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A Stream Memory Controller, when added to a conventional
memory hierarchy, routes vector-like accesses around the
data cache.  A memory system was simulated under these
conditions and the data cache performance increased dra-
matically.  The gain in performance was a result of the
increased temporal locality of the access pattern.  The
access pattern also showed a decrease in spatial locality,
making smaller cache lines nearly as effective as long ones.

1.0  Introduction

This research attempts to quantify the effect on the data cache when vector-like

accesses are handled outside the cache system.  We hypothesized that vector-like accesses

took up large amounts of space in the cache, had poor temporal locality, and, therefore,

would cause cache pollution.  In the primary experiments, we removed the vector-like

accesses from the cache system and saw cache performance increase. Additional experi-

ments, which examined  the causes of the increase in cache performance, provided evi-

dence to support our hypothesis

We wanted to examine a memory system where vector-like accesses bypass the

cache because our research group has designed a piece of hardware called the Stream

Memory Controller (SMC) [7,9] which can increase the speed of vector-like memory

accesses which go directly to DRAM.  Since previous research [8] had studied the effect

of the SMC on the vector-like data, we needed to simulate the memory system where the
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vector-like accesses bypass the data cache in order to understand the overall system per-

formance.

To measure memory system performance, we simulated the data cache using mem-

ory address traces which were acquired from Brigham Young University’s Performance

Evaluation Laboratory [2,3].Using two different methods, the accesses handled by the

SMC were removed from the traces, resulting in new traces that represented the accesses

to the data cache in a system with an SMC.  Cache performance of such a memory system

was measured by running these traces through a simulated memory system modeled after

that of the DEC Alpha 21264.

After measuring the increase in cache performance, we analyzed the traces with a

variety of methods to determine the causes of the change in performance.  The SMC did

remove a large percentage of the addresses with low temporal locality from the trace,

increasing the overall temporal locality and producing a higher hit rate in the cache.  The

SMC also removed accesses with a high spatial locality, decreasing the overall spatial

locality of the access pattern.  This means that a smaller line size would not cause as large

a drop in performance on a system with an SMC as on system without an SMC.

Section 2 of this paper describes the SMC and the architecture of a system incor-

porating an SMC.  Section 3 describes the methodology and tools used in this investiga-

tion.  Section 4 reviews how streams for the SMC were identified by recognizing patterns

in the traces.  Section 5 discusses an alternate method to identify streams.  Section 6 con-

tains the results of cache simulation and explains the causes of the increase in cache per-

formance.  Section 7 is a conclusion of all the results.
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2.0  The Stream Memory Controller

The SMC is a hardware device that is placed in parallel with the first level data

cache in a memory system.  The SMC increases the performance of vector-like loads and

stores by dynamically reordering when the accesses are issued to the memory. Because

this special purpose hardware is in parallel with the first level data cache, the vector-like

accesses never enter the data cache.

Streams, the vector-like accesses handled by the SMC, are entire arrays that are

accessed sequentially by a conventional scalar processor, e.g. a[0], a[1], a[2]... The CPU in

an SMC system is a scalar processor, so it still executes an instruction for every load,

store, and calculation.  The loads and stores to elements in a stream are handled by the

SMC, which reorders them and performs them at a higher bandwidth than a cache could.

SMC systems are often compared to systems with a vector processor.  Vector pro-

cessors work by loading fixed length sections of arrays into vector registers and perform-

ing operations on the vector registers.  Each vector instruction performs multiple

operations on the elements in a vector register.  Each of these operations must be indepen-

FIGURE 1. Layout of an SMC Memory System
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dent of the results of every other operation; this allows the operations to be performed at a

very high rate.

Because the processor in an SMC system is not a vector processor, operations on

elements in a stream can be dependent on the results of previous items in the stream.  This

makes stream operations a superset of vector operations.  Also, the processor in an SMC

system can perform different operations on each element in a stream.  This allows the

SMC aid in operations such as sorting, where as a vector processor could not.

From the programmer’s perspective, the SMC is a number of FIFO queues, each

holding a stream.  A queue is initialized by sending to the SMC the properties defining the

sequential array access: the address at which to start (the base address), the distance

between each item (the stride), whether the item is a byte, word, or double word (the data

size), and, optionally, the number of items to be accessed (the length).  Once the queue is

initialized, a program can simply pop the next element of the stream from a read queue or

push it into a write queue.

The SMC is able to handle sequential array accesses with more bandwidth than the

cache system by dynamically reordering the loads and stores to the arrays.  When the CPU

is using a read FIFO, the SMC can read ahead in the array in a large block, using the mem-

ory system more efficiently.  The SMC holds the data in internal memory until the CPU

FIGURE 2. Programmer’s Representation of the SMC as FIFO Queues
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pops the data off the queue.  For write FIFOs, the SMC can use its internal memory to

queue up the written values and write them out to main memory together.  A small state

machine in the SMC decides when it is most efficient to read ahead on a read queue or

flush the buffer of a write queue.

The SMC gets higher bandwidth for the large block transfers by exploiting the

internal structure of a DRAM, which favors some accesses over others.  By grouping

together reads and writes that go to the same DRAM page, the SMC lessens the number of

reads or writes that cause the DRAM to switch pages.  Reads and writes which do not

cause page switches are 3 to 10 times faster than ones that cause page switches.

The SMC can queue writes and read ahead whenever it is efficient to do so, group-

ing together many single word transactions which go to the same DRAM page. These

group transfers drastically reduce the number of page switches in the DRAM, and utilize

nearly 100% of the available bandwidth from the DRAM.  These results are documented

in [7,8,9].

FIGURE 3. Relative Sizes of Memory Transfers
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3.0  Tools and Methodology

We received a number of traces from BYU’s Performance Evaluation Lab.  The

one we used for these experiments was SPEC’s 061.Kenbus1 multi-user benchmark which

had been run on a SPARC processor.  The Kenbus benchmark is a collection of 80 UNIX

command shells representing users.  Commands are typed into the shells at 3 characters a

second.  The commands are common UNIX utilities including cc, grep, cp, ed, sed, awk,

and a number of file manipulation tools such as cp, rm, and chmod.  The Kenbus bench-

mark was chosen because it represents a common load on a multi-user system.  The appli-

cations in the benchmark are not scientific computations, and they are not vector intensive.

BYU supplies its traces broken into blocks of 500,000 accesses.  From the Kenbus

trace, the first 10 blocks and 10 consecutive blocks from the middle of the trace were cho-

sen to be processed. By examining the strings processed by the code, it was determined

that the first 10 blocks of the Kenbus trace include a trace of the  C preprocessor, and that

the other 10 blocks tested include a trace of the linker.

Since we did not generate these traces ourselves, we needed to identify which

accesses in the traces would be handled by the SMC and not run through the cache system.

Identification of stream accesses would normally be done by the compiler [1], which must

insert instructions to initialize the FIFOs into the object code.

We used two methods to identify stream accesses.  The pattern recognition method

identifies loops and stream accesses within the loops.  These stream accesses are then

removed from the trace, because the accesses would be handled by the SMC and not pass

through the data cache.  The second method of removing stream accesses matches data

reads and writes to the load and store instructions that caused them.  Then, individual load

and store instructions are identified as sequentially accessing an array, and the data reads
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or writes caused by those instructions are eliminated.  This second method is called the

disassembly method because it is necessary to disassemble instructions to identify which

are loads and stores.  The disassembly method also produces a second trace without

stream or quasi-stream accesses.  Quasi-streams are a type of access patterns that might be

converted to streams by compiler optimizations.  These methods of making traces without

stream accesses will be discussed in more detail in sections 4 and 5.

Because neither of these methods used the source code, neither of these methods

could be guaranteed to accurately identify only those streams that would be known at

compile time.  Both methods of stream identification were susceptible to false positives,

incorrectly identifying accesses as parts of a stream, and to false negatives, not identifying

accesses that are parts of a stream.  Having two methods of removing streams allowed us

to compare the results of both methods.  At the end of sections 4 and 5 are summaries of

the limitations of each method.

Once the stream and instruction accesses have been removed, the resultant traces

are composed of all the accesses going to the data cache in an SMC system.  A fourth

trace, representing the accesses to the data cache of a conventional system, was also cre-

ated.  All of these traces were then run through a variety of cache simulators, including the

one for the Alpha 21264 memory hierarchy.  This produced four different categories of

results: streams not removed, streams removed by the pattern recognition method, streams

removed by the disassembly method, and streams and quasi-streams removed by the disas-

sembly method (labeled as disassembly*.) Figure 4 illustrates this methodology.  The

results of all simulations are presented in section 6.
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4.0  Pattern Recognition

The pattern recognition method is one method of identifying streams in a trace.  It

works by finding repeated patterns of accesses that might represent the execution of a

loop.  The stream accesses within the loop are then identified and removed.  The algorithm

is limited by the fact that it only detects loops that have the same number of accesses in

every iteration.  This prevents loops containing intermittently taken branches from being

identified.

FIGURE 4. Flow of Original Trace into Results
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The loop recognizing algorithm looks for the beginning of a loop within a sliding

window.  The beginning of a loop is found by searching for an access that is repeated 3

times with an equal number of accesses between each access.  Once the beginning of the

loop is recognized, a potential template for the loop is constructed.  The template identifies

which accesses in the loop are constants, which are streams, and which are neither.  This

last type are called wildcards.  The template is then considered; if it is too small, has too

few repetitions, or has too many wildcards, the loop can be rejected. If it is accepted, the

stream accesses are removed from the loop.

A slight modification of the algorithm allowed the final version to find nested

loops.  When a loop is found, the iterations of the loop are removed from the trace and

replaced with a marker.  The pattern recognition algorithm could then make more passes

// Pseudo Code for Pattern Recognition Algorithm

TraceFile file_in(“ filename”);
window_end = 0;  // the lower end of the window

// i is the upper end of the window.
for (i = 0; ; i++) {

// search window - j is the window length
for (j = 0; j > i-window_end && j < WIN_MAX; j++)

if ( file_in[i] == file_in[i-j] &&
file_in[i] == file_in[i+j] ){
template = create_template(i-j, j);
if ( accept(j, template) ) {

// replace and advance window.
i = replace(i-j, j, template);
window_end = i+1;

}
}

}

The TraceFile class allows the accesses in a file to be indexed like an
array and compared using ==.  The sliding window starts at
“i+WIN_MAX” and goes down to “window_end” or “i-WIN_MAX”.

FIGURE 5. Pseudo Code for the Pattern Recognition Algorithm
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and identify nested loops, i.e. loops containing a marker.  When every identifiable loop

had been found, the markers were replaced and all streams eliminated.

The pattern recognition algorithm identifies possible loops, confirms that they are

loops, and then removes streams from the loop.  It is a simple algorithm that only identi-

fies loops containing a fixed number of accesses and is susceptible to a few problems that

are outlined in section 4.1.  Despite its simplicity, it performs well and is able to find

nested loops.

4.1  Limitations
Because the pattern recognition method uses only run-time information, it incor-

rectly identifies some accesses as compiler-recognizable streams.  These accesses would

not be identified by the compiler as streams, and therefore the SMC would not have been

used to fetch them.  These accesses are false positives; accesses that are identified as being

handled by the SMC when they would not be in an actual implementation.

A linked list if a good example of a source of a run-time stream that is not com-

piler-recognizable.  If all the nodes of a linked list were allocated at one time, it is likely

they would be allocated sequentially in memory.  When the list is traversed from the first

node to the last, the accesses to the nodes would be sequential and evenly spaced.  This

would be identified by the pattern recognition program as a stream, producing false posi-

tives.

The pattern recognition method is also susceptible to false negatives, i.e. failing to

identify streams that would have been recognized by the compiler. The current method of

pattern recognition can only identify loops containing a constant number of accesses in

each iteration.  Therefore, it will not identify any loop containing an intermittently taken
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branch.  Streams in these loops would produce false negatives.  However, streams in a loop

that consistently took one direction of a branch, if even for a short time, can still be identi-

fied since the sequence of memory accesses looks like that of a fixed-length loop.

Another source of false negatives is misalignment of the template by the pattern

recognition program.  Occasionally, the template selected by the algorithm is not the ideal

template; the template contains the second half of the loop body followed by the first half.

This offset copy matches the second half of one iteration and the first half of the next.

This works well, except at the first and last iteration of the loop.  If part of either of those

iterations matches enough of the template, it is considered another iteration of the loop,

and data that is not actually part of the loop causes the template to be modified.  This may

change a stream in the template to a wildcard.  The accesses that should have been part of

a stream and marked for the SMC are left in the final trace.

The pattern recognition method has one more limitation; if separate parts of the

same stream are identified in two different loops, the stream would appear to have two ini-

tializations, rather than just one.   In this case, the pattern recognition algorithm would cor-

rectly identify most of the accesses as parts of a stream, but would overstate the number of

FIFO initializations required by the SMC to service this stream.

Based on limited examinations, we believe that more accesses are identified as

false positives than are overlooked as false negatives.  This suggests the pattern recogni-

tion method provides an upper bound on the number of accesses that are parts of streams.

Unfortunately, it cannot serve as an upper bound on cache performance since the number

of false negatives is significant and cache performance is determined by which accesses

are excluded, not the number that are excluded.
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5.0  Disassembly

The disassembly method is an alternative way to identify and remove stream

accesses in a trace.  Each data read or write access in the trace is matched with the load or

store instruction that generated it.  If the list of reads or writes for an individual instruction

appears to match the pattern of a stream, the reads or writes caused by it are removed from

the trace.  This identifies and removes streams in which the stream elements are accessed

by a single instruction in a loop body, the most common case.

The load or store instruction for a given read or write is identified by searching

backwards from the data access to find an appropriate memory instruction in an instruc-

tion access. A list of associated reads or writes is built up for each  load or store instruc-

tion.  Load and store instructions are uniquely identified by their address, which is part of

the instruction load access.  When all the reads and writes have been placed into the list for

the appropriate address, each list is processed to determine if it is able to be handled by the

SMC.  If the list of loads or stores is judged to be able to be handled by the SMC, the loads

or stores are eliminated from the trace.  This method is illustrated in Figure 6.

A list is considered able to be handled by the SMC if it contains at least 10 reads or

writes and over 90% of the list is composed of sequences of more than 3 accesses that fit

the pattern of a stream.  The 90% is to prevent ignoring some loads or stores that might

access streams of length less than 3.  Otherwise, a load in strcmp() would not be identified

if it ever works on a string less than 3 characters long.

While studying the access patterns of individual instructions that were identified

by the disassembly method, we found another type of pattern besides streams.  Some loads

and stores accessed very long sequences of increasing addresses, but the stride between

the addresses was not uniform, so they could not be considered streams.  Other authors [6]
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have called these “quasi-streams”. Quasi-streams might be made into streams by compiler

optimizations.  An example of this is quicksort, which contains store instructions which

step sequentially through an array but skips over some elements.  Quicksort can be trans-

formed so that all its loads and stores are able to be handled by the SMC.  Because quasi-

stream accesses might be convertible into streams, the program which implemented the

disassembly method was modified to produced another trace without streams or quasi-

FIGURE 6. Overview of Disassembly Method of Removing Stream Accesses
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streams. To differentiate it from the disassembly method when only streams are removed,

this method is referred to as “Disassembly*”.

5.1  Limitations
In the disassembly method, all loads and stores are matched up with an instruction,

which in an SMC system could be changed to a FIFO pop or push.  This makes the

method resilient to false positives.  A load or store would have to be 90% streams to gen-

erate a false positive, and that seems very unlikely.

The disassembly method is susceptible to false negatives, however.  If a stream is

loaded by two different instructions, the disassembly method may not identify either

instruction as the source of a stream.

Since the disassembly method is unlikely to return a false positive, it makes a good

conservative estimate of the amount of streams present in a trace. It also suggests that the

disassembly method is a good lower bound on cache performance.

6.0  Results

This section is divided into 3 subsections.  The first subsection contains all the

results of stream identification.  The second subsection contains a description of the simu-

lated memory system and the results of the cache performance in the system.  The third

subsection explains the causes for the increased cache performance.

6.1  Results of Stream Identification
Table 1 presents the number of streams and the number of SMC accesses for the

different methods of stream identification.

The disassembly method, which does not remove quasi-streams, represents a good

lower bound and had 8.4% of its data routed through the SMC.  The disassembly* method,
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which does remove quasi-streams, had 17.7% of its data going through the SMC.  The pat-

tern recognition method, the upper bound on stream accesses, had 30.7% of its data going

to the SMC, more than 3 times as much as the lower bound.

These numbers are very encouraging.  The C preprocessor and the linker are not

array intensive applications, but they do contain a large amount of string manipulation.

For comparison, when the pattern recognition method was run on blocks from traces of 3

SPEC Int benchmarks (Compress, Eqntott, Espresso) it identified 24.4% of the accesses as

parts of streams, which is close to the amount identified in the Kenbus benchmark.  Hen-

nessy and Patterson’s survey of scientific benchmarks range from 41% to 1% vector oper-

ations, with the median around 16% [5].  However, streams are a superset of vector

operations because operations on a stream can be dependent on preceding operations on

the stream, unlike vector operations, and streams allow more compiler optimizations such

as the one that changes quicksort to use streams.

The pattern recognition method is obviously identifying much shorter streams than

the other methods when the number of accesses per stream is compared.  The pattern rec-

TABLE 1. Number of Streams Found and Number of Accesses to the SMC

Trace

Accesses to
SMC Removed
by

# of
Cache
Accesses

# of
Streams

# of
SMC
accesses

Kenbus (1) NOT Removed 715062 0 0

Pattern Recog 516712 17639 198350

Disassembly 664961 1124 50101

Disassembly* 589864 3199 125198

Kenbus (2) NOT Removed 661596 0 0

Pattern Recog 437454 22294 224142

Disassembly 596659 1582 64937

Disassembly* 542952 2711 118644

Total NOT Removed 1376658 0 0

Pattern Recog 954166 39933 422492

Disassembly 1261620 2706 115038

Disassembly* 1132816 5910 243842
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ognition method averages 10 accesses per stream, while the other methods average over

40 accesses per stream.  This is not surprising, since the pattern recognition method is

identifying many short dynamically produced streams, and can identify a single stream in

pieces, overstating the number of streams.

6.2  Results of Memory System Simulation
The simulated memory system had two levels of data cache.  The first level cache

is 64kB, with a 32B line size, and 2-way set associativity.  The second level cache is 4MB,

with a 64B line size and 2-way set associativity.  For both caches, random replacement

was used.

To make simulation easier, the second level cache was not a unified instruction-

data cache.  The largest data working set is 273kB and occupies only a small portion of the

4MB L2 cache.  This, along with associativity of the cache, leads us to believe that adding

the instructions to the second level cache would not cause a significant number of addi-

tional L2 misses.

The properties of the caches were selected to mimic the design of the memory

hierarchy for the Alpha 21264 as described in Microprocessor Report[ref].  Although we

are copying many of the properties of the 21264, we are not copying it exactly.  The 21264

has many other features, such as data coalescing, that would be difficult for us to model.

To account for artifacts from cache initialization, a.k.a. “cold cache” problems, the

cache miss data was not measured for the first half of the traces.  About 0.3 million refer-

ences were allowed to initialize the L1 and L2 caches before measurements began.  This

point was chosen because the rate of compulsory misses per access leveled out after about

0.2 million references.



Data Cache Performance When Vector-Like Accesses Bypass the CacheJuly 5, 1997 17

The number of L1 cache misses was cut by 27% for the disassembly method.  It

was cut by 46% for the pattern recognition method and by 41% for the disassembly*

method.

The results for L2 cache misses were less impressive.  The disassembly method

reduced L2 cache misses by 7%, the pattern recognition method reduced them by 17%,

and the disassembly* method reduced them by 13%.

Using our lower bound, the disassembly method, 5.4% of memory accesses were

sent through the SMC, resulting in a reduction of L1 cache misses by 27% and L2 misses

by 7%.  Also, the miss rate of the L1 cache dropped from 4.76% to 3.68% and the rate of

L2 misses per L1 cache access dropped from 0.70% to 0.68%. Note, not only did the miss

rates of the cache dropped, but also the caches were processing fewer accesses, resulting

in a larger drop in the total number of misses.

6.3  Sources of Data Cache Performance Increases
This section examines the sources of the 7% to 46% reduction in misses seen in the

preceding section.  The first subsection considers the number of compulsory misses that

TABLE 2. Pattern Recog vs. Disassembly Cache Miss Data for 2nd Half of Trace

Trace
Accesses to SMC
Removed by

# of Cache
Accesses

# of L1
Misses

# of L2
Misses

# of SMC
Accesses

Kenbus (1) NOT Removed 343730 6671 937 0

Pattern Recog 271535 2656 521 72195

Disassembly 335326 5974 848 8404

Disassembly* 302274 3127 561 41456

Kenbus (2) NOT Removed 320742 24938 3685 0

Pattern Recog 213046 14276 3311 107696

Disassembly 293179 17178 3429 27563

Disassembly* 271299 15413 3442 49443

Total NOT Removed 664472 31609 4622 0

Pattern Recog 484581 16982 3832 179891

Disassembly 628505 23152 4277 35967

Disassembly* 573573 18539 4003 90899
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were removed when stream accesses were removed.  The second subsection analyses the

kinds of compulsory misses that were removed.  The last subsection looks at the changes

to the temporal and spatial locality of the trace when streams are removed.

6.3.1   Compulsory Misses

The reduction in compulsory misses is dramatic.  The disassembly method

removed an average of 28% of the compulsory misses.  The disassembly* method elimi-

nated an average of 53% of all compulsory misses in the Kenbus traces.  The pattern rec-

ognition method removed an average of 63% of all compulsory misses.

Compulsory misses are important because even the largest cache must miss on

them.  The Stream Memory Controller is not a cache and therefore does not suffer com-

pulsory misses.  However, the SMC does take a penalty similar to that of a miss every time

a FIFO is initialized.

Fewer compulsory misses indicates a more effective cache.  If we assume an L1

cache has 1000 lines, each one word long, it must choose 1000 words out of the available

49552 words accessed by the Kenbus(1) trace.  It can only hold 2% of the addresses used.

The same L1 cache on the trace processed using the disassembly method chooses 1000 out

of 37546, so it can hold about 3% of the addresses.  Holding a larger percentage of the

available addresses increases the chances of a cache hit.

The number of accesses per compulsory miss shown in table 4 is enlightening.

TABLE 3. Word Sized (4B) Compulsory Misses

Trace Original Pattern Recog Disassembly Disassembly*

Kenbus (1) 49522 14978 37546 19747

Kenbus (2) 68279 28903 47608 35503

Total 117801 43881 85154 55250
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This result demonstrates that streams are bad for the cache; when that data is in a

cache, there are very few accesses for each compulsory miss.  The traces without streams

are much better for caches because they average more accesses for each item that is

cached.

6.3.2  Which Compulsory Misses Have Been Removed?
The previous section showed that a large number of compulsory misses are

removed when streams are deleted from the trace.  It also showed that the average number

of accesses per compulsory miss is low for the accesses in the streams.  To see which com-

pulsory misses are removed, the trace was broken down by addresses, and a count was

kept of how many accesses went to each address.

Each cell in Table 5 represents a count of the number of addresses, where each of

those addresses was accessed the number of times in the first column.  Many addresses

were accessed only a few times, and a very small number of addresses were accessed

many times.  Since only 20 blocks of a 2000 block trace were processed, it is not unusual

to see addresses only accessed one time.

All columns are the same for more than 4096 accesses.  This means that removing

streams did not remove a significant number of references from addresses that were

accessed more than 4095 times.  It is unlikely these addresses would be parts of streams; it

is likely they are loop counters or other stack variables that are accessed frequently in a

repetitive pattern.

TABLE 4. Accesses per Word Sized Compulsory Miss

Accesses to SMC Removed
by

Accesses to the SMC /
CMs Removed from Data Cache

Accesses to Data Cache /
Data Cache CMs

NOT Removed n/a 11.69

Pattern Recog 5.72 21.74

Disassembly 3.52 14.81

Disassembly* 3.90 20.50
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Below 64 the data begins to really differentiate.  In the row 4-7, the pattern recog-

nition method and disassembly* method have removed half of the addresses, and the dis-

assembly method has cut it by a third.  In the row 1, the disassembly method cuts it by

nearly a half, and the other methods cut it by nearly 3/4ths.

So, removing streams removed addresses that were being used only a few times.

The more an item is accessed, the less likely it is to be removed.  (The pattern recognition

method is worse on this than the other two methods, but the statement still holds.)

The addresses that are accessed only a few times make up a large percentage of

compulsory misses, but make up a small percentage of all references.  Table 6 shows

traces broken down by percentage of all references and the percent removed.

Overall, addresses accessed 7 or fewer times make up 19.66% of the trace and 35%

of their access were identified as parts of streams by the disassembly method.  For the dis-

TABLE 5. Addresses Broken Down by # of Accesses to the Address

# of Accesses
per Address Not Removed Pattern Recog Disassembly Disassembly*

1 59480 14764 37118 16998

2-3 41838 13901 26088 16633

4-7 23527 9105 15984 11654

8-15 12530 7304 11472 9530

16-31 7111 3523 6693 5287

32-63 2589 1599 2513 2403

64-127 1004 742 1000 991

128-255 496 400 497 492

256-511 269 212 269 269

512-1023 85 80 85 85

1024-2047 31 31 31 31

2048-4095 12 11 12 12

4096-8191 3 3 3 3

8192-16383 2 2 2 2

16384-32767 1 1 1 1

32768-65535 0 0 0 0

65536-131071 3 3 3 3
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assembly method when quasi-streams were removed, the factor was 58%, and for the pat-

tern recognition method, the factor was 66%

The pattern recognition method was much more aggressive than either of the other

methods, removing 20% of the accesses from addresses that were accessed 64 to 511

times, and 11% of the accesses from addresses accessed 2048 to 4905 times.  This indi-

cates it is removing data that might be much better kept in the cache.

By removing a small number of accesses that cause a large number of the compul-

sory misses, the SMC removes pollution from the data cache.  This should increase the

temporal locality of the data cache.  In the next section, we’ll see that it not only increased

the temporal locality, it also decreased the spatial locality of the trace.

TABLE 6. Percentage of All Accesses Broken Down by Number of Accesses to Each Address

# of
References

Not
Removed

Pattern
Recog

%
Removed

Disasse
mbly

%
Removed

Disasse
mbly*

%
Removed

1 4.32 1.08 75 2.70 38 1.23 71

2-3 7.04 2.35 67 4.49 36 2.76 61

4-7 8.30 3.31 60 5.68 32 4.24 49

8-15 9.67 5.31 45 8.93 8 7.10 27

16-31 11.20 5.39 51 10.63 5 8.24 26

32-63 7.96 5.03 39 7.73 3 7.41 7

64-127 6.25 4.72 25 6.22 0 6.17 1

128-255 6.24 5.02 20 6.23 0 6.17 1

256-511 6.73 5.39 20 6.73 0 6.72 0

512-1023 4.22 3.97 6 4.21 0 4.21 0

1024-2047 3.20 3.22 0 3.20 0 3.20 0

2048-4095 2.81 2.51 11 2.81 0 2.81 0

4096-8191 1.34 1.34 0 1.34 0 1.34 0

8192-16383 1.58 1.58 0 1.58 0 1.58 0

16384-32767 1.25 1.25 0 1.25 0 1.25 0

32768-65535 0.00 0.00 0 0.00 0 0.00 0

65536-131071 17.87 17.87 0 17.87 0 17.87 0

Stream
Accesses

0.00 30.69 8.36 17.71
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6.3.3  Temporal and Spatial Locality
Temporal and spatial locality are concepts rather than measurable quantities.  Tem-

poral locality is the concept that values that are used in the near future are likely to be

items that were used in the near past.  Spatial locality is the concept that values that are

used in near future are likely to lie near items that were used in the near past. Although we

could not directly measure these concepts, we attempted to measure their effect on caches.

To measure the effect of temporal locality, we chose a cache with a cache line of

one word.  This meant cache hits only occurred when a specific word was reused.

To measure the effect of spatial locality, we compared a cache with K lines of size

N to a cache of K lines of size 2N.  The increase in hit rate could only occur when two

smaller sized lines fit into one of the larger lines, freeing up a cache line for something

else; this indicates the data was near each other.

Table 7 shows the hit rate for the caches varying by line size.  Table 8 shows the

increase in hit rate for each doubling of line size.   The cache used for these results was a

2-way set associative cache with 2048 lines.  The line size was then varied from 4 bytes (1

word) to 256 bytes (64 words).  The first level cache in the Alpha system is 2-way set

associate with 2048 lines and a line size of 32 bytes (8 words).

TABLE 7. Hit Rate for Varying Cache Line Sizes

Cache Line Size (In Words)
Original

Pattern
Recog Disassembly Disassembly*

1 78.00 90.25 81.94 88.07

2 86.72 92.82 89.65 92.49

4 91.65 95.22 94.16 95.41

8 (Size for Alpha 21264) 94.92 96.72 96.53 97.04

16 97.43 97.84 97.97 98.13

32 98.55 98.50 98.77 98.76

64 99.10 98.97 99.20 99.15
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Note how much higher the hit rate for a cache with a 1 word line size is for all the

traces with stream accesses removed.  The disassembly method increases the hit rate by 4

percent, and the other methods by 10% and 12%!  This is a huge increase in temporal

locality.  In other terms, the disassembly method changed the miss rate from 22% to

18.06%, or a cut of 17.9%!  The other methods cut the miss rate by 45.8% and by 55.7%.

Also notice in Table 8 that whenever the line size is doubled, the original trace

always gets the largest increase in hit rate.  This indicates that the original trace has more

spatial locality than the other traces.  It appears that the pattern recognition method pro-

duced the trace with the least spatial locality, followed by disassembly* and finally by dis-

assembly.

The L1 cache in the Alpha 21264 has a 32 byte line size which achieves a hit rate

of 94.92% on this test.  The disassembly method, our lower bound, achieves a hit rate of

94.165 with a 16 byte line size.  The other two methods have hit rates above 95% for the

16 byte lines size.  So by decreasing spatial locality, the SMC allows the data cache to

achieve similar performance with a smaller cache line.

7.0  Conclusions

The goal of this research was to quantify the change in data cache performance

when an SMC was added to the system.  We chose to measure that performance by simu-

TABLE 8. Percentage Increase in Hit Rate per Doubling of Cache Line Size

Percentage Increase in Hit Rate Original
Pattern
Recog Disassembly Disassembly*

from 1 to 2 words 8.72 2.57 7.71 4.42

from 2 to 4 words 4.93 2.40 4.51 2.92

from 4 to 8 words 3.27 1.50 2.37 1.63

from 8 to 16 words 2.51 1.12 1.44 1.09

from 16 to 32 words 1.12 0.70 0.80 0.63

from 32 to 64 words 0.55 0.47 0.43 0.39
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lating caches on memory address traces and to approximate the SMC by removing stream

references from the traces.

Two methods were used to remove stream accesses: by recognizing loops in the

traces and removing stream accesses from those loops, and by identifying the instruction

causing each of the data accesses and removing accesses that belonged to loads or stores

that showed stream characteristics.  Additionally, traces which had quasi-streams removed

were also generated because they might be able to be handled by the SMC system by

either added hardware or by compiler optimizations.

These traces were then simulated on a cache layout modeled after the Alpha

21264, and the number of misses was recorded with the caches already initialized.  The

number of misses in the L1 cache was cut in the range of 27% to 46%, and the L2 cache

showed a cut of 7% to 17%.

The increase in cache performance was due to an increased temporal locality in the

trace.  This increase in temporal locality resulted from the removal of a large number of

polluting accesses which would be serviced by the SMC.

Spatial locality was drastically cut in the traces with streams removed.  This indi-

cates that streams and quasi-streams are the cause of a high percentage of the spatial local-

ity in memory accesses patterns.  It also indicates that a cache with a smaller line size in an

SMC system would not be penalized as much as the same cache in a conventional system.

In conclusion, because streams make up a large percentage of all compulsory

misses and have poor temporal locality, they cause cache pollution.  By adding an SMC,

those accesses are handled in a more efficient manner.  The SMC also keeps the polluting

accesses out of the cache, which dramatically improved cache performance.  Additionally,

the decrease in spatial locality allows the smaller data cache line, and, therefore, smaller
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data caches, without a significant impact on performance. The increased data cache per-

formance, along with the SMC’s proven increase in bandwidth for streams, leads us to

believe that the SMC will speed up memory accesses, even for non-scientific code such as

the Kenbus benchmark.
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