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ABSTRACT

Resistivity and viscosity have a significant role in establishing the energy levels in turbulence driven by the
magnetorotational instability (MRI) in local astrophysical disk models. This study uses the Athena code to
characterize the effects of a constant shear viscosity ν and Ohmic resistivity η in unstratified shearing box simulations
with a net toroidal magnetic flux. A previous study of shearing boxes with zero net magnetic field performed with
the ZEUS code found that turbulence dies out for values of the magnetic Prandtl number, Pm = ν/η, below
Pm ∼ 1; for Pm � 1, time- and volume-averaged stress levels increase with Pm. We repeat these experiments
with Athena and obtain consistent results. Next, the influence of viscosity and resistivity on the toroidal field
MRI is investigated both for linear growth and for fully developed turbulence. In the linear regime, a sufficiently
large ν or η can prevent MRI growth; Pm itself has little direct influence on growth from linear perturbations.
By applying a range of values for ν and η to an initial state consisting of fully developed turbulence in the
presence of a background toroidal field, we investigate their effects in the fully nonlinear system. Here, increased
viscosity enhances the turbulence, and the turbulence decays only if the resistivity is above a critical value;
turbulence can be sustained even when Pm < 1, in contrast to the zero net field model. While we find preliminary
evidence that the stress converges to a small range of values when ν and η become small enough, the influence of
dissipation terms on MRI-driven turbulence for relatively large η and ν is significant, independent of field geometry.
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1. INTRODUCTION

Disk accretion is a fundamental process of many astrophysi-
cal phenomena, from nearby young stellar objects to immensely
luminous distant quasars. Understanding the mechanism for re-
moving angular momentum from a fluid element, thereby al-
lowing accretion to occur, is essential to understanding these
systems. Orbiting, magnetized gas is unstable to the magnetoro-
tational instability (MRI; Balbus & Hawley 1991, 1998); all that
is required is a subthermal magnetic field sufficiently coupled
to differentially rotating gas with a negative outward angular
velocity gradient. The MRI leads to turbulent flow, resulting in
Maxwell and Reynolds stresses that efficiently transport angu-
lar momentum and drive accretion. However, it is still uncertain
what determines the amplitude of the magnetic energy and stress
in saturated MRI-driven turbulence.

Because linear analysis can offer only limited guidance, nu-
merical simulations have been used to investigate the properties
of MRI-driven turbulence. Most simulations of the MRI em-
ploy the shearing box approximation, in which the simulation
domain consists of a local corotating patch of accretion disk,
small enough to expand the MHD equations into Cartesian co-
ordinates and ignore curvature terms (see Hawley et al. 1995).
This approximation, in its simplest form, reduces the problem to
its basic ingredients: differential rotation and magnetized fluid.
It is hoped that a more complete understanding of this simple
model will provide insights into the mechanisms that determine
the stress levels in astrophysical systems.

The first shearing box simulations (Hawley et al. 1995,
1996) found that the presence of a net magnetic field and its
orientation play a role in setting the amplitude of the MRI
turbulence. A net magnetic field results from currents located
outside of the computational domain and cannot change as
a result of the evolution. For zero net field simulations, on

the other hand, complete decay of the field is possible. Net
vertical fields give the largest turbulent energies, with the energy
level approximately proportional to the background field. Net
toroidal fields behave similarly, but with a smaller energy for
the same background field strength. Zero net field simulations
saturate at levels comparable to those seen in net toroidal field
cases.

In subsequent years, there have been many shearing box
simulations that confirm these qualitative behaviors, but the
factors that determine the amplitude of the turbulent energy
still remain uncertain. Some studies have examined numerical
effects such as computational domain size and resolution, and
others have looked at physical parameters such as background
field strength and gas pressure. An investigation of the influence
of gas pressure carried out by Sano et al. (2004), for example,
found an extremely weak pressure dependence. Even here, the
influence of the gas pressure depends on the magnetic field
geometry. Blackman et al. (2008) examined the results of an
ensemble of shearing box simulations taken from the literature
and found that αβ is generally constant, where α is the total
stress divided by the gas pressure, and β is the ratio of thermal
to magnetic pressure. In other words, stress is proportional to
magnetic energy.

A physical influence that has, until recently, received less
attention is physical dissipation, namely shear viscosity ν and
Ohmic resistivity η. The linear dispersion relation for the vertical
field MRI in the presence of ν and η was derived by Balbus
& Hawley (1998). Both terms can reduce the effectiveness
of the MRI. In the linear regime, viscosity damps the MRI
growth rates and changes the wavelength of the fastest growing
mode, but does not alter the wavenumbers that are unstable.
Resistivity introduces a cutoff on the unstable wavelengths
where the resistive diffusion time becomes comparable to the
MRI growth time (see, e.g., the discussion in Masada & Sano
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2008). Nonaxisymmetric MRI modes with Ohmic resistivity
were examined by Papaloizou & Terquem (1997). They found
that resistivity reduces the amplification of such modes, and if
large enough, can stabilize the toroidal field MRI.

Simulations by Hawley et al. (1996), Sano et al. (1998),
Fleming et al. (2000), Sano & Inutsuka (2001), Ziegler &
Rüdiger (2001), and Sano & Stone (2002) have investigated
the influence of a nonzero Ohmic resistivity on the saturated
state. The main result of these studies is that increasing the
resistivity leads to a decrease in turbulence, independent of
the magnetic field configuration. In zero net field models, the
effect of resistivity on the turbulence is larger than one might
expect from the linear MRI relation (Fleming et al. 2000), with
the turbulence decaying to zero for relatively low values of
resistivity.

Recently, the work of Fromang et al. (2007, hereafter F07) and
Lesur & Longaretti (2007) has sparked new interest in the effects
of non-ideal MHD on the MRI. F07 showed that both resistiv-
ity and viscosity are important in determining the stress level
in MRI turbulent flows with zero net magnetic field. Lesur &
Longaretti (2007) came to the same conclusion for models with
a net vertical field. The results were characterized in terms of the
magnetic Prandtl number, defined as Pm = ν/η. In these sim-
ulations, the saturation level increases with increasing Pm. F07
also find that for the zero net field case, there exists a Pm below
which the turbulence dies out, and that this critical Pm decreases
with decreasing viscosity (at least for the range in viscosity and
resistivity examined in the paper).

One magnetic field geometry that has not yet been explored
with both physical resistivity and viscosity is that of a net
toroidal field. Such fields could be the most relevant to astro-
physical disks. Following the arguments of Guan et al. (2009)
and references therein, both global and local disk simulations
as well as observations of disk galaxies show a dominance of
toroidal field over other field components. Indeed, the back-
ground shear flow naturally creates a toroidal field from the
radial field. It seems likely that any given region of an accretion
disk will contain some net azimuthal field.

In this paper, we perform the first investigation of the toroidal
field MRI in the presence of both viscosity and resistivity and
compare the outcomes with those obtained for zero net and net
vertical field simulations. The structure of the paper is as follows.
In Section 2, we describe our algorithm, parameters, and tests
of our viscosity and resistivity implementation. For comparison
purposes, we reexamine the simulations of F07 with our code
in Section 3. Our main results, focusing on the toroidal field
simulations, are presented in Section 4. We wrap up with our
discussion and conclusions in Section 5.

2. NUMERICAL SIMULATIONS

In this study, we use the Athena code, a second-order
accurate Godunov scheme for solving the equations of MHD
in conservative form using the dimensionally unsplit corner
transport upwind (CTU) method of Colella (1990) coupled with
the third order in space piecewise parabolic method (PPM) of
Colella & Woodward (1984) and a constrained transport (CT;
Evans & Hawley 1988) algorithm for preserving the ∇ · B = 0
constraint. A description of this algorithm and various test
problems is given in Gardiner & Stone (2005b, 2008), and Stone
et al. (2008). For the present study, we have added physical
dissipation in the form of a constant kinematic shear viscosity
and Ohmic resistivity using operator splitting, as described in
more detail below. Bulk viscosity is ignored.

The shearing box approximation is a model for a local region
of a disk orbiting at a radius R whose size is small compared to
this radius, allowing us to expand the equations of motion in a
Cartesian form, as described in detail by Hawley et al. (1995).
The box corotates with an angular velocity Ω corresponding to
the value at the center of the box. The shearing box evolution
equations with viscosity and resistivity are given by Balbus &
Hawley (1998) and are

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂ρv

∂t
+ ∇ · (ρvv − B B) + ∇

(
P +

1

2
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)
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+ ∇
(

1

3
ρν∇ · v

)
, (2)

∂ B
∂t

= ∇ × (v × B − η∇ × B), (3)

where ρ is the mass density, ρv is the momentum density, B
is the magnetic field, P is the gas pressure, and q is the shear
parameter, defined as q = −dlnΩ/dlnR. We use q = 3/2,
appropriate for a Keplerian disk. We assume an isothermal
equation of state P = ρc2

s , where cs is the isothermal sound
speed. Shear viscosity and Ohmic resistivity are denoted by ν
and η respectively. Note that our system of units has the magnetic
permeability μ = 1. The first source term on the right-hand
side of Equation (2) corresponds to tidal forces (gravity and
centrifugal) in the corotating frame. The second source term
in Equation (2) is the Coriolis force. Finally, we have omitted
the vertical component of gravity, making these “unstratified”
shearing box simulations.

Adapting the Athena code to the shearing box problem
requires adding the tidal and Coriolis force terms and imple-
menting the shearing-periodic boundary conditions at the x
boundaries. The source terms are included in the algorithm in
a directionally unsplit manner, consistent with the CTU algo-
rithm. We do not use the Crank–Nicholson method of Gardiner
& Stone (2005a) that ensures precise conservation of epicyclic
energy. We have found this added complexity to be unneces-
sary for simulations dominated by the MRI (see arguments in
Simon et al. 2009). The shearing-periodic boundary conditions
are described in Simon et al. (2009). Quantities are linearly re-
constructed in the ghost zones from appropriate zones in the
physical domain that have been shifted along y to account for
the shear across the boundaries. Furthermore, the y momentum
is adjusted to account for the shear across the x boundaries as
fluid moves out one boundary and enters at the other.

Note that to preserve a quantity to machine precision across
a grid boundary such as the shearing-periodic boundary (or a
boundary between different grids in a mesh-refinement scheme),
it is necessary to reconstruct a quantity’s flux (or for the magnetic
field, the electromotive force, EMF) at the boundary, rather
than the quantity itself (see Simon et al. 2009). To conserve
total vertical field flux, for example, we reconstruct the y EMF
at the x boundaries. This is essential, given the strong effect
that a net vertical field has on the turbulence level. The perfect
conservation of net toroidal flux is not as important, and as
ensuring its precise conservation involves a more complex
procedure, we allow the By flux to be conserved only to
truncation level. Note that in our simulations initialized with
a net toroidal field, this truncation error results in a loss of net
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By flux from the domain; ∼5%–10% of the initial toroidal field is
lost per 100 orbits for our high resolution, sustained turbulence
simulations. This corresponds to a background β value of ∼110–
120 at 100 orbits. While this truncation error does not appear
to have any significant affect on the turbulent energy levels in
our simulations, it may become important to conserve By to
roundoff level for longer evolution times. The radial flux, Bx,
will automatically be conserved to machine precision because
its evolution is determined by EMFs on the periodic y and
z boundaries. We also reconstruct the density flux on the x
boundaries to conserve the total mass in the domain to machine
precision. The systematic difference between the calculation of
outward and inward fluxes at the shearing x boundaries can lead
to a loss of mass from the grid (Simon et al. 2009). We do not
reconstruct momentum fluxes at the boundaries as the source
terms will prevent roundoff level conservation of momentum.

Both the viscosity and resistivity are added via operator
splitting; the fluid variables updated from the CTU integrator
are used to calculate the viscous and resistive terms on the
right-hand side of Equations (2) and (3). These terms are
discretized in a flux-conservative manner consistent with the
Athena algorithm. In particular, the third and fourth terms on
the right-hand side of Equation (2) are written so that ρν∇v and
(1/3)ρν∇ · v are defined as fluxes at the cell faces. Taking the
divergence of the third term and the gradient of the fourth term
via finite-differencing ensures that momentum conservation is
not violated by the viscous terms. The resistive contribution to
the induction equation is added in a manner consistent with
the EMFs; the term η∇ × B is computed at cell corners to
ensure that when differenced via the curl operator, ∇ · B = 0
is maintained. Note that this resistive contribution to the EMF
must also be reconstructed at the shearing-periodic boundaries
in order to preserve Bz precisely.

More generally, the viscous term in Equation (2) can be
written in a flux-conservative manner as ∇ · T where T is a
viscous stress tensor defined as

Tij = ρν

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij∇ · v

)
, (4)

where the indices refer to the spatial components Landau &
Lifshitz (1959). For simplicity, we have used the form as in
Equation (2), which is equivalent to Equation (4) assuming that
ρν is spatially constant. We have performed a few shearing
box experiments with both implementations and found no
significant differences in turbulent stress evolution. In particular,
we restarted a few simulations using the form in Equation (4).
We found that the volume-averaged magnetic energies are
initially indistinguishable between the two approaches. Due to
the chaotic nature of the MRI, the two curves eventually diverge,
but nevertheless maintain the same time average.

The addition of viscosity and resistivity places an additional
constraint on the time step

Δt = CoMIN

(
ΔtCTU, 0.75

Δ2

8/3ν
, 0.75

Δ2

2η

)
, (5)

where Co is the CFL number (Co = 0.4 here), ΔtCTU is
the time step limit from the main integration algorithm (see
Stone et al. 2008), and Δ is the minimum grid spacing, Δ =
MIN(Δx, Δy, Δz). Several three-dimensional tests of viscosity
and resistivity revealed that if the viscous or resistive time step
is close to ΔtCTU, the evolution becomes numerically unstable.
This problem was remedied by multiplying the viscous and

resistive time steps by 0.75. The additional 4/3 factor in the
denominator of the viscous time step results from the last term
on the right-hand side of Equation (2). This can be most easily
understood by considering a one-dimensional problem, in which
case the effective ν value increases by a factor of 4/3 due to
the compressibility term. Therefore, the effective ν that goes
into the time step calculation is taken as (4/3)ν. Note that most
of our simulations will have ν and η sufficiently small that the
viscous and resistive time steps are large compared to ΔtCTU.
In fact, only the simulations with the largest values of η and ν
reach the diffusion limit on Δt .

2.1. Tests of Physical Dissipation

We performed a number of problems to test the implementa-
tion of viscosity and resistivity within Athena. Resistivity was
tested by solving the diffusion of a current sheet along one di-
mension; a uniform magnetic field is initialized with a change
in sign across one grid zone. This problem has a simple analytic
solution (see, e.g., Komissarov 2007). The agreement between
the numerical and analytic solution was excellent. By replacing
the magnetic field with a uniform velocity flow, the identical
test can be performed for the viscosity. Again, the numerical
solution agreed with the analytic solution.

Next, we initialized a uniform vertical magnetic field in
a shearing box with nonzero viscosity and resistivity and
measured the growth of various MRI modes in the linear
regime. We compared the measured values with those from
analytic linear theory (see, e.g., Masada & Sano 2008; Pessah
& Chan 2008) and found excellent agreement for a wide range
in viscosity and resistivity.

Finally, we examined the propagation of small amplitude,
isothermal sound and Alfvén waves in the presence of viscosity
and resistivity. Again, the numerical solution can be compared
directly to an analytic solution. These tests were done in one,
two, and three dimensions; in the multidimensional tests, the
propagation direction of the wave was chosen to be along the grid
diagonal. The resistivity was tested via the decay of the Alfvén
waves, and the viscosity was tested via the decay of the sound
waves. The error as a function of x resolution for two of these
tests is given in Figure 1. The error is calculated from the square
root of the sum of the squared errors in the density and momenta
(for the sound wave) and the density, momenta, and magnetic
field (for the Alfvén wave). The solution to each wave converges
at a rate very close to second order, shown by the dashed
line.

2.2. Shearing Box Parameters

The shearing box used in this study has radial size Lx = 1,
azimuthal size Ly = 4, and vertical size Lz = 1. Most of the
simulations presented here use 128 × 200 × 128 equally spaced
grid zones; some simulations use half the number of zones in
each direction. The initial velocity is v = −qΩx ŷ, with q =
3/2, Ω = 0.001, and −Lx/2 � x � Lx/2. The isothermal
sound speed is cs = ΩH , where H is the scale height. With
Lz = H , we have cs = LzΩ, and with ρ = 1, the initial pressure
is P = ρΩ2L2

z = 10−6.
The dissipation terms ν and η are parameterized in terms of

the Reynolds number,

Re ≡ csH

ν
, (6)
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Figure 1. Numerical error as a function of x resolution for the three-dimensional
decaying linear wave problem. The boxes are the errors for a decaying Alfvén
wave, and the asterisks are the errors for a decaying sound wave. The error is
calculated from the square root of the sum of the squared errors in the density
and momenta (for the sound wave) and the density, momenta, and magnetic
field (for the Alfvén wave) obtained using the analytic solution. The dashed line
shows the slope corresponding to second-order convergence.

the magnetic Reynolds number,

Rm ≡ csH

η
, (7)

and the magnetic Prandtl number,

Pm ≡ ν

η
= Rm

Re
. (8)

Since the properties of the MRI are more directly determined
by the Alfvén speed rather than the sound speed, another useful
dimensionless quantity is the Elsasser number

Λ ≡ v2
A

ηΩ
, (9)

where vA is the Alfvén speed. With cs = ΩH and β = 2c2
s /v

2
A,

we can relate Rm to Λ,

Λ = 2

β
Rm. (10)

In addition to the explicit dissipation terms, there will also
be some effective diffusion due to numerical effects. Generally
speaking, numerical diffusion will not behave in the same man-
ner as physical diffusion (e.g., it is not a simple function of a
gradient in field or velocity); numerical diffusion generally has
a much stronger effect at small scales than at large scales. Also
the effects of numerical diffusion may be different from one
type of simulation to another. By calculating numerical losses
at high wavenumbers in Fourier space and modeling those as if
they were physical viscosity and resistivity, Simon et al. (2009)
quantified the numerical dissipation of Athena. They found that
the effective Rm for the zero net field and net z-field simulations
at Nx = 128 were 20,000 and 8000, respectively, and 7000 and
5000 for Nx = 64. The effective Pm is ∼2 for these simula-
tions. Since numerical dissipation is problem dependent, these
numbers should be regarded as estimates, and their values will
likely be somewhat different in different applications. However,
they serve as a guideline for including physical dissipation. In
the present study, numerical and physical dissipation may be
comparable at large wavenumbers for Re,Rm � 10,000. The
physical dissipation in some of our simulations may fall into
this marginally resolved regime. Nevertheless, we can explore a
large enough range in Re and Rm values to observe clear effects
due to viscosity and resistivity.

Table 1
Zero Net Flux Simulations

Label Re Pm Rm Turbulence? α

SZRe800Pm4 800 4 3200 No . . .

SZRe800Pm8 800 8 6400 Yes 0.031
SZRe800Pm16 800 16 12800 Yes 0.046
SZRe1600Pm2 1600 2 3200 No . . .

SZRe1600Pm4 1600 4 6400 No . . .

SZRe1600Pm8 1600 8 12800 Yes 0.026
SZRe3125Pm1 3125 1 3125 No . . .

SZRe3125Pm2 3125 2 6250 No . . .

SZRe3125Pm4 3125 4 12500 Yes 0.013

3. ZERO NET FLUX SIMULATIONS

Fromang & Papaloizou (2007) and Pessah et al. (2007)
presented the surprising result that for zero net field shearing box
simulations without any explicit dissipation terms, the steady-
state turbulent energy decreases with increasing grid resolution.
Simon et al. (2009) obtained the same result for zero net field
simulations without explicit dissipation using the Athena code.
These results pointed to the importance of including explicit
dissipation terms in such simulations.

F07 showed that turbulent activity is strongly influenced
by these dissipation terms; the saturated stress increases with
increasing Pm. Here we return to the zero net field prob-
lem and include the dissipative terms to compare with the
results of F07. The simulations are initialized with B =√

2P/β sin[(2π/Lx)x] ẑ, where β = 400. These runs are labeled
SZ for sinusoidal z-field and have resolution Nx = 128, Ny =
200, and Nz = 128. The viscosity and resistivity in these simula-
tions are chosen to reproduce the calculations of F07. The initial
state is perturbed in each grid zone with random fluctuations in
ρ at amplitude δρ/ρ = 0.01. The SZ simulations are listed in
Table 1. The column labeled “Turbulence?” states whether or
not the turbulence was sustained in a given simulation. The
column labeled “α” gives the resulting turbulent stress in terms
of the dimensionless value α ≡ 〈〈ρvxδvy − BxBy〉〉/Po, with
δvy ≡ vy + qΩx. Po is the initial gas pressure, and the double
bracket denotes a time and volume average. The time average
is calculated from orbit 20 until the end of the simulation, and
as is the case throughout this paper, volume average refers to an
average over the entire simulation domain.

The results of these simulations are consistent with those of
F07. For example, F07 lists α values for a Re = 3125 and Rm =
12500 model run with four different codes, including ZEUS.
These values range from α = 0.0091 to 0.011; we obtain 0.013.
The increase in turbulent energy levels with Pm is demonstrated
by a series of simulations with the same Rm and increasing
viscosity. For example, for a constant Rm ≈ 12800 (some of
the simulations had Rm = 12800 while others had Rm = 12500;
see F07), Pm values were varied by factors of 2 from 1 to
16. Sustained turbulence was seen for Pm � 4 with α values
increasing from 0.0091 for Pm = 4 to 0.019 and 0.044 for
Pm = 8 and 16, respectively. The Athena runs have α values
of 0.013, 0.026, and 0.046. These data are plotted in Figure 2,
which shows that the increase in α with Pm is nearly linear.

The largest differences between the Athena simulations and
the ZEUS simulations of F07 lie in the marginally turbulent
cases. For example, we find decaying turbulence for Re =
1600, Pm = 4, whereas ZEUS produces sustained turbulence for
these parameters. Figure 3 shows the volume-averaged magnetic
energy density normalized by the gas pressure versus time for the
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Figure 2. Time- and volume-averaged stress parameter α as a function of Pm in
the SZ simulations; α ≡ 〈〈ρvxδvy −BxBy〉〉/Po, where the average is calculated
over the entire simulation domain and from 20 orbits to the end of the simulation.
Only simulations with sustained turbulence are plotted. The Pm = 4 model has
Rm = 12500 whereas the other two have Rm = 12800. There is a nearly linear
increase in α with Pm.

three Pm values at Re = 1600. The lowest Pm simulation decays
quite rapidly, whereas the Pm = 4 case takes roughly 60 orbits
to decay. Differences in the numerical properties of Athena and
ZEUS might account for these results, given the sensitivity to
numerical factors as shown by zero net field simulations. We also
note that we use a slightly larger domain size in y than in F07.
The boundary in parameter space between sustained turbulence
and decay is unlikely to be hard and fast, and detailed numerical
surveys that attempt to define that boundary are probably not
warranted. Some such studies may, however, provide additional
insights into the sensitivity of the MRI turbulence to specific
numerical factors.

4. TOROIDAL FIELD SIMULATIONS

To examine the effect of viscosity and resistivity on the MRI
with a net toroidal field, we have run a series of simulations
initialized with B = √

2P/β ŷ, where β = 100, and with varied
Re and Rm values. Re ranges from 100 to 25,600, and Pm
ranges from 0.25 to 16 (though, in some simulations, we set
either η or ν equal to zero). We will consider the influence of
the physical dissipation terms on two types of problems: the
linear MRI growth regime, and fully nonlinear turbulence.

4.1. The Linear Regime

The linear nonaxisymmetric MRI was first examined by
Balbus & Hawley (1992). For nonaxisymmetric modes, the
MRI tends to be most robust in the presence of a poloidal field.
However, even the purely toroidal field case is unstable, although
as emphasized by Balbus & Hawley (1992) this case is somewhat
singular. As always with the ideal MRI, the most unstable
mode has k · vA 	 Ω. The linear analysis is complicated
by the background shear which causes radial wavenumbers to
evolve with time. Amplification of a given mode occurs when
the wavenumber ratio k/kz goes through a minimum as the
radial wavenumber swings from leading to trailing. In general,
the purely toroidal MRI favors high kz wavenumbers and small
values of ky/kz in contrast to the vertical field MRI where the
wavenumber kz of the most unstable mode is determined by the
Alfvén speed.

Papaloizou & Terquem (1997) examined the toroidal field
MRI with the addition of resistivity. They point out that because
kx grows arbitrarily large, all linear modes will eventually damp
out in the presence of resistivity. For small enough resistivities,
however, there can be a period of growth when kx ∼ 0.
For the MRI to become self-sustaining, this growth has to

Figure 3. Time evolution of volume-averaged magnetic energy density normal-
ized by the gas pressure for the SZ runs with Re = 1600 and varying Pm. The
volume average is calculated over the entire simulation domain. The solid line
corresponds to Pm = 8, the dashed line corresponds to Pm = 4, and the dotted
line corresponds to Pm = 2. The turbulence decays for the lowest two Pm values,
with the Pm = 4 case taking roughly 60 orbits to decay.

continue long enough for the perturbations to reach nonlinear
amplitudes. Resistivity is also particularly important for the pure
toroidal field MRI because large kz is favored for mode growth.
Equation (32) of Papaloizou & Terquem (1997) provides an
approximate condition for transient amplification of the MRI in
the presence of resistivity. For Keplerian shear and for modes,
where k · vA ∼ Ω, this reduces to the condition

k2
z η ∼ Ω. (11)

In other words, there is no amplification of modes for which the
diffusion time is comparable to the orbital frequency. Although
viscosity was not included in the analysis, one might expect it
to be similarly influential.

Simulations of the linear growth of the MRI in the presence
of resistivity for a purely toroidal β = 100 initial field were first
carried out by Fleming et al. (2000) using a ZEUS code with
an adiabatic equation of state. For this field strength, the critical
MRI wavelength in the azimuthal direction is 2πvA/Ω ≈ H .
They found field decay for a Rm = 2000 simulation, but field
growth to turbulent saturation for Rm = 5000 and above.

In this section, we follow the growth of the MRI in a shearing
box with a purely toroidal field while including both resistivity
and viscosity. The system is seeded within each grid zone with
random perturbations in ρ at amplitude δρ/ρ = 0.01. The
simulations were run at two resolutions, Nx = 64, Ny = 100,
Nz = 64 and Nx = 128, Ny = 200, Nz = 128 and are labeled YL
for y-field, linear regime. In this standard set of simulations, the
range of Re examined runs from 800 to 25600, and the range of
Rm is from 400 to 102400. Table 2 lists these simulations. The
last two columns state whether or not MRI growth is observed
for the Nx = 64 and Nx = 128 resolutions, respectively. A
blank in either of these columns means that the simulation was
not run at that particular resolution. MRI growth is defined
by the evolution of the volume-averaged magnetic and kinetic
energy components. A simulation is considered to have zero
growth if after 20–40 orbits, the various energy components are
either decaying or constant in time without any indication of
exponential increase. Growth to saturation is observed in cases
when Re and Rm are at 6400 and above.

Clearly, a sufficiently large viscosity or resistivity can inhibit
growth. But what about the very high or very low Pm limits? To
approach that question, we carried out simulations where only ν
or η was nonzero. These experiments were done at the Nx = 64
resolution. In our first experiments, we set η to zero and Re to
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Table 2
Toroidal Field Simulations Initialized from Linear Perturbations

Label Re Pm Rm Λ Nx = 64 Nx = 128

YLRe800Pm0.5 800 0.5 400 8 No . . .

YLRe800Pm1 800 1 800 16 No . . .

YLRe800Pm2 800 2 1600 32 No . . .

YLRe800Pm4 800 4 3200 64 No . . .

YLRe800Pm8 800 8 6400 128 No . . .

YLRe1600Pm0.5 1600 0.5 800 16 No . . .

YLRe1600Pm1 1600 1 1600 32 No . . .

YLRe1600Pm2 1600 2 3200 64 No . . .

YLRe1600Pm4 1600 4 6400 128 No . . .

YLRe1600Pm8 1600 8 12800 256 No . . .

YLRe3200Pm0.5 3200 0.5 1600 32 No No
YLRe3200Pm1 3200 1 3200 64 No No
YLRe3200Pm2 3200 2 6400 128 Yes No
YLRe3200Pm4 3200 4 12800 256 . . . Yes
YLRe6400Pm0.5 6400 0.5 3200 64 Yes No
YLRe6400Pm1 6400 1 6400 128 Yes Yes
YLRe6400Pm2 6400 2 12800 256 Yes Yes
YLRe6400Pm4 6400 4 25600 512 Yes Yes
YLRe12800Pm0.5 12800 0.5 6400 128 Yes Yes
YLRe12800Pm1 12800 1 12800 256 Yes Yes
YLRe12800Pm2 12800 2 25600 512 Yes Yes
YLRe12800Pm4 12800 4 51200 1024 Yes Yes
YLRe25600Pm0.5 25600 0.5 12800 256 Yes Yes
YLRe25600Pm1 25600 1 25600 512 Yes Yes
YLRe25600Pm2 25600 2 51200 1024 Yes Yes
YLRe25600Pm4 25600 4 102400 2048 Yes Yes

100 and 800. The Re = 800 run showed growth to saturation,
but the Re = 100 case had no growth. Next we set ν to zero and
Rm to 800 and 1600. The lower resistivity (Rm = 1600) grew
to saturation, whereas the higher resistivity (Rm = 800) did
not. Although the existence of a critical Rm value is consistent
with the results of Fleming et al. (2000), the value of Rm at
which growth is prevented is smaller here than what they found.
We note that there remains unavoidable numerical dissipation
associated with grid scale effects, which will make the value of a
critical Rm obtained through simulations somewhat dependent
on algorithm and resolution.

The effect of numerical resolution is not necessarily obvious.
Consider model YLRe3200Pm2, which has Re = 3200 and
Rm = 6400, and model YLRe6400Pm0.5, which has these
values reversed. In both cases, the Nx = 64 simulations show
growth but the Nx = 128 models do not. One difference
between the two resolutions is in the initial perturbations.
While the density perturbations have the same amplitude in
both resolutions, the higher resolution initial density is given
power at smaller scales because the perturbations are applied
to each grid zone. This leads to a smaller amplitude for each
Fourier mode. Does this account for the difference seen in these
two resolutions? To investigate this, we ran both Nx = 64
versions of YLRe3200Pm2 and YLRe6400Pm0.5 with initial
perturbations of amplitude δρ/ρ = 0.005 and δρ/ρ = 0.001.
Note that these amplitudes lead to comparable (δρ/ρ = 0.005)
or smaller (δρ/ρ = 0.001) amplitude modes in Fourier space
compared to the δρ/ρ = 0.01 initialized modes at the higher
resolution. Neither of the smaller amplitude YLRe3200Pm2
simulations showed any growth (as of 20–30 orbits), but both
YLRe6400Pm0.5 simulations showed growth to saturation.

From these experiments, it seems that the effects of viscosity
and resistivity are comparable and that the transition region
between decay and growth to turbulence lies between Reynolds

Table 3
Toroidal Field Simulations Initialized from Nonlinear Turbulence

Label Re Pm Rm Turbulence? α 〈〈Λ〉〉 〈〈Λz〉〉
YNRe400Pm0.5 400 0.5 200 No . . . 4 . . .

YNRe400Pm1 400 1 400 No . . . 8 . . .

YNRe400Pm2 400 2 800 No . . . 15 . . .

YNRe400Pm4 400 4 1600 No . . . 30 . . .

YNRe400Pm8 400 8 3200 Yes 0.043 614 16.8
YNRe400Pm16 400 16 6400 Yes 0.068 1983 58.2
YNRe800Pm0.25 800 0.25 200 No . . . 4 . . .

YNRe800Pm0.5 800 0.5 400 No . . . 8 . . .

YNRe800Pm1 800 1 800 No . . . 15 . . .

YNRe800Pm2 800 2 1600 Yes 0.019 137 3.87
YNRe800Pm4 800 4 3200 Yes 0.038 495 18.0
YNRe800Pm8 800 8 6400 Yes 0.054 1413 56.2
YNRe1600Pm0.5 1600 0.5 800 No . . . 15 . . .

YNRe1600Pm1 1600 1 1600 Yes 0.018 120 4.45
YNRe1600Pm2 1600 2 3200 Yes 0.033 403 18.6
YNRe1600Pm4 1600 4 6400 Yes 0.044 1120 52.6
YNRe3200Pm0.5 3200 0.5 1600 Yes 0.016 106 4.53
YNRe3200Pm1 3200 1 3200 Yes 0.025 314 16.4
YNRe3200Pm2 3200 2 6400 Yes 0.035 860 47.4
YNRe3200Pm4 3200 4 12800 Yes 0.043 2170 127
YNRe6400Pm0.5 6400 0.5 3200 Yes 0.021 263 14.9
YNRe6400Pm1 6400 1 6400 Yes 0.031 748 45.2
YNRe6400Pm2 6400 2 12800 Yes 0.038 1880 118
YNRe12800Pm0.25 12800 0.25 3200 Yes 0.021 262 15.8

numbers of 3200 and 6400 for Pm near unity. This corresponds to
a critical vertical wavelength, defined in terms of Equation (11),
of λc/H ∼ 2π/Rm1/2 = 0.111 and 0.079, respectively. As
viscosity (resistivity) is increased, MRI growth can be achieved
by decreasing the resistivity (viscosity). This trend only works
up to certain limits; if either the viscosity or resistivity is large
enough, MRI growth is completely quenched, independent of
the value of the other dissipation term.

4.2. The Nonlinear Regime

Of potentially greater interest than the linear MRI regime is
the effect of viscosity and resistivity on fully developed MRI-
driven turbulence. To study this nonlinear regime, we begin
with model YLRe25600Pm4, a simulation with Re = 25600
and Pm = 4 at Nx = 128, Ny = 200, Nz = 128 (Table 2)
that was run to 59 orbits in time. The MRI grows and the flow
becomes fully turbulent. Averaging from t = 15–59 orbits gives
a stress value of α = 0.05. We use this simulation at t = 36
orbits to initialize a series of simulations with different values
of Re and Rm. These runs are labeled YN for y-field, nonlinear
regime, and they are all run to 200 orbits, except for simulation
YNRe12800Pm0.25, which was run to 100 orbits. All the YN
simulations are listed in Table 3.

When evolving onward from orbit 36 with modified dissipa-
tion terms, a simulation shows a rapid readjustment followed
by either sustained turbulence at a new amplitude or decay
to smooth flow, depending on the new values of Re and Rm.
The column labeled “Turbulence?” in Table 3 states whether or
not the given simulation has sustained turbulence. Note that for
Rm � 1600, the turbulence is sustained except for the relatively
viscous Re = 400 model. This critical Rm value is below the
critical value obtained above for sustained growth in the linear
regime when the resistivity and viscosity are comparable but
near the critical Rm value in the linear regime in the absence of
explicit viscosity. For simulations where turbulence is sustained,
the column labeled “α” gives the time- and volume-averaged
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dimensionless stress, where the time average is calculated on-
ward from orbit 50.

The column labeled “〈〈Λ〉〉” gives a time- and volume-
averaged Λ value in the final state of each simulation. Unlike
Rm, Λ will change with the evolving magnetic field strength.
Beginning with Equation (10), we write

β = 2c2
s 〈ρ〉

〈B2〉 (12)

to give

〈Λ〉 = Rm

c2
s

〈B2〉
〈ρ〉 , (13)

where the angled brackets denote a volume average. One could
also volume average the square of the Alfvén speed in the
calculation of β instead of averaging B2 and ρ separately (e.g.,
β = 2c2

s /〈v2
A〉). We have calculated 〈Λ〉 using both types of

averages for several frames in the saturated state of a few
simulations. We have found at most a factor of 2 difference
between the different calculations. Since 〈B2〉 varies by a similar
factor in the saturated state (see Figure 4), this factor of 2
difference is within the uncertainty of Λ at any given time. The
time average of the volume-averaged Elsasser number, 〈〈Λ〉〉,
as given in the table, is calculated from orbit 50 until the end
of the simulation. For the decayed turbulence simulations in
which the turbulence has not fully decayed by orbit 50, the
time average is calculated onward from a point at which the
volume-averaged magnetic energy is constant in time. Note that
for these decayed turbulence simulations, 〈〈Λ〉〉 should equal the
β = 100 value associated with the net toroidal field, as given
in Table 2. However, because of the evolution of the net By (see
Section 2), the value of 〈〈Λ〉〉 after the turbulence has decayed
will be slightly different than the β = 100 value.

Since the magnetic field varies within the domain, the local
value of Λ can also vary from the overall average. Histograms
showing the number of grid zones with v2

A of a certain value
reveal that the percentage of grid zones that have Λ < 1 is at
most ∼0.01%. For the sustained turbulence models, 〈〈Λ〉〉 is
typically on the order of 100–1000; the smallest value for a run
with sustained turbulence is 106, and the largest value associated
with a run that decays is 30.

The behavior of the MRI is often characterized by the
vertical component of the Alfvén speed, and as such, we have
also calculated the Elsasser number using only the vertical
component of the magnetic field,

〈Λz〉 = Rm

c2
s

〈B2
z 〉

〈ρ〉 , (14)

where the angled brackets denote a volume average. We have
calculated the time average of this number, 〈〈Λz〉〉, onward from
orbit 50 for all the sustained turbulence YN simulations. This
number is displayed in the last column of Table 3. The decayed
turbulence simulations have Bz approaching zero, and we do not
calculate a vertical Elsasser number for these. Again, we cal-
culated the vertical Elsasser number both by averaging B2

z and
ρ separately as well as by averaging the ratio B2

z /ρ. We com-
pared the two calculations for several frames and found at most
a factor of 1.3 difference between them.

The 〈〈Λz〉〉 values for the runs that have Rm closest to the
critical value are on the order unity, with the smallest value
being 3.87. As touched upon by Fleming et al. (2000), growth
of the vertical field MRI is largely suppressed for v2

Az/(ηΩ) � 1

Figure 4. Time evolution of volume-averaged magnetic energy density normal-
ized by the gas pressure for the YN runs with Re = 25600 (black curve) and
Re = 1600 (colored curves). The volume average is calculated over the entire
simulation domain. The colors indicate Pm; green corresponds to Rm = 800
(Pm = 0.5), light blue to Rm = 1600 (Pm = 1), red to Rm = 3200 (Pm = 2),
and dark blue to Rm = 6400 (Pm = 4). Increasing Rm (Pm) leads to enhanced
turbulence.

(A color version of this figure is available in the online journal.)

(i.e., for vertical Elsasser numbers less than unity). That we
find 〈〈Λz〉〉 ∼ 1 close to the “decayed turbulence” regime
may suggest that the vertical field MRI plays an important
role in the sustained nonlinear turbulence of these toroidal
field simulations. One trend to note from these data is that
the ratio of 〈〈Λz〉〉 to 〈〈Λ〉〉 increases with both decreasing ν
and decreasing η; the vertical magnetic energy becomes a larger
fraction of the total magnetic energy as either dissipation term is
reduced.

The evolution of the magnetic energy in a typical set of
simulations is shown in Figure 4. For these runs, Re = 1600
and Rm varies by factors of 2 from Rm = 800 to 6400.
The black line shows the initial evolution of YLRe25600Pm4,
whose state at 36 orbits serves as the initial condition. It is
clear that decreasing the resistivity (increasing the Pm number)
enhances the saturation level, and for a large enough resistivity,
the turbulence decays.

To quantify the dependence of the saturation amplitude on the
dissipation coefficients, we plot the α values for the ensemble
of simulations as a function of Re, Rm, and Pm. Figure 5 shows
α versus Rm; the color indicates Re value, and the symbols
correspond to the Pm value. The simulations with α = 0 are
those where the turbulence decayed away, which include all
simulations with Rm � 800 and the Re = 400, Rm = 1600
simulation. Overall there is a general trend of increasing α value
with decreasing resistivity.

The dependence of α on Re is shown in Figure 6. Here, the
color indicates the Rm value, whereas Pm is again represented by
a symbol. Evidently, if the resistivity is low enough, increasing
the viscosity will increase the α values. However, consider the
YN simulations with Rm = 1600. These simulations suggest
that if the resistivity is close to some critical value, increasing
the viscosity will cause the turbulence to decay. Another
feature of note is that as Re increases, the range of α for
different Rm values becomes smaller, and α appears to converge
to ∼0.02–0.04 for all Rm. This could indicate that as ν
and η decrease, their influence on the turbulence level might
decrease. However, for large values of Re or Rm, the dissipation
lengthscales are under-resolved, and higher resolution is needed
to test this possibility.

We plot the dependence of α on Pm in Figure 7. In this figure,
the colors represent varying Rm, while the symbols denote
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Figure 5. Time- and volume-averaged stress parameter α as a function of Rm in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Re values, and the symbols correspond to
Pm values. Red symbols are Re = 400, green Re = 800, dark blue Re = 1600,
black Re = 3200, pink Re = 6400, and light blue are Re = 12800. Circles are
Pm = 0.25, crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles
Pm = 4, squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed
turbulence (α = 0) simulations are not plotted for clarity. Increasing Rm results
in larger α values, and for Rm less than 800–1600, the turbulence decays.

(A color version of this figure is available in the online journal.)

Figure 6. Time- and volume-averaged stress parameter α as a function of Re in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Rm values, and the symbols correspond to
Pm values. Light blue symbols are Rm = 800, green Rm = 1600, dark blue
Rm = 3200, black Rm = 6400, and red are Rm = 12800. Circles are Pm = 0.25,
crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles Pm = 4,
squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed turbulence
(α = 0) simulations are not plotted for clarity. Increasing Re leads to decreasing
α values.

(A color version of this figure is available in the online journal.)

different Re values. The clearest trend is that if Rm is large
enough to sustain turbulence, increasing Pm leads to larger α
values. Note that turbulence can be sustained even for Pm less
than unity, if Rm is large enough. At constant Rm, we find that
α ∝ Reδ1 , with δ1 ranging from −0.1 to −0.3 (calculated by
a linear fit to the data in log space for non-decayed turbulence
simulations only). At constant Re value, we find α ∝ Rmδ2

with δ2 in the range 0.4–0.8 and δ2 generally decreasing with
increasing Re.

These results naturally lead to the question of why increasing
ν or decreasing η causes an increase in turbulence. Magnetic
reconnection and dissipation of field lines, either due to an
explicit resistivity or to grid-scale effects, presumably play the
primary role in limiting the amplitude of the MHD turbulence.
Balbus & Hawley (1998) hypothesized that increased viscosity
would inhibit reconnection by preventing velocity motions that
would bring field together on small scales. When Pm > 1, the
viscous length is greater than the resistive one, and magnetic
field dissipation becomes less efficient, leading to an increase in
turbulent stress (e.g., Balbus & Henri 2008). If this hypothesis is

Figure 7. Time- and volume-averaged stress parameter α as a function of Pm;
α ≡ 〈〈ρvxδvy −BxBy〉〉/Po. The time average runs from 50 orbits onward, and
the volume average is calculated over the entire simulation domain. The colors
correspond to Rm values, and the symbols to Re values. Light blue symbols
are Rm = 800, green Rm = 1600, dark blue Rm = 3200, black Rm = 6400, and
red are Rm = 12800. Crosses are Re = 400, asterisks Re = 800, diamonds Re
= 1600, triangles Re = 3200, squares Re = 6400, and circles are Re = 12800.
Note that some of the decayed turbulence (α = 0) simulations are not plotted
for clarity. The average stress increases with increasing Pm.

(A color version of this figure is available in the online journal.)

correct, there may also be a change in the dissipation of kinetic
and magnetic energy into heat. To investigate this possibility, we
carry out an analysis of viscous and resistive heating for several
of the simulations.

Consider the volume-averaged kinetic and magnetic energy
evolution equations, Equations (15) and (16) in Simon et al.
(2009),

K̇ = −
〈
∇ ·

[
v

(
1

2
ρv2 +

1

2
B2 + P + ρΦ

)
− B(v · B)

]〉

+

〈(
P +

1

2
B2

)
∇ · v

〉
− 〈B · (B · ∇v)〉 − Ġ − Qk,

(15)

and

Ṁ = −
〈
∇ ·

(
1

2
B2v

)〉
−

〈
1

2
B2∇ · v

〉
+ 〈B · (B · ∇v)〉 − Qm.

(16)
Here, K̇ and Ṁ are the time derivatives of the volume-
averaged kinetic and magnetic energies, respectively. The time
derivative of the volume-averaged gravitational potential energy
is given by Ġ, and Qk and Qm are the volume-averaged
kinetic and magnetic energy dissipation rates, respectively. The

gravitational potential is Φ = qΩ2
(L2

x

12 − x2
)
.

We determine Qk and Qm for select YN models by computing
the time average of each of the source terms in the energy
evolution equations using 200 data files equally spaced in time
over 20 orbits. We assume that Ġ is zero in the time average;
the analysis of Simon et al. (2009) found that Ġ is always
negligibly small. The time derivatives, K̇ and Ṁ , are calculated
by differentiating the volume-averaged kinetic and magnetic
energy history data with respect to time and then sampling these
data to the times associated with the data files. The dissipation
terms Qk and Qm, which include both physical and numerical
effects, are the remainder after all the other terms are calculated.

Figure 8 shows the ratio of the time average 〈Qk〉 to 〈Qm〉
as a function of Pm and α for selected YN runs. The colors
and symbols are the same as in Figure 6. The time average is
calculated from t = 70–90 orbits for YNRe400Pm16 (black
X) and YNRe12800Pm0.25 (blue circle), t = 110–130 orbits
for YNRe800Pm2 (green diamond) and YNRe800Pm8 (black
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Figure 8. Ratio of kinetic to magnetic energy dissipation rate as a function
of Pm (top panel) and α (bottom panel) for select YN runs; α ≡ 〈〈ρvxδvy −
BxBy〉〉/Po. The colors and symbols are the same as in Figure 6. The kinetic
and magnetic dissipation rates as well as α have been averaged in volume and
time. The volume average is calculated over the entire simulation domain and
the time average is calculated from t = 70–90 orbits for YNRe400Pm16 (black
X) and YNRe12800Pm0.25 (blue circle), t = 110–130 orbits for YNRe800Pm2
(green diamond) and YNRe800Pm8 (black square), and t = 110.6–130.6 orbits
for YNRe800Pm4 (blue triangle) and YNRe3200Pm4 (red triangle). The ratio
of viscous to resistive heating generally increases as either α or Pm increases,
although not monotonically.

(A color version of this figure is available in the online journal.)

square), and t = 110.6–130.6 orbits for YNRe800Pm4 (blue
triangle) and YNRe3200Pm4 (red triangle). The ratio of viscous
to resistive heating generally increases as either α or Pm
increases, although not monotonically. The relative heating ratio
is not simply proportional to Pm as one might naively expect.

The data suggest a general relationship between saturated
stress and 〈Qk〉/〈Qm〉. We know that the stress level sets the total
dissipation rate (Qk + Qm) (e.g., Simon et al. 2009); stronger
stresses extract more energy from the background shear flow,
and that turbulence is rapidly dissipated into heat. However,
does stronger turbulence by itself change the heating ratio, or is
the change in the heating ratio mainly determined by changes
in Pm, which also increase the turbulence levels? This question
of causality cannot be definitively answered from these data.

Further insight may come from examining the ratio of
averaged Reynolds stress, 〈〈ρvxδvy〉〉, to averaged Maxwell
stress, 〈〈−BxBy〉〉, as a function of α; this is shown in Figure 9.
The colors and symbols are the same as in Figure 8. The double
brackets for the stresses denote time and volume averages, where
the time average is calculated over the same 20 orbit period as
in Figure 8. There is a decrease in the ratio of the Reynolds to
Maxwell stress as the total stress increases. These stresses are
proportional to the perturbed magnetic and kinetic energies at
the largest scales, and if this continued down to the dissipation
scale, we might expect that the ratio 〈Qk〉/〈Qm〉 would behave
similarly with α. In fact, the heating ratio shows the opposite
trend with α, indicating that a transfer of energy from magnetic
to kinetic fluctuations must occur in the turbulent cascade.

Past net toroidal field simulations without explicit dissipation
terms also find a trend for a decrease in the ratio of the Reynolds

Figure 9. Ratio of Reynolds stress to Maxwell stress as a function of α for
select YN runs; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The colors and symbols are the
same as in Figure 6. The Maxwell and Reynolds stresses as well as α have
been averaged in volume and time. The volume average is calculated over the
entire simulation domain and the time average is calculated from t = 70–90
orbits for YNRe400Pm16 (black X) and YNRe12800Pm0.25 (blue circle),
t = 110–130 orbits for YNRe800Pm2 (green diamond) and YNRe800Pm8
(black square), and t = 110.6–130.6 orbits for YNRe800Pm4 (blue triangle)
and YNRe3200Pm4 (red triangle). The ratio of Reynolds to Maxwell stress
generally decreases with increasing α.

(A color version of this figure is available in the online journal.)

Figure 10. Ratio of Reynolds stress to perturbed kinetic energy as a function
of Re in the sustained turbulence YN simulations. Both the Reynolds stress
and the perturbed kinetic energy are time and volume averaged, with the time
average calculated from orbit 50 onward and the volume average calculated
over the entire simulation domain. The colors correspond to Rm values, and
the symbols correspond to Pm values. Green symbols are Rm = 1600, blue
Rm = 3200, black Rm = 6400, and red are Rm = 12800. Circles are Pm = 0.25,
crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles Pm = 4,
squares Pm = 8, and X’s are Pm = 16. The ratio of stress to energy increases
with increasing viscosity but does not change with resistivity.

(A color version of this figure is available in the online journal.)

to Maxwell stress with increasing α (e.g., Hawley et al. 1995).
So this may be a general result independent of Pm. The quantity
〈Qk〉/〈Qm〉 has not been extensively studied in past shearing
box simulations, but Simon et al. (2009) found a ratio of ∼0.6
for a net vertical field model without explicit dissipation terms.

In summary, these observations are consistent with the hy-
pothesis that decreasing Pm increases the efficiency of magnetic
reconnection and hence reduces the overall stress level. How-
ever, a more in-depth study would be required to better under-
stand the full causal relationship between the ratio of dissipation
terms and the saturation levels.

Finally, we note that the ratio of Reynolds stress to per-
turbed kinetic energy increases with increasing ν, as shown in
Figure 10. There is no observed trend with η. As ν is increased,
the fluid motions that are not being directly driven by the MRI
become increasingly damped. The fluid motions that are driven
by the magnetic field in the form of Reynolds stress follow
the behavior of the Maxwell stress with ν. This is also consis-
tent with the hypothesis that increased ν leads to less efficient
magnetic reconnection; the kinetic fluctuations become damped
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relative to the driving via the MRI, making it difficult to bring
field lines close together for reconnection.

Overall, resistivity seems to play a more fundamental role
than viscosity in these net toroidal field simulations. There is
a critical Rm below which turbulence decays or fails to grow
from linear perturbations. For a given resistivity near this critical
value, a relatively low viscosity leads to MRI growth (linear
regime) or sustained turbulence (nonlinear regime). A high
viscosity can prevent growth (linear regime) or cause decay
(nonlinear regime). Once the resistivity is sufficiently low to
ensure MRI growth to saturation and continued turbulence, the
effect of viscosity changes and higher viscosity gives larger α
values.

5. DISCUSSION AND CONCLUSIONS

In this study, we carried out a series of local, unstratified
shearing box simulations of the MRI with Athena including the
effects of constant shear viscosity and Ohmic resistivity. The
first simulations were initialized with a zero net magnetic flux
in the domain for comparison with the results of F07. The second
set of simulations are the first investigation of the impact of both
viscosity and resistivity on models with a net toroidal field.

For the values of viscosity and resistivity they studied, F07
found that turbulence was sustained only above a critical Pm
value, specifically when Pm � 1. There was evidence that
this critical Pm value decreases as Re increases (viscosity is
reduced). We repeated these experiments and found that the
saturation level of the MRI depends strongly on both viscosity
and resistivity, and for every Re, there exists a critical Pm value
below which the turbulence dies out. For those simulations
where turbulence was sustained, we found good agreement
between the Athena α values and those of F07.

Zero net field simulations are fundamentally different from
net field models because an imposed background field cannot
be removed as a result of the simulation evolution. The net field
remains unstable and can drive fluid motion even during the fully
nonlinear turbulence phase, assuming that that field was unstable
to begin with. Lesur & Longaretti (2007) examined the effects
of diffusion on models with a net β = 100 vertical field in a
1 × 4 × 1 shearing box using a pseudospectral incompressible
code. They found a relation α ∝ P δ

m with δ = 0.25–0.5 for
values of Pm ranging from 0.12 to 8, but they found no case
where the turbulence died out completely for the range of
viscosities and resistivities studied.

Among net field models, the purely vertical field case is
significantly different from the purely toroidal field model,
hence the need for the study we have presented here. For a
vertical field, the linear MRI favors wavenumbers kz ∼ Ω/vA
and kx = ky = 0. The purely toroidal case favors ky ∼ Ω/vA
with k/kz minimized. Since kx is time dependent due to the
background shear, a given mode undergoes a finite period
of amplification as kx swings from leading to trailing. These
properties suggest that purely toroidal field models might be
more sensitive to dissipation than the vertical field case.

In our numerical study of the linear growth regime of the
toroidal MRI, we have found that increasing either the viscosity
or the resistivity can prevent the growth of MRI modes. As
the viscosity (resistivity) increases, the MRI needs a smaller
resistivity (viscosity) in order to grow. However, for large
enough values of either the viscosity or the resistivity, MRI
growth is suppressed, even in the absence of the other dissipation
term. Because of the importance of small wavelength (large

wavenumber) modes, the critical Rm values, below which
growth is inhibited, tend to be larger than what one would
expect from an axisymmetric vertical field analysis, even in the
absence of viscosity. Here, for comparable values of viscosity
and resistivity, the critical Rm value was around 3200–6400.

Because the linear toroidal field MRI is time dependent,
turbulence can only be sustained if nonlinear amplitudes are
reached during the growth phase. Thus, the outcome of the
linear MRI phase can be sensitive to the initial amplitude of
the perturbations in a simulation where the viscous or resistive
values are near the critical value.

In the nonlinear regime, we found that viscosity generally
acts in an opposite sense to that in the linear regime; increased
viscosity enhances angular momentum transport. Furthermore,
increasing the resistivity appears to decrease the saturation level,
in agreement with previous studies, and the critical Rm, below
which the turbulence dies is ∼800–1600. Near the critical Rm,
however, increasing the viscosity causes the turbulence to decay,
a behavior more in line with the linear regime.

In our simulations, as well as those of Lesur & Longaretti
(2007), Pm < 1 did not necessarily quench the nonlinear turbu-
lence or prevent growth from linear perturbations. Resistivity or
viscosity above a certain level can stabilize the system against
these perturbations, but if both are sufficiently small, their ratio
has no influence on MRI growth. The presence of turbulence,
however, is distinct from the saturation level of that turbulence,
and here Pm can have a significant effect. For both net toroidal
and net vertical field simulations, α increases with increasing
Pm for the range of values studied.

What do these results imply for the effect of resistivity
and viscosity on the MRI and on astrophysical systems? In
principle, they could be quite significant. In protostellar disks,
the resistivity is thought to be quite high near the midplane,
leading to the existence of a dead zone (Gammie 1996). The
Rm values studied here could be applicable to such systems.
However, the implications for accretion disks with small values
of viscosity and resistivity (e.g., X-ray binary disks) are less
clear. Because the range of α values we obtained decreases with
increasing Re (Figure 6), it is possible that α may converge to
a single value independent of Pm as Re and Rm are increased.
If true, this would suggest that the dissipation scales might
have very little influence on the saturation level of the MRI in
astrophysical disks. This idea will need to be tested with higher
resolution simulations to ensure that the (small) viscous and
resistive scales are adequately resolved. If, on the other hand,
Pm still has an influence on the turbulence even for very small
values of viscosity and resistivity, our results (taken together
with those in the literature) could be applicable to such disks.
The resistivity, viscosity, and Pm can vary quite substantially in
these systems, not only between different astrophysical objects,
but also within a given disk (e.g., Brandenburg & Subramanian
2005). Balbus & Henri (2008) analyze a possible Pm dependence
on radius in X-ray binaries to suggest that such a dependence
could be at the core of spectral state transitions in these systems.

The work to date is suggestive, but there remain several
limitations associated with these shearing box simulations. First,
the simulations are unstratified; vertical gravity may also play
a role in establishing the overall turbulent state. For example,
Davis et al. (2009) carried out a series of zero net field shearing
box simulations with vertical gravity and explicit dissipation
and found that the turbulence does not decay as readily as in
the unstratified case. Second, all of the simulations to date have
explored a relatively restricted range of parameters. Here, for
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example, we have examined only one value for the toroidal
field strength and one domain size. Finally, as touched upon
above, the range of values for Re and Rm that have been
studied are somewhat restricted and certainly much smaller
than would be appropriate for many astrophysical disk systems.
While this limitation is partially computational and can be
improved upon with higher resolutions, the question remains for
astrophysical systems whether viscous and resistive processes
that take place on relatively small lengthscales can have a
significant influence on macroscopic stress terms whose scales
are on order the pressure scale height in the disk. But regardless
of the importance of resistivity and viscosity for astrophysical
systems, the values of Re and Rm are very important for setting
α in numerical simulations, much more so than many other
shearing box parameters (e.g., pressure) studied to date. Without
a more thorough understanding of the role that dissipation terms
play, quantitative predictions of α values from simulations will
not be possible.

In summary, our experiments have explored the effect of
changing viscosity and resistivity on MRI simulations with a
net toroidal field. This work serves to expand upon previous
investigations of the impact of small-scale dissipation. While the
direct applicability of studies such as this to specific stress values
within astrophysical systems remains uncertain, it is likely that
for the conceivable future, numerical simulations will be our
primary, if not only way to explore the nature of MRI-driven
turbulence. A thorough understanding of MRI turbulence can
only be obtained with a complete understanding of the effects
of diffusion, both numerical and physical.
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