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Abstract--Localization for outdoor wireless sensor networks has been a challenge for real 
applications. Although many solutions have been proposed, few of them can be used in real 
applications because of their high cost, low accuracy or infeasibility due to practical issues. In 
this paper, we propose a practical acoustic localization scheme called Thunder. Thunder 
employs an asymmetric architecture and shifts most of the complexities and hardware 
requirements from each node to a single powerful centralized device. The solution is efficient, 
and requires virtually zero cost in terms of extra per node hardware and in-network 
communication. This paper also presents an efficient scheduling algorithm called Equilateral 
Triangle Scheduling to schedule Thunder for very large sensor networks and a resilient 
algorithm called Adaptive Fuzzy Clustering to provide robust localization without sacrificing 
efficiency in the presence of a high percentage of large ranging errors. To validate and evaluate 
Thunder, we built an experimental localization system based on the Mica2 platform, which 
achieved localization errors of about 1 meter in medium scale localization experiments.  

 
�.  Introduction 
 Localization for outdoor wireless sensor 
networks (WSNs) is a fundamental middleware 
service for many WSN applications. For example, in 
military surveillance applications [7] location 
information of each node is essential to determine a 
target’s position. Although many approaches (e.g., 
[2][6][9][17][23]) have been proposed to solve the 
outdoor localization problem, few of them can be 
used in real applications due to practical issues such 
as high cost or low accuracy.  

Because of the high accuracy of acoustic ranging, 
several acoustic localization schemes [9][22][23] are 
proposed for outdoor WSNs. These acoustic 
localization schemes are mainly based on peer-to-peer 
acoustic ranging with a certain percentage of anchors 
and require extra per node devices to perform ranging 
among neighbors. While these approaches show some 
promising results, they also have many practical 
problems. First, for a static WSN, localization only 
needs to be done once. It is not cost-effective to equip 
each device for a one-time localization. Second, the 
effective ranges of these per node devices are 
constrained by the cost, size or power supply from the 
nodes. For example, even for the second generation 
Medusa nodes [23], the peer-to-peer ranging distance 
is only 10-15 meters. The limited ranging distance 
places extra requirements on node density in order to 
get enough range for each node. Third, for a large 
scale WSN comprised of tens of thousands of nodes, 
both the cost for a certain percentage of anchors and 
the cost for in-network communication are large; also, 
it is very difficult to schedule sound broadcasts at 

each node to avoid interference from each other to 
reduce localization time in an efficient and scalable 
way. Finally, real environments are comprised of 
various obstacles, such as trees and bushes. The 
obstacles can cause severe signal attenuation and 
multi-path signals, resulting in large ranging errors. In 
the presence of a high percentage of large ranging 
errors, the distributed localization algorithms used in 
these localization schemes suffer both from the 
peer-to-peer ranging errors and error propagation. 
The end result is that many of these previous 
solutions don’t address large ranging errors or if they 
do, the performance is poor.  All these problems are 
critical in real applications. In this paper, we present a 
practical acoustic localization scheme called Thunder 
for outdoor WSNs. Thunder employs an asymmetric 
architecture and is able to solve or avoid all these 
problems effectively with virtually zero cost both in 
terms of extra per node hardware and in-network 
communication.  

While acoustic based localization is well studied, 
this paper makes the following five contributions. 
First, based on a common time difference of arrival 
(TDOA) technique we present a practical acoustic 
localization scheme with high accuracy and low cost 
for outdoor WSNs. Second, we show how to scale the 
solution to very large networks of 10,000 or more 
nodes by providing a scheduling algorithm called 
Equilateral Triangle Scheduling (ETS). Third, we 
propose an efficient algorithm called Adaptive Fuzzy 
Clustering (AFC) to provide robust localization for 
Thunder in the presence of a high percentage of 
significant ranging errors. AFC can provide accurate 



localization with average localization errors under 
20cm when the percentage of large errors is below 
60%. Fourth, we built an experimental Thunder 
system on the Mica2 platform, which achieved 
localization errors of about 1 meter, to verify the 
feasibility of Thunder to support long distance 
acoustic ranging. Our experimental Thunder system 
supports effective ranging up to 137 meters. To the 
best of our knowledge, this is the longest acoustic 
ranging distance ever achieved in WSNs. Fifth, we 
identified a hardware saturation problem in the tone 
detector on the Mica sensor board caused by strong 
acoustic signals, which makes the tone detector not 
responsive to acoustic signals. We have developed an 
efficient solution called Three Phase Adjustment 
(TPA) to solve this practical implementation issue.  

 

�.  Thunder System Design 
 The main idea of Thunder is to use a single 
centralized device comprised of a speaker, a powerful 
radio transmitter and a GPS receiver to emulate 
thunder and lightening in nature that can be heard and 
seen many kilometers away. With this single 
centralized device, we only need to move it to 3 
different locations not in a line to localize all the 
nodes in a field in two dimensions. 
 One practical application scenario we envision is 
as follows: a helicopter equipped with the powerful 
centralized device first drops a large number of 
sensors in a wide area randomly; then the helicopter 
flies to several locations and at each location, the 
helicopter simultaneously broadcasts the sound and 
sends a radio signal containing the location of the 
helicopter obtained from the GPS receiver; sensors 
receiving both the radio signal and the acoustic signal 
can use the standard Time Difference of Arrival 
(TDOA) approach to compute their distances to the 
helicopter; after a sensor gets 3 distances to the 
helicopter at 3 locations not in a line, it can use 
trilateration to compute its 2D location.  
 

 
Figure 1: An example of the Thunder localization scheme. 

 
 This approach has a number of benefits. First, we 
move most of the complexities and hardware 
requirements from each node to a single powerful 
centralized device. Each node in the field only needs a 

microphone to capture the acoustic signals and a radio 
receiver to receive radio messages, which are 
available to almost all the current popular sensor 
motes, such as the Mica and XSM series. No extra 
ranging devices, such as ultrasound transceivers [23] 
or powerful buzzer units [9], are needed. Further, no 
anchors are used in the field. Only one GPS receiver 
is used for the single centralized device. In this way, 
the cost for extra per node hardware approaches zero. 
Second, there is no peer-to-peer traffic. This means 
that there is zero cost in terms of in-network 
communication. Each node in the field is only 
responsible for receiving radio and acoustic signals 
from the centralized device, and then computes its 
own location independently. Not a single message is 
generated from the nodes in the field and thus the 
energy consumption of the nodes for in-network 
communication is also zero. Third, no assumptions 
about the topology of WSNs are made. The 
localization is not affected by the factors such as node 
density or network connectivity. Fourth, it is efficient 
and fast to localize a WSN, because we only need to 
move the centralized device to several locations with 
a car or a helicopter and at each location broadcast an 
acoustic signal and a radio signal simultaneously. 
Fifth, it is scalable as the size of WSNs grows. We 
design an efficient scheduling algorithm called 
Equilateral Triangle Scheduling (ETS) described in 
Section � to schedule Thunder for very large WSNs. 
Finally, it can provide very robust localization 
without sacrificing efficiency in the presence of a 
high percentage of large ranging errors by using 
Adaptive Fuzzy Clustering (AFC), which is described 
in Section � . Also, it can be easily extended to 
support 3D localization. For example, a node can use 
ranging measurements to the centralized device at 4 
different locations not in the same plane to compute 
its 3D location. This single centralized device can be 
used for many WSNs and thus the cost to build such a 
centralized device can be amortized to virtually zero.  

The efficiency of Thunder mainly depends on the 
ranging distance a single centralized device can 
support. In reality, the effective ranging distance of 
the centralized device is constrained by the power of 
the speaker and the radio transmitter. Also, it is 
generally desirable to keep the volume of the sound 
within human tolerance levels. In order to verify the 
feasibility of Thunder to support long distance 
acoustic ranging, we develop an experimental 
Thunder system on the Mica2 platform, which is 
shown in Sections � and �. In our experimental 
Thunder system, we use a speaker whose maximum 
sound intensity is 73dB, which is only at the same 
magnitude level as street noise in a city. In addition, it 
is important to point out that when we broadcast the 
sound it is only transmitted for a very short interval of 

 



time, i.e., 100 msec. With this sound intensity and 
time interval we can support effective ranging up to 
137 meters. With a more powerful speaker, we expect 
it to support ranging up to several hundred meters. 
However when WSNs grow larger, the signals from 
the centralized device may not be able to cover the 
whole WSNs. In that case, we still need to move the 
device to many more than 3 locations to localize the 
whole area. This scaling issue is discussed in Section 
�.  

 

 
    (a)                       (b)  
Figure 2: (a) The spectrum for a typical helicopter. (b) The 

spectrum for a typical car. 
 

We need to consider whether the helicopter noise 
or car engine noise interfere with the acoustic signals 
from the speaker. As shown in Figure 2, most of the 
sound energy from helicopter and car noises is less 
than a 1 kHz frequency. By choosing acoustic signals 
of a higher frequency, the interference from the 
helicopter and car noises can be avoided. 
 

� .  Thunder for Very Large Wireless 
Sensor Networks 
 When WSNs grow larger, the signals from the 
centralized device may not be able to cover the whole 
area. In this section, we describe the scheduling 
algorithm called Equilateral Triangle Scheduling 
(ETS) to schedule Thunder for very large WSNs over 
many square kilometers, and discuss the impact of 
Doppler effects on acoustic ranging. 
 

� .A.  Equilateral Triangle Scheduling
 When WSNs become large, in order to make sure 
that every node in the field has enough ranging 
measurements to the speaker, we need to schedule 
where to broadcast sound to minimize the number of 
broadcasts.  

 

 We make the following three assumptions in 
order to simplify the problem. First, we assume that 
we are using an omni-directional speaker. We define 
the speaker’s effective ranging distance as the 
distance within which sensors can detect its acoustic 
signals reliably. Then we assume that the speaker’s 
effective ranging distances to different sensors are the 
same. So the area in which sensors can detect the 
sound reliably is a perfect circle. Finally, we do not 
take the edge effects into account, because we are 
considering a large area over many square kilometers. 

We model the problem in the following way: the 
speaker’s effective ranging distance is z; the sensor 
field to be localized is a rectangle of size yx × ; the 
question is at which locations should we broadcast the 
sound to minimize the number of broadcasts, 
meanwhile satisfying the constraints that every point 
in the sensor field is covered by at least three different 
circles of radius z whose centers are the speaker’s 
locations, and the centers of at least three circles are 
not in a line.  
 This problem is more complicated than the circle 
covering problem [28], which is to get the lower 
bound for a covering using equivalent circles. The 
circle covering problem only requires each point in 
the plane to be covered by at least one circle. In [8], 
Kershner derives the tight lower bound for the 
number of equivalent circles that covers a geometric 
area and therefore proves that the total area of the 
circles is at least 9/32 π  times the area to be covered. 
The constant 209.19/32 ≈π  “may be thought of as 
measuring the proportion of unavoidable 
overlapping” [8].  
 

 
Figure 3: Broadcast scheduling in a very large scale WSN. 

The arrows show the route to traverse the vertices. 
 

However, our problem requires each point to be 
covered by at least three different circles and the 
centers of at least three circles are not in a line, which 
to the best of our knowledge does not have a tight 
bound proven in publications. Therefore, we propose 
an efficient solution called Equilateral Triangle 
Scheduling (ETS) that provides the same proportion 
of redundancy 9/32 π  as in the optimal solution of 
the circle covering problem. In ETS, we first use 
equilateral triangles to divide the sensor field as 
shown in Figure 3. The length of the edge of the 
equilateral triangles is z. Then we only need to 
broadcast the sound at the vertices of these equilateral 
triangles.  

As we can see from Figure 3, by using ETS each 
triangle is fully covered by 3 different circles, so we 
can make sure that every point in the sensor field is 
covered by at least three different circles whose 
centers are not in a line. Also, each triangle is partially 
covered by another 3 different circles. This is the 
overhead we incur by using ETS. We get the average 
number of circles that each point in the sensor field is 
covered: 
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By dividing Formula (1) by 3, we can show that the 
proportion of redundancy by using ETS is 9/32 π , 
exactly the same as the unavoidable overlapping 
proportion for the circle covering problem.  
 Based on ETS, we only need to move the 
centralized device line by line along the vertices of 
the equilateral triangles as shown in Figure 3 and 
broadcast the sound signals and radio signals 
simultaneously at each vertex to perform localization. 
 

�.B.  Impact of Doppler Effects  
When the centralized device is broadcasting the 

acoustic and radio signals for ranging, one option is to 
let the centralized device stop at each scheduled 
location, and then broadcast. To reduce the time for 
localization, it is desirable not to stop the centralized 
device when broadcasting. However, this option is 
constrained by Doppler effects. 
 The speed of sound does not change with a 
moving sound source and a static listener, while the 
frequency of the sound changes. Because the 
receivers only listen to a certain frequency range of 
the sound in order to avoid the interference from the 
environment, we should control the speed of the 
moving sound source to make sure that the resulting 
frequencies are still in the valid listening frequency 
range of the nodes. 
 

 
Figure 4: Doppler effects 

 
 Figure 4 shows an example of Doppler Effects. 
The sound source is moving from right to left with the 
speed of vsource. We can compute the frequency of the 
sound that node A receives as the following: 
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where foriginal denotes the original frequency from the 
sound source, freceive denotes the received frequency, 
and vsound denotes the speed of sound. Suppose the 
frequency range that nodes listen to is [fmin , fmax], in 
which fmin denotes the minimum frequency the nodes 
can detect, and fmax denotes the maximum frequency 
the nodes can detect. To make sure the resulting 
frequency is detectable, freceive should be within [fmin , 
fmax] as expressed in Formula (3): 
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We can get the speed limit of the sound source in 
Formula (4): 
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 Consider our experimental Thunder system 
described in Section �  as an example. In our 
experimental Thunder system, foriginal equals 4.7kHz, 
and the frequency range is [4.3kHz,5.1kHz]. We use 
340m/s as the speed of sound. Based on Formula (4), 
assuming that the speed of the centralized device does 
not change, we compute that the maximum speed of 
the centralized device is 26.7m/s, which is around 
96km/hour, a reasonable speed limit for a helicopter 
or a car. 
 

�.C.  Localization Time 
 Based on the route shown in Figure 3, we can 
estimate the length of the route the centralized device 
needs to traverse: 
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 From Formula (5), the time for localization can 
be estimated as follows:  
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 Consider the largest WSN assembled to date [29], 
which covers an area of 1.3km 300m. If the 
speaker’s effective ranging distance is 200m and the 
maximum speed is 26.7m/s computed from Section 
�.B, it takes only 157 seconds to localize this large 
area.  

×

 

�.  Improving Robustness of Thunder 
 In real applications, the environment may be 
complicated. For example, the area where we deploy 
the WSN may have many obstacles, such as trees and 
bushes, causing severe signal attenuation and 
multi-path signals. The signal attenuation and 
multi-path signals may result in large ranging errors. 
However, Thunder provides a feasible way to provide 
robust localization in the presence of a high 
percentage of large ranging errors. In Thunder, if it is 
acceptable to send many sound signals, the 
centralized device can keep on sending acoustic 
signals for ranging periodically when it is traversing 
the route. For example, the moving centralized device 
can send out signals for ranging every second, if the 
maximum ranging distance is smaller than the 
distance an acoustic signal travels in one second to 
make sure that there are no multiple acoustic signals 
for ranging in the field at the same time. Thus each 

 



node in the field can get many more than 3 ranging 
measurements. However, the nodes do not know 
which ranging measurements contain large errors. So 
the problem becomes how can we use these extensive 
ranging measurements to correctly compute the 
location, even though many ranging measurements 
may contain large errors? 
 This problem is similar to what is described in 
[10][11]. The main difference is that [10][11] 
consider the large ranging errors to be caused by 
malicious nodes, while we consider them to be caused 
by the limitations of ranging methods, due to signal 
attenuation, multi-path signals and other reasons. In 
other words, malicious nodes may purposely give 
wrong measurements and may even collude with each 
other to coordinate wrong measurements. In our case, 
because there is only a single centralized device and 
nodes do not exchange data, it is not feasible to 
maliciously generate colluding measurements. 
Colluding measurements are defined as compromised 
measurements that coordinate with each other to push 
the localization result toward the same wrong 
location. 

In [10], Li et. al. propose using Least Median of 
Squares (LMS) to eliminate the outliers. LMS works 
efficiently when the contamination ratio of the 
measurements is low, but the computation overhead 
increases very fast as the contamination ratio 
increases, because it needs to try more subsets to find 
a good subset without contamination. Also, it is 
robust for up to 50% of contamination ratio at most, 
even though these contaminated measurements do not 
collude to push the localization to the same wrong 
location. In [11], Liu et al. propose Minimum Mean 
Square Estimation (MMSE) and Voting-Based 
Location Estimation to secure the localization. 
Among these two methods, Voting-Based Location 
Estimation shows better performance especially when 
the contamination ratio is high. Voting-Based 
Location Estimation can be considered as a simplified 
version of the probabilistic approach proposed in 
[24]. 
 We propose an efficient algorithm called 
Adaptive Fuzzy Clustering (AFC) to solve this 
problem. AFC not only works extremely well when 
there are no colluding measurements, but also is very 
robust when there are multiple colluding 
measurements. 
 

�. A.  Adaptive Fuzzy Clustering 

 

 If ranging measurements are not error-free, a 
location computed from these measurements is 
inclined to contain errors. We define a possible 
location of a node as a location computed from a 
certain number of ranging measurements by a certain 
method. For example, we can use m (m≥ 3) ranging 

measurements to compute a possible location by 
multilateration. The computed possible location can 
be close to the true location of the node if the ranging 
measurements used to compute that location contain 
minimal errors. It is also possible that the computed 
location is a false location that is far away from the 
true location if the ranging measurements contain 
large errors. If a node obtains n ranging 
measurements, the node can compute  possible 
locations for itself.  

m
nC

The key idea of AFC contains two phases. The 
first phase is to obtain all the possible locations for 
the node with a certain method. The second phase is 
to use cluster analysis to find an area with the 
maximum density of possible locations. Then we use 
the average of all the possible locations in that area as 
the final location for that node. 
 Least Square (LS) and Nelder Mead (NM) have 
been widely used for multilateration. However, it is 
computationally prohibitive to use these nonlinear 
regression methods to compute all the possible 
locations for resource-constrained sensor nodes. For 
example, if we use 3 ranging measurements to 
determine a possible location, it needs to use LS or 
NM  times, a nightmare for a sensor mote. Here, 
we propose an approximate, but efficient way to 
obtain all the possible locations. 

3
nC

 

 
Figure 5: Using two ranging measurements d1 and d2 to 

get two possible locations p1 and p2. 
 

Phase 1: Our method is based on the following 
two observations. First, normally two ranging 
measurements can be used to compute two possible 
locations for a node. Although which one is correct is 
unknown, at least one of the two is correct assuming 
the ranging errors are minimal. As shown in Figure 5, 
by using two ranging measurements d1 and d2 to 
locations l1 and l2 correspondingly, the node knows 
that its location is either p1 or p2. The second 
observation is that the two possible locations by using 
two ranging measurements can be computed in linear 
time and can be very efficiently implemented on 
motes. In AFC, we compute all possible locations by 
using any two ranging measurements without caring 
about which ones are correct, because most wrong 
locations are eliminated in Phase 2. We initially 
consider that all the computed locations as possible 
locations for the node. In this way, we only need to 
compute the locations with two ranging 



measurements  times, and the computation cost is 
acceptable. 

2
nC

Phase 2: After we obtain all the possible 
locations, we use cluster analysis to get the area with 
the maximum density of locations. The cluster 
analysis is necessary because locations with large 
errors might be introduced due to ranging errors and 
the wrong locations are generated in Phase 1. Because 
the computation overhead for precise cluster analysis 
can be prohibitive, we use an approximation to get the 
area with the maximum density of possible locations. 
The following briefly describes how the algorithm 
works. 

Step 1: Compute the center of gravity of the set 
of all the existing possible locations. 

Step 2: Compute the average distance l from the 
set of all the existing possible locations to the center 
of gravity.  

Step 3: Remove all the possible locations whose 
distances to the center of gravity are larger than  

 from the set of all the existing possible 
locations. The value of  is to be determined. From 
our simulation, we find that a value around 1 is 
appropriate for .  

α×l
α

α
Step 4: If the l calculated from Step 2 is below a 

certain threshold or if the number of rounds exceeds a 
specified maximum number of rounds, the algorithm 
terminates and the center of gravity of all the 
remaining possible locations is used as the location of 
the node. Else, repeat from Step 1. From our 
simulations, a value of 10 is appropriate for the 
maximum number of rounds.  
 This algorithm works efficiently. The 
computation complexity of this algorithm is O(rn2), 
where r is a constant, whose value is the maximum 
number of rounds and n is the total number of ranging 
measurements. However, l converges quickly. 
Normally it only takes 5 rounds to find the final 
location.   

The main reason that AFC is capable of finding 
the true location of the node correctly with a minimal 
error is that if there are enough ranging measurements 
with small errors, the density of possible locations 
around the node’s true location is higher than other 
areas. That is because the possible locations with 
small errors always gather around the true location of 
the node, while the possible locations with large 
errors are inclined to spread out if there are no 
colluding measurements. AFC can also be applied to 
other localization schemes for which colluding 
measurements may occur. Using AFC, the possible 
locations computed from the colluding measurements 
also concentrate near a false location. However, if the 
density near the true location is higher than that near 
the false location, AFC is inclined to converge to the 

true location as shown in the algorithm description. If 
the percentage of the colluding measurements is 
greater than 50%, in which case the density near the 
false location overweighs that near the true location, 
no algorithm is able to find the correct location with a 
high probability unless extra information is provided. 

 

� . B.  Evaluation of Adaptive Fuzzy 
Clustering 
 This subsection presents the simulation results 
for AFC and LS. In these simulations, we first show 
the performance of AFC when there are no colluding 
measurements, because by using a single centralized 
device it is easy to prevent the nodes from having 
multiple colluding measurements. We also show 
results when there are multiple colluding 
measurements to illustrate the robustness of AFC 
under certain attacks. The robustness of AFC makes it 
also attractive to other ranging based localization 
schemes which are easier to be attacked by malicious 
nodes.  

The settings of the simulations are as follows: the 
single node with an unknown location is located at the 
center of a 400m×400m target field; for each ranging 
measurement, the centralized device is randomly 
placed in the target field; every ranging measurement 
contains either a large error or a small error; the large 
ranging errors are uniformly distributed among [1m, 
max], in which max is the maximum value for that 
uniform distribution; for small ranging errors, the 
error is randomly picked from our long distance 
ranging experiments shown in Section �.A. We do 
not consider severely underestimated errors in this set 
of simulations, because no severely underestimated 
error is observed during all the experiments in our 
experimental Thunder system tests discussed in 
Section �.A. All the points in our following figures 
are computed from 1000 trials. δ  ranging 
measurements are obtained, and the ratio of large 
ranging errors is σ. 

We first show in Figure 6 the performance of LS 
and AFC when there are no colluding measurements. 
Figure 6(a) illustrates the impact of σ when δ=20. 
Almost all the average localization errors and 
standard deviations of AFC are below 20cm, when σ
≤60%. The performance starts to degrade quickly 
when σ � 70%, because the number of ranging 
measurements with small errors becomes too small. 
In reality, unless the environment is extremely 
complicated with too many obstacles, it is not 
common to have σ�70%. For example, in our long 
distance ranging experiments shown in Section �.A, 
σ is below 5%. Figure 6(b) illustrates the impact of 
different max values. The average error of AFC is 
very stable as the max value increases. It starts to 

 



have some sporadic large localization errors only 
when max is greater than 80 meters. Figure 6(c) 
shows the performance of LS and AFC with different 
values of δ. AFC starts to behave well when δ= 9. 
After that, almost all the average errors and standard 
deviations of AFC are below 20cm. Figure 6(d) 
shows the resistance level of AFC with different 
values of δ. Here we define the resistance level as the 
maximum value of σ  to keep the average 
localization errors below 2.5m. The resistance level 
of AFC increases as δ increases. AFC can provide a 
resistance level of 60% when δ=15. The resistance 
level goes up to 81% when δ=100. So increasing the 
number of ranging measurements is also an effective 
way to further improve robustness of AFC. 

 

 
(a)δ=20 and max = 50.    (b) =18 and δ σ =1/3 

 
(c)σ =1/3 and max = 50.      (d) max = 50 

Figure 6: Performance of LS and AFC when there are no 
colluding measurements. 

 
Figure 7 shows the performance of AFC when 

there are multiple colluding measurements. ε  is the 
percentage of colluding measurements. These 
colluding measurements tend to push the localization 
to the same wrong location which is d meters away 
from the real location. Figure 7(a) shows the impact 
of . The performance of AFC degrades only when 

> 40%. Otherwise, the average localization errors 
are smaller than 20cm. This performance is really 
attractive, because no algorithm can find the correct 
location with high probability if 50% unless 
extra information can be provided. Figure 7(b) shows 
that AFC is also quite stable when the value of d 
changes. The average errors are under 20cm almost 
all the time.  

ε
ε

ε ≥

 

 

(a) d =50 and δ=20     (b) δ=20 and ε =35% 
Figure 7: Performance of LS and AFC when there are 

colluding measurements. 
 

From the simulation results, it is clear that the 
performance of AFC is highly satisfactory. Although 
we do not remove any incorrect possible locations in 
Phase 1, AFC can always obtain very accurate 
location with the average errors under 20cm when  σ
≤60% if it obtains 20 ranging measurements. Also, 
AFC is very resilient to colluding measurements. It 
supports highly robust localization when the 
percentage of the colluding measurements is below 
40%. Moreover, it is very efficient as described in 
Section � .A. With this efficient and robust 
localization algorithm, Thunder can be used in 
complicated environments with various obstacles, 
which may cause a high percentage of large ranging 
errors. 

 

 
Figure 8: Performance of LS, AFC and its varieties 

when δ = 100 and max = 50. 
 

One main drawback of AFC is that the 
computation overhead and the memory requirement 
increase fast as δ becomes larger. For example, ifδ
=100, to store about  possible locations, it 
requires the memory of 80Kb, if each possible 
location takes 8 bytes. Here, we provide two possible 
changes to AFC to reduce the computation overhead 
and the memory requirements when δ becomes large. 
The first one is to randomly choose 

2
1002 C×

ϕ  ranging 
measurements and then use AFC to compute the 
location by only using these ϕ  ranging 
measurements. The second one is to first divide all δ  
ranging measurements into  subsets equally. Then 
we use AFC to compute a location for each subset. 
The location with the maximum density among all 
these computed locations is selected as the final 
location. We use AFCR-  to denote the first method 
and we use AFCD-

ρ

ϕ
ρ  to denote the second method. 

Figure 8 shows the performance of LS, AFC and 
its varieties when δ= 100. AFCR-20 has the least 
computational overhead and memory requirements, 
however it only works well when σ�50%. AFCD-5 
has about 4 times more computational overhead and 
similar memory requirements compared to that of 
AFCR-20, while it provides robust localization even 

 



when σ=70%. AFC requires about 25 times the 
computational overhead and memory requirements as 
AFCR-20 does. However, it is still resilient when σ
=80%. The average error of AFC is about 1.5m when 
σ=80%. This is reasonable considering that only 20 
out of 100 measurements contain small errors and the 
other 80 measurements contain large errors.  

 

�. Experimental System Implemen- tation 
 To verify the feasibility of Thunder to support 
long distance acoustic ranging, we developed an 
experimental Thunder system on the Mica2 platform. 
Due to the lack of a powerful enough radio transmitter, 
our experimental Thunder system is slightly different 
from the previously described Thunder system. 
 In our experimental Thunder system, we use a 
Mica2 as the radio transmitter. Because of its limited 
radio range, we need to flood the radio signal to all 
the sensors in the field to make them prepare for the 
incoming acoustic signal. So, we can not directly use 
the time difference of arrival between the radio signal 
and the acoustic signal due to message delays in the 
process of flooding. In our implementation, we use 
the time difference between the time when the 
acoustic signal is broadcast and the time when the 
sensor receives the acoustic signal to compute its 
distance to the speaker. Therefore, time 
synchronization is necessary in our experimental 
Thunder system. We use the time synchronization 
module [13] developed by Vanderbilt University. 
Formula (7) shows how to calculate the distance: 

soundbroadcastreceive SpeedttDis ×−= )(       (7) 
In Formula (7), Dis denotes the distance from the 
sensor to the speaker, treceive denotes the time when the 
sensor in the field receives the acoustic signal, tbroadcast 
denotes the time when the sound is broadcast from the 
speaker, and Speedsound denotes the speed of sound. 

In order to get tbroadcast, we put a Mica2, which we 
call BMica2, quite close to the speaker to mark its 
location as that of the speaker. We use the time when 
the BMica2 detects the acoustic signal as tbroadcast. 
After each sound blast, the Mica2 radio transmitter 
floods tbroadcast and the location of the speaker to the 
whole field. Based on this information, the motes in 
the field can compute their distances to the speaker.  

 

 
Figure 9: Our centralized device 

 

Figure 9 shows the centralized device we use for 
our experimental Thunder system. The car battery is 
used to generate 12V DC. The AC Inverter is used to 
invert 12V DC to 120V, 60Hz AC, which serves as 
the power source for the speaker and the laptop. The 
laptop is used as the command center to send 
commands to the radio transmitter through the 
programming board, to generate the sound signal to 
the speaker, and to gather experimental data.  

 

�.A.  Acoustic Signal Detection 
 We use the hardware phase-locked loop tone 
detector on the Mica sensor board to detect acoustic 
signals. The output of the tone detector is either 0 or 1, 
in which 0 means that an acoustic signal within its 
effective frequency range is detected and 1 means that 
no acoustic signal within that range is detected.  

From our experiments, we find that the effective 
frequency range for most of the Mica sensor boards is 
between 4.3kHz and 5.1kHz, which is slightly 
different from the specification. In our 
implementation, we use a 4.7kHz acoustic signal 
which lasts for 100ms. To avoid random false 
detection of the tone detector caused by background 
noise, we accumulate the sampling results within a 
certain window size to see whether the number of 0s 
exceeds a certain threshold. If it does, the sensor 
records the time when it exceeds as the detection time 
of the acoustic signal. 

 

 
Figure 10: Average ranging errors with different sampling 

rates 
 
We find that a 4kHz sampling rate is high enough 

to achieve sub-meter accuracy and a higher sampling 
rate does not help much in improving accuracy for 
long distance ranging. Figure 10 shows the average 
ranging errors with different sampling rates of the 
tone detector from our experiments. (We use 5 
sampling rates, 1kHz, 2kHz, 4kHz, 8kHz, and 16kHz.) 
In these experiments, we put a Mica2 mote 2.44 
meters away from the speaker and use Formula (7) to 
compute its distance. We have conducted the 
experiments 25 times for each sampling rate and plot 
the average errors. As shown in Figure 10, as the 
sampling rate increases, the average error decreases. 
However, the difference is very small. The average 
ranging error of 4kHz is only about 3cm worse than 
that of 16kHz, which is negligible in long distance 
ranging. Moreover, if the sampling rate is too high, it 

 



places negative impact on other modules. For 
example, the radio module does not work properly if 
we set the sampling rate to 16kHz. We used a 4kHz 
sampling rate for all the following experiments. 

 

�.B.  Gain Value Adjustment 
 One big challenge in long distance acoustic 
ranging is the hardware saturation of the tone detector 
on the Mica sensor board caused by a strong sound 
signal which we use for ranging. This problem has not 
been addressed by previous work to the best of our 
knowledge. If a tone detector is saturated, it is 
unresponsive to acoustic signals. Until the tone 
detector hardware is improved, each time we do 
acoustic ranging, we need to first adjust the gain 
values of tone detectors to avoid saturation. Based on 
our extensive experiments, we developed a technique 
called the Three Phase Adjustment (TPA), which 
adjusts the gain value dynamically and solves this 
problem efficiently. 
 In TPA, each tone detector can only choose 
among three possible gain values, v1, v2 and v3. v1 is 
the least sensitive gain value that permits using as 
powerful sound source as possible. v3 is the most 
sensitive value. v3 should be resilient enough to 
environmental noise and also should be as sensitive as 
possible to support longer distance ranging. v2 is used 
to address the unreliability issues of tone detectors 
and its value is between v1 and v3. In Mica2 sensor 
boards, gain values of the tone detector range from 1 
to 125. 1 means the least sensitivity and 125 means 
the most sensitivity. So we choose 1 for v1. And we 
choose 70 rather than 125 for v3, because the gain 
value of 125 is too sensitive, and it is vulnerable to 
environmental noise, while the gain value of 70 can 
effectively eliminate environmental noise and is 
sensitive enough for long distance ranging. Table 1 
shows how resilient the gain value of 70 is for 
different kinds of sound. We choose 30 for v2.  
 

Sound source Resilient? Sound source Resilient? 
Bird chirpings Yes People clapping Yes 
Wind noise Yes Car engine Yes 
Foot steps Yes Car horn Yes 
People talking Yes Helicopter Yes 

 

Table 1: Resilience of the gain value of 70 
 

 In TPA, we need to broadcast the sounds of the 
same strength for ranging two times to let tone 
detectors choose their appropriate gain values. Before 
the first sound blast, the gain value of each tone 
detector is set to v1, in which case, no tone detector is 
saturated by using our speaker. Then the tone 
detectors which detect the first sound blast set their 
gain values to v1 while others set their gain values to 
v2. If the tone detectors which set their gain value to 
v1 after the first sound blast also detect the second 
sound blast, the gain values remain v1 otherwise they 

are set to v2. Note that tone detectors are not reliable. 
It happens that a tone detector with the same settings 
sometimes can detect the acoustic signal while 
sometimes not. So if a tone detector with a certain 
gain value can detect the acoustic signal occasionally, 
it is safer to use a more sensitive gain value to make 
sure that the tone detector can detect the later acoustic 
signals. If tone detectors which set their gain values to 
v2 after the first sound blast detect the second sound 
blast, the gain value is v2 otherwise it is v3. 
 

 
Figure 11: Effective sound intensity ranges of gain values 1, 

30 and 70 for a typical tone detector 
 

We define the Effective Sound Intensity Range 
of Gain Value n (EIRGV-n) as the intensity range 
within which a tone detector with gain value n can 
detect the sound without saturation. If the sound 
intensity is beyond EIRGV-n, the tone detector with 
gain value n is saturated, and if it is below EIRGV-n, 
the tone detector can not detect the sound. We show 
EIRGV-1, EIRGV-30 and EIRGV-70 for a typical 
Mica2 sensor board in Figure 11. In Figure 11, 73 dB 
is the maximum intensity of the sound with frequency 
4.7KHz from our speaker. Because the sound level 
meter we use for our experiments can not measure the 
sound intensity below 40dB, we are unable to get the 
lower bound of EIRGV-70. Although we can see from 
Figure 11 that the union of EIRGV-1 and EIRGV-70 
already covers the range from the maximum sound 
intensity of our speaker to the lower bound of 
EIRGV-70, it is not safe to use only these two gain 
values due to unreliability and variability of tone 
detectors and we observe some saturation when only 
these two values are used. In other words, if tone 
detectors were reliable enough, Two Phase 
Adjustment maybe enough, in which we only need to 
broadcast the sound one time before we perform 
acoustic ranging and each tone detector can set its 
gain value to 1 or 70 based on whether it detects the 
sound signal. The intermediate value of 30 can be 
used, when a tone detector is not stable with the gain 
value 1 and is likely to be saturated with the gain 
value 70. By using TPA, we do not have the saturation 
problem in our experiments. 

 



 
          (a)                       (b) 
Figure 12: (a) Unreliable detection of an acoustic signal. (b) 

Reliable detection of an acoustic signal  
 

 Another important issue in gain value adjustment 
is that we should set a wide enough window size and 
a strict enough threshold. Figure 12 shows the 
accumulated detection numbers of the tone detector 
of the unreliable detection and the reliable detection 
of a 4.7kHz acoustic signal over time, respectively. 
We accumulate 16 outputs of the tone detector into 
one number. The number is incremented by 1 if the 
output of the tone detector is 0, which means it detects 
the sound. As we can see from the figures, when an 
acoustic signal is detected reliably, it is always 
continuously detected. But when an acoustic signal is 
detected unreliably, it is detected by chance. We 
should avoid unreliable detection during ranging, 
because it results in uncertainty of the detection and 
may cause large errors. By setting a wide enough 
window size and strict enough threshold, the 
unreliable detection during the gain value adjustment 
is perceived as no detection, which makes the tone 
detector choose a bigger gain value as shown in TPA. 
By using a bigger gain value, the tone detector is 
more sensitive and is more likely to detect the sound 
with the same intensity. 
 
�.C.  Angle of Sound From Speaker 
 We find that the angle of sound from our speaker 
is quite limited. As shown in Figure 13, α  is 
relatively small. It is about 40 to 50 degrees. 
Normally, sensors within that angle can detect the 
arrival of sound signal with low ranging errors of 
under 50cm. But sensors outside that angle may not 
detect it, because the acoustic signal outside that 
angle is weakened dramatically, or are very much 
more likely to have severe late responses due to 
echoes. These large overestimated ranging errors can 
be bigger than 20 meters. We call the area within the 
angle  a Reliable Area and the area outside the 
angle  an Unreliable Area. In order to let each 
mote in the field have at least one correct ranging 
measurement to the speaker at one location, all the 
motes in the field need to be covered by the Reliable 
Area at least once for each location where the speaker 
broadcasts sound. 

α
α

 

 
Figure 13: Angle of sound from a normal speaker. 

 
The best solution to this problem is to use an 

omni-directional speaker. In our implementation, we 
used a narrow angle speaker, but we broadcast the 
sound several times at one location in different 
directions to satisfy the requirement that the union of 
the Reliable Areas can cover the whole sensor field.  

  

�.  Performance Evaluation 
 We first perform long distance acoustic ranging 
experiments up to 152 meters to determine effective 
ranging distances. Then we perform complete 
localization experiments in a parking lot. The 
localization errors from our experiment are about 1 
meter. 
 

�.A.  Long Distance Acoustic Ranging 
 To test the feasibility of long distance acoustic 
ranging and the maximum ranging distance our 
speaker can support, we put 10 Mica2 motes in a line 
in front of the speaker. The experiments are done on a 
small lane with people walking through. The nearest 
mote is 15.24 meters away from the speaker, and the 
adjacent motes are also 15.24 meters apart. So the 
furthest mote is 152.40 meters away from the speaker. 
We conduct the experiment 17 times. 
 

 
Figure 14: Distribution of ranging errors 

 
 Figure 14 shows the distribution of ranging 
errors from our experiments. (x, y) on the x axis 
means errors between x cm and y cm. No response on 
the x axis means that the mote fails to recognize the 
acoustic signal and does not get ranging estimation. 
Frequency on the y axis denotes the absolute number 
of ranging errors within (x, y). The motes with 
different distances to the speaker use different 
patterns to show the error distributions of each mote. 

 



As we can see from the figure, the majority of the 
ranging errors are within 25 cm. Overall, when the 
mote’s distance to the speaker is further away, it is 
more likely to have late response or fail to recognize 
the acoustic signal due to weakened acoustic signals. 
Also, no severe early detection happens during this 
set of experiments. In fact, we do not observe any 
severe early detection in all our ranging and 
localization experiments. A tone detector with the 
gain value 70 is very effective to filter out 
environmental noise. Even if there is some sporadic 
detected high frequency noise, it is filtered out by 
accumulating the sampling results within a certain 
window size.  

Another interesting observation is that the 
majority of the experiments get underestimated 
distances which are a little shorter than the actual 
distances. The main possible reason is that all the 
distances are computed based on the BMica2. If the 
BMica2 gets a late response, which means that it uses 
a timestamp larger than the actual one, all the motes 
in the field are inclined to have shorter ranging 
estimations as shown in Formula (7). Another 
possible reason is that the speed of sound we use may 
not be precise. The errors caused by using an 
imprecise speed of sound are more obvious in long 
distance ranging.  

 

 
Figure 15: Average ranging errors 

 
 We show the average ranging errors and the 
standard deviations with different distances to the 
speaker in Figure 15. We ignore motes with no 
responses in the computations. Both the motes with 
distances 91.4m and 137.16m to the speaker get one 
severely overestimated ranging error of over 7 meters, 
which increase their average errors to about 0.9m. 
The mote with distance 152.4m has the average error 
of nearly 2 meters, and it also fails to recognize the 
acoustic signal almost one third of the time. This 
indicates that 152.4 meters has exceeded the 
maximum effective ranging distance of the speaker.  
 

� .B.  Medium Scale Acoustic Locali- 
zation 
 To study the effectiveness of the complete 
localization solution, we deploy 18 Mica2 motes in a 
24.4m  68.6m area of a parking lot. We put these 
motes in 3 columns. The adjacent columns are 12.2m 

apart, and each column contains 6 motes. The 
adjacent motes in a column are 13.7m apart. The 
focus of this set of experiments is to validate the main 
idea of Thunder of using a single powerful centralized 
device for localization. We do not test the robustness 
of Thunder by using AFC in the following 
experiments, which is already validated through 
simulations in Section � . So, in the following 
experiments, the speaker only broadcasts sound at 
three corners of the field, but in order to cover the 
whole area, the sound is broadcast several times 
towards different directions at each location. In this 
way, a mote can get the ranging measurements to the 
speaker at three different locations at most. For a 
single trilateration at each mote, the Nelder Mead 
method 

×

[15], an optimization approach for nonlinear 
functions, can be applied to compute its location. 

 

0

5

10

15

20

25

<- 150 ( - 150, - 100) ( - 100, - 75) ( - 75, - 50) ( - 50, - 25) ( - 25, 0) ( 0, 25) ( 25,  50) ( 50,  75) ( 75,  100) ( 100,  150) >150
Er r or ( cm)

Fr
eq

ue
nc

y

Di st r i but i on of  Or i gi nal
Rangi ng Er r or

Di st r i but i on af t er
Choosi ng t he smal l er  one

 
Figure 16: Distribution of ranging errors during 

localization experiment in the parking lot  

 
Figure 17: Localization results by broadcasting sound two 

times at each location. 
 

In our first experiment, we broadcast the sounds 
for two times towards different directions at each 
location. We first show the distribution of the original 
ranging errors during the localization experiment in 
Figure 16. Overall, the majority of the original 
ranging errors are within 50cm. The distribution of 
the original errors in this figure is quite similar to that 
in Figure 14, except that Figure 16 contains a higher 
percentage of severe overestimated errors which are 
greater than 1.5m. That is because in our ranging 
experiments, all the motes are put in a line in front of 
our narrow angle speaker and they are in the Reliable 
Area of the speaker, except the furthest one which 
exceeds the maximum effective ranging distance of 
the speaker. But in the localization experiments, the 
motes are spread out. During each sound broadcast, 
the motes in the Unreliable Area are more likely to 
have severe late responses, causing a higher 
percentage of severe overestimated errors. This 

 



should not occur if we can use an omni-directional 
speaker. 

In our implementation, if a mote obtains more 
than one ranging measurement to the speaker at the 
same location, it chooses the smaller one. By doing 
this, most severely overestimated errors are filtered 
out as shown in Figure 16. Then the Nelder Mead 
method [15] is applied to compute a node’s location. 
The localization results are shown in Figure 17. The 
points in the figure are the actual locations and the 
crosses are the localization result. As shown in the 
figure, most motes compute their locations very close 
to their actual locations. The average localization 
error in our experiment is 1.19m. The minimum is 
0.19m and the maximum is 3.96m.  
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Figure 18: Distribution of ranging errors during 

localization experiment in the parking lot 

 

 
Figure 19: Localization results by broadcasting sound three 

times at each location. 
 

We perform another experiment to see the effects 
of increasing the number of sound broadcasts at each 
location. This time, at each location, we broadcast the 
sound three times, each in a different direction. Thus, 
each node in the field has the chance to get more 
ranging measurements to the speaker at one location. 
The distribution of the original ranging errors shown 
in Figure 18 gets a higher percentage of 
underestimates compared to that in Figure 16, 
because some more late responses in the BMica2 
happen in this experiment which shortens the 
measured distances. After each mote chooses the 
smallest value as the ranging measurement if it gets 
more than one range to the speaker at the same 
location, all the severe overestimated errors are 
filtered out as shown in Figure 18. Figure 19 shows 
the localization results. By broadcasting the sound 
three times at each location, we get results with only a 
little improvement. The average localization error 
becomes 1.10m. The minimum is 0.07m and the 
maximum is 3.41m.  

The main reason that we do not get significantly 
improved results by increasing the number of sound 
broadcasts at each location is that although we can 
eliminate all the severe late responses by increasing 
the number of sound broadcasts, we can not eliminate 
the underestimated measurements by always 
choosing the smallest value. The best solution is to 
have a BMica2 with a more reliable tone detector. But 
due to our hardware limitations, we use a simple 
algorithm called Averaging After Discarding (AAD) 
to alleviate this problem. In AAD, if a mote has more 
than one range to the speaker at the same location, we 
discard the ranging results which are greater than the 
smallest value by a certain threshold. Then we use the 
average of the remaining measurements as its final 
ranging measurement. In this way, we can filter out 
the severely overestimated ranges and also reduce the 
possibility of having underestimated ones. As shown 
in Figure 18, by using AAD we obtain fewer 
underestimates. The average localization error of 
broadcasting three times at each location becomes 
0.96m. The minimum is 0.10m and the maximum is 

.68m.  2  

Average Time Minimum Time Maximum Time Standard deviation 
87ms 66ms 646ms 78ms 

Table 2: Computing time of using the Nelder Mead method 
on Mica2 motes 

 
One important issue of using the Nelder Mead 

method to compute the locations is that it is not 
guaranteed to find the global optimal point from some 
starting points. However, we can try other different 
starting points if it fails to find the global optimal 
point from some starting points, and finally find the 
global optimal point. Table 2 shows the computing 
time of using the Nelder Mead method on Mica2 
motes in our previous experiments. During these 
experiments, over 95% of the motes succeed to find 
the global optimal locations from the first starting 
point. 

 

�.C.  Summary of the Experiments 
Both the long distance ranging experiments and 

the medium scale localization experiments validate 
the main idea of Thunder of using a single powerful 
centralized device for localization. The ranging 
experiments show the promising ranging distance that 
a centralized device can support. A speaker whose 
maximum sound intensity is 73dB, which is the same 
magnitude level as street noise in a city, is used for 
ranging. It can reliably support ranging up to 137 
meters. We envision that with a more powerful 
speaker, it is possible to do acoustic ranging up to 
several hundred meters. Our localization experiments 
show the high efficiency of using a powerful 
centralized device for localization. For many systems 



we only need to move the centralized device to three 
different locations to localize a medium scale WSN 
and the average localization errors are only about 1 
meter. When the sizes of WSNs grow larger and the 
environment becomes more complicated, ETS and 
AFC can be applied to provide scalability and 
robustness correspondingly. 

Because other papers have already discussed the 
sources of errors in acoustic ranging, such as [9], here 
we do not go into the details of the error sources. We 
simply mention the following 5 possible error sources 
in our experiments: time synchronization, unreliable 
tone detector, multi-path signals, sampling frequency 
and the imprecise speed of sound. Among these, 
multi-path signals cause most of the large errors in 
our experiments. 

 

�.  Related Work 
 In this section, we first summarize previous 
acoustic localization schemes proposed so far. Then 
we briefly discuss other localization approaches.  
 

�.A.  Acoustic Localiation Schemes 
 Several acoustic localization schemes 
[9][21][23] are proposed due to the high accuracy of 
acoustic ranging [5][22]. The Cricket location support 
system [21], which is designed for context aware 
indoors deployment, can achieve errors of tens of 
centimeters by using ultrasound transceivers. It uses 
pre-installed anchors which know their own locations, 
and other static or mobile nodes in the building do 
acoustic ranging to these pre-installed anchors to 
localize themselves. AHLoS, proposed by Savvides et 
al. [23], uses Medusa nodes with multiple ultrasound 
transceivers to achieve localization errors within 
20cm using a certain percentage of anchors. It uses 
peer-to-peer ranging and has the great potential to be 
used for outdoor ad hoc WSNs. However it is limited 
by short ranging distance for each pair of Medusa 
nodes. Even for the second generation Medusa nodes, 
the ranging distance is only 10-15 meters.  

 

 From our point of view, the acoustic localization 
scheme described in [9] is quite similar to AHLoS and 
it is designed for outdoor ad hoc WSNs. The main 
difference is that [9] uses audible sound instead of 
ultrasound. One main advantage of using audible 
sound is that it is much easier to generate 
omni-directional sound and typically has longer 
ranges. However, the audible sound (if too long) may 
annoy people (in our case the sound only lasts 100ms), 
and may not be suitable for hostile environments. [9] 
also uses peer-to-peer ranging with an extra buzzer 
unit and a 9V battery for each node and requires a 
certain percentage of anchors. From their medium 
scale experiments, errors of 2.5m are reported by 
using a non-scalable centralized Least Square Scaling 

algorithm. But, when the decentralized Least Square 
Scaling algorithm is used, errors go up to 9.5m, 
mainly due to the aggregation and amplification of 
errors during the iterative process. 
 

�.B. Other Localization Schemes 
 The global positioning system (GPS) [18] uses 
Time of Arrival (TOA) techniques to infer its location 
based on the speed of the radio signal. Although GPS 
is in wide use in both military and civil applications, it 
is not desirable to put it on every sensor due to its 
high cost. Also, the energy consuming electronics in 
GPS limit its use in energy constrained devices. 
 Ranging techniques based on Received Signal 
Strength Indicator (RSSI) have been extensively 
studied [1][12][19][24]. To avoid using anchor nodes, 
several localization approaches [19][24] based on 
RSSI use a mobile beacon. Using these approaches, 
errors of several meters are reported. Although some 
techniques such as parameter calibration and 
two-phase refinement positioning can be used to 
reduce the errors, these approaches are not used in 
practice due to their low accuracy from irregularity of 
signal propagation, multi-path fading and background 
interference in the real world. In [4], Elnahrawy et al. 
present the inherent limitations of using RSSI.  

Besides these range-based localization 
approaches, many range-free localization approaches 
are also proposed, mainly to eliminate expensive 
extra hardware. In [2], Bulusu et al. propose a 
localization scheme called Centroid, in which each 
node computes its own location by computing the 
centroid of its connected anchors. Localization errors 
of 1.8m are reported in a 10m 10m square with 
four anchors. In 

×
[6], He et al. propose an area-based 

range-free localization scheme, called APIT. Each 
node decides its location by learning whether or not it 
is inside a triangle of multiple combinations of the 
anchors. Another approach in range free localization 
is DV based localization [17]. It mainly uses 
multilateration to compute the nodes’ locations by 
using the hop count from anchors to the nodes and the 
hop distance estimates. Errors from 20% to 150% of 
radio range are reported from their simulations. Many 
of these range-free localization schemes, especially 
DV based localization and its variants, require many 
peer-to-peer messages and consume significant 
energy. 

Spotlight [25] is a newly emerged technology 
that uses a centralized device to scan the sensor field. 
It provides both high-accuracy and low-cost 
localization for WSNs. But, there are still issues to be 
solved in some application scenarios, such as 
providing robust localization for environments that 
have plants or other obstacles that block the laser 
beams used for Spotlight.  



 

�.  Conclusions and Future Work 
 In this paper, we have presented a practical 
acoustic localization scheme called Thunder for 
outdoor ad hoc WSNs. Although the basic idea 
behind Thunder is simple, it exhibits many nice 
properties by stripping most of the complexities and 
hardware requirements from each node to a single 
powerful centralized device. With this asymmetric 
architecture, no extra hardware is required to current 
popular senor boards and also no in-field anchors are 
needed. It is fast to localize, easy to use, requires zero 
cost from the motes in terms of in-network 
communication and supports 3D localization. It can 
localize a very large WSN efficiently. Further, it 
provides robust localization without sacrificing 
efficiency, which enables it to be used in complicated 
environments with many obstacles. We developed the 
experimental Thunder system on the Mica2 platform 
to verify the idea of Thunder. Localization errors of 
about 1 meter are achieved from our experimental 
Thunder system. One possible drawback of this 
scheme is the need for a loud sound sent multiple 
times which may inhibit its use in hostile 
environments. However, the sound is not as loud as 
the name of the scheme—Thunder. For example, the 
maximum intensity of the sound used in our 
experiments is 73dB, but it supports effective ranging 
up to 137 meters. Further, the sound only lasts 100ms. 

As future work, we will study the impact of wind 
on long distance acoustic ranging and develop 
approaches to reduce the impact.  
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