the disassembly method. It

was cut by 46% for the pattern recognition method and by 41% for the disassembly*
method.

The results for L2 cache misses were lessimpressive. The disassembly method
reduced L2 cache misses by 7%, the pattern recognition method reduced them by 17%,
and the disassembly* method reduced them by 13%.

Using our lower bound, the disassembly method, 5.4% of memory accesses were
sent through the SMC, resulting in areduction of L1 cache misses by 27% and L2 misses
by 7%. Also, the missrate of the L1 cache dropped from 4.76% to 3.68% and the rate of
L2 misses per L1 cache access dropped from 0.70% to 0.68%. Note, not only did the miss
rates of the cache dropped, but also the caches were processing fewer accesses, resulting

in alarger drop in the total number of misses.

6.3 Sources of Data Cache Perfor mance | ncreases
This section examines the sources of the 7% to 46% reduction in misses seen in the

preceding section. The first subsection considers the number of compulsory misses that
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were removed when stream accesses were removed. The second subsection analyses the

kinds of compulsory misses that were removed. The last subsection looks at the changes

to the temporal and spatial locality of the trace when streams are removed.

6.3.1 Compulsory Misses

TABLE 3. Word Sized (4B) Compulsory Misses

Trace Original Pattern Recog | Disassembly Disassembly*

Kenbus (1) 49522 14978 37546 19747
Kenbus (2) 68279 28903 47608 35503
Total 117801 43881 85154 55250

The reduction in compulsory missesis dramatic. The disassembly method
removed an average of 28% of the compulsory misses. The disassembly* method elimi-
nated an average of 53% of all compulsory missesin the Kenbus traces. The pattern rec-
ognition method removed an average of 63% of all compulsory misses.

Compulsory misses are important because even the largest cache must miss on
them. The Stream Memory Controller is not a cache and therefore does not suffer com-
pulsory misses. However, the SMC does take a penalty similar to that of amiss every time
aFIFO isinitialized.

Fewer compul sory misses indicates a more effective cache. If we assumean L1
cache has 1000 lines, each one word long, it must choose 1000 words out of the available
49552 words accessed by the Kenbus(1) trace. It can only hold 2% of the addresses used.
The same L 1 cache on the trace processed using the disassembly method chooses 1000 out
of 37546, so it can hold about 3% of the addresses. Holding alarger percentage of the
available addresses increases the chances of a cache hit.

The number of accesses per compulsory miss shown in table 4 is enlightening.
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TABLE 4. Accesses per Word Sized Compulsory Miss

Accessesto SMC Removed | AccessestotheSMC/ Accessesto Data Cache/

by CMs Removed from Data Cache Data Cache CMs

NOT Removed n/a 11.69

Pattern Recog 5.72 21.74

Disassembly 3.52 14.81
| Disassembly* 3.90 20.50

~ . TNis result demonsirates thal streams are bad 1or the cache, when that datais in a
cache, there are very few accesses for each compulsory miss. The traces without streams
are much better for caches because they average more accesses for each item that is
cached.

6.3.2 Which Compulsory Misses Have Been Removed?

The previous section showed that alarge number of compul sory misses are
removed when streams are deleted from the trace. 1t also showed that the average number
of accesses per compulsory missislow for the accessesin the streams. To see which com-
pulsory misses are removed, the trace was broken down by addresses, and a count was
kept of how many accesses went to each address.

Each cell in Table 5 represents a count of the number of addresses, where each of
those addresses was accessed the number of times in the first column. Many addresses
were accessed only afew times, and a very small number of addresses were accessed
many times. Since only 20 blocks of a 2000 block trace were processed, it is not unusual
to see addresses only accessed one time.

All columns are the same for more than 4096 accesses. This means that removing
streams did not remove a significant number of references from addresses that were
accessed more than 4095 times. It isunlikely these addresses would be parts of streams; it
islikely they are loop counters or other stack variables that are accessed frequently in a

repetitive pattern.
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TABLE 5. Addresses Broken Down by # of Accessesto the Address

# of Accesses

per Address Not Removed Pattern Recog Disassembly Disassembly*

1 59480 14764 37118 16998
2-3 41838 13901 26088 16633
4-7 23527 9105 15984 11654
8-15 12530 7304 11472 9530
16-31 7111 3523 6693 5287
32-63 2589 1599 2513 2403
64-127 1004 742 1000 991
128-255 496 400 497 492
256-511 269 212 269 269
512-1023 85 80 85 85
1024-2047 31 31 31 31
2048-4095 12 11 12 12
4096-8191 3 3 3 3
8192-16383 2 2 2 2
16384-32767 1 1 1 1
32768-65535 0 0 0 0
65536-131071 3 3 3 3

— Baow 64 the data begins to really difterentiate. 1n the row 4-7, the pattern recog-
nition method and disassembly* method have removed half of the addresses, and the dis-
assembly method has cut it by athird. Inthe row 1, the disassembly method cutsit by
nearly ahalf, and the other methods cut it by nearly 3/4ths.

So, removing streams removed addresses that were being used only afew times.
The more an item is accessed, the less likely it isto be removed. (The pattern recognition
method is worse on this than the other two methods, but the statement still holds.)

The addresses that are accessed only afew times make up alarge percentage of
compulsory misses, but make up asmall percentage of all references. Table 6 shows
traces broken down by percentage of al references and the percent removed.

Overall, addresses accessed 7 or fewer times make up 19.66% of the trace and 35%

of their access were identified as parts of streams by the disassembly method. For the dis-
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TABLE 6. Percentage of All Accesses Broken Down by Number of Accessesto Each Address

# of Not Pattern | % Disasse | % Disasse | %
References Removed | Recog Removed | mbly Removed | mbly* Removed
1 4.32 1.08 75 2.70 38 1.23 71
2-3 7.04 2.35 67 4.49 36 2.76 61
4-7 8.30 331 60 5.68 32 4.24 49
8-15 9.67 5.31 45 8.93 8 7.10 27
16-31 11.20 5.39 51 10.63 5 8.24 26
32-63 7.96 5.03 39 7.73 3 7.41 7
64-127 6.25 4.72 25 6.22 0 6.17 1
128-255 6.24 5.02 20 6.23 0 6.17 1
256-511 6.73 5.39 20 6.73 0 6.72 0
512-1023 4.22 3.97 6 421 0 421 0
1024-2047 320 322 0 3.20 0 320 0
2048-4095 281 251 11 281 0 281 0
4096-8191 134 134 0 134 0 134 0
8192-16383 1.58 158 0 1.58 0 1.58 0
16384-32767 1.25 1.25 0 1.25 0 1.25 0
32768-65535 0.00 0.00 0 0.00 0 0.00 0
65536-131071 17.87 17.87 0 17.87 0 17.87 0
Stream 0.00 30.69 8.36 17.71
Accesses

assembly method when quasi-streams were removed, the factor was 580, and for the pat-

tern recognition method, the factor was 66%

The pattern recognition method was much more aggressive than either of the other
methods, removing 20% of the accesses from addresses that were accessed 64 to 511
times, and 11% of the accesses from addresses accessed 2048 to 4905 times. Thisindi-
catesit is removing data that might be much better kept in the cache.

By removing a small number of accesses that cause alarge number of the compul-
sory misses, the SMC removes pollution from the data cache. This should increase the
temporal locality of the data cache. Inthe next section, we'll seethat it not only increased

the temporal locality, it also decreased the spatial locality of the trace.
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6.3.3 Temporal and Spatial L ocality
Temporal and spatial locality are concepts rather than measurable quantities. Tem-

poral locality isthe concept that values that are used in the near future are likely to be
items that were used in the near past. Spatial locality isthe concept that values that are
used in near future are likely to lie near itemsthat were used in the near past. Although we
could not directly measure these concepts, we attempted to measure their effect on caches.

To measure the effect of temporal locality, we chose a cache with a cache line of
oneword. This meant cache hits only occurred when a specific word was reused.

To measure the effect of spatial locality, we compared a cache with K lines of size
N to acache of K lines of size 2N. Theincreasein hit rate could only occur when two
smaller sized linesfit into one of the larger lines, freeing up a cache line for something
else; thisindicates the data was near each other.

Table 7 shows the hit rate for the caches varying by line size. Table 8 showsthe
increase in hit rate for each doubling of linesize. The cache used for these results was a
2-way set associative cache with 2048 lines. Theline size was then varied from 4 bytes (1
word) to 256 bytes (64 words). Thefirst level cache in the Alpha system is 2-way set

associate with 2048 lines and aline size of 32 bytes (8 words).

TABLE 7. Hit Ratefor Varying Cache Line Sizes

CacheLine Size (In Words) Pattern

Original Recog Disassembly Disassembly*
1 78.00 90.25 81.94 88.07
2 86.72 92.82 89.65 92.49
4 91.65 95.22 94.16 95.41
8 (Sizefor Alpha 21264) 94.92 96.72 96.53 97.04
16 97.43 97.84 97.97 98.13
32 98.55 98.50 98.77 98.76
64 99.10 98.97 99.20 99.15
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Note how much higher the hit rate for a cache with a1 word line sizeisfor al the
traces with stream accesses removed. The disassembly method increases the hit rate by 4
percent, and the other methods by 10% and 12%! Thisis ahuge increase in temporal
locality. In other terms, the disassembly method changed the miss rate from 22% to

18.06%, or acut of 17.9%! The other methods cut the miss rate by 45.8% and by 55.7%.

TABLE 8. Percentage Increase in Hit Rate per Doubling of CachelLine Size

P
Percentage Increase in Hit Rate Original thrfoeén Disassembly Disassembly*
from 1 to 2 words 8.72 2.57 7.71 4.42
from 2 to 4 words 4,93 240 451 2.92
from 4 to 8 words 3.27 1.50 2.37 1.63
from 8 to 16 words 251 112 144 1.09
from 16 to 32 words 112 0.70 0.80 0.63
from 32 to 64 words 0.55 0.47 0.43 0.39

Also notice in Table 8 that whenever the line size is doubled, the original trace
always gets the largest increase in hit rate. Thisindicates that the original trace has more
gpatia locality than the other traces. It appears that the pattern recognition method pro-
duced the trace with the least spatial locality, followed by disassembly* and finally by dis-
assembly.

The L1 cache in the Alpha 21264 has a 32 byte line size which achieves a hit rate
of 94.92% on thistest. The disassembly method, our lower bound, achieves a hit rate of
94.165 with a 16 byte line size. The other two methods have hit rates above 95% for the
16 byte lines size. So by decreasing spatial locality, the SMC allows the data cache to

achieve similar performance with a smaller cache line.

7.0 Conclusions

The goal of this research was to quantify the change in data cache performance

when an SMC was added to the system. We chose to measure that performance by simu-
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lating caches on memory address traces and to approximate the SMC by removing stream
references from the traces.

Two methods were used to remove stream accesses: by recognizing loopsin the
traces and removing stream accesses from those loops, and by identifying the instruction
causing each of the data accesses and removing accesses that belonged to loads or stores
that showed stream characteristics. Additionally, traces which had quasi-streams removed
were also generated because they might be able to be handled by the SMC system by
either added hardware or by compiler optimizations.

These traces were then simulated on a cache layout modeled after the Alpha
21264, and the number of misses was recorded with the caches already initialized. The
number of missesin the L1 cache was cut in the range of 27% to 46%, and the L2 cache
showed a cut of 7% to 17%.

Theincrease in cache performance was due to an increased temporal locality in the
trace. Thisincrease in temporal locality resulted from the removal of alarge number of
polluting accesses which would be serviced by the SMC.

Spatial locality was drastically cut in the traces with streams removed. Thisindi-
cates that streams and quasi-streams are the cause of a high percentage of the spatial local-
ity in memory accesses patterns. It also indicatesthat a cachewith asmaller linesizeinan
SMC system would not be penalized as much as the same cache in a conventional system.

In conclusion, because streams make up a large percentage of all compulsory
misses and have poor temporal locality, they cause cache pollution. By adding an SMC,
those accesses are handled in a more efficient manner. The SMC also keeps the polluting
accesses out of the cache, which dramatically improved cache performance. Additionally,

the decrease in spatial locality allows the smaller data cache line, and, therefore, smaller
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data caches, without a significant impact on performance. The increased data cache per-
formance, along with the SME€proven increase in bandwidth for streams, leads us to
believe that the SMC will speed up memory accesses) ®r non-scientific code such as

the Kenhus benchmark.
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